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Abstract

Droughts cause extreme anomalies in tropical forest growth, but the direction

and magnitude of tropical forests in response to droughts are still widely

debated. Here, we used four satellite-based canopy growth proxies (CGPs),

including three optical and one passive microwave, and in situ fluxes observa-

tions from eddy covariance (EC) measurements for a retrospective investigation

of the impacts of historical droughts on tropical forest growth from a statistical

point of view. Results indicate two opposite directions in drought-related

canopy dynamics across pantropical forests. The canopy of tropical forests with

higher CGPs is more vulnerable to drought stress and recovers faster in the

post-drought recovery period. In contrast, the canopy of tropical forests with

lower CGPs increases during the drought period and declines in the subsequent

recovery period, which is beyond general expectation. In situ measurements

from eddy-covariance flux towers showed that forests with higher gross primary

production and latent heat flux decreased photosynthesis and evapotranspira-

tion during the drought period but increased photosynthesis and evapotranspi-

ration faster during the post-drought recovery period, supporting the findings

from satellite observations. Our statistical analysis against climatic factors pre-

dicts that higher-CGPs tress with probably taller and bigger canopies are more

responsive to shortage of water availability caused by drought; while lower-

CGPs tress with shorter and smaller canopies are more responsive to sunlight

availability and tend to increase their canopy leaves and enhance photosynthesis

in sunnier days during the drought period. Our results highlight the differences

in tropical forests in responding to drought stress, which are worth incorpo-

rated in Earth system models for time-series evaluations.

Introduction

Tropical forests are the largest terrestrial carbon dioxide

sinks on Earth (Giardina et al., 2018) and play an essential

role in the global carbon cycle (Asner et al., 2004). Even

small changes in tropical forest dynamics could also

affect the concentration of atmospheric CO2 and thus

global warming (Lewis et al., 2011; Phillips et al., 2009).

In recent years, droughts have frequently occurred in tropi-

cal regions, depleting the soil water in tropical forests,

inhibiting forest canopy photosynthesis, and even causing

tree mortality (Baccini et al., 2017; Fan et al., 2019;
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Wang et al., 2014). Tropical warming associated with global

warming may further exacerbate the effects of droughts

(Costa & Foley, 2000; Nepstad et al., 2004) on tropical for-

ests and contribute to the reversal of the role of the tropical

forests from being a carbon pool to a carbon source.

Tropical regions experienced several major droughts in

2005 (Chen et al., 2009; Marengo et al., 2008; Phillips

et al., 2009; Saleska et al., 2007), 2010 (Lewis et al., 2011;

Marengo et al., 2011) and 2015 (Jimenezmunoz et al.,

2016; Panisset et al., 2018). Increasing sea surface temper-

ature of the tropical Atlantic resulted in extensive Ama-

zon droughts during the years 2005 and 2010 (Asefi-

Najafabady & Saatchi, 2013; Marengo et al., 2011) and

another strong El Niño-Southern Oscillation (ENSO)

related drought event in 2015 (Doughty et al., 2015; Fan

et al., 2019). Similarly, droughts were documented in

2005 (Asefi-Najafabady & Saatchi, 2013) and 2010 (Agha-

Kouchak et al., 2015; Dutra et al., 2013; Lott et al., 2013)

in Africa, and in 2015 in tropical Asia (Fan et al., 2019).

In situ observations were conducted to investigate the

impacts of tropical droughts on forest canopy growth and

mortality (Anderegg et al., 2016; Gatti et al., 2014; Phillips

et al., 2009). The results suggest that droughts may exceed

the tolerance of tropical forests to water deficit, decreas-

ing the stem biomass and increasing tree mortality (Asner

& Alencar, 2010; Phillips et al., 2010; Wigneron et al.,

2020). For example, the 2005 drought caused 1.2–1.6 Pg

carbon loss of forest biomass, mostly via tree mortality

(Asner & Alencar, 2010; Phillips et al., 2009). But this

negative impact may not apply evenly to all types of for-

ests across the pantropical region (Asner & Alencar,

2010). Studies found that droughts may kill tropical for-

ests selectively (Phillips et al., 2009). Some studies show

that fast-growing, softwood trees are more vulnerable to

droughts (Hacke et al., 2001; McDowell et al., 2008).

Some others showed that smaller trees, with diameters

<40 cm at breast height, recover faster post-drought

(Brando, 2018; da Costa et al., 2010; Fan et al., 2019;

Rowland et al., 2015). However, site observations cannot

directly measure the canopy growth status of plants at a

large spatial scale (Konings & Gentine, 2017; Schimel

et al., 2015), which makes it difficult to assess the large-

scale ecological effects of droughts from field measure-

ments alone (Asner & Alencar, 2010).

Remote sensing signals from spaceborne observations

provide long-term time-series data with high-frequency

for obtaining the spatial and temporal changes over forest

properties in large regions (Zhang et al., 2016). The time-

series data offer insights into the impacts of large-scale

tropical droughts on forests, which are intensively

observed but cannot be easily evaluated via field measure-

ments alone (Asner & Alencar, 2010; Saatchi et al., 2013;

Xu et al., 2011). The satellite-based canopy products are

one of the most widely used remotely sensed indicators

to evaluate the impacts of forest droughts. Different from

in situ experiments, which mainly focus on stem biomass,

satellite-based canopy products reflect the canopy growth

changes of tropical forests in reflectance caused by the

loss of canopy leaves, canopy chlorophyll, or water con-

tent (Lee et al., 2013). For example, the upper-canopy

characteristics (greenness, leaf area) of forests can directly

reflect the canopy growth (Saatchi et al., 2013). The sensi-

tivity of satellite spectral observations to the upper-

canopy characteristics (greenness, leaf area) of forests thus

is commonly used to estimate vegetation productivity

(Saatchi et al., 2013; Zhao & Running, 2010).

