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A B S T R A C T

A model describing immiscible fluid–fluid displacements in partially saturated porous media is presented. This
is based on a phase field approach that interprets the mixture of wetting (liquid water) and non-wetting
(air) fluids within the pore space as a single saturating non-uniform pore fluid characterized by a phase
field parameter, which is considered to be the saturation degree of the wetting fluid. While the standard
retention curve provides for the retention properties of the pore walls, a Cahn–Hilliard like double-well energy
is employed to describe the possible co-existence of the immiscible fluid phases. An enhanced description of the
macroscopic surface tension between the fluid phases is obtained naturally within the phase field framework
due to a regularization that depends on the spatial gradient of the water content. A generalized Darcy’s law
is used to describe dissipation due to fluid flow driven by the gradient of a generalized chemical potential.
Thus, in the context of soil hydrology this model is interpreted as an extension to the classical Richards
equation governing the spatio-temporal evolution of the phase field parameter. Employing a convex–concave
flux function it is shown, using one-dimensional analysis, that both imbibition and drainage fronts can be
modeled in this phase field framework. The non-monotonicities observed in the resolved solutions are explained
using a combination of asymptotic matching techniques and dynamical systems analysis.
1. Introduction

Stability of a moving interface between two immiscible fluids of
contrasting viscosities and densities is a classical problem in fluid
mechanics. Further when a solid substrate is involved the problem
becomes more complex with the addition of wettability of the solid
surface with respect to the fluid combination. This is almost always the
case when two fluids are involved such as in the Hele-Shaw flow and in
multi-phase flow in porous media such as soils. Being able to model the
displacement of such interfaces has its uses in a myriad of applications
ranging from hydrology to Carbon dioxide (CO2) sequestration. In
hydrology, when water infiltrates into soil while displacing air, the
stability of the interface plays a consequential role in the transport
of solutes and contaminants to the ground waters (Glass et al., 1988;
Jarvis, 2007; Clothier et al., 2008). In fact soil layers filter the rain
waters before they reach the water table and this can be impacted
negatively by the formation of preferential pathways due to unstable
infiltration. Sequestration of CO2 is a key part of carbon capture and
storage (CCS) as a solution to counter the mounting accumulation of
atmospheric greenhouse gasses (Lackner, 2003; Torp and Gale, 2004;
Orr, 2004; Ajayi et al., 2019). This process involves injection of com-
pressed CO2 while displacing the resident wetting fluid (usually water
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or oil) in high permeable aquifer rock formations at suitable geological
sites such as depleting oil or gas fields, deep saline formations and
unmineable coal seams. A low permeable cap-rock usually acts as a
natural barrier to trap the injected CO2. Any instability relative to an
advancing interface within this layer leads to reduced efficiency of the
operation (Yamabe et al., 2015; Zacharoudiou et al., 2018). It can even
pose an environmental risk if preferential paths are triggered by the
fault planes in the cap-rock thus providing an escape route to the rising
or migrating CO2 plumes (Macminn et al., 2010; Gilfillan et al., 2011;
Song and Zhang, 2013).

When the resident/defending fluid preferentially wets the solid
substrate the displacement of it by a non-wetting fluid is termed as
drainage. The contrary is termed imbibition, when the invading fluid
is wetting. In both these scenarios, numerous experimental campaigns
have been carried out by various researchers with an intent to char-
acterize the unstable displacement and the ensuing pattern formation.
One can refer to the seminal works of Lenormand and his colleagues
in the 1980s (Lenormand, 1985; Lenormand et al., 1988; Lenormand,
1990) and the other researchers who followed this path. See Chen et al.
(2017), Guo and Aryana (2019), to name a few.
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In more recent works such as Méheust et al. (2002), Løvoll et al.
(2005), gravity has been shown to stabilize the invasion of a less dense
non-wetting fluid into a porous medium that is saturated with more vis-
cous and denser wetting fluid. On the contrary, when a denser and more
viscous wetting fluid displaces a resident non-wetting fluid, the viscos-
ity contrast is not in favor of destabilization (Saffman and Taylor, 1958;
Homsy, 1987) and gravity is expected to assist in destabilizing the flow.
This latter regime was the focus and a well-engaged topic of research
in soil hydrology since the 1970s. One can look into DiCarlo (2013),
Xiong (2014) among others for a review of gravity driven infiltration
of water into soil. Experimental evidence in this context suggested that
fingering type instabilities that occur during infiltration have a non-
monotonic profile along their length, with their tips having higher
water content compared to their tails. This observation and related
numerical studies (Nieber et al., 2000; Eliassi and Glass, 2001) have
lead to the hypothesis that this non-monotonicity is the cause rather
than the consequence of the ensuing instability (Eliassi and Glass,
2001). This ‘overshoot’ of water content has been further evidenced
experimentally to be present during two-dimensional (Bauters et al.,
2000; Shiozawa and Fujimaki, 2004) and quasi one-dimensional (Di-
Carlo, 2004; DiCarlo et al., 2010) experiments with transverse domain
size smaller than the finger size expected.

Now coming to the modeling efforts, the various methodologies that
have been developed over the years for modeling flow in porous media
can be broadly classified based on the spatial scale of the problem being
tackled. The pore-scale network models such as the (Glass and Yarring-
ton, 1996; Glass et al., 1998; Hughes and Blunt, 2000, 2001; Al-Gharbi
and Blunt, 2005; Primkulov et al., 2018, 2019) and lattice-Boltzmann
methods (Liu et al., 2012, 2014; Zhao et al., 2016) are interesting in
studying the effect of rather intricate processes such as pore invasion,
flow-by-film and formation of capillary bridges among others. Also,
these methods were rather successful in describing regime transitions
in the phase diagram (Lenormand, 1990) classifying the morphology
of the fluid displacement. However, these approaches tend to quickly
become non-viable for large scale practical applications. On the other
hand macroscopic scale continuum modeling has proven to be a reliable
tool to model laboratory scale and field scale problems. The most
widely accepted continuum model for describing partially imbibed
soils in hydrology is the now classical Richards equation (Richards,
1931) that is derived, under various assumptions (Hilfer and Steinle,
2014), from the conservation of fluid mass and the Darcy–Buckingham
equation (Buckingham, 1907; Bear, 1972) that relates the pressure
gradient to the fluid flux in an unsaturated porous medium. While this
approach has been widely accepted, it suffered criticism over the years
primarily due to the rough up-scaling law that is involved to model
the retention effect of the pore walls on the fluids (Morrow, 1970).
Secondly, due to its inability to reproduce physically observed fingering
phenomenon (Egorov et al., 2003; Nieber et al., 2005). Various propos-
als have been done over the years to remedy these drawbacks, each one
building on the existing structure of the Richards equation.

In the current study we propose a non-local extension to the
Richards equation which is based on a more general framework (Scia-
rra, 2016) of thermodynamically consistent phase field modeling. At
the core of this approach is the inspiration from the now classical
Cahn–Hilliard (Cahn and Hilliard, 1958, 1959) modeling of multi-
phase fluids involving phase segregation and diffused description of
interfaces between the phases. The proposed approach is analyzed in
detail in one-dimension portraying its ability to describe experimentally
observed non-monotonic profiles of saturation in gravity driven infiltra-
tion and their link to the specific form of the energy employed. Another
significant novelty of this work is the modeling of drainage fronts,
besides imbibition, realized in the context of continuum poromechanics
without falling-back on modeling hysteretic effects. This is done thanks
to the presence of a non-local gradient energy contribution and by
employing a non-convex flux function that drives the flow under the
2

influence of an imposed uniform pressure gradient or an equivalent
uniform bulk force. Such description of flux functions driving the flow
are prevalent in thin film flows (Bertozzi et al., 1999; Münch, 2000),
fractional flow formulations (DiCarlo et al., 2012; Hilfer and Steinle,
2014) among others. Our purpose being in formulating an enriched
continuum model whose characteristic parameters could be, in prin-
ciple, directly identified from experimental evidence, no comparison
has been proposed with lattice-Boltzmann methods or other numerical
schemes based on the premise that the macroscopic behavior of a fluid
is the result of the average behavior of many microscopic particles in
the system. The interested reader can for instance refer to Chen and
Doolen (1998) and cited works within.

The one-dimensional solutions and the analysis thereof sets the
stage for Part II of this work, where we show that two-dimensional
imbibition and drainage solutions are conditionally stable to transverse
perturbations, thus being able to generate fingering type instabilities.

This work is organized as follows: In Section 2 the Richards equation
is introduced along with a brief review of its drawbacks and the existing
extended models. Then the proposed model is presented recalling,
from Sciarra (2016), the aspects of energy contributions and its roots to
fundamental principles. The governing equation for saturation degree
of wetting fluid is derived employing a generalized Darcy’s law. In
Section 3 a one-dimensional analysis is done employing a non-convex
flux function followed by a traveling wave analysis and numerical reso-
lution of the one-dimensional solutions. The conclusions are presented
in Section 4.

The physical dimensions of quantities are mentioned whenever rel-
evant alongside the corresponding symbols and within square brackets,
[M(⋅) L(⋅) T(⋅) 𝛩(⋅)]. In Table 1 one can find the main symbols and their
nomenclature adopted in this work. Note that some of the physical
quantities with dimensions are rendered dimensionless, [–], according
to the scheme presented within.

2. Mathematical model

The starting point of the current development is the classical
poromechanical approach, see Coussy (2004, 2010), along with an
overarching assumption of a rigid hydrophilic porous skeleton whose
pore spaces are filled with two fluids, air and water. Now, due to
the immiscibility of the fluids involved, triple lines arise at the pore-
scale, when the air–water interfaces meet the pore walls. The motion
of these triple lines governs the individual energy contributions of the
interfaces formed among the solid, wetting and non-wetting fluids. The
essence of the current work is two fold: to account for these interfacial
energy contributions in a way that enriches the classical prescription
allowing in particular for describing pinching and coalescence of fluid
phases within the porous medium and secondly to shed light on the
possibility of modeling both imbibition and drainage while adhering to
the thermodynamic restrictions of a dissipative extended Darcy flow.

2.1. Classical approach

At the pore-scale, the menisci formed between the wetting and non-
wetting fluids have certain curvature depending on the surface tension
between the two fluids, their wettability with respect to the pore walls
and the geometry of the pores. The pressure difference between the
two fluids, that is the pore-scale capillary pressure, governs the volume
fractions of those fluids within the pore space. Classical poromechanical
practice involves assuming a simplistic geometry of the pore space and
specifying that the work done by the pore-scale capillary pressure in
causing infinitesimal variation in the volume content of the wetting
fluid occupying the pore, is equivalent to the infinitesimal variation of
interfacial energy (Coussy, 2010). Thus a continuum scale constitutive
relation is determined between the interfacial energy, 𝑈 (𝑆𝑤), and the
saturation degree of the wetting fluid, 𝑆𝑤, i.e., the volume fraction
of wetting fluid within the available pore space. This relation allows,

at equilibrium, for retention of a given volume of wetting fluid at a
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Table 1
List of main symbols and nomenclature.
Symbols Nomenclature Dimensions

(when applicable)

𝑡 physical time [T]
𝑥 coordinate in the physical space along 𝑥-direction [L]
𝑒𝑥 unit vector in the positive 𝑥-direction [–]
∇ multi-dimensional gradient operator in the physical space [L−1]
∇⋅ multi-dimensional divergence operator in the physical space [L−1]
( ) ⋅ ( ) dot product between two vectors
𝑔 magnitude of gravitational acceleration [LT−2]
𝜌𝑤 , 𝜌𝑛𝑤 intrinsic mass densities of wetting and non-wetting fluids respectively [ML−3]
𝑆𝑤 , 𝑆𝑛𝑤 saturation degrees of wetting and non-wetting fluids respectively [–]
𝑝𝑤 , 𝑝𝑛𝑤 pressures of wetting and non-wetting fluids respectively [ML−1T−2]
𝜙0 , 𝜙 initial and Lagrangian porosities of the porous skeleton respectively [–]
𝜘 intrinsic permeability of the porous skeleton [L2]
𝜂𝑤 dynamic viscosity of the wetting fluid [ML−1T−1]
𝑝𝑐 capillary pressure, Eq. (10) [ML−1T−2]
𝑈 capillary energy density, Eq. (9) [ML−1T−2]
𝜋0 capillary modulus or reference pressure [ML−1T−2]
𝑚 van Genuchten model parameter (van Genuchten, 1980) [–]
𝑆𝑟𝑒𝑠𝑟 residual saturation degree of the wetting fluid [–]
𝜌𝑓 mass density of the non-uniform fluid, Eq. (3) [ML−3]
𝑚𝑓 Lagrangian mass content of the non-uniform fluid [ML−3]
𝑆𝑟 phase field parameter (or) order-parameter [–]
(.)′ derivative w.r.t 𝑆𝑟 [–]
𝛾 surface tension between the two fluids that compose the non-uniform fluid [MT−2]
𝑅 characteristic size of the pore throats that allows room for the non-uniform fluid [L]
𝐶 dimensionless parameter signifying the intensity of local bulk fluid energy w.r.t that of the capillary

energy
[–]

𝐶𝑘 coefficient of the non-local fluid energy [MLT−2]
𝜇𝑝𝑓 chemical potential of the non-uniform pore fluid, Eq. (20) [ML−1T−2]
𝜇𝑒 effective chemical potential of the non-uniform pore fluid, Eq. (22) [ML−1T−2]
𝑃 imposed linear pressure distribution [ML−1T−2]
𝜆 gradient of the imposed linear pressure distribution [ML−2T−2]
𝜇 augmented chemical potential w/ the imposed linear pressure contribution, Eq. (24) [ML−1T−2]
𝑐 characteristic speed of shock wave solutions, Eq. (34) [–]
𝜉 transformed coordinate w.r.t 𝑥 [–]
𝑆− , 𝑆+ boundary conditions on the left and right respectively of a jump initial condition [–],[–]
𝐿 physical length of the one-dimensional domain used in numerical simulations [L]
𝛥𝑥, 𝛥𝑡 dimensionless spatial and temporal discretization sizes used for numerical resolution [–],[–]
𝑉𝑓 dimensionless injection velocity applied on a part of the boundary, Eq. (42) in numerical simulations [–]
𝑆0
𝑟 , 𝜇

0 initial saturation degree and dimensionless chemical potential used for resolving the spatio-temporal
evolution in numerical simulations

[–],[–]

𝑆𝑎 , 𝑆𝑏 saturation degrees of the uniform intermediate states during the spatio-temporal evolution [–],[–]
𝑠, 𝑠− , 𝑠+ saturation degree, left and right boundary conditions in the moving coordinate system [–],[–],[–]
(𝑠𝑒 , 0, 0) equilibrium state associated to the dynamical system Eq. (49) ([–],[–],[–])
s
i
a
i
C
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prescribed pressure difference between the two fluids, (𝑝𝑛𝑤 − 𝑝𝑤) =
𝑝𝑐 (𝑆𝑤), within a porous skeleton and so, is called the retention relation
or the retention curve. In this sense, it accounts not only for the surface
tension between the two fluids but also for the retention effect provided
by the pore walls due their texture.