Previous studies from satellite observations show great

potential for satellite signals in representing the seasonal-

ity of canopy phenology and photosynthesis in tropical

forests. Satellite optical remote sensing detected canopy

green-up during the dry season in parts of Amazonian

evergreen forests (Huete et al 2006; Saleska et al., 2016;

Xiao et al 2005). However, the clouds, atmospheric aero-

sols and solar geometry might lead to contradictory

results among different satellite observations (Malhi et al.,

2009; Morton et al., 2014; Xu et al., 2011). For example,

such a dry-season green-up pattern has been questioned

(Jones et al., 2014; Morton et al., 2014; Samanta et al.,

2011; Samanta et al., 2010) due to the near-infrared

reflectance changes induced by cloud/aerosols contamina-

tions and surface anisotropy. Recent analyses of optical

data from multiple sensors showed that solar-induced flu-

orescence (SIF) could be used as an arguably better proxy

of gross primary production (GPP) than optical data

(Doughty et al., 2019; Lee et al., 2013; Xu et al., 2015),

and that the enhanced vegetation index (Huete et al.,

2006; Lopes et al., 2016; Wu et al., 2018) could also be

considered as a proxy for leaf area change and new leaf

flushing. Combining the above datasets, studies confirmed

some regions of Amazonia being greener in the dry sea-

son period (Badgley et al., 2017; Guan et al., 2015) and

identified distinct dry-minus-wet-season differences in

canopy phenology between the northern wetter part of

Amazonia where mean annual precipitation (MAP)

>2000 mm year−1 and other regions where MAP <
2000 mm year−1 (Guan et al., 2015). Previous studies con-

tributed great achievements in seasonal variations of phe-

nology and photosynthesis. However, few substantial

investigations were conducted on the response of the inter-

annual variations of forest growth to large-scale drought

events, which might differ from seasonal phenology (Asner

& Alencar, 2010). For example, there are important differ-

ences between the dry season and drought in tropical for-

ests, which are related to the geography, severity and

persistence of precipitation deficit and cloud cover (Asner

& Alencar, 2010). Studies suggested that severe drought
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can exceed the dry-season tolerance of tropical forest cano-

pies, resulting in decreased leaf area index (LAI) and a

lowering of photosynthesis. In other words, although tropi-

cal forests are buffered to some degree from dry-season

conditions (Nepstad et al., 1994), there are potential

thresholds across which drought stress will cause losses in

LAI and photosynthesis (Brando et al., 2008). Further

research is needed to investigate the diverse interannual

responses of tropical forests in responding to droughts,

especially at a continental scale (Yang et al., 2018a, 2018b).

Differed from previous studies focus on dry-season

’green-up’, this study mainly investigates the interannual

responses of tropical forests to drought events. We

hypothesize tropical forests have different tolerances to

drought stresses and show diverse directions and magni-

tudes in interannual variations of canopy dynamics when

encountering drought events. To comprehensively evalu-

ate the impacts of droughts on tropical forest canopy

growth, that is, canopy mass, water content and photo-

synthesis, we present the time series of four satellite-based

canopy products to evaluate the drought loss and post-

drought recovery during historical droughts in the tropi-

cal forests of Amazon, Africa and Asia from the 1980s to

2010s. In this paper, we selected four most widely used

remotely sensed indicators to evaluate the impacts of for-

est droughts, including three optical canopy products,

that is, the LAI from Global Inventory Modeling and

Mapping Studies (GIMMS LAI, Zhu et al., 2013), the

near-infrared reflectance of terrestrial vegetation (NIRv)

(Badgley et al., 2017) from moderate-resolution imaging

spectroradiometer (MODIS) and reconstructed long-term

continuous solar-induced chlorophyll fluorescence (CSIF)

(Zhang et al., 2018a), and one passive microwave canopy

product, that is, Ku-band vegetation optical depth (Ku-

VOD, Moesinger et al., 2020). Here, we named such

canopy parameters as the canopy growth proxies (CGPs).

To define the drought events in tropical forests, we used

the Palmer drought severity index (PDSI, Abatzoglou

et al., 2018; Palmer, 1965; Zhao & Running, 2010) to

evaluate the drought state of each pixel in the monthly

PDSI and then to calculate the fractions of pixels in

droughts across the tropical region to mark the drought

years (red circles, Fig. 1) and recovery years (blue circles,

Fig. 1) from 1985 to 2016 (Method). Besides, we also cal-

culated the drought loss (denoted as ΔCGPdrought) and

recovery gain (denoted as ΔCGPrecovery) of four CGPs

during drought and recovery years (Method) to quantify

tropical forests in response to droughts.

Figure 1. Long-term interannual dynamics of Droughtfraction of (A) Amazon (B) Africa and (C) Asia from 1980 to 2016. The troughs and peaks of

Droughtfraction are categorized as drought years (red circles) and recovery years (blue circles), respectively. The red and blue dash lines represent

Droughtfraction equals 20 and 10% respectively.
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Materials and Methods

Study area

This study investigates the global tropical evergreen for-

ests (TEF) based on the MODIS land cover map

(MCD12C1, Sulla-Menashe & Friedl, 2018), Hansen forest

cover map at the year 2000, and the annual deforestation

maps from 2000 to 2016 (Hansen et al., 2013). First, we

extracted all the pixels that belong to evergreen broadleaf

forests (EBF) in the International Geosphere-Biosphere

Programme (IGBP) classification in all tropical regions at

0.05° resolution from 2001 to 2016 and removed the pix-

els whose land types changed from 2001 to 2016. Then,

we established a 0.5 × 0.5° grid for the tropical areas and

labeled EBF-dominated pixels, in which more than 50%

of 0.05° pixels are tropical EBF. After that, for each 0.5°
pixel, we further calculated the percentage of forest cover

or affected by deforestation and removed pixel with a for-

est cover <70% or deforestation >20%.

The study area contains three regions: Amazon, Africa

and tropical Asia (Fig. 2). Figure 2A Amazon (20°S–10°N
by 50°W–80°W), comprising the largest and most biodi-

verse tract of tropical rainforest in the world. Figure 2B

Africa (5°S–5°N by 10°E–30°E), the western part of the

Africa TEF region, mainly in Cameroon, North Republic

of Congo, Gabon and the Northwest Democratic Republic

of the Congo. Figure 2C Tropical Asia (15°S–29°N by

92°E–150°E), covering the Indo-China Peninsula and the

majority of the Malay Archipelago.

Satellite-based canopy growth proxy (CGP)
data

The CGP data include three optical datasets and one

microwave satellite-based dataset. According to the satellite

signals, these four CGPs are divided into two categories:

optical CGP (GIMMS LAI, MODIS NIRv and CSIF) and

passive microwave CGP (Ku-band VOD) (Table S1).

Optical CGPs

The GIMMS LAI dataset (Zhu et al., 2013) was derived

from the advanced very high-resolution radiometer

(AVHRR) measurements, computed using the GIMMS

normalized difference vegetation index (NDVI), a neural

network and the IGBP land cover classes (Zhu et al.,

2013). Here, we adapted the newest version (4.0) GIMMS

LAI which is available from 1985 to 2016 at a biweekly

resolution and ~0.083° spatial resolution (http://cliveg.b

u.edu/modismisr/lai3g-fpar3g.html). And only pixels with

the quality flag as ’good value’ and ’Retrieved from spline

interpolation’ were used.

The NIRv was a new structural parameter of total scene

near-infrared reflectance (NIR) and the NDVI (Badgley

et al., 2017). The NIRv, which was strongly correlated

with the fraction of photosynthetically active radiation,

represented the proportion of pixel reflectance attributa-

ble to the vegetation in the pixel (Berry, 2018). Badgley

et al. (2017) showed that MODIS NIRv is strongly corre-

lated with GOME-2 SIF globally, as well as with site-level

and grid-level GPP products.

The solar-induced chlorophyll fluorescence (SIF) has

been previously reported to be capable of capturing the

photosynthetic activity of terrestrial forests corresponding

to drought (Lee et al., 2013; Liu et al., 2017). Such as

GOME-2 SIF (Joiner et al., 2013, 2016), OCO-2 SIF

(Frankenberg et al., 2014) and GOAST SIF (Lee et al.,

2013). However, current satellite SIF datasets are limited

for this study, due to the shorter available period, sensor

degradation and spatial gap (Frankenberg et al., 2014;

Zhang et al., 2018a, 2018b). Zhang et al. (2018a) used the

(A) (B) (C)

Figure 2. Study area. (A) Amazon (B) Africa and (C) Tropical Asia. The light-yellow pixels represent the evergreen broadleaf forests (EBF) pixels

used in this study.
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surface reflectance from MODIS and SIF from orbiting

carbon observatory-2 (OCO-2) to generate long-term

CSIF datasets based on machine learning algorithms.

Here, we used all-sky daily SIF (CSIFall-day) from the CSIF

dataset, which exhibits strong spatial, seasonal and inter-

annual dynamics that are consistent with GOME-2 SIF

and OCO-2 SIF (Zhang et al., 2018a).

Passive Microwave CGP

The VOD is a passive microwave observation proportional

to vegetation water content (Jackson & Schmugge, 1991;

Van de Griend & Wigneron, 2004; Tian et al., 2018), which

can be used to express the dynamic water content of canopy

branches and leaves in tropical forests (Jones et al., 2013; Liu

et al., 2015). Microwave VOD is sensitive to canopy varia-

tions at high biomass density, performing better than optical

signals, which are usually saturated (Liu et al., 2018; Zhou

et al., 2014). Here, we used a Ku-band VOD derived from

VOD climate archive, which combines VOD observations

from spaceborne sensors (SSM/I, TMI, AMSR-E, Windsat

and AMSR-2) and removes their systematic differences

(Moesinger et al., 2020). Compared with X-band (10.7 GHz,

1997–2018) and C-band (~6.9 GHz, 2002–2018) related

products, the Ku-band VOD (~19 GHz, 1987–2017) has a

longer time series, which is more useful for evaluating the

impacts of historical droughts on tropical forests.

Climate data

The downward shortwave solar radiation (SWdown), air

temperature (Tair) and precipitation (PRE) data at the

spatial resolution of 0.5° from 1985 to 2016 were

obtained from the National Centers for Environmental

Prediction (NCEP I and II) and Climatic Research Unit –
NCEP (CRU-NCEP) version 7 (Viovy, 2018). The climate

data were aggregated to the monthly temporal scale and

resampled to 0.5° using the bilinear interpolation method

(http://rda.ucar.edu/datasets/ds314.3/).

Atmospheric aridity and soil water deficit may limit

plant carbon uptake and water use in terrestrial ecosys-

tems (Novick et al., 2016). Here, we used the vapor pres-

sure deficit (VPD) and Gravity Recovery and Climate

Experiment (GRACE) terrestrial water storage (TWS) to

represent the atmospheric aridity and soil water deficit,

respectively. The VPD data were derived from the Inte-

grated Forecast System of the European Centre for

Medium-Range Weather Forecasts (ECMWF-IFS) (Yuan

et al., 2019). We used the TWS datasets (GRACE_-

REC_v03) by Humphrey and Gudmundsson (2019),

which are based on two different GRACE solutions and

three different meteorological forcing datasets (Humphrey

& Gudmundsson, 2019).

In situ data

The field observations with long time series were scarce

across TEF. Here, we collected ground-based observations of

three eddy covariance (EC) flux sites (Table S2) from the

Fluxnet2015 dataset (Pastorello et al., 2020). As there is no

in situ PDSI data along with the flux EC tower sites, we used

the in situ precipitation as a surrogate to define the drought

and recovery years (Wolf et al., 2016). Those years with

annual precipitation lower than 5% of MAP were catego-

rized as drought year and years which do not exceed this

threshold were defined as recovery years. The field observed

GPP and latent heat flux (LE) were used as proxies to repre-

sent the canopy grow status. We calculated the interannual

dynamics in both GPP and LE between each drought year

and each pre-/post-drought recovery year.