The thermodynamic consistency of this approach is further corrob-
orated by the concept of energy separation (Coussy, 2004), wherein
the bulk fluid energy density is considered apart from that of the
interfaces and the overall interfacial energy density (𝜙 𝑈 (𝑆𝑤)) is a priori
accounted for in the free energy density of the porous solid,

𝛹̂𝑠 = 𝜓𝑠 + 𝜙 𝑈 (𝑆𝑤), (1)

where the Lagrangian porosity of the skeleton, 𝜙, is the ratio of porous
volume in the current configuration to the total volume of the porous
medium in the reference configuration. 𝛹̂𝑠 and 𝜓𝑠 are respectively, the
free energy density of the porous solid in the classical approach and the
free energy density of the porous skeleton. Such an approach allows to
model 𝜓𝑠 as a state function accounting for the tensile effect on the
pore walls due to the presence of interfaces.

The functional form of 𝑝𝑐 (𝑆𝑤) usually is empirical (van Genuchten,
980; Brooks and Corey, 1964) in order to fit the experimental data and
an generally be hysteretic. It has been noted over the years that such
ne-to-one relation between capillary pressure and saturation degree
s not enough to describe non-local phenomena such as pinching and
oalescence of fluids due to variations in capillary forces. Nevertheless,
3

uch a treatment is still widely in use.
Typically in soil hydrology, see Hilfer and Steinle (2014) for in-
tance, water is considered to be in-compressible and its density, 𝜌𝑤,
s assumed to be much higher compared to that of air, 𝜌𝑛𝑤. Further the
ir phase is assumed continuously connected to the atmosphere lead-
ng to pressure gradients within that phase vanishing instantaneously.
onsequently, the only relevant variables are those of the water phase:
𝑤, 𝑆𝑤 and 𝑝𝑤. Such assumptions lead to the Richards equation,
𝜕(𝜙𝑆𝑤)
𝜕𝑡

+ ∇ ⋅
[

𝜘
𝜂𝑤
𝐾𝑤(𝑆𝑤)

(

∇𝑝𝑐 (𝑆𝑤) + 𝜌𝑤𝑔𝑒𝑥
)

]

= 0, (2)

that governs the spatio-temporal evolution of the volume content of
wetting fluid (𝜙𝑆𝑤). Here the acceleration due to gravity is assumed to
be acting along the unit vector, 𝑒𝑥, in the 𝑥-direction. The fluid flow en-
compassed within the Richards equation is described by the extension
of Darcy flow to the unsaturated conditions, the Darcy–Buckingham
equation (Buckingham, 1907). 𝐾𝑤(𝑆𝑤) is thus a dimensionless relative
permeability function which is a non-linear and typically empirical
relation that modulates the flow of wetting fluid with respect to its
saturation degree, increasing with 𝑆𝑤 from 0 to 1.

In terms of stability, the works of Egorov et al. (2003), Nieber
et al. (2005) revealed that the Richards equations is unconditionally
stable against traversal perturbations thus being unable to produce
experimentally observed fingering type instabilities. While various ex-
tensions have been proposed intending to remedy these inadequacies,
we mention here a few of them. Hassanizadeh and Gray (1990), Gray

and Hassanizadeh (1991) introduced the specific interfacial area, a
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measure of the fluid interfaces, as an internal state variable thus
providing a corrective term to an otherwise coarsely defined retention
relation, 𝑝𝑐 (𝑆𝑤). As part of their ‘hold-back-pile-up’ postulate Eliassi
and Glass (2002) drew parallels to this corrective term, introducing
the so-called ‘hypo-diffusive’ term and showed (Eliassi and Glass, 2003)
that if this correction results in a non-monotonic retention relation then
non-monotonic overshoot saturation profiles are possible in gravity
driven infiltration. Eliassi and Glass (2002) also introduced a mixed
‘relaxation’ term, which is second order in space and first order in
time, as an extension to standard Richards equation and interpreted
this as a consequence of the rate-dependent capillary pressure function
introduced by Majid Hassanizadeh and Gray (1993). Egorov et al.
(2003), Nieber et al. (2005) have shown that such an extension to the
Richards equation can produce instabilities for non-monotonic solution
profiles. DiCarlo et al. (2008) used this relaxation term to introduce
regularization to the Richards equation with non-monotonic capillary
pressure function from Eliassi and Glass (2003) and showed similar
overshoot solutions. Cueto-Felgueroso and Juanes (2009a) introduced
in their model a fourth order in space term as an extension to the
standard Richards equation producing non-monotonic solution profiles
and proposed a relevant heuristic scaling of the fourth order coefficient
that resulted in favorable comparison with some experimental observa-
tions. Stability analysis (Cueto-Felgueroso and Juanes, 2009b) of this
model as well has revealed instabilities when saturation profiles are
non-monotonic.

2.2. Phase field approach

More recently in the work of one of the authors (Sciarra, 2016),
a framework has been built that is thermodynamically consistent and
naturally allows for modeling possible localized deformations of the
porous skeleton (Vardoulakis et al., 1978; Andò et al., 2012; Desrues
and Andò, 2015) and its coupling to the fluid flow. Concerning the fluid
description, while the standard retention curve describes the confining
effect due to the pore walls, an enhanced description of surface tension
between the fluids is obtained by considering the two immiscible fluids
as a single non-uniform biphasic fluid in the spirit of Cahn and Hilliard
(1958, 1959). In this sense it can be viewed as a phase field approach
to model multi-phase fluid flow while accounting for the fact that the
pore network, through which the non-uniform fluid is flowing, provides
additional interfacial energy due to the solid–fluid interfaces. Such a
description of fluids is adopted in the current study. Naturally within
such a framework, coexistence of isopotential phases is possible thanks
to the Van der Waals-like double-well form of the fluid energy density.
This gives rise to a non-monotonic effective retention curve when the
confining effect given by the standard retention curve is added to
it. Parallels may be drawn to the ‘hypo-diffusive’ term (Eliassi and
Glass, 2002; DiCarlo et al., 2008) which resulted in a non-monotonic
retention relation, but the mixed ‘relaxation’ term is not employed in
the current model. Instead, as usual in Cahn–Hilliard type phase field
models (Lowengrub and Truskinovsky, 1998; Jacqmin, 2000; Boyer
and Lapuerta, 2006; Kim, 2012), coarsening of the fluid domains and
pattern formation is made possible due to a non-local gradient energy
contribution giving rise to an extension to the Richards equation which
is now fourth order in space. In this sense parallels may be as well
drawn to the higher order model introduced by Cueto-Felgueroso and
Juanes (2009a), which, however, does not account for coexistence of
isopotential phases and phase segregation due to its lack of a bulk
energy contribution that has a double-well structure.

2.2.1. Balance of mass
According to this adopted framework (Sciarra, 2016) the mixture

of two immiscible fluids saturating the porous space is viewed as a
single non-uniform biphasic fluid occupying the full porous space. This
non-uniform fluid (further sub-scripted ‘𝑓 ’) is furnished with an phase
field/order parameter, 𝑆 , in the spirit of Cahn–Hilliard modeling,
4

𝑟

which is an intensive scalar property distinguishing the two phases.
The role of phase field parameter is chosen to be played by the classical
Saturation degree of wetting fluid, 𝑆𝑤. This puts a physically motivated
restriction on the range of values this phase field parameter can take,
as such 𝑆𝑟 ∈ [0, 1]. 𝑆𝑟 = 0 represents pure phase of air(non-wetting
fluid) and 𝑆𝑟 = 1 represents that of water(wetting fluid). This allows to
invoke the assumptions (Hilfer and Steinle, 2014) that lead to Richards
equation. For an 𝑆𝑟 ∈ [0, 1], a simple linear interpolation of individual
densities of pure phases can be assumed for the apparent density, 𝜌𝑓 ,
of the non-uniform fluid (Kim, 2012). A non-uniform fluid composed
of in-compressible water (𝜌𝑤 = 𝑐𝑜𝑛𝑠𝑡) and highly rarefied air, the latter
being continuously connected to the atmosphere, implies that pure air
phase is of infinite mobility. Thus any pressure differences in this phase
(𝑆𝑟 = 0) are instantaneously vanishing and the pressure itself equates
to that of reference atmospheric pressure, assumed 0 for convenience.
Concurrently invoking an ideal gas law for air implies that its density,
𝜌𝑛𝑤, is negligible compared to that of water (𝜌𝑤 ≫ 𝜌𝑛𝑤 ≈ 0) leading to,

𝜌𝑓 = 𝜌𝑤𝑆𝑟 + 𝜌𝑛𝑤(1 − 𝑆𝑟) ≈ 𝜌𝑤𝑆𝑟. (3)

This leads to a further simplification of the Lagrangian mass content
of the non-uniform fluid per unit volume of the porous medium, 𝑚𝑓 =
𝜌𝑓𝜙 ≈ 𝜌𝑤𝑆𝑟𝜙. Following Coussy (2004), the local form of the overall
balance of mass of the non-uniform fluid can be written as,

𝜌𝑤
𝜕(𝜙𝑆𝑟)
𝜕𝑡

+ ∇ ⋅ 𝑀 = 0. (4)

In the above 𝑀 [ML−2T−1] is the Lagrangian fluid mass flow vector
relative to the skeleton. While we lay down in brief the thermodynamic
restrictions that lead to the possible constitutive prescriptions for 𝑀 ,
we refer the reader to Sciarra (2016) for a detailed treatment.

2.2.2. Fluid and interfacial energies
Since the model is based on the classical approach to poromechan-

ics (Coussy, 2004, 2010), starting from the first and second principles
of thermodynamics a free energy density of the porous solid, 𝛹𝑠, is
deduced subtracting the bulk contribution of the fluid, (𝜙 𝛹𝐿), from
that of the overall porous medium,

𝛹𝑠 = 𝛹 − 𝜙 𝛹𝐿. (5)

This approach has its origins in the work Biot (1972), according to
which the porous solid is understood as a ‘wetted’ porous skeleton, with
a thin layer of fluid attached to the pore walls, thus accounting for the
associated interfaces. This allows one to model 𝛹𝑠 as a state function in
the context of thermo-poroelasticity where dissipation is only attributed
to the fluid flow and thermal effects.

Now, the main difference between the classical and the current
phase field approaches lies in the prescription of the interfacial energies
and the ensuing concept of energy separation. We start the following
developments with the former. In the phase field approach, the fluid–
fluid interfaces are considered apart from those of the solid–fluid
interfaces. This is quite natural since a non-uniform fluid, in the sense
of Cahn–Hilliard modeling, already accounts for any interfaces forming
between its constituent phases, in this case air and water. At an ideal
contact between two such immiscible fluids the interface is sharp and
an associated jump, say in the phase field parameter, should exist. In
a Cahn–Hilliard type modeling of multi-phase fluids (Lowengrub and
Truskinovsky, 1998; Jacqmin, 2000; Boyer and Lapuerta, 2006; Kim,
2012), the sharp interface is approximated by a diffused counterpart
with a finite thickness, 𝓁, across which large variations of the phase
field parameter occur. In this sense the current model intends to pro-
vide a smeared description of partial saturation and does not identify
the position of pore-scale menisci that form within the network. An
estimate of this intrinsic length, 𝓁, can be obtained from physical
measurements of transition lengths along the macroscopic air–water
interface. As usual in Landau and Cahn–Hilliard models, in order to be
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able to describe pattern formation during phase separation of the binary
mixture, the free energy of the non-uniform fluid is defined as sum of a
double-well potential, having isopotential minima in the pure phases,
and a non-local gradient contribution. Thus for a given unit volume of
porous medium in its reference configuration the free energy density
of non-uniform fluid saturating its pores is as follows:

𝜙 𝛹𝑓 (𝑆𝑟,∇(𝜙𝑆𝑟)) = 𝜙 𝛹𝐿(𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)), (6)

here 𝛹𝐿(𝑆𝑟), the local bulk contribution to the free energy as in-
roduced in Eq. (5), is responsible for segregation and allows for
oexistence of the immiscible phases. A possible form allowing for such
escription is

𝐿(𝑆𝑟) =
𝐶𝛾
𝑅
𝑆2
𝑟
(

1 − 𝑆𝑟
)2 , (7)

which has a symmetric double-well structure whose isopotential min-
ima correspond to pure phases of air (𝑆𝑟 = 0) and water (𝑆𝑟 = 1).
See Fig. 1. The characteristic radius of channels within which the fluid
menisci form, 𝑅, is an intrinsic property of the porous skeleton and
according to Leverett (1941) it scales with

√

𝜘∕𝜙0. The derivative of
𝛹𝐿(𝑆𝑟) w.r.t 𝑆𝑟 gives a chemical potential, 𝜇𝐿(𝑆𝑟), whose negative
spatial gradient is the local ‘‘force" that drives the distribution of the
phases at equilibrium.

𝛹𝑁𝐿(∇(𝜙𝑆𝑟)) is the non-local gradient contribution allowing the
formation of diffuse interface between the two phases and provides
regularization of the non-convex local energy. This term is assumed to
be quadratic in gradient of fluid content, ∇(𝜙𝑆𝑟), as follows:

𝛹𝑁𝐿(∇(𝜙𝑆𝑟)) =
𝐶𝑘
2

(

(∇(𝜙𝑆𝑟)) ⋅ (∇(𝜙𝑆𝑟))
)

, (8)

thus accounting not only for saturation gradients but also for gradients
of porosity. The magnitude of 𝐶𝑘 determines spatial influence of this
non-local energy. The significance and choice of scaling of this term
is reserved for later analysis. However, in case of a homogeneous
evolution of 𝑆𝑟 this term vanishes.

On the other hand, the classical capillary energy density, introduced
in Eq. (1), now a function of the phase field parameter, 𝑈 (𝑆𝑟), is as-
sumed for the contribution of the solid–fluid interfaces, thus accounting
for retention properties of the solid skeleton due to the texture of
its pore walls. In the current study the widely used van Genuchten
form (van Genuchten, 1980),

𝑈 (𝑆𝑟) = ∫

1

𝑆𝑟
𝑝𝑐 (𝑆)𝑑𝑆, (9)

𝑝𝑐 (𝑆𝑟) = − 𝜕𝑈
𝜕𝑆𝑟

= 𝜋0
⎛

⎜

⎜

⎝

(𝑆𝑟 − 𝑆𝑟𝑒𝑠𝑟
1 − 𝑆𝑟𝑒𝑠𝑟

)− 1
𝑚
− 1

⎞

⎟

⎟

⎠

1−𝑚

, (10)

s assumed where, 𝜋0 scales as 𝜌𝑤𝑔𝓁𝑐 . 𝓁𝑐 [L] is the porous media
ounterpart of capillary length scale that relates intensity of capillary
orces in the porous medium to that of gravity.

With such a description of interfacial energy contributions, the clas-
ical energy separation, Eq. (1) is revised to account for the non-local
luid energy contribution,

𝑠 = 𝜓𝑠 + 𝜙 𝑈 (𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)). (11)

n this sense, Eq. (5) now implies that the so-called porous solid
omprises of the skeleton with a thin layer of fluid attached to the pore
alls and as well all the fluid–fluid interfaces that form within the pore

paces. Thus, using Eq. (5) the overall free energy density of the porous
edium can be written as,

= 𝜓𝑠 + 𝜙 𝛹𝐿(𝑆𝑟) + 𝜙 𝑈 (𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)). (12)

f we consider a rigid porous skeleton (𝜙 = 𝜙0 = 𝑐𝑜𝑛𝑠𝑡), as done further,
hen 𝜓𝑠 = 0 and the contribution of the porous solid, 𝛹𝑠, to the overall
ree energy of the porous medium reduces to just that of the interfaces
esulting in,

= 𝜙 𝛹𝐿(𝑆𝑟) + 𝜙 𝑈 (𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)). (13)
5

Fig. 1. (a) Energy densities, 𝛹𝑒(𝑆𝑟), 𝛹𝐿(𝑆𝑟), 𝑈 (𝑆𝑟); (b) chemical potentials, 𝜇𝑒(𝑆𝑟),
𝜇𝐿(𝑆𝑟), 𝑝𝑐 (𝑆𝑟). All functions plotted are dimensionless according to the scheme
resented in Section 2.2.7.

.2.3. Dissipation and generalized Darcy’s law
In what follows the main implications of dissipation inequality in

he framework of above mentioned modeling scheme are reported. In-
erested reader may find a formal deduction of them in Sciarra (2016).
lso, it is to be noted that the Cahn–Hilliard nature of the fluid energy
hould imply that a suitable entropy function can be defined similar
o what was done in Beljadid et al. (2020) and an underlying gradient
low structure can be identified (Cancès et al., 2019). However, this is
eyond the scope of the current work.

Starting from the fluid mass balance, the principles of thermody-
amics and the constitutive prescription of the non-uniform fluid, a
haracterization of dissipation of the overall porous medium can be
btained. The primary assumption of a rigid porous skeleton a priori
llows one to neglect the power of external forces acting to deform the
keleton itself and consequently any power of internal forces acting
o generate solid strains. So, any dissipative phenomena should be
estricted to the fluid flow, interfacial changes and thermal effects.
eferring to the developments in Sciarra (2016) and those presented
bove, the overall dissipation of the porous medium, 𝛷, is given in the
orm of a Clausius–Duhem inequality,

= 𝛷𝑠 +𝛷𝑓 +𝛷𝑡ℎ ≥ 0, (14)

here 𝛷𝑠, 𝛷𝑓 , and 𝛷𝑡ℎ are the dissipations related respectively to
he solid skeleton, non-uniform fluid flow and thermal effects, whose
articular expressions are given below. As a general practice in porome-
hanics (Coussy, 2004), these three contributions are independently
ssumed non-negative in order to satisfy Eq. (14) so that,

𝑠 = 𝜙 𝜕𝑈
𝜕𝑆𝑟

𝑑𝑆𝑟
𝑑𝑡

+
𝜕𝛹𝑁𝐿

𝜕(∇(𝜙𝑆𝑟))
⋅
𝑑(∇(𝜙𝑆𝑟))

𝑑𝑡
− 𝑠

𝑑𝑇
𝑑𝑡

(15)

−
𝑑𝛹𝑠
𝑑𝑡

≥ 0,

𝑓 =−

{

∇
[

𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

− ∇ ⋅
(

𝜕𝛹𝑁𝐿
𝜕(∇(𝜙𝑆𝑟))

)]

(16)

−
b𝑓

𝜙𝑆𝑟

}

⋅
𝑀
𝜌𝑤

≥ 0,

= −
q
⋅ ∇𝑇 ≥ 0, (17)
𝑡ℎ 𝑇
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where b𝑓 [ML−2T−2] is the bulk force acting on the fluid, q [MT−3] is
the surface heat flux vector, 𝑇 [𝛩] is the absolute temperature and 𝑠
[ML−1T−2𝛩−1] is the entropy density of the porous solid. Eq. (15) states
that in the context of thermo-poroelasticity, if the skeleton is assumed
to be rigid then the free energy of the skeleton must still account
for the interfacial phenomenon due to variations in saturation degree
and its spatial gradient. In other words, under isothermal conditions,
𝛹𝑠(𝑆𝑟,∇(𝜙𝑆𝑟)) is a state function which in the current framework is
given by Eq. (11) with 𝜓𝑠 = 0. Eq. (17) states that heat flows from
regions of higher temperature to those of lower temperature along
the direction of negative gradient of the temperature. Under isother-
mal conditions, as considered further, this dissipative contribution is
vanishing.

The dissipation due to fluid flow is encompassed within Eq. (16). In
essence the generalized force, coefficient of (𝑀∕𝜌𝑤), causing the fluid
flow must be related to the fluid velocity vector in such a way as to
satisfy the dissipation inequality. One way to achieve this, which is
an usual practice in poromechanics, is to assume a linear relationship
with a coefficient of proportionality that could depend on the intrinsic
permeability of the skeleton, saturation degree and dynamic viscosity
of the fluid,

𝑀 = 𝜌𝑤𝑉

= 𝜌𝑤
𝜘
𝜂𝑤
𝐾(𝑆𝑟)

{

−∇
[

𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

− ∇ ⋅
(

𝜕𝛹𝑁𝐿
𝜕(∇(𝜙𝑆𝑟))

)]

+
b𝑓

𝜙𝑆𝑟

}

,

(18)

here 𝑉 [LT−1] is the fluid velocity vector. This approach is equivalent
o the extension of Darcy’s law to unsaturated flow conditions. 𝐾(𝑆𝑟) is
dimensionless function that accounts for the non-uniform resistance

o the flow experienced by the fluid due to its non-uniform nature.
ccordingly in the pure air phase (𝑆𝑟 = 0) the non-uniform fluid must
e infinitely mobile, 𝐾(𝑆𝑟) = 0. And when the pore network is fully
aturated by water (𝑆𝑟 = 1), one should recover the Darcy-like relation
n full saturation with 𝐾(𝑆𝑟) = 1. In this way Eq. (18) is a generalized
orm of the Darcy’s law and the classical counterpart of 𝐾(𝑆𝑟) is the
elative permeability 𝐾𝑤(𝑆𝑤) introduced in Eq. (2). It is to be noted
hat, in Eq. (18) an isotropy of the flow within the porous medium has
een assumed. Eq. (18) and (16) imply that the fluid dissipation now
eads,

𝑓 =
𝜂𝑤

𝜘 𝐾(𝑆𝑟)
(𝑀 ⋅𝑀)
𝜌2𝑤

≥ 0. (19)

his results in a restriction on the function 𝐾(𝑆𝑟) to be positive in order
o ensure the positiveness of the dissipation associated to the fluid flow.
oreover, it is worth to note at this point that there is no restriction due

o thermodynamic principles on the convexity of the function 𝐾(𝑆𝑟).
he particular form employed for this function in the current work is
otivated further in Section 3.

.2.4. Towards a non-uniform pore fluid
Looking at Eq. (18), in the absence of a bulk force acting on the

luid, b𝑓 = 0, the generalized force driving the flow is the negative
patial gradient of a chemical potential identified as,

𝑝𝑓 =
𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

− ∇ ⋅
(

𝜕𝛹𝑁𝐿
𝜕(∇(𝜙𝑆𝑟))

)

, (20)

here a new sub-script ‘𝑝𝑓 ’ is introduced that represents a supposed
non-uniform pore fluid’ that is understood as a non-uniform fluid, as
ntroduced in Section 2.2.2, that is confined within a pore network
haracterized by the capillary energy 𝑈 (𝑆𝑟). As usual in Cahn–Hilliard
ype modeling, this chemical potential, 𝜇 , can be derived as a varia-
6

𝑝𝑓
ional derivative w.r.t to 𝑆𝑟 of an overall free energy of the non-uniform
ore fluid. The density of such an overall free energy, 𝛹𝑝𝑓 , in the cur-
ent case can clearly be identified by the overall free energy density of
he porous medium, 𝛹 , with a rigid porous skeleton given by Eq. (13),

𝑝𝑓 = 𝛹 = 𝜙 𝛹𝐿(𝑆𝑟) + 𝜙 𝑈 (𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)). (21)

It is worth noting that unlike 𝛹𝐿(𝑆𝑟), the local part of this new
energy density, (𝛹𝐿(𝑆𝑟) + 𝑈 (𝑆𝑟)), has no more a symmetric double-
well structure between 𝑆𝑟 = 0 and 1. Instead, the minimum associated
o 𝑆𝑟 = 0 no more exists and only one global minimum remains at
𝑟 = 1. See Fig. 1. Moreover, depending on the relative intensities of

bulk and capillary energy densities it is possible also that a minimum
associated to lower 𝑆𝑟 exists, but is shifted inwards of the original
range of 𝑆𝑟 thus changing the corresponding local preferential states
at equilibrium (Sciarra, 2016). However, these two minima would not
be isopotential. In both these cases, when the chemical potential is non-
monotonic, Maxwell construction (equal-area rule) can be understood
as a search for the line bi-tangent to this new energy density at
equilibrium conditions of the non-uniform pore fluid. This is equivalent
to construction of a linear potential due to external forces which
once accounted for brings back the double-well structure with two
isopotential minima. Now these two minima, both shifted inwards of
original range of 𝑆𝑟, being isopotential allows for coexistence between
the corresponding phases. The inward shift of the minima can be under-
stood as a correction to account for wetting properties of the skeleton
at equilibrium in the case of lower minimum and as a correction to
account for trapped air in the case of higher minimum shifted from
𝑆𝑟 = 1. Owing to this significance of physical interpretation, this local
contribution in Eq. (21) is further referred to as the effective energy
density, 𝛹𝑒(𝑆𝑟) = 𝛹𝐿(𝑆𝑟) + 𝑈 (𝑆𝑟), of the non-uniform pore fluid and its
partial derivative w.r.t 𝑆𝑟, the effective chemical potential, see Fig. 1,

𝜇𝑒(𝑆𝑟) =
𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

= 𝜇𝐿(𝑆𝑟) − 𝑝𝑐 (𝑆𝑟). (22)

2.2.5. Phase field governing equation
With the above framework established, one can obtain the spatio-

temporal evolution of 𝑆𝑟 and 𝑀 by resolving the coupled system of
partial differential equations (PDEs) formed by the balance of mass,
Eq. (4), and the generalized Darcy’s law, Eq. (18). An alternative
way, which renders the equations amenable for the current analysis
is to resolve, for the evolution of 𝑆𝑟, a fourth order PDE formed by
substituting Eq. (18) into Eq. (4),

𝜙
𝜕𝑆𝑟
𝜕𝑡

+ ∇ ⋅
[

𝜘
𝜂𝑤
𝐾(𝑆𝑟)

(

−∇𝜇𝑝𝑓 +
b𝑓

𝜙𝑆𝑟

)]

= 0. (23)

In the above, the expression of 𝜇𝑝𝑓 (𝑆𝑟,∇𝑆𝑟) is given by Eq. (20) and
= 𝜙0 = 𝑐𝑜𝑛𝑠𝑡 in accordance with the assumption of a rigid porous

skeleton. In soil hydrology and various other practical applications
like CO2 sequestration, the bulk force acting on the fluid is due to
gravity. If we consider gravitational acceleration to be acting in the
positive 𝑥-direction, then b𝑓 = 𝑚𝑓 𝑔𝑒𝑥 ≈ 𝜌𝑤𝑆𝑟𝜙𝑔𝑒𝑥 in accordance
with Eq. (3). The structure of the above equation closely resembles
that of the classical Richards equation, Eq. (2). The difference lies in
the constitutive prescription that lead to the particular expression of
𝜇𝑝𝑓 (𝑆𝑟,∇𝑆𝑟) in Eq. (23) compared to that of 𝑝𝑐 (𝑆𝑤) in Eq. (2).

In what follows, a more general case is considered by introducing
an additional linear pressure distribution which potentially allows to
describe an initial uniform background mean flow. This state can
then be perturbed by modifying the boundary conditions in order to
investigate the evolution of either a drainage or an imbibition front.
Thus an augmented chemical potential incorporating both the effects
of initial background mean flow and of gravity forces is written as,

𝜇 = 𝜇𝑝𝑓 + 𝑃 , (24)

where the pressure distribution 𝑃 = −𝜆𝑥. In the case when only gravity

forces are considered 𝑃 is just proportional to 𝜆 = 𝜌𝑤𝑔. Both these
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scenarios may coexist in which case gravity can act to either stabilize or
destabilize the motion of an air–water front depending on their relative
directions.