Methods

Detection of a drought pixel in a given month

Palmer drought severity index (Palmer, 1965) is a hydrologi-

cal index based on the supply and demand concept of the

water balance equation (Palmer, 1965). The PDSI has been

widely used in detecting droughts across tropical forests

(Wang et al., 2014; Zhao & Running, 2010). Here, the PDSI

dataset was provided from 1985 to 2016 (Abatzoglou et al.,

2018) and the detail can be found on the website (http://

www.climatologylab.org/terraclimate.html). We used the

time series monthly PDSI datasets from 1985 to 2016 (Abat-

zoglou et al., 2018) to calculate the monthly pixel-based

standardized anomaly of the PDSI (PDSIanomaly).

PDSIanomaly ¼ PDSImonth�PDSImeanð Þ=PDSIstdev, (1)

where PDSImonth is the monthly PDSI, PDSIanomaly is the

standardized anomaly of PDSImonth, PDSImean is mean

value of the corresponding PDSImonth, and PDSIstdev is the

Standard Deviation (SD) of PDSImonth from 1985 to 2016.

Then, we defined the pixel, whose PDSIanomaly is lower

than −1 SD, as a drought-impacted pixel on a monthly scale.

We masked the pixels with PDSIanomaly > −1 SD from the

study area in the drought year. Similarly, we removed the

pixels from the study area in each month of a recovery year,

which were still impacted by drought using PDSIanomaly ≤
−1 SD. In that case, only those pixels, which encountered cli-

matic drought stress in the drought year and became free

from climatic drought stress in the recovery year, were con-

sidered in the analysis.

Detection of drought and recovery years in three
subregions

We calculated the annual percentage of drought pixels for

Amazon, Africa and Asia (hereafter denoted as Droughtfraction).
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Droughtfraction ¼
∑n

1Countdrought,i

∑n
1Counttotal,i

, (2)

where n represents month from January to December,

Countdrought,i and Counttotal,i are the drought pixels and

total pixels in a given month i, respectively. And

Counttotal,i is a constant in each continent.

We compared the Droughtfraction peaks of long-term

interannual variations with historical drought years

(Table S3) and set an empirical Droughtfraction threshold

of >20% to define the drought year (red circles, Fig. 1).

And this threshold can capture most of the drought year

as literatures reported in Table S3. The troughs (blue

circles, Fig. 1) of the Droughtfraction curve were catego-

rized as recovery years, and we used an empirical thresh-

old of lower than 10% to capture the relative wet

recovery years.

Statistics of CGP peaks and troughs

The selected four CGPs are from independent optical and

passive microwave satellite sensors, which do not always

show consistent interannual variations in either curve

peaks or troughs, or in curve trends, that is, rising and

falling directions. To derive a consistent time series of the

four CGPs from 1985 to 2016, we first calculated the

maximum monthly CGP at the pixel level in each year

and then counted the regional yearly mean CGP in each

continent, then we normalized the time-series regional

CGPs variation.

Normalized CGP¼ CGP�CGPmin

CGPmax �CGPmin
, (3)

where CGP represents regional mean CGP in a given year,

CGPmax and CGPmin represent the maximum and mini-

mum time-series regional mean CGP, respectively.

By considering that different CGPs might be more

related to different parameters, such as leaf area, water

content, or photosynthesis, we assigned different weights

(W) to each CGP when the normalized CGP curve is at a

peak (W = 1.0) or a trough (W = 0.0) or shows an

increasing (W = 0.75) or a decreasing trend (W = 0.25).

We finally calculated a new integrated CGP (denoted as

CGPintegration) from four satellite CGPs. Finally, the values

of CGPintegration were stretched to 0–255 to obtain the gray

background map in Figure 3.

CGPintegration ¼
�

∑
n

1
Wi�CGPi, (4)

where n represents the total CGPS number, n = 1–4; Wi

indicates the weight for CGPi; CGPi represents the nor-

malized CGPs.

Evaluation of canopy growth loss (ΔCGPdrought)
and recovered gain (ΔCGPrecovery)

The datasets of four CGPs were aggregated at 0.5° spatial

and monthly temporal resolutions based on the bilinear

interpolation and average calculation methods, and the data

gaps of each CGP data were filled by using linear interpola-

tion. We first removed the effects of seasonal variations on

the interannual variations of CGPs before, during and after

droughts by subtracting the corresponding multiple-year

monthly average value of each pixel. Then, we extracted the

maximum monthly CGP values of each pixel based on the

monthly CGPs from each pre-drought recovery year,

drought year and post-drought recovery year to represent

the interannual variations in CGPs before, during and after

droughts, respectively. For each pixel, we calculated the CGP

drought loss (ΔCGPdrought) by subtracting the CGP in the

drought year from that in the former recovery year; and cal-

culated the recovery gain (ΔCGPrecovery) by subtracting the

CGP in the drought year from that in the subsequent recov-

ery year. We then plotted ΔCGPdrought against CGP in pre-

drought recovery year and ΔCGPrecovery against CGP in

post-drought recovery year. All processes were conducted at

pixel level for each drought event.

ΔCGPdrought ¼CGPdrought�CGPbefore
recovery, (5)

ΔCGPrecovery ¼CGPafter
recovery�CGPdrought, (6)

where CGPdrought is the CGPs in the drought year;

CGPBeforerecovery and CGPafterrecovery are the CGPs in the recovery

years before and after the given drought year, respectively.

We only have one ΔCGPdrought and ΔCGPrecovery for each
pixel for a specific drought or recovery year.

Analyses of ΔCGPs with climatic interannual
variability

In this study, we categorized climate factors into water-

related factors (PRE, VPD and TWS) and radiation-

related factors (SWdown and Tair). We analyzed the rela-

tionship between climate dynamics and CGP variations

during the drought and recovery periods from water and

radiation aspects. The calculation of interannual dynamics

of climate parameters (ΔClimate) is the same as the cal-

culation of ΔCGPs.