2.2.6. Summary of the model - Governing equations
Introducing the above mentioned augmented chemical potential, 𝜇,

the governing equation for 𝑆𝑟, Eq. (23), can be re-written as follows,

𝜙
𝜕𝑆𝑟
𝜕𝑡

+ 𝜘𝜆
𝜂𝑤

𝜕𝐾(𝑆𝑟)
𝜕𝑥

− 𝜘
𝜂𝑤

∇ ⋅
[

𝐾(𝑆𝑟)
(

∇𝜇𝑝𝑓
)]

= 0, (25)

ith 𝜇𝑝𝑓 given by Eq. (20) and reported again below for the sake of
larity,

𝑝𝑓 =
𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

− ∇ ⋅
(

𝜕𝛹𝑁𝐿
𝜕(∇(𝜙𝑆𝑟))

)

.

he quantity 𝜘𝜆∕𝜂𝑤 [LT−1] can be identified as the magnitude of a
aturated mean velocity, 𝑉𝑚, in the porous medium. In essence this
uantity represents the intensity of advection of non-uniform pore
luid, in other words that of the phase field parameter 𝑆𝑟. Appropriate
oundary conditions will be introduced in Sections 3.1.1 and 3.1.2 to
lose the problem.

.2.7. Dimensional analysis and scaling
The effective dimension of Eq. (25) is [T−1]. To render the equation

imensionless the following dimensionless variables (.̃) and correspond-
ng characteristic scaling numbers (sub-scripted ‘ℎ’) are introduced:

𝑥̃ = 𝑥
𝑥ℎ

, 𝜇̃𝑝𝑓 =
𝜇𝑝𝑓
𝑝ℎ

=
𝜇𝑝𝑓𝑅
𝐶𝛾

, 𝑡 = 𝑡
𝑡ℎ

=
𝑡𝑉𝑚
𝑥ℎ

. (26)

The time scale is chosen to make unity the coefficient in front of
advection term, 𝑡ℎ = 𝑥ℎ∕𝑉𝑚. And a particular grouping of parameters
esults in the dimensionless equation,
𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥̃

−
𝛿𝑅
𝐶𝑎

∇̃ ⋅
[

𝐾(𝑆𝑟)
(

∇̃𝜇̃𝑝𝑓
)]

= 0. (27)

The dimensionless effective chemical potential of the non-uniform pore
fluid, 𝜇̃𝑝𝑓 , along with the linear pressure contribution, 𝑃 , can be writ-
ten, employing the particular expressions introduced in Section 2.2.2,
as,

𝜇̃ = 𝜇̃𝑝𝑓 + 𝑃

= 2𝑆𝑟
(

1 − 3𝑆𝑟 + 2𝑆2
𝑟
)

−𝐷𝑈

⎛

⎜

⎜

⎝

(𝑆𝑟 − 𝑆𝑟𝑒𝑠𝑟
1 − 𝑆𝑟𝑒𝑠𝑟

)− 1
𝑚
− 1

⎞

⎟

⎟

⎠

1−𝑚

− 𝐷𝑁𝐿∇̃ ⋅
(

∇̃(𝜙𝑆𝑟)
)

−
𝐶𝑎
𝛿𝑅
𝑥̃.

(28)

he dimensionless numbers 𝐶𝑎, 𝛿𝑅, 𝐷𝑈 and 𝐷𝑁𝐿 are identified as
follows:

𝐶𝑎 =
𝑉𝑚𝜂𝑤𝑅2

𝜘𝐶𝛾
, 𝛿𝑅 = 𝑅

𝑥ℎ
,

𝐷𝑈 =
𝜋0𝑅
𝐶𝛾

, 𝐷𝑁𝐿 =
𝐶𝑘𝑅
𝐶𝛾𝑥2ℎ

=
𝜋𝑘𝑅
𝐶𝛾

(

𝓁
𝑥ℎ

)2
.

(29)

Here, 𝐶𝑎 is the Capillary number signifying the competition between
viscous forces and capillary forces at the air–water interface. 𝛿𝑅 is
the ratio of characteristic radius of porous channels to the reference
length scale. 𝐷𝑈 is a measure of relative strength of the coefficients
f capillary interfacial energy and the air–water interfacial energy.
nd 𝐷𝑁𝐿 is the so-called Cahn number, signifying intensity of the
radient energy with respect to the diffusive term. Above in Eq. (29)
t is shown that the expression of 𝐷𝑁𝐿 can be recast such that the

interface thickness, 𝓁, is introduced into the equations and a free
−1 −2
7

parameter, 𝜋𝑘 [ML T ], appears. This allows an input to the model
from experimental measurements of observed macroscopic transition
lengths. Further in this work, the length scale, 𝑥ℎ, is chosen to be
the characteristic physical length of the domain under consideration.
These choices are shown further to produce transition lengths of order
𝓁 in the numerical solutions when flow is driven by gravity. The full
dimensionless form using Eq. (28) in Eq. (27), with the above choices
of dimensionless numbers is as follows,

𝜙
𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

∇⋅

[

𝐾(𝑆𝑟)

(

∇

[

2𝑆𝑟
(

1 − 3𝑆𝑟 + 2𝑆2
𝑟
)

−𝐷𝑈

⎛

⎜

⎜

⎝

(𝑆𝑟 − 𝑆𝑟𝑒𝑠𝑟
1 − 𝑆𝑟𝑒𝑠𝑟

)− 1
𝑚
− 1

⎞

⎟

⎟

⎠

1−𝑚
]

−𝐷𝑁𝐿∇𝛥(𝜙𝑆𝑟)

)]

= 0.

(30)

It is to be noted that (.̃) has been dropped in Eq. (30) and is done so
further in this work. So, from this point all the variables are dimen-
sionless unless either mentioned otherwise or referred to from earlier
sections.

3. One-dimensional analysis

In the work of Saffman and Taylor (1958), a fundamental study
of the stability of fluid–fluid interface has been done in an analogous
Hele-Shaw flow context. In order to perform this, an horizontal sharp
interface has been assumed to separate two fluids of different viscosities
moving within a Hele-Shaw cell, under the forces of gravity and pres-
sure gradient. Upon this horizontal interface, wave like disturbances of
variable wavelengths have been assumed and their growth in time has
been understood as the typical fingering instability. Furthermore, sur-
face tension has been shown to introduce a lower bound for the range
of wavelengths of disturbances for which the interface is unstable.

It is the intention of this current study to characterize within the
framework of the adopted model, propagation of an air–water interface
both in the case of imbibition and in drainage. And in the Part II the
stability/instability of these interfaces will be investigated. Therefore,
as a first step transversely homogeneous solutions of Eq. (30) that
represent such interfaces need to be built.

In this section we observe that solutions assuming transverse ho-
mogeneity in 𝑦 and 𝑧-directions but evolving longitudinally along 𝑥-
coordinate, are composed of similarity solutions of the one-dimensional
equation

𝜙
𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

𝜕
𝜕𝑥

(

𝐾(𝑆𝑟)𝜇′𝑒(𝑆𝑟)
𝜕𝑆𝑟
𝜕𝑥

)

+
𝛿𝑅
𝐶𝑎
𝜙𝐷𝑁𝐿

𝜕
𝜕𝑥

(

𝐾(𝑆𝑟)
𝜕3𝑆𝑟
𝜕𝑥3

)

= 0.
(31)

In the above, the definition of effective chemical potential of non-
uniform pore fluid, 𝜇𝑒(𝑆𝑟) (Eq. (22)), is invoked.

At larger spatial scales compared to both the length scale of the
ir–water interface and that of diffusion, the solutions of Eq. (31) are
egularized solutions of the corresponding scalar hyperbolic conserva-
ion law (LeFloch, 2002) in the limit of vanishing diffusion. Assuming
uch limit, Eq. (31) simplifies as

𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥

= 0. (32)

Here, the function 𝐾(𝑆𝑟) plays the role of an advective flux. A class of
weak solutions of a Riemann problem governed by Eq. (32), given a
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Table 2
Material properties, model parameters used through Section 3, unless mentioned otherwise.
𝜘 𝜂𝑤 𝜙 𝐶 𝛾 𝑅 𝜋0 𝑚 𝑆𝑟𝑒𝑠𝑟 𝐶𝑘 𝓁
[m2] [Pa s] [−] [−] [N m−1] [m] [Pa] [−] [−] [N] [m]

1.0E−12 8.9E−04 0.37 0.5 0.073 1.64E−06 2840.91 0.685 0.1567 113.66 0.2
i

f
s
p
t

o
e
i
G
f

𝐾

piece-wise uniform initial condition with a jump between 𝑆− and 𝑆+
t 𝑥 = 0, that represent sharp displacement of one fluid by another, are
iece-wise uniform functions known as shocks,

𝑟(𝑥, 𝑡) =

{

𝑆− 𝑖𝑓 𝑥 < 𝑐𝑡
𝑆+ 𝑖𝑓 𝑥 > 𝑐𝑡,

(33)

hat move with a characteristic speed, 𝑐. These solutions are self-similar
n nature with respect to the transformation 𝜉 = 𝑥 − 𝑐𝑡 and propagate
long the 𝑥-coordinate while satisfying the Rankine–Hugoniot jump
ondition,

(𝑆+) −𝐾(𝑆−) = 𝑐𝜙(𝑆+ − 𝑆−), (34)

hat relates the speed of the shock wave to the uniform solution
alues on either side of the shock. A shock is considered classical or
compressive’ if the characteristics on either side of the shock impinge
nto it. This condition is given by the celebrated Lax Entropy condition,
hich in the current case can be written as
′(𝑆+) ⩽ 𝜙𝑐 ⩽ 𝐾 ′(𝑆−). (35)

Apart from shocks, the class of smooth monotone weak solutions
f the Riemann problem governed by Eq. (32) are rarefaction waves
onnecting 𝑆− to 𝑆+. These solutions are expansive and self-similar
ith respect to the transformation 𝜉 = 𝑥∕𝑡. These are described by the

ollowing form:

𝑟(𝑥, 𝑡) =

⎧

⎪

⎨

⎪

⎩

𝑆− 𝑖𝑓 𝜙𝑥 < 𝑡 𝐾 ′(𝑆−)
𝐾 ′−1(𝜙𝑥∕𝑡) 𝑖𝑓 𝑡 𝐾 ′(𝑆−) < 𝜙𝑥 < 𝑡 𝐾 ′(𝑆+)
𝑆+ 𝑖𝑓 𝜙𝑥 > 𝑡 𝐾 ′(𝑆+).

(36)

hen the flux function, 𝐾(𝑆𝑟), is purely convex and increasing, the
nly possible weak solutions are either classical shocks (if 𝑆− > 𝑆+)
r rarefaction waves (if 𝑆− < 𝑆+) and analogously for purely concave
lux function (LeFloch, 2002). In the presence of diffusion these sharp
lassical shock solutions satisfying Eq. (35), tend to be smeared up
o a finite distance. On the other hand, for flux functions that have
nflection points the structure of solutions is much more rich in the
resence of higher order diffusion/dispersion. For instance smeared
hock solutions that violate Eq. (35) can exist, which are considered to
e non-classical (Bertozzi et al., 1999; Hayes and Shearer, 1999). The
lass of non-classical shocks for which the characteristics on either side
ass through the shock are termed ‘under-compressive’ (Dukler et al.,
020) and they satisfy either of
′(𝑆±) ⩽ 𝜙𝑐 ; 𝐾 ′(𝑆±) ⩾ 𝜙𝑐. (37)

nd those for which the characteristics behind and in the front seem to
xpand the shock itself are termed ‘expansion’ shocks (El et al., 2016)
nd they violate Eq. (35) as
′(𝑆−) ⩽ 𝜙𝑐 ⩽ 𝐾 ′(𝑆+). (38)

resence of these solutions and their manifestation as traveling waves
n the solution structure of imbibition and drainage problems gov-
rned by Eq. (31) are shown in the following section. Further in
ection 3.2, the traveling wave part of these solutions are resolved in
one-dimensional setting.

As mentioned earlier, the nature of the flux function, 𝐾(𝑆𝑟), has an
mportant effect on the structure of solutions that represent air–water
isplacements. In classical partial saturation (Coussy, 2004), the role
f modulating the individual fluid velocities in space accordingly to
heir respective saturation degree is played by the relative permeability
8

Fig. 2. Relative permeability functions 𝐾(𝑆𝑟), Eq. (39), for different values of van
Genuchten parameters (𝑎, 𝑏, 𝑐). 𝐾𝐶 :(1.175, 0.85, 2.0), 𝐾𝑁𝐶 :(8.0, 2.0, 0.5). Inflection point
s shown as a circle on curve 𝐾𝑁𝐶 (𝑆𝑟).

unction. In the current study we intend to use the functional form of
uch a relative permeability of water for the flux function, owing to the
hase field parameter, 𝑆𝑟, of the current model being representative of
he saturation degree of water.

Typically unsaturated relative permeability functions used for vari-
us soils and fluid combinations are parametric models in order to fit
xperimental data. Especially in soil hydrology when fluid combination
s water and wet air the well known van Genuchten model (van
enuchten, 1980; Luckner et al., 1989) is widely used which has the

ollowing form:

(𝑆𝑟) =
√

𝑆𝑟
[

1 −
(

1 − 𝑆𝑟𝑎
)𝑏
]𝑐
, (39)

where 𝑎, 𝑏 and 𝑐 are real constants obtained through fitting with
experimental results. As can be seen in Fig. 2, this functional form
has the possibility to model a purely convex behavior, 𝐾𝐶 (𝑆𝑟), and as
well a convex–concave behavior, 𝐾𝑁𝐶 (𝑆𝑟). In what follows, in order
to account for consolidation of the porous skeleton (Bear, 1972) and
to demonstrate in the context of the current phase field model the
possibility of modeling air–water displacements representing both imbi-
bition and drainage, we employ the convex–concave function, 𝐾(𝑆𝑟) =
𝐾𝑁𝐶 (𝑆𝑟), with 𝑎 = 8.0, 𝑏 = 2.0 and 𝑐 = 0.5.

3.1. PDE simulations

In the current section we characterize the spatio-temporal evolution
of solutions both in imbibition and drainage scenarios. To do this we
choose the primary unknowns as the Saturation degree, 𝑆𝑟, and the
regularized effective chemical potential with known spatially linear
pressure contribution, 𝜇. Then the coupled system of equations formed
by Eqs. (27) and (28) is resolved. We acknowledge at this point that
since our focus is to analyze the general structure and evolution of the
solutions, we have adopted a simplest numerical discretization. One
can definitely extend this to more sophisticated techniques of the likes
of adaptive refinement (Martin et al., 2005; Boyer et al., 2009) and
non-local operator methods (Ren et al., 2021).
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Fig. 3. Schematic of the imbibition simulations showing boundary conditions applied
on the one-dimensional domain. The arrow indicates the direction of motion of the
self-similar interface. The form of natural boundary condition 𝑉𝑓 (𝑥 = 0) is given in
Eq. (43).

Table 3
Dimensionless numbers corresponding to the material properties and model parameters
in Table. 2 used through Section 3, unless mentioned otherwise.
𝐶𝑎 𝛿𝑅 𝐷𝑈 𝐷𝑁𝐿

7.4E−07 1.64E−08 0.128 5.12E−07

Spatial discretization is done employing a standard Galerkin formu-
lation and linear Lagrange finite elements. Time discretization is done
using the implicit Euler scheme of first order. The discrete solutions at
𝑛th time step, 𝑆𝑛𝑟 and 𝜇𝑛, are obtained by searching in the Hilbert space
of admissible functions given by the cartesian product H𝑠 ×H𝜇 , with

H𝑠 ∶=
{

𝑆𝑛𝑟 ∈ 𝐻1 (𝛺) ∶ 𝑆𝑛𝑟 = 𝑆̄𝑛𝑟 𝑜𝑛 𝜕𝛺𝑠
}

H𝜇 ∶=
{

𝜇𝑛 ∈ 𝐻1 (𝛺) ∶ 𝜇𝑛 = 𝜇̄𝑛 𝑜𝑛 𝜕𝛺𝜇
} (40)

defined over the discretized domain 𝛺, so that the ordered couple
(𝑆𝑛𝑟 , 𝜇

𝑛) solve the non-linear coupled variational system,

∫𝛺
𝑞

(

𝜙
(

𝑆𝑛𝑟 − 𝑆
𝑛−1
𝑟

)

𝛥𝑡

)

𝑑𝛺 + ∫𝛺
𝛿𝑅
𝐶𝑎
𝐾(𝑆𝑛𝑟 )

(

∇𝑞 ⋅ ∇𝜇𝑛
)

𝑑𝛺

−∫𝛺𝑁𝜇
𝑞
(

𝛿𝑅
𝐶𝑎
𝐾(𝑆𝑛𝑟 )∇𝜇

𝑛
)

⋅ 𝑛 𝑑𝛺𝑁𝜇 = 0,

∫𝛺
𝑆
(

𝜇𝑛 − 𝜇𝑒(𝑆𝑛𝑟 ) +
𝐶𝑎
𝛿𝑅
𝑥
)

𝑑𝛺 − ∫𝛺
𝜙𝐷𝑁𝐿

(

∇𝑆 ⋅ ∇𝑆𝑛𝑟
)

𝑑𝛺

+ 𝑆
(

𝜙𝐷𝑁𝐿∇𝑆𝑛𝑟
)

⋅ 𝑛 𝑑𝛺𝑁𝑠 = 0.

(41)
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∫𝛺𝑁𝑠
Here 𝑞 and 𝑆 are test functions belonging to the Hilbert space
(

H𝑠
)

0 ×
(

H𝜇
)

0 of functions which vanish on 𝜕𝛺𝑠 and 𝜕𝛺𝜇 where the
values of 𝑆𝑟 and 𝜇 are specified respectively. 𝑛 is the outward unit
normal vector to the boundary where it is referred to. 𝛺𝑁𝜇 is the
part of the boundary where normal derivative of 𝜇 is specified, which
translates to imposing at that part of the boundary an injection or
extraction velocity of the fluid with a natural form,

𝑉𝑓 = −
𝛿𝑅
𝐶𝑎
𝐾(𝑆𝑟)∇𝜇. (42)

𝛺𝑁𝑠 is part of the boundary where normal derivative of 𝑆𝑟 is specified.
For one-dimensional simulations the computational domain is chosen
along the positive 𝑥-direction such that 𝑥 ∈ [0, 1]. The corresponding
physical length, 𝐿 = 100m, is chosen to be sufficiently large such
that the limit of vanishing diffusion as discussed earlier is valid. The
material properties of the porous medium and the parameters of the
model chosen for the purpose of demonstration are listed in Table 2,
which are in the range typical of silica sands saturated with air–
water mixture. The corresponding dimensionless numbers defined in
Section 2.2.7 are listed in Table 3.

Mesh convergence behavior has been tested, once chosen initial and
boundary conditions corresponding to an imbibition and a drainage
problem, which are elaborated in Sections 3.1.1 and 3.1.2, to validate
the numerical solution. In particular successively refined discretization
steps have been considered. The results of this analysis are reported in
Appendix B.

3.1.1. Imbibition
Displacement of air by water representing imbibition can be under-

stood as a solution which transitions from a higher degree of saturation
to a lower one and moves in the direction of the lower saturation.
According to characteristic water retention properties of the porous
skeleton, see Table 2, the appropriate initial condition for imbibition is
set to 𝑆0

𝑟 = 0.20 throughout the domain, which is close to the residual
saturation, 𝑆𝑟𝑒𝑠𝑟 , and 𝜇0 = 𝜇𝑝𝑓 (𝑆0

𝑟 ) + 𝑃 . For all 𝑡 > 0, the normal
derivative of 𝑆𝑟 is set to vanish at both the boundaries, 𝑥 = 0 and 𝑥 = 1.
See schematic Fig. 3. At the left boundary an injection velocity,

𝑉𝑓
|

|

|

= −
𝛿𝑅𝐾(𝑆−)∇𝑃 , (43)
|(𝑥=0) 𝐶𝑎
Fig. 4. One dimensional imbibition solutions of the coupled system Eq. (41), for 𝜆 = 𝜌𝑤𝑔, with initial condition 𝑆0
𝑟 = 0.20 and boundary conditions corresponding to a constant

rate of injection Eq. (43) with 𝑆− = 0.96, 0.85, 0.80, 0.75, 𝛥𝑡 = 1E-05, 𝛥𝑥 = 5E-04, (a) Saturation degree, 𝑆𝑟, (b) regularized effective chemical potential, 𝜇𝑝𝑓 . Solutions are shown at
different time-steps and restricted spatial range for clarity. Out of this range, solutions are continuous and uniform extensions up to their respective boundary conditions.
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Fig. 5. One dimensional imbibition solution 𝑆𝑟 of the coupled system Eq. (41), for
𝜆 = 𝜌𝑤𝑔, 𝑆0

𝑟 = 0.20 and 𝑆− = 0.85; (a) Solution at various time steps, (b) Solutions in
(a) transformed into the TW-coordinate 𝜉 = 𝑥−𝑐𝑡 with 𝑐 ≈ 2.63 given by Eq. (34). Shock
solution, Eq. (33), for 𝑆− = 0.85 and 𝑆+ = 𝑆0

𝑟 = 0.20 is shown with triangle markers.

is imposed. This has an effect of perturbing the saturation degree at the
left boundary towards 𝑆− > 𝑆0

𝑟 , inducing imbibition, while the normal
derivative of 𝜇𝑝𝑓 vanishes. The boundary at the right, 𝑥 = 1, is drained
with a Dirichlet boundary condition on 𝜇 such that,

𝜇
|

|

|

|(𝑥=1)
= 𝜇𝑒(𝑆0

𝑟 ) + 𝑃 (𝑥 = 1). (44)

The results of simulations for various values of 𝑆− and 𝜆 = 𝜌𝑤𝑔
are shown in Fig. 4. The diffused interface in the solution connecting a
higher value of 𝑆𝑟 to a lower value represents the infiltration of water
into a fluid-poor domain under the presence of gravity acting in the
positive 𝑥-direction. The profile within the domain, of the regularized
effective chemical potential, 𝜇𝑝𝑓 , follows that of the 𝑆𝑟 solution ac-
cording to Eq. (20), with a strong gradient effect due to the interface.
While all the saturation profiles are non-monotonic in the vicinity of 𝑆0

𝑟 ,
there exist overshoot and non-overshoot behaviors behind the invading
front. The reasoning for presence or absence of such overshoots and the
oscillatory behavior around 𝑆0

𝑟 is reserved for analysis in the further
sections.

However, in all these solutions the transition from 𝑆− to 𝑆0
𝑟 seems

to translate self-similarly in space suggesting the presence of traveling
wave type higher order approximations of shock solutions. This obser-
vation is justified by a transformation into a TW-coordinate, 𝜉 = 𝑥− 𝑐𝑡,
where 𝑐 is given by Eq. (34) with 𝑆+ = 𝑆0

𝑟 , see Fig. 5. This results
in the transition region of the solution to collapse into the vicinity of
a single location, 𝜉 = 0. The self-similar shock solution, Eq. (33), of
the hyperbolic equation, Eq. (32), as well is plotted in the same TW-
coordinate in Fig. 5. In Section 3.2.1 these TW-solutions are resolved
and are shown to be classical or compressive in the sense of shocks.

3.1.2. Drainage
Drainage of water by air is understood as the contrary of imbibition,

which is a transition from lower saturation degree to higher, moving
in the direction of the higher saturation. So the initial condition is
chosen as 𝑆0

𝑟 = 0.99 which is close to fully saturated condition, and
𝜇0 = 𝜇𝑝𝑓 (𝑆0

𝑟 ) + 𝑃 . Owing to the phase field parameter, 𝑆𝑟, of the
current model being representative of the saturation degree of water,
an injection flux of the form Eq. (42) at the boundary would not be ap-
propriate to induce drainage. Instead the initial condition is perturbed
at the left boundary, 𝑥 = 0, by imposing gradually decreasing Dirichlet
boundary conditions on 𝑆𝑟 and 𝜇 until the intended air saturation, 𝑆𝑑𝑟
and 𝜇𝑑 = 𝜇 (𝑆𝑑 ) are achieved within a finite time, 𝑡 , and then those
10

𝑒 𝑟 𝑑
Fig. 6. Schematic of the drainage simulations showing boundary conditions applied on
the one-dimensional domain for 𝑡 > 𝑡𝑑 . The arrow indicates the direction of motion of
the self-similar interface.

boundary conditions are kept constant for all 𝑡 > 𝑡𝑑 . See schematic
Fig. 6. The boundary at 𝑥 = 1 is drained with a Dirichlet boundary
condition on 𝜇, Eq. (44), and the normal derivative of 𝑆𝑟 is set to vanish
for all 𝑡 > 0 similar to the imbibition case.

Fig. 7 shows the solutions for various values of 𝑆𝑑𝑟 and 𝜆 = 𝜌𝑤𝑔. We
note that the solution at later times is composed of an expanding part
connecting 𝑆𝑑𝑟 to an uniform state, 𝑆𝑏, which is then connected by a
sharper transition to another uniform state 𝑆𝑎. 𝑆𝑎 then connects to 𝑆0

𝑟
through a second expanding part. It is interesting to observe that for
all values of 𝑆𝑑𝑟 chosen, the solution settles down to the same values of
𝑆𝑎 ≈ 0.847 and 𝑆𝑏 ≈ 0.365, see Fig. 7. The solution, 𝜇𝑝𝑓 , has a similar
structure with uniform states corresponding to 𝜇𝑒(𝑆𝑎) and 𝜇𝑒(𝑆𝑏) with
a diffused transition in between.

Akin to the imbibition case, the sharper transitions between 𝑆𝑏 and
𝑆𝑎 translate self-similarly in space. See, Fig. 9(b) where one of the
solutions from Fig. 7 is plotted in the TW-coordinate 𝜉 = 𝑥 − 𝑐𝑡, where
𝑐 is given by Eq. (34) with 𝑆− = 𝑆𝑏 and 𝑆+ = 𝑆𝑎. The transition
region collapses into the vicinity of 𝜉 = 0 as expected for the associated
shock solution, Eq. (33), which is also plotted. The corresponding TW-
solutions of Eq. (31) will be looked for in Section 3.2.2, which are
shown to be non-classical in the sense of shocks violating the entropy
condition such that Eq. (38).

The expanding parts of the solution in front of and behind the
sharper transition do not translate in the same fashion. Under a trans-
formation of variable 𝜉 = 𝑥∕𝑡, the part connecting 𝑆𝑑𝑟 to 𝑆𝑏 tends
to collapse into the corresponding rarefaction solution, Eq. (36), of
the hyperbolic equation, Eq. (32), with 𝑆− = 𝑆𝑑𝑟 and 𝑆+ = 𝑆𝑏,
see Fig. 9(c). In fact the flux function is convex within the interval
(𝑆−, 𝑆+) = (𝑆𝑑𝑟 , 𝑆𝑏) = (0.20, 0.365) and since 𝑆− < 𝑆+ the rarefaction
wave that is observed is expected. On the other hand, it can be observed
that for the same transformation the part connecting 𝑆𝑎 to 𝑆0

𝑟 does not
collapse into a similarity type solution. In fact, the flux function is non-
convex within the interval (𝑆𝑎, 𝑆0

𝑟 ) = (0.847, 0.99) and so a rarefaction
wave with 𝑆− = 𝑆𝑎 and 𝑆+ = 𝑆0

𝑟 is not an associated weak solution.
At the junction of the expanding part of the solution and the uniform

state, 𝑆𝑏, longitudinal oscillations are observed which seem to grow
with time, see Fig. 7. It is explained in Section 3.2.2 with the help
of dynamical systems analysis that these oscillations are triggered due
to the nature of the equilibrium state associated to 𝑆𝑏. The growth of
such oscillations with time on the other hand, is justified in Part II of
the current study by analyzing the linear stability of one-dimensional
uniform saturation states against longitudinal perturbations.

The overall solution structure represents a drainage scenario in
which ahead of the macroscopic air–water interface, the air phase can
start invading the pores. And behind such interface there exists an
uniform saturation state of the water phase corresponding to 𝑆𝑏, that
is not displaced.