Results

Performance of satellite-based CGPs in
historical TEF droughts

We used the PDSI to calculate the regional percentage of

the drought pixels (Droughtfraction) (Fig. 1, Method).
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Figure 3 shows the Droughtfraction curve (red curves in A,

B, C) and the corresponding regional normalized CGP

interannual dynamics over the past 30 years from 1985 to

2016. The time-series curve of Droughtfraction was used to

define the drought and recovery years, which represent

the corresponding historical climatic drought conditions

in all tropical regions. The gray background color

(CGPintegration) in Figure 3 represents the probability of

tropical forests encountering the drought illustrated by

four CGPs (Method). The darker background indicates

Figure 3. Historical climatic interannual dynamics represented by Droughtfraction and interannual dynamics of canopy growth represented by four

nomalized CGPs of (A) Amazon (B) Africa and (C) Asia from 1985 to 2016. The gray background is integrated CGP (CGPintegration) generated from

four CGPs (Methods), which indicates the probability of tropical forests encountering the drought from low (light gray) to high (dark gray). CGPs,

canopy growth proxies.
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the higher possibility as the drought years. The lighter

background indicates the higher possibility as the recovery

years.

The results (Fig. 3, Table S3) show that the years with

the dark gray background, that is, the highest possibility

of drought illustrated by four CGPs, coincide with the

years with Droughtfraction peaks (red circles in Fig. 1)

derived from the PDSI for most historical drought events:

1997/1998 (Espinoza et al., 2011; Nepstad et al., 2004),

2005 (Doughty et al., 2015), 2010 (Lewis et al., 2011) and

2015 (Doughty et al., 2015) in Amazonia (Figs. 1A and

3A), 2005 in Africa (Asefi-Najafabady & Saatchi, 2013)

(Figs. 1B and 3B), and 1992/1993 (Sakai et al., 2006; Yoo

et al., 2004), 1997/1998 (McVicar & Bierwirth, 2001) and

2015 (Fan et al., 2019) in tropical Asia (Figs. 1C and 3C).

The proposed CGPintegration generally well agree with

drought (darker background in Fig. 3) and recovery

(lighter background in Fig. 3) years represented by

Droughtfraction (Fig. 1), indicating that CGPs can detect

the interannual dynamics of forest canopy before and

after the short-term drought events, but the ranges of

CGPs in different categories differ greatly, implying differ-

ent impacts of droughts on different CGPs.

Drought-related interannual dynamics of
tropical canopy growth differ in directions
and magnitudes

For each pixel per drought or recovery year, we plotted the

drought loss (hereafter named ΔCGPdrought) and CGPs

recovery gain (hereafter named ΔCGPrecovery) of four CGPs
against their recovery CGPs, respectively (Fig. S1, Fig. 4).

The results show that ΔGIMMS LAIdrought, ΔMODIS

NIRvdrought, ΔKu-VODdrought and ΔCSIFdrought decrease

from Low-CGP regions to High-CGP regions with a signif-

icant downward trend (Fig. 4, left). Conversely, ΔGIMMS

LAIrecovery, ΔMODIS NIRvrecovery, ΔKu-VODrecovery and

ΔCSIFrecovery of trees with higher CGPs increase dramati-

cally compared to those with lower CGPs (Fig. 4, right). In

other words, trees with higher values of GIMMS LAI (mean

value >6.26 � 0.009, Mean � SEM, SEM is the standard

error of the mean), MODIS NIRv (mean value

>0.29 � 0.001), CSIF (mean value >0.35 � 0.002) and

Ku-VOD (mean value >1.29 � 0.003) are more vulnerable

to drought stress (i.e., more negative ΔCGPdrought) and also

show faster regrowth (i.e., more positive ΔCGPrecovery)
than forests with lower-mean CGPs.

Figure 4. Interannual dynamics of forest growth proxies during drought period and post-drought period of (A) Amazon (B) Africa and (C) Asia.

In each plot, the left curves are fitted curves of ΔCGPdrought against CGP in pre-drought recovery year and the right curves are fitted curves of

ΔCGPrecovery against CGP in post-drought recovery year. The gray shadings represent the 95% confidence interval. CGP, canopy growth proxies.
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Our results indicate another divergent direction in the

interannual variability of tropical forests in drought

response. Trees with lower GIMMS LAI (mean value

<5.83 � 0.044), MODIS-NIRv (mean value <0.27 �
0.001), CSIF (mean value <0.33 � 0.003) and Ku-VOD

(mean value <1.13 � 0.017) show positive values of

ΔCGPdrought during the drought period (Fig. 4). How-

ever, forests with sparse canopy leaves show significant

’green-up’ during the drought period, which is opposite

to decreasing greenness when well-grown forests face

droughts. On the contrary, the canopy greenness of Low-

CGP trees dims (ΔCGPrecovery < 0) after the drought

events. The interannual dynamics of all four CGPs of

tropical forests do not follow the general expectation,

which mainly showed the negative impacts of droughts

on tropical forests.

We further evaluated the impacts of droughts on inter-

annual dynamics of forest growth, represented by the

slopes of the linear fitted curves of CGPs in Figure 4. For

the drought period, a steep slope indicates more positive

ΔCGPdrought in lower CGP pixels and more negative

ΔCGPdrought in higher CGP pixels (Fig. 5A) than a gentle

slope. For the post-drought recovery period, a steep slope

indicates more negative ΔCGPrecovery in lower CGP pixels

and more positive ΔCGPrecovery in higher CGP pixels

(Fig. 5B). Figure 6 shows that the slopes of the fitted

curves of four CGPs (GIMMS LAI: R = 0.840, P < 0.001;

MODIS NIRv: R = 0.965, P < 0.001; CSIF: R = 0.807,

P = 0.009; Ku-VOD: R = 0.774, P < 0.001) (Table S4,

Fig. 6) during the drought and post-drought period in

Amazonia, Africa and tropical Asia are all positively

related to ΔPDSI (Fig. 6). Therefore, trees with higher

mean CGPs show a more dramatic decrease in canopy

growth, whereas trees with lower CGPs green up more

significantly when they encounter a severe drought. The

divergent directions in interannual dynamics of drought-

related forest canopy between sparse and well-grown

canopies are amplified with the drought intensity.