Now, for 𝑆𝑑𝑟 = 0.20, we vary 𝜆, see Fig. 8. For lower values of 𝜆 =
0.5𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, and thus of 𝐶𝑎, the solution structure is similar to that
of 𝜆 = 𝜌𝑤𝑔 with two intermediate uniform states 𝑆𝑎 and 𝑆𝑏 appearing
at later times. However, for relatively higher values of 𝜆 = 150𝜌𝑤𝑔,
1500𝜌𝑤𝑔 a single uniform state, 𝑆𝑏 ≈ 0.797, 0.791 respectively, appears
which connects to the right directly to 𝑆0

𝑟 through a sharper transition
representing the air–water front. This intermediate state, 𝑆 , connects
𝑏
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Fig. 7. One dimensional drainage solutions of the coupled system Eq. (41), for 𝜆 = 𝜌𝑤𝑔, with initial condition 𝑆0
𝑟 = 0.99 and boundary conditions corresponding to drainage

reaching 𝑆𝑑𝑟 = 0.20, 0.25, 0.30 in 𝑡𝑑 = 100𝛥𝑡, with 𝛥𝑡 = 1E-05, 𝛥𝑥 = 5E-04, (a) Saturation degree, 𝑆𝑟, with the pair of intermediate states (𝑆𝑎 , 𝑆𝑏) ≈ (0.847, 0.365), (b) regularized
effective chemical potential, 𝜇𝑝𝑓 . Solutions are shown at the same time-step. Insets focus on the oscillatory junction between the bottom rarefaction wave and the uniform solution
state (a) 𝑆𝑏 ≈ 0.365, (b) 𝜇𝑒(𝑆𝑏).
Fig. 8. One dimensional drainage solutions of the coupled system Eq. (41), with initial condition 𝑆0
𝑟 = 0.99 and boundary conditions corresponding to drainage reaching

𝑆𝑑𝑟 = 0.20, in 𝑡𝑑 = 100𝛥𝑡, with 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, 𝛥𝑡 = 1E-05, 𝛥𝑥 = 5E-04, (a) Saturation degree, 𝑆𝑟, with pairs of intermediate states, in the same order as that of 𝜆
alues, (𝑆𝑎 , 𝑆𝑏) ≈ (0.878, 0.305), (0.847, 0.365), (0.814, 0.421), (b) regularized effective chemical potential, 𝜇𝑝𝑓 ; And with 𝜆 = 15𝜌𝑤𝑔, 150𝜌𝑤𝑔, 1500𝜌𝑤𝑔, 𝛥𝑡 = 1E-06, 𝛥𝑥 = 1E-04, (c)
aturation degree, 𝑆𝑟, with the intermediate states 𝑆𝑏 ≈ 0.797, 0.791 for 𝜆 = 150𝜌𝑤𝑔, 1500𝜌𝑤𝑔 respectively, (d) regularized effective chemical potential, 𝜇𝑝𝑓 ; Solutions are shown at
ifferent time-steps for clarity.
c
n
t

o 𝑆𝑑𝑟 to the left through an expanding part. The regularized effective
hemical potential, 𝜇𝑝𝑓 , follows a similar structure in accordance with
q. (20).

A transformation into the TW-coordinate 𝜉 = 𝑥 − 𝑐𝑡, where 𝑐 is
iven by Eq. (34) with 𝑆− = 𝑆𝑏 and 𝑆+ = 𝑆0

𝑟 reveals the self-similar
11

ature of the sharper transition, see Fig. 10(b). In Section 3.2.2 the
orresponding TW-solutions of Eq. (31) will be looked which are also
on-classical in the sense of shocks violating the entropy condition such
hat Eq. (37). Whereas under a transformation of variable 𝜉 = 𝑥∕𝑡,

the part connecting 𝑆𝑑𝑟 to 𝑆𝑏 tends to collapse into the corresponding
rarefaction solution, Eq. (36), of the hyperbolic equation, Eq. (32), with

𝑑
𝑆− = 𝑆𝑟 and 𝑆+ = 𝑆𝑏, see Fig. 10(c).
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Fig. 9. One dimensional drainage solution 𝑆𝑟 of the coupled system Eq. (41), for
= 𝜌𝑤𝑔, 𝑆0

𝑟 = 0.99 and 𝑆𝑑𝑟 = 0.20; (a) Solution at various time steps, (b) Solutions in (a)
ransformed into the TW-coordinate 𝜉 = 𝑥 − 𝑐𝑡 with 𝑐 ≈ 3.41 given by Eq. (34). Shock
olution, Eq. (33), for 𝑆− = 𝑆𝑏 ≈ 0.365 and 𝑆+ = 𝑆𝑎 ≈ 0.847 is shown with triangle
arkers, (c) Solutions in (a) transformed into the coordinate 𝜉 = 𝑥∕𝑡. Rarefaction

olution, Eq. (36), for 𝑆− = 𝑆𝑑𝑟 and 𝑆+ = 𝑆𝑏 ≈ 0.365 is shown in circle markers.

Fig. 10. One dimensional drainage solution 𝑆𝑟 of the coupled system Eq. (41), for
𝜆 = 1500𝜌𝑤𝑔, 𝑆0

𝑟 = 0.99 and 𝑆𝑑𝑟 = 0.20; (a) Solution at various time steps, (b) Solutions
in (a) transformed into the TW-coordinate 𝜉 = 𝑥 − 𝑐𝑡 with 𝑐 ≈ 7.05 given by Eq. (34).
hock solution, Eq. (33), for 𝑆− = 𝑆𝑏 ≈ 0.791 and 𝑆+ = 𝑆0

𝑟 = 0.99 is shown with triangle
arkers, (c) Solutions in (a) transformed into the coordinate 𝜉 = 𝑥∕𝑡. Rarefaction

olution, Eq. (36), for 𝑆− = 𝑆𝑑𝑟 and 𝑆+ = 𝑆𝑏 ≈ 0.791 is shown in circle markers.
12

p

.2. Traveling wave analysis

In this section we intend to resolve the TW part of the solutions
bserved in Section 3.1. With this intent we make a transformation of
he independent variables into a moving coordinate,

𝑟(𝑥, 𝑡) = 𝑠(𝑥 − 𝑐𝑡) = 𝑠(𝜉) ∀𝑥 ∈ R ; ∀𝑡 > 0. (45)

here the TW-solution, 𝑠(𝜉), and speed, 𝑐, are a priori not known.
he TW-coordinate, 𝜉, is assumed to have the same speed as that of a
hock representative of the transition within the solution 𝑆𝑟(𝑥, 𝑡). And
o the TW-solution is independent of time and the transition within it
s always centered at 𝜉 = 0. Introducing Eq. (45) into Eq. (31) yields an
rdinary differential equation (ODE) that 𝑠(𝜉) needs to satisfy:

𝜙𝑐 𝑑𝑠
𝑑𝜉

+
𝑑𝐾(𝑠)
𝑑𝜉

−
𝛿𝑅
𝐶𝑎

𝑑
𝑑𝜉

(

𝐾(𝑠)𝜇′𝑒(𝑠)
𝑑𝑠
𝑑𝜉

)

+
𝛿𝑅
𝐶𝑎
𝜙𝐷𝑁𝐿

𝑑
𝑑𝜉

(

𝐾(𝑠) 𝑑
3𝑠
𝑑𝜉3

)

= 0,
(46)

The existence of such traveling wave type similarity solutions for
Eq. (31) can qualitatively explain part of the complete saturation
solution, 𝑆𝑟(𝑥, 𝑡), ranging between the two uniform states (see figures
in Section 3.1). In other words the TW-solution, 𝑠(𝜉), of Eq. (46) can
epresent a branch of the PDE solution 𝑆𝑟(𝑥, 𝑡), with the corresponding
oundary conditions on an infinite domain:
|

|

|

|(𝜉=+∞)
= 𝑠+ ,

𝑑𝑠
𝑑𝜉

|

|

|

|(𝜉=+∞)
= 0,

|

|

|

|(𝜉=−∞)
= 𝑠− ,

𝑑𝑠
𝑑𝜉

|

|

|

|(𝜉=−∞)
= 0.

(47)

ntegrating Eq. (46) once w.r.t 𝜉, using the boundary conditions at
= +∞ and assuming higher derivatives of the solution vanish as
→ +∞ yields in a canonical form:

𝑑3𝑠
𝑑𝜉3

=
𝐶𝑎

𝛿𝑅𝜙𝐷𝑁𝐿𝐾(𝑠)

(

𝜙𝑐(𝑠 − 𝑠+) −𝐾(𝑠) +𝐾(𝑠+)

+
𝛿𝑅
𝐶𝑎
𝐾(𝑠)𝜇′𝑒(𝑠)

𝑑𝑠
𝑑𝜉

)

.

(48)

he Rankine–Hugoniot jump condition, Eq. (34), for the speed, 𝑐, of
he representative shock can be recovered by employing Eq. (47) as
→ −∞. Since we are looking for TW-solutions satisfying boundary

onditions Eq. (47), the states 𝑠− and 𝑠+ are two known equilibria of
q. (48). In order to analyze their properties and the possibility of
xistence of other such equilibria it is convenient to rewrite Eq. (48)
nto a system of first order ODEs:

𝑠𝜉 = 𝑣,

𝑣𝜉 = 𝑤,

𝜉 =
𝐶𝑎

(

𝜙𝑐(𝑠 − 𝑠+) −𝐾(𝑠) +𝐾(𝑠+)
)

𝛿𝑅𝜙𝐷𝑁𝐿𝐾(𝑠)
+

𝜇′𝑒(𝑠)
𝜙𝐷𝑁𝐿

𝑣.

(49)

In the above sub-script 𝜉 is used to represent derivative of a variable
w.r.t to 𝜉. In the sense of a dynamical system with 𝜉 playing the role
of a time-like independent variable, the TW-solutions can viewed as
trajectories connecting associated equilibria, (𝑠𝑒, 0, 0), of such system.

he local stability properties of such equilibria determine the nature
f the connection between them, (Bertozzi and Shearer, 2000). The
igen values of a corresponding linearized system in the vicinity of an
quilibrium reveals the behavior of a small perturbation to it. These
igen values are the roots of the depressed cubic equation,

3 −
𝜇′𝑒(𝑠𝑒)
𝜙𝐷𝑁𝐿

𝛽 −
𝐶𝑎

(

𝜙𝑐 −𝐾 ′(𝑠𝑒)
)

𝛿𝑅𝜙𝐷𝑁𝐿𝐾(𝑠𝑒)
= 0. (50)

detailed deduction of the above linearization is done in Appendix A.
ccording to the classical Cardano–Tartaglia formula for roots of de-
ressed cubic equations, for 𝜇′ (𝑠 ) > 0, if the discriminant of Eq. (50)
𝑒 𝑒
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Fig. 11. (a)TW-solutions of Eq. (48) for 𝜆 = 𝜌𝑤𝑔, with boundary conditions 𝑠+ = 0.20, 𝑠− = 0.96, 0.85, 0.80, 0.75, 0.70. Solutions are shown in a restricted range of 𝜉 for clarity. (b)
he corresponding connections shown on the curve 𝐾(𝑆𝑟).
𝑠

s negative, then all three eigen values corresponding to the equilibrium
re real. This condition can be simplified to,

𝐶𝑎
√

𝜙𝐷𝑁𝐿

𝛿𝑅

(

𝜙𝑐 −𝐾 ′(𝑠𝑒)
)

𝐾(𝑠𝑒)
<
( 4
27

(𝜇′𝑒(𝑠𝑒))
3
)

1
2 . (51)

Else, only one eigen value of the three is real and the other two are
complex conjugates giving rise to oscillatory behavior in the vicinity of
such equilibria. On the other hand, for a 𝜇′𝑒(𝑠𝑒) < 0, one eigen value
of the three is real and other two are complex conjugates, irrespective
of the sign of the discriminant. These relations form the basis for
understanding the behavior of TW-solutions in the vicinity of their
respective equilibrium states, (𝑠𝑒, 0, 0).

3.2.1. Imbibition
As observed in Section 3.1.1, the imbibition solutions are self-

similar in the whole of the domain such that the uniform saturation
states observed in the PDE solutions correspond to the imposed bound-
ary conditions, 𝑆−, on the left and initial conditions, 𝑆0

𝑟 , on the right.
Hence, saturation states at the boundaries of TW-solutions in Eq. (47)
are chosen as 𝑠+ = 𝑆0

𝑟 and 𝑠− = 𝑆−. And then the third order ODE
Eq. (48) is numerically resolved over a domain of finite physical length,
𝐿 = 100m, that is sufficiently large in comparison to the characteristic
interface thickness, 𝓁, such that we get a satisfactory approximation of
an unbounded domain. Within this domain, the transition region from
𝑠− to 𝑠+ would be centered at 𝜉 = 0. We discretize this domain using an
uniform finite difference grid and use a second order accurate central
difference scheme to approximate the derivatives in Eq. (47) and (48).
Then the solutions are obtained solving the non-linear problem starting
from an initial guess that is a sharp transition at 𝜉 = 0 between the
intended saturation values on either side.

Fig. 11 shows these solutions and their corresponding transitions as
connections on the graph of flux function, 𝐾(𝑆𝑟), for various values
of 𝑠− and 𝜆 = 𝜌𝑤𝑔. The slope of these connections is the speed, 𝑐,
of the corresponding shock that is represented by the TW-solution.
As can be inferred from the plot, the relation between characteristic
speed on either side of the connection, 𝐾 ′(𝑠−), 𝐾 ′(𝑠+), and the speed of
the shock is such that these connections are representative of classical
compressive shocks that satisfy the Lax entropy condition, Eq. (35).
Moreover, similar to observations made in Section 3.1.1, there exist
13
non-monotonicities of overshoot type and oscillatory type. These so-
lutions are qualitatively comparable to the results of one-dimensional
experiments done by DiCarlo (2004) for constant rate infiltration of
water into initially dry sand. In those experiments, while for the highest
imposed flux the water saturation profile was monotonic, for interme-
diate fluxes non-monotonicities were observed, which grew stronger as
the flux is lowered within the intermediate range. It can observed in
Fig. 11 the same trend as in the experiments, of the non-monotonicities
with respect to varying flux, Eq. (43).