To better understand the distribution of contradicting

canopy behaviors in drought response, we averaged the

drought-induced ΔCGPdrought of each drought event and

post-drought ΔCGPrecovery of each recovery event for each

CGP and overlapped them to locate the regions with

ΔCGPdrought < 0 and ΔCGPrecovery > 0 (red pixels, Fig. 7)

and regions with ΔCGPdrought > 0 and ΔCGPrecovery < 0

(blue pixels, Fig. 7). Results show that spatial patterns for

all the four CGPs. Most tropical forests, as High-CGP

type, decrease CGP during drought period and increase

CGP after drought. The mean percentages are 77.90,

69.62 and 65.80% for Asia, Africa and America, respec-

tively (Table S5). The tropical forests with ΔCGPdrought >
0 and ΔCGPrecovery < 0, as Low-CGP type, are mainly

located in the northwestern parts and central of Africa

(e.g., Cameroon and the Democratic Republic of the

Congo), Vietnam and central Papua New Guinea in trop-

ical Asia. However, the spatial patterns of Low-CGP pixels

are more complicated in Amazon illustrated by the four

proxies, probably due to the complex forest biomes across

Amazon (Sakschewski et al., 2016). This type of forests

accounts for 8.67, 13.19 and 10.69% in Asia, Africa and

America, respectively (Table S5).

Forests in high-CGP and Low-CGP pixels
exhibit varying interannual variabilities

To further explore the differences between high and low

values of CGPs, based on the spatial pattern of Low-CGP

and High-CGP of those four CGPs (Fig. 7), we further

analyzed the interannual dynamics in canopy growth

(ΔCGPs) with the corresponding interannual dynamics of

Figure 5. Scatter diagrams between the slopes of the linear fitting curves in Figure 4 and interannual dynamics of tropical forest CGPs during (A)

drought loss (ΔCGPdrought) and (B) post-drought gain (ΔCGPrecovery) periods. The shadings represent the 95% confidence interval. CGPs, canopy

growth proxies.
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climatic factors (i.e., ΔTair, ΔSWdown, ΔVPD, ΔPRE
and ΔTWS) during the drought or post-drought periods,

respectively (Figs. S2–S5, Fig. 8). ΔCGPs in High-CGP

forests are positively related to ΔPRE and ΔTWS but neg-

atively related to ΔTair, ΔSWdown and ΔVPD (Figs. S2–
S5, Fig. 8 red lines, Table S6). In contrast, ΔCGPs in

Low-CGP forests are negatively related to ΔPRE and

ΔTWS but positively related to ΔTair, ΔSWdown and

ΔVPD (Figs. S2–S5, Fig. 8 blue lines, Table S7). This

finding indicates that the High-CGP trees are more

responsive to drought-related water deficits (ΔVPD,
ΔPRE and ΔTWS) (Table 1) and recover faster under

sufficient water supply than Low-CGP trees. The Low-

CGP forests, however, are more sensitive to light condi-

tions (ΔSWdown) (Table 1), that is, tree canopy grows

with higher Tair and SWdown but declines with more

precipitation (more clouds and less light). This is proba-

bly because High-CGP trees, usually tall and old trees,

show more water demand for transpiration and encounter

longer transfer length due to greater canopy biomass and

higher canopy height; whereas Low-CGP trees always with

smaller biomass and shorter canopy height need less

water supply for transpiration (Giardina et al., 2018; Phil-

lips et al., 2010).

Relationship between covariance
measurements and satellite observations

The results of field observation showed that forests with

higher GPP decreased photosynthesis during the drought

period (Fig. 9A) but increased photosynthesis faster

(Fig. 9B) during the post-drought recovery period. How-

ever, the forests with lower GPP showed opposite direc-

tions in responding to drought and post-drought

recovery events. The LE analysis showed similar rules

(Fig. 9C and D). We further analyzed the sensitivity of

the interannual dynamics of GPP (ΔGPP) to the corre-

sponding climate dynamics (i.e., ΔSWdown, ΔVPD,
ΔPRE) (Fig. S6). The results showed that the site with

higher GPP (GF-Guy, mean GPPrecovery =
3755.70 gC m−2 year−1) is more positively sensitive to

precipitation (slope = 0.006) than the site with lower

GPP (MY-PSO, mean GPPrecovery = 2557.79 gC m−2-

year−1, slope = 0.001) and more negatively sensitive to

VPD (slope: −7.121 and −0.392 for GF-Guy and MY-

PSO, respectively) and SWdown (slope: −0.114 and

−0.025 for GF-Guy and MY-PSO, respectively)

(Table S8). In situ LE also showed similar results

(Fig. S6D–F and Table S8). In situ observations support

Figure 6. Interannual dynamics of tropical forest growth (A) GIMMS LAI (B) MODIS NIRv (C) CSIF and (D) Ku-VOD, represented by slopes of

the linear fitting curves in Figure 4, with the interannual dynamics of climatic drought intensity represented by PDSI. The dots located at x < 0

are the slopes of the fitting curves (left parts of each plot) during the drought period. The dots located at x > 0 are the slopes of the fitting

curves (right parts of each plot) during the post-drought period. The gray shadings represent the 95% confidence interval. PDSI, Palmer

drought severity index.
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the findings from satellite observations that forests with

High-CGPs are more vulnerable to drought stress due to

water deficit and recovery faster because of sufficient

water supply (Figs. 4 and 8).

Discussion

Evaluations of potential uncertainty
between the drought indicators

The drought event itself and its impacts on tropical for-

ests are complex, which are still poorly understood

(AghaKouchak et al., 2015; Asner & Alencar, 2010; Van

Emmerik et al., 2017). PDSI can well characterize the glo-

bal surface water conditions and water flow conditions

(Dai et al., 2004) and thus can comprehensively assess

drought conditions caused by water and heat stress, and

is more commonly used in tropical studies (Lima &

AghaKouchak, 2017; Raphael et al., 2017). To explore

potential uncertainty introduced by different choices of

drought indicators, besides the PDSI, we added another

widely used drought index in long-term large-scale

research—the standardized precipitation index (SPI)

(McKee et al., 1993), which is available until 2012 and

(B)

(A)

(C)

(D)

Figure 7. Spatial patterns of high-CGP (red pixels, ΔCGPdrought < 0 and ΔCGPrecovery > 0) and low-CGP (blue pixels, ΔCGPdrought > 0 and

ΔCGPrecovery < 0) regions. ΔCGPdrought and ΔCGPrecovery are the mean values of several drought and recovery events from (A) 1985 to 2016, (B)

2001 to 2015, (C) 2000 to 2016 and (D) 1988 to 2016, respectively. The statistics of the percentage of high- and low-CGP of each continent are

shown in Table S5. CGP, canopy growth proxies.
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provided with 3-, 6-, and 12-month scales, downloaded

from the National Center for Atmospheric Research/

University Corporation for Atmospheric Research (2013).

We calculated drought fractions for each continent and

each year (Droughtfraction,SPI) based on the same method

as PDSI (Equation 2). The results (Fig. S7) showed that

the Droughtfraction,SPI mostly captured drought years as

categorized by PDSI (Fig. S8).

It is worth noting that, since the 2000s, there were three

reported severe drought events (2005, 2010 and 2015)

(Table S3) in the Amazon. The proposed Droughtfraction

(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(K)

(L)

(M)

(N)

(O)

(P)

(Q)

(R)

(S)

(T)

Figure 8. Scatter diagrams of interannual dynamics of canopy growth (ΔCGPs) versus corresponding climatic interannual dynamics (i.e., ΔTair,
ΔSWdown, ΔVPD, ΔPRE and ΔTWS). (A-E) GIMMS LAI, (F-J) MODIS NIRv, (K-O) CSIF, (P-T) Ku-VOD. The Y axes from the first row to the last row

are ΔTair, ΔSWdown, ΔVPD, ΔPRE and ΔTWS, respectively. The red lines represent high-CGPs and the blue lines represent low-CGPs.

Table 1. Opposite directions in canopy dynamics between high-CGP

and low-CGP trees.

High-CGP trees Low-CGP trees

Drought

period

Negative ΔCGPdrought Positive ΔCGPdrought

Recovery

period

Positive ΔCGPrecovery Negative ΔCGPrecovery

Climate

sensitivity

More sensitive to water

availability

More sensitive to sunlight

availability

CGP, canopy growth proxies.
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captured the droughts in 2010 and 2015 but failed in repre-

senting severe drought in occurred in the southwestern

Amazon from July to September in 2005 (Yang et al.,

2018a, 2018b) (Fig. S9). That is because in this study, we

considered the whole tropical EBF pixels and used the

Droughtfraction to define the drought year. However, there

was only a small Droughtfraction at monthly scale during

August to October in 2005 (Fig. S10), which can be seen as

in comparison with the 2003 drought. The Droughtfraction
in 2005 (16.3%) has a small peak (Fig. 1A), being lower

than the 20% threshold and thus the year 2005 was not cat-

egorized as a drought year in this study.

The CGPs represent different physiological
features of tropical tress in response to
droughts

Using the satellite-based optical CGPs (LAI, NIRv and

CSIF) and passive microwave CGP (Ku-VOD), we com-

prehensively assessed the impacts of droughts on the forest

canopy. However, different CGPs might be related to dif-

ferent features, such as leaf area, water content, or photo-

synthesis. The LAI, as one of the most basic parameters to

describe the vegetation canopy structure, is related to

canopy mass cover. The NIRv provides information on the

fractional absorption of sunlight and photosynthetic

capacity (Zhao & Running, 2010). The SIF, as an early

indicator of physiological alterations for global monitoring

of vegetation (Hernández-Clemente et al., 2017), is very

sensitive to the response of vegetation environmental stress

and has certain technical advantages in detecting early veg-

etation stress (Liu et al., 2013). When a tree experiences

drought stress, it will first increase heat dissipation with a

subsequent decrease in both photochemistry and fluores-

cence (Daumard et al., 2010; Flexas et al., 2002; Galmés

et al., 2007). As the drought continues, the tree will reduce

water stress through increase falling of leaves, or even

cause tree mortality (Baccini et al., 2017; Fan et al., 2019;

Wang et al., 2014), and both these two behaviors will

decrease LAI. Although optical indices are vulnerable to

the effects of clouds, atmospheric action, aerosols, water

vapor and land cover (AghaKouchak et al., 2015; Andela

et al., 2013; Shi et al., 2008), consistent results were

detected in both canopy mass-related CGP (LAI) and

photosynthesis-related CGPs (NIRv and SIF).

With less saturation and higher penetration than opti-

cal signals, the microwave VOD is a more robust proxy

to represent the variations in vegetation water content of

tropical forests (Chen et al., 2020; Fan et al., 2019). Our

result showed that Ku-VOD has the same response to

drought as optical signals and Ku-VOD can capture the

more depth variations of canopy than optical ones,

although the Ku band has a lower penetration depth

when compared with lower frequency VOD such as

L-VOD, which contains less information on deeper vege-

tation layers. The Ku-VOD, as a potential canopy

Figure 9. Interannual dynamics of in situ GPP and LE during the drought period (A and C) and post-drought period (B and D). The GPPrecovery,pre
and GPPrecovery,post in X axis are the GPP values of pre- and post-drought recovery years, respectively; LErecovery,pre and LErecovery,post in X axis are

the LE values of pre- and post-drought recovery years, respectively. The shadings represent the 95% confidence interval. The * indicate P < 0.05

and ** represent P ≤ 0.001. GPP, gross primary production; LE, latent heat flux.
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water/mass-related proxy, provides a unique signal for

capturing tropical forest canopy changes in response to

droughts (AghaKouchak et al., 2015).

The sensitivity to climate interannual
variability controls the directions and
magnitudes of drought-related CGPs
interannual variations

We found that forests of High-CGP and Low-CGP pixels

show opposite directions and diverse magnitudes in

response to climate interannual variability (Fig. 8,

Table 1). High-CGP trees show large declines in canopy

growth during droughts and fast recovery post-drought,

whereas Low-CGP trees show an increase in canopy

growth under drought conditions but a decrease in the

recovery period. Generally, High-CGP trees are usually

taller and bigger ones; while Low-CGP trees are rela-

tively smaller ones. Taller and bigger trees have propor-

tionally more leaves supported by the same area of

xylem than smaller trees (Liu et al., 2019; McDowell

et al., 2002). The reduction in the total water consump-

tion of taller and bigger trees is more severe under

drought than that of smaller trees. This is consistent

with our satellite-based findings that the High-CGP for-

ests are more sensitive to water availability, and thus are

more responsive to water stress during drought periods.