In order to aid the analysis of the behavior in the vicinity of equilib-
ria, (𝑠−, 0, 0) and (𝑠+, 0, 0), these TW-solutions understood as trajectories
running between the equilibria are plotted, see Fig. 12, in the phase
space governed by the third order ODE system Eq. (49). For all 𝑠− the
solution close to 𝑠+ is oscillatory. However, behind the front, for certain
values of 𝑠− = 0.85, 0.80, there is a non-oscillatory overshoot and for
𝑠− = 0.75, 0.70 the overshoot is oscillatory as it leaves the equilibrium
at 𝑠−. For 𝑠− = 0.96 there is neither an overshoot nor oscillations behind
the front.

The oscillatory behaviors at both the equilibria can be explained
analyzing the corresponding linearized eigen values. For all left equi-
librium states, (𝑠−, 0, 0), such that 𝜇′𝑒(𝑠−) < 0 results in oscillations,
when leaving this state as seen in the case of 𝑠− = 0.75, 0.70. The right
equilibrium state, (𝑠+ = 0.20, 0, 0), is such that 𝜇′𝑒(𝑠+) > 0. However,
the condition on discriminant being negative, Eq. (51), is not satisfied
for the choice of 𝐶𝑎 and 𝐷𝑁𝐿 resulting in oscillations when arriving
𝑠+ = 0.20.

The overshoot behavior on the other hand can be explained by
employing singular perturbation techniques (Witelski, 1996). To do this
we introduce a small nonzero parameter, 𝜖 ≈ 𝑂(𝓁∕𝑥ℎ), and expand the
solution using a perturbation series, 𝑠(𝜉) = 𝑠0(𝜉) + 𝜖𝑠1(𝜉) + 𝜖𝑠2(𝜉)… ,
which separates Eq. (46) into a cascade of problems each governing
the solution at a particular order. As 𝜖 → 0 the leading order solution,
0(𝜉), is governed by

− 𝜙𝑐
𝑑𝑠0
𝑑𝜉

+
𝑑𝐾(𝑠0)
𝑑𝜉

−
𝛿𝑅
𝐶𝑎

𝑑
𝑑𝜉

(

𝐾(𝑠0)𝜇′𝑒(𝑠0)
𝑑𝑠0
𝑑𝜉

)

= 0. (52)

Integrating once w.r.t 𝜉 and employing boundary conditions, Eq. (47),
at 𝜉 = +∞ gives,

−𝜙𝑐(𝑠0 − 𝑠+) +𝐾(𝑠0) −𝐾(𝑠+) −
𝛿𝑅𝐾(𝑠0)𝜇′ (𝑠0)

𝑑𝑠0 = 0. (53)

𝐶𝑎 𝑒 𝑑𝜉
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Fig. 12. TW-solutions shown as trajectories in the phase space defined by of Eq. (49) for 𝜆 = 𝜌𝑤𝑔, with boundary conditions 𝑠+ = 0.20, 𝑠− = 0.96, 0.85, 0.80, 0.75, 0.70; phase plane
iews (a) (𝑠, 𝑠𝜉 ), (b) (𝑠, 𝑠𝜉𝜉 ).
o
t
v
i
r
w
o
i

b
(
s
u
o

f
a
s
i

𝜉

t
𝜉
a
c
(

his results in a smooth implicit solution valid outside the transition
one and so-called the ‘outer’ solution:

(𝑠0) − 𝜉𝑚 =∫

𝜉

𝜉𝑚
𝑑𝛯

=∫

𝑠0

𝑠𝑚

𝛿𝑅
𝐶𝑎
𝐾(𝑆)𝜇′𝑒(𝑆)

−𝜙𝑐(𝑆 − 𝑠+) +𝐾(𝑆) −𝐾(𝑠+)
𝑑𝑆,

(54)

where 𝜉𝑚 is a reference value, chosen to be 0.0, at which an arbitrary
𝑠𝑚 ∈ (𝑠+, 𝑠−), chosen to be 0.5, occurs. This implicit solution is plotted
in Fig. 13 for values 𝑠− = 0.96, 0.85 and 𝑠+ = 0.20. It is clear that
in both cases the solution is non-monotonic in 𝜉 for a range of 𝑠0
within (𝑠+, 𝑠−) and thus non-physical. Whereas, the parts of the solution
for 𝑠0 within (𝑠−, 1.0) and (𝑆𝑟𝑒𝑠𝑟 , 𝑠+) increase monotonically with 𝑠0.
Now, in order to resolve the non-physicality a weak solution can be
constructed by traversing the non-physical region with a discontinuity.
However, this jump in the saturation degree needs to comply with a
continuity in the pressure whose gradient should exist. This condition
can be met in the current model thanks to the double-well structure of
the energy density which as explained earlier gives rise to isopotential
saturation states. For the choice of parameters in the current study
these isopotential states can be obtained as (𝑆𝑐1 , 𝑆

𝑐
2 ) ≈ (0.91, 0.23) using

Maxwell construction. Now, exploiting the translational invariance of
the implicit solution, Eq. (54), a weak implicit solution of the following
form can be built using (𝑆𝑐1 , 𝑆

𝑐
2 ):

𝜉(𝑠0) − 𝜉𝑚 =

{

𝜉(𝑠0) − 𝜉(𝑆𝑐1 ), ∀𝜉 < 𝜉𝑚,
𝜉(𝑠0) − 𝜉(𝑆𝑐2 ), ∀𝜉 > 𝜉𝑚.

(55)

It is to be noted that the choice of boundary conditions on saturation
degree, (𝑠−, 𝑠+), is independent of the isopotential saturation states
determined (𝑆𝑐1 , 𝑆

𝑐
2 ). Thus a combination of solutions is possible and

accordingly the appropriate part of the outer solution, Eq. (54), needs
to be chosen to further translate and construct the weak outer solution,
Eq. (55). For instance, if 𝑠− > 𝑆𝑐1 and 𝑠+ < 𝑆𝑐2 the part of outer
solution, 𝜉(𝑠0), that is to be translated in the construction of 𝜉(𝑠0) is
the non-monotonic part within (𝑠+, 𝑠−). See for example the case of
𝑠 = 0.96 in Fig. 13(a). On the other hand if 𝑠 < 𝑆𝑐 and 𝑠 < 𝑆𝑐 ,
14

− − 1 + 2 c
the monotonically increasing outer solution, 𝜉(𝑠0), within (𝑠−, 1.0) is
shifted to the right giving 𝜉(𝑠0) − 𝜉(𝑆𝑐1 ), and the non-monotonic part
within (𝑠+, 𝑠−) is shifted to the right giving 𝜉(𝑠0) − 𝜉(𝑆𝑐2 ). See the case
f 𝑠− = 0.85 in Fig. 13(b). The jump part of the weak implicit solutions
hus constructed traversing the non-physical zone can be seen as dotted
ertical lines in Fig. 13. In this manner the presence of overshoots
n the PDE solutions in Section 3.1.1 and in the TW-solutions can be
ationalized comparing the left end boundary condition of saturation
ith the isopotential saturation state closest to it, 𝑆𝑐1 . Similarly two
ther combinations of solutions can be envisaged when 𝑠+ > 𝑆𝑐2 , which
nvolve undershoot when connecting to equilibrium state at 𝑠+.

On the other hand, the structure of the ‘inner’ transition region can
e resolved by making a transformation into a stretched variable, 𝜉 =
𝜉−𝜉𝑚)∕𝜖, thus restricting the problem into the transition region. Under
uch transformation and further expanding the resulting solution, 𝑠̃,
sing a perturbation series w.r.t 𝜖 allows one to identify the leading
rder ‘inner’ problem,

− 𝜇′𝑒(𝑠̃0)
𝑑𝑠̃0
𝑑𝜉

+ 𝜙
𝑑3𝑠̃0
𝑑𝜉3

= 0, (56)

or 𝑠̃0. Integrating Eq. (56) w.r.t 𝜉 using the boundary conditions that
llow appropriate matching of the inner and outer solutions on one
ide, i.e., 𝑠̃0 = 𝑆𝑐2 and derivatives of 𝑠̃0 vanish as 𝜉 → ∞, gives the
mplicit inner solution,

̃(𝑠̃0) − 𝜉𝑚 =∫

𝜉

𝜉𝑚
𝑑𝛯̃

=∫

𝑠̃0

𝑠̃𝑚

[

2
𝜙 ∫

𝑠̃0

𝑆𝑐2

(

𝜇𝑒(𝑆̃) − 𝜇𝑒(𝑆𝑐2 )
)

𝑑𝑆̃

]− 1
2

𝑑𝑆̃,

(57)

where 𝜉𝑚 = 0 is a reference value where an arbitrary 𝑠̃𝑚 = 0.5 is chosen
o occur. This inner solution approaches smoothly on the other side,
̃ → −∞, to 𝑠̃0 = 𝑆𝑐1 , see Fig. 14. Thus the leading order inner solution is
ffected neither by the form of flux function, 𝐾(𝑠), nor by the boundary
onditions chosen, Eq. (47). Once the implicit solutions Eq. (55) and
57) are determined, a solution valid over the full domain can be
onstructed using asymptotic matching techniques with appropriate
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Fig. 13. Implicit outer solutions, Eq. (54), shown as solid lines. Corresponding shifted solutions, 𝜉(𝑠0)− 𝜉(𝑆𝑐1 ) and 𝜉(𝑠0)− 𝜉(𝑆𝑐2 ), shown as dot-dashed lines. The jump part within the
eak solution Eq. (55) shown as dotted connection between points (0, 𝑆𝑐1 ) and (0, 𝑆𝑐2 ) which are shown as crosses. Boundary conditions shown as dot-dashed horizontal reference

ines for (a) (𝑠− , 𝑠+) = (0.96, 0.20), (b) (𝑠− , 𝑠+) = (0.85, 0.20). Solutions are shown in a restricted range of 𝜉 for clarity.
o

i

Fig. 14. Implicit inner solution, Eq. (57), scaled back from the stretched variable
space, 𝜖𝜉(𝑠̃0), shown as a solid line in the space (𝜉(𝑠0), 𝑠0). This solution varies between
𝑆𝑐1 ≈ 0.91 and 𝑆𝑐2 ≈ 0.23. The weak implicit outer solution, Eq. (55), is shown for
both the boundary conditions (𝑠− , 𝑠+) = (0.96, 0.20) (dashed) and (𝑠− , 𝑠+) = (0.85, 0.20)
dot-dashed). These involve a jump between (0, 𝑆𝑐1 ) and (0, 𝑆𝑐2 ) which are shown as
rosses. Solutions are shown in a restricted range of 𝜉 for clarity.

ssumption on the region of overlap of those solutions. One of such
ossible assumptions involves an uniform matching,

(𝜉) =

{

𝑠̂0(𝜉) + 𝑠̃0(𝜉) − 𝑆𝑐1 , ∀𝜉 < 𝜉𝑚,
𝑠̂0(𝜉) + 𝑠̃0(𝜉) − 𝑆𝑐2 , ∀𝜉 > 𝜉𝑚.

(58)

In the Eq. (58) above, 𝑠̂0(𝜉) is the inverse mapping of 𝜉(𝑠0) in
q. (55), with an abuse of notation replacing 𝜉 with 𝜉 noting that both
ake values from the real number line. 𝑠̃0(𝜉) is the inverse mapping
f the implicit inner solution that is scaled back from the stretched
ariable space, 𝜖𝜉(𝑠̃0). The accuracy of such solutions depends on the

assumptions involved in the asymptotic matching procedure.
While, the weak implicit outer solution, Eq. (55), indicates whether

the overshoot and undershoot behaviors are to be expected or not in
the numerical solutions, it is prudent to note that the integrand in
Eq. (54) diverges to −∞ while approaching both 𝑠 and 𝑠 . And this
15

− +
Fig. 15. TW-solutions of Eq. (48) representing imbibition for 𝜆 = 𝜌𝑤𝑔, with boundary
conditions 𝑠+ = 0.20, 0.25, 0.30, 0.35, 𝑠− = 0.85; Solutions are shown in a restricted range
f 𝜉 for clarity.

s irrespective of the relation between 𝑠− and 𝑠+, i.e., either 𝑠− > 𝑠+ or
𝑠− < 𝑠+. Thus integrating backwards from 𝑠𝑚 ∈ (𝑠+, 𝑠−) to min(𝑠+, 𝑠−)
always implies 𝜉(𝑠0) → ∞ and integrating forwards from 𝑠𝑚 ∈ (𝑠+, 𝑠−) to
max(𝑠+, 𝑠−) always implies 𝜉(𝑠0) → −∞. So, this implicit outer solution,
is only representative of imbibition solutions and as such drainage
solutions are not possible in the context of the leading order outer
problem, Eq. (52). As we will see further, it is the second gradient term
of the energy that is absent in the outer problem which is responsible
for drainage solutions when 𝐾(𝑆𝑟) is non-convex.

With respect to imbibition, 𝑠+ represents the initial saturation con-
dition of the porous media into which injection of fluid is done with
a velocity corresponding to 𝑠− of the form Eq. (43). Fig. 15 shows
the effect of different initial conditions, 𝑠+, for fixed 𝜆 = 𝜌𝑤𝑔 and left
boundary condition, 𝑠− = 0.85. For larger values of 𝑠+, the oscillatory
non-monotonicity ahead of the interface are stronger and more spread-
out along 𝜉, whereas the overshoot behind the interface tends to reduce
slightly.
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Fig. 16. TW-solutions of Eq. (48) representing imbibition for 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔,
ith boundary conditions 𝑠+ = 0.20, 𝑠− = 0.85; Solutions are shown in a restricted range
f 𝜉 for clarity.

Fig. 16 shows the imbibition solutions for various values of 𝜆 and
or fixed boundary conditions, 𝑠− = 0.85, 𝑠+ = 0.20. Increasing 𝜆 tends
o result in a reduced spread along 𝜉 of the non-monotonicities within
oth behind and ahead of the interface. Also, the strength of these
on-monotonicities tends to increase with 𝜆.