Some site experiments observed higher mortality of trees

with large and dense canopies (Anderegg et al., 2016;

Brando, 2018; Phillips et al., 2010), supporting our

hypothesis that the shortage of water availability caused

by drought has a huge negative impact on High-CGP

trees. In contrast, Low-CGP forests are likely smaller and

shorter ones with sparse canopies, which are more sensi-

tive to sunlight availability. Therefore, Low-CGP trees

tend to absorb more radiation and increase their canopy

leaves and enhance photosynthesis on sunnier days dur-

ing the drought period.

It is also worth noting that VPD is a comprehensive

climatic parameter related to both air temperature and

atmospheric humidity (Aumann & Pagano, 1994). Air

temperature and atmospheric humidity can boost photo-

synthesis in high VPD conditions due to the increase in

Tair (Yuan et al., 2019) but can also depress photosynthe-

sis under severe VPD conditions due to water deficit (Lee

& Boyce, 2010; Reichstein et al., 2002). Chen et al. (2020,

2021) have demonstrated that VPD can be considered as

a trigger of the dry-season canopy ’green-up’ across Ama-

zonian evergreen forests. Our findings also indicate the

great potential of VPD as a trigger of canopy growth

dynamics responding to short-term droughts, which is

important for modeling the carbon-water cycle in terres-

trial tropical ecosystems.

Conclusions and Recommendations

Both satellite-observed signals and in situ observed fluxes

were used to examine two types of forests (i.e., both

higher and lower CGPs trees) with divergent directions

and magnitudes in interannual variability of canopy

growth during drought and recovery periods. The analysis

shows that the two directions of forest canopy changes

are mainly related to different underlying mechanisms in

responding to sunlight and water variations. The results

highlight the differences of tropical forests in responding

to drought stress, which is worth incorporated in land

surface models (LSMs). By neglecting to account for the

differences of forest canopy covers, LSMs tend to under-

estimate the impacts of drought on dense canopy-cover

forests but overestimate those impacts on sparse canopy-

cover forests. Our findings are critical for assessing global

carbon and water cycles, which are poorly considered in

global land surface models. Understanding the character-

istics of CGPs and the forest itself is extremely essential

for maintaining the carbon-water balance and is critical

for assessing global carbon and water cycles.

This study detected opposite canopy behaviors across

pantropical forests in response to drought events; while

we did not take into account the impacts of drought

intensity and drought duration. In addition, further

investigations are needed to explore mechanisms of oppo-

site drought-related canopy behaviors of tropical forests

in the future.
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Figure S1. Drought loss (ΔCGPdrought) of forest canopy

growth proxies (CGPs) during the drought period (A–D)
and post-drought gain (ΔCGPrecovery) after droughts (E–
J) against the corresponding CGPs of the recovery years.

Figure S2. Scatter diagrams between ΔGIMMS LAI and

corresponding climatic interannual dynamics (i.e., ΔTair,
ΔSWdown, ΔVPD, ΔPRE, and ΔTWS).

Figure S3. Scatter diagrams between ΔMODIS NIRv and

corresponding climatic interannual dynamics (i.e., ΔTair,
ΔSWdown, ΔVPD, ΔPRE, and ΔTWS).

Figure S4. Scatter diagrams between ΔCSIF and corre-

sponding climatic interannual dynamics (i.e., ΔTair,
ΔSWdown, ΔVPD, ΔPRE, and ΔTWS).

Figure S5. Scatter diagrams between ΔKu-VOD and cor-

responding climatic interannual dynamics (i.e., ΔTair,
ΔSWdown, ΔVPD, ΔPRE, and ΔTWS).

Figure S6. In situ observaed sensitivity of GPP and LE to

(A and D) SWdown, (B and E) VPD, and (C and F) PRE

as functions of GPPrecovery and LErecovery.
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Figure S7. Long-term interannual dynamics of

Droughtfraction calculated from PDSI (black solid lines),

SPI with 3 months time scale (SPI3, orange dash lines),

SPI with 6 months time scale (SPI6, green dash lines),

and SPI with 12 months time scale (SPI12, pruple dash

lines) from 1985 to 2012.

Figure S8. The correlation between Droughtfraction from

PDSI and Droughtfraction from SPI3 (orange), SPI6

(green), SPI12 (purple).

Figure S9. Spatial pattern of PDSI anomaly during 2005

JAS Amazon southwest drought.

Figure S10. Monthly Droughtfraction of Amazon in 2003

(red solid line) and 2005 (black solid line).

Table S1. Information of all of the data used in this

study.

Table S2. Basic information of 3 in-situ sites from Flux-

net2015.

Table S3. Historical drought years across tropical Ama-

zon, Africa, and Asia.

Table S4. Correlation analysis between CGP (ΔCGP) and
PDSI (ΔPDSI) interannual dynamics.

Table S5. Statistics of percentage of High-CGP and Low-

CGP of each continent (Fig. 7).

Table S6. Correlations between interannual dynamics in

canopy growth (ΔCGPs) of High-CGPs trees and climatic

interannual variations (ΔTair, ΔSWdown, ΔVPD, ΔPRE,
and ΔTWS).

Table S7. Correlations between interannual dynamics in

canopy growth (ΔCGPs) of Low-CGPs trees and climatic

interannual variations (ΔTair, ΔSWdown, ΔVPD, ΔPRE,
and ΔTWS).

Table S8. The statistics of in-situ observaed sensitivity

(represented by the slope of linear regression) of GPP/LE

(GPPrecovery/LErecovery) to SWdown ð ΔGPP
ΔSWdown ,

ΔLE
ΔSWdownÞ,

VPD ðΔGPPΔVPD,
ΔLE
ΔVPDÞ, and PRE ðΔGPPΔPRE ,

ΔLE
ΔPREÞ.
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