.2.2. Drainage
Contrary to the imbibition solutions in Section 3.1, the drainage

olutions are not self-similar throughout the domain. Only a part of the
olution seems to propagate as traveling waves with uniform intermedi-
te saturation state/s appearing. For lower values of 𝜆 two intermediate
tates 𝑆𝑎 and 𝑆𝑏 form the traveling wave boundary conditions. And
or higher values of 𝜆 only one intermediate state 𝑆𝑏 connects directly
o the initial condition 𝑆0

𝑟 . Moreover, these intermediate state/s are
ot a priori known and hence the boundary conditions to resolve
he corresponding TW-solutions are not known. However, it has been
hown numerically, in the context of thin film flows, that non-classical
under-compressive’ shocks are unique (Bertozzi et al., 1999; Münch,
000) in the sense that they represent traveling wave type solutions
etween unique combination of left and right boundary conditions.
lso in the case of lower values of 𝜆 in Section 3.1.2, the intermediate
tates 𝑆𝑎 and 𝑆𝑏 remained unique irrespective of the changing boundary
onditions. Taking cue from these observations, in what follows we
onsider one of the equilibrium states in the PDE solutions as a known.
nd then we use an iterative approach to find the unknown equilibrium
tate, employing a shooting method to integrate forward or backward
n 𝜉, the dynamical system Eq. (49), until the target known equilibrium
tate is reached.

To do this in the case of lower values of 𝜆 we take as input
rom the 1D PDE results the higher equilibrium state, (𝑆𝑎, 0, 0), as the
arget and apply a small perturbation of the order 1E-6 to an initial
uess of lower equilibrium state, (𝑆0

𝑏 , 0, 0), in the direction of the eigen
ector corresponding to an unstable eigen value at (𝑆0

𝑏 , 0, 0). Then
e proceed to integrate forward Eq. (49) using the MATLAB solver-
DE23s (Shampine and Reichelt, 1997) which is based on a modified
osenbrock method and features adaptive step size. In order to provide
topping criteria for the integration and direction for the iterations we
bserve two qualitatively different types of trajectories starting from
n (𝑆0

𝑏 , 0, 0) in the vicinity of lower equilibrium state obtained in the
D PDE results, (𝑆𝑏, 0, 0). See Fig. 17(a). For lower values of 𝑆0

𝑏 the
rajectory reaches the target 𝑆𝑎 with a positive slope and then diverges
owards full saturation. For higher values of 𝑆0

𝑏 on the other hand,
t reaches a local maximum missing the target and then moves to a
ocal minimum before diverging to full saturation. The required left
quilibrium state would form a trajectory that reaches the target with
16
zero slope and curvature, up to a numerical error. Assuming such
rajectory exists for an 𝑆0

𝑏 within the above two cases, we input them as
tarting points of iterations in a Regula-Falsi method (Galdino, 2011).
he stopping criteria for the iterations is chosen as a tolerance to be
atisfied by the difference between the target 𝑆𝑎 and the saturation
alue at which a zero slope achieved. This tolerance is set to 1E-8 in
his work. Fig. 17(b) shows the TW-solutions thus obtained for different
alues of 𝜆 and the lower equilibrium state (𝑆𝑘𝑏 , 0, 0) associated to the
ast iteration.

For the case of higher 𝜆, where only one intermediate uniform
aturation state, 𝑆𝑏, was observed in the 1D PDE results, we follow a
imilar approach and stopping criteria for the iterations, but with an a
riori known target (𝑆0

𝑟 , 0, 0) = (0.99, 0, 0). Again we observe two types
f trajectories starting in the vicinity of equilibrium state (𝑆𝑏, 0, 0). In
oth cases we observe an oscillatory behavior while approaching the
arget. See Fig. 17(c). However, for lower values of 𝑆0

𝑏 , after oscillation,
he trajectory reaches a local minimum without traversing the target
nd then diverges to full saturation. And for higher values of 𝑆0

𝑏 , the
trajectory reaches the target 𝑆𝑎 with a negative slope and then diverges
down towards residual saturation. With these new stopping criteria for
integration we obtain TW-solutions shown in Fig. 17(d) for different
values of 𝜆.

These drainage TW-solutions are shown as connections on the per-
meability curve 𝐾(𝑆𝑟) in Fig. 18. The connections for lower values of
𝜆 are representative of non-classical ‘expansion’ shocks that violate Lax
entropy condition as Eq. (38). Since these solutions are connections
between two equilibria, corresponding local stability properties can be
analyzed in accordance with Section 3.2. In the current phase field
model these non-classical ‘expansion’ connections occur between a
left equilibrium state, (𝑠−, 0, 0), which has locally one unstable real
eigen value, two stable complex conjugate eigen values and a right
equilibrium state, (𝑠+, 0, 0), which has locally two unstable real eigen
values, one stable real eigen value. And hence there are no oscillations
observed neither when leaving the left equilibrium state along the
unstable eigen vector nor when approaching the right equilibrium
state along the stable eigen vector. In Section 3.1.2 it is observed that
longitudinal oscillations appear at the junction of a rarefaction wave
and the uniform intermediate saturation state associated to 𝑆𝑏. It can be
inferred that these oscillations are due to the complex conjugate nature
of the stable eigen pair in the vicinity of the left equilibrium state.

On the other hand, the connections for higher values of 𝜆 violate
Lax entropy condition, Eq. (35), while satisfying the first relation in
Eq. (37) and so are representative of non-classical ‘under-compressive’
shocks which travel faster than the characteristic speed on either side
of the shock. For such connections the system governed by Eq. (49) has
a third equilibrium, (𝑠𝑒3, 0, 0), such that,

𝜙𝑐(𝑠𝑒3 − 𝑠+) −𝐾(𝑠𝑒3) +𝐾(𝑠+) = 0. (59)

However the solution only represents a connection directly from
(𝑠−, 0, 0) to (𝑠+, 0, 0) that have the same local stability properties with
ne unstable real eigen value, two stable complex conjugate eigen
alues. And the later are responsible for the small oscillatory non-
onotonicity when the solution approaches (𝑠+, 0, 0). See inset in

ig. 17(d).

. Conclusion

In the current study we have presented a phase field model, as
n extension of the classical Richards equation, in order to address
he displacement of an air–water interface within a porous medium
nder the influence of either an imposed pressure gradient and/or
ravity. In the framework of thermodynamically consistent phase field
odeling (Sciarra, 2016), the air–water mixture in the unsaturated

egime was viewed as a non-uniform fluid characterized by a physically
otivated phase field parameter, the saturation degree of the wetting

luid (water). While such non-uniform fluid naturally is equipped with
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Fig. 17. Trajectories of qualitatively different solutions with lower and higher starting equilibrium states, (𝑆0
𝑏 , 0, 0), for (a) 𝜆 = 𝜌𝑤𝑔, (c) 𝜆 = 150𝜌𝑤𝑔. Zero slope locations on

he trajectories are shown as circles and locations where the trajectory crosses the target 𝑆𝑎 are shown as filled dots. Solid lines represent the solution trajectory at the last
teration starting at equilibrium state (𝑆𝑘𝑏 , 0, 0). Corresponding TW-solutions centered within the domain 𝜉 ∈ [−0.05, 0.05], for (b) lower values of 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔 for which
𝑠− , 𝑠+) = (𝑆𝑘𝑏 , 𝑆𝑎) and 𝑆𝑘𝑏 ≈ 0.30639, 0.36345, 0.413 respectively with 𝜆 and for (d) higher values of 𝜆 = 150𝜌𝑤𝑔, 1500𝜌𝑤𝑔 for which (𝑠− , 𝑠+) = (𝑆𝑘𝑏 , 𝑆

0
𝑟 ) and 𝑆𝑘𝑏 ≈ 0.79653, 0.77827

espectively with 𝜆. Solutions are shown in a restricted range of 𝜉, 𝑠 and aspect ratio of insets adjusted for clarity.
Fig. 18. TW-solutions shown in Fig. 17(b,d) shown as connections on the curve 𝐾(𝑆𝑟) for (a) lower values of 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔 for which (𝑠− , 𝑠+) = (𝑆𝑘𝑏 , 𝑆𝑎) and for (b) higher
alues of 𝜆 = 150𝜌𝑤𝑔, 1500𝜌𝑤𝑔 for which (𝑠− , 𝑠+) = (𝑆𝑘𝑏 , 𝑆

0
𝑟 ) and 𝑠𝑒3 ≈ 0.81641, 0.83232 respectively with 𝜆. The locations of (𝑠𝑒3 , 𝐾(𝑠𝑒3)) on the curve are shown as circle markers.
a
s
n

bulk and a non-local energy contributions, the confining effect due
o the pore walls was assumed to be provided by the classical capillary
nterfacial energy. The gradient of a chemical potential that is derived
rom the non-uniform fluid energy was assumed to drive the fluid flow,
17

eading to a generalized Darcy’s law. Starting from such a constitutive d
ssumption on the energies and dissipation due to fluid flow, a con-
ervation law has been derived for the non-uniform fluid mass in a
on-deformable pore network.

An appropriate dimensional grouping has been proposed and a one-

imensional analysis has been done exploiting the hyperbolic structure
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Fig. B.19. Mesh convergence for one-dimensional simulations in Section 3.1 with 𝜆 = 𝜌𝑤𝑔, 𝛥𝑥∕𝛥𝑡 = 50. ‖𝛥(⋅)‖2 represents the 2-norm of the difference between solutions computed
ith successive mesh refinements. (a) Imbibition simulations with 𝑆0

𝑟 = 0.20, 𝑆− = 0.80, 𝛥𝑥 = 6.25E-05 1.25E−04 2.5E−04, 5E-04, 1E-03. (b) Drainage simulations with 𝑆0
𝑟 = 0.99,

𝑑
𝑟 = 0.20, 𝛥𝑥 = 2.5E-04, 5E-04, 1E-03, 2E-03, 4E-03.
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f the governing conservation law. One-dimensional PDE simulations
f the same have informed on the presence of similarity solutions for
ppropriate initial and boundary conditions. In particular the part of
he solution which is a similarity solution of the traveling wave type
as understood as the air–water displacement front. As a significant
ovelty, it has been demonstrated that both imbibition and drainage
olutions are possible due to the non-convexity of the proposed flux
unction. Further with an intent to analyze their linear stability, the part
f the solution that is a traveling wave type has been resolved by mak-
ng a transformation into an appropriate moving coordinate system.
hese solutions were analyzed by exploiting the underlying dynamical
ystem. The solutions corresponding to imbibition driven by gravity
ave been found to be non-monotonic under certain boundary condi-
ions and the reason for such non-monotonicities has been analyzed. In
he current model, the double-well structure of the non-uniform pore
luid energy has been found to cause overshoot type non-monotonicities
epending on the boundary conditions chosen, whereas the oscillatory
on-monotonicities are due to the dynamical nature of the equilibria
ssociated to the boundary conditions. The solutions of imbibition
nder the influence of gravity have shown good qualitative agreement
gainst one-dimensional infiltration experiments, with the trend of the
elationship between infiltration flux and saturation degree overshoot
eing preserved. Drainage solutions connecting unknown boundary
onditions as well were resolved using an iterative shooting method
tarting from left boundary condition taken from the PDE solutions.

In Part II of the current study, these TW-solutions of both imbibition
nd drainage will be analyzed for their conditional stability against
erturbations. A linear stability analysis will be used to investigate the
ange of wave numbers for which such perturbations grow in time and
he effect of non-monotonicities within the solutions on the growth
f perturbations. Also, equipped with the knowledge on the range
f unstable wave numbers, two-dimensional PDE simulations will be
one to characterize the non-linear growth of initial perturbations and
ormation of fingering instabilities.
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Appendix A. Linearization in the vicinity of (𝒔𝒆, 𝟎, 𝟎)

Starting from the system of equations Eq. (49) rewritten as,

𝜉 (𝜉) =  ((𝜉)), (A.1)

where (𝜉) = [𝑠, 𝑣,𝑤]𝑇 and  ((𝜉)) = [𝑓 (𝑣), 𝑔(𝑤), ℎ(𝑠, 𝑣)]𝑇 is the
ssociated short-hand notation for the right hand side of Eq. (49). The
ystem can then be expanded about an equilibrium 𝑒(𝜉) = [𝑠𝑒, 0, 0]𝑇

s,

𝜉 (𝜉) =  (𝑒(𝜉)) +𝐷 (𝑒(𝜉))𝜖 +𝐷2 (𝑒(𝜉))
𝜖2

2!
+⋯ , (A.2)

here 𝐷 (𝑒(𝜉)) and 𝐷2 (𝑒(𝜉)) represent the Jacobian and Hessian
espectively, of  ((𝜉)) evaluated at the equilibrium. Subsequently 𝜖 =
𝑠𝜖 , 𝑣𝜖 , 𝑤𝜖]𝑇 being a small perturbation in the vicinity of 𝑒(𝜉) allows us
o ignore 𝑂(𝜖2) and higher order terms, leaving us the linear system of
quations governing 𝜖 as,

𝜉 = 𝐷 (𝑒(𝜉))𝜖 =
⎡

⎢

⎢

⎣

0 1 0
0 0 1

ℎ𝑠(𝑠𝑒, 0) ℎ𝑣(𝑠𝑒, 0) 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑠𝜖
𝑣𝜖
𝑤𝜖

⎤

⎥

⎥

⎦

, (A.3)

here,

𝑠(𝑠𝑒, 0) =
𝐶𝑎

(

𝜙𝑐 −𝐾 ′(𝑠𝑒)
)

𝛿𝑅𝜙𝐷𝑁𝐿𝐾(𝑠𝑒)
; ℎ𝑣(𝑠𝑒, 0) =

𝜇′𝑒(𝑠𝑒)
𝜙𝐷𝑁𝐿

. (A.4)

The characteristic polynomial, 𝑝(𝛽), whose roots are the eigen values
associated with the system Eq. (A.3) is thus given by,

𝑝(𝛽) = det[𝐷 (𝑒(𝜉)) − 𝛽I] = 𝛽3 − ℎ𝑣(𝑠𝑒, 0)𝛽 − ℎ𝑠(𝑠𝑒, 0). (A.5)

ppendix B. Convergence properties of the one-dimensional solu-
ions

In order to validate the robustness of the numerical scheme adopted
o solve the one-dimensional problem of Sections 3.1.1 and 3.1.2 a
esh convergence analysis has been conducted for two test cases rela-

ive to the imbibition and the drainage problem. As expected reducing
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the element size implies a decrease of the 2-norm of the difference be-
tween solutions, for the saturation degree and the generalized chemical
potential, computed with successive mesh refinements, see Fig. B.19.
Data relative to the test cases are reported in the caption of the figure.
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