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Abstract.

Quantum localization (single-body or many-body) comes with the emergence of

local conserved quantities — whose conservation is precisely at the heart of the absence

of transport through the system. In the case of fermionic systems and S = 1/2

spin models, such conserved quantities take the form of effective two-level systems,

called l-bits. While their existence is the defining feature of localized phases, their

direct experimental observation remains elusive. Here we show that strongly localized

l-bits bear a dramatic universal signature, accessible to state-of-the-art quantum

simulators, in the form of periodic cusp singularities in the Loschmidt echo following

a quantum quench from a Néel/charge-density-wave state. Such singularities are

perfectly captured by a simple model of Rabi oscillations of an ensemble of independent

two-level systems, which also reproduces the short-time behavior of the entanglement

entropy and the imbalance dynamics. In the case of interacting localized phases, the

dynamics at longer times shows a sharp crossover to a faster decay of the Loschmidt

echo singularities, offering an experimentally accessible signature of the interactions

between l-bits.
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1. Introduction

Constructive interference of paths bringing a particle back to its initial location in

real space is at the heart of single-particle (or Anderson) localization (AL) [1, 2]; more

recently a similar phenomenon occurring in Hilbert space (MBL) [3–6] has been shown to

prevent many-body quantum systems from relaxing to thermal equilibrium, undermining

the ergodic hypothesis in a large class of models of interacting quantum particles.

Localized phases are generally characterized in the negative (absence of transport, of

long-range order, of spectral gaps, etc.), while positive characterizations are typically

elusive. A crucial aspect of localization is the persistence of initial conditions, which, in

the case of AL of non-interacting particles, is related to the conservation of populations

in the localized single-particle eigenstates of the Hamiltonian. In the case of MBL, the

analog phenomenon would be the appearance of local conserved quantities (called local

integrals of motion or l-bits [7–10]) which are obtained by unitary transformations of

local operators; and which, if extensive in number, constrain the dynamics of the system

to the point of preventing relaxation.

The existence of l-bits in disordered spin chains can be mathematically proven

under the assumption of limited level attraction [9], and approximate l-bits for many-

body systems can be constructed with a variety of analytical as well as numerical

methods [11–20]. Much of the phenomenology of MBL dynamics (persistence of traits

of the initial state, logarithmic growth of entanglement entropies, etc.) – observed in

numerical studies as well as in experiments [4, 5] – can be directly explained in terms

of the existence of l-bits and interactions between them. Yet observing l-bits directly is

an arduous task, given that their expression is highly disorder-dependent (and generally

unknown even in theory), and it would require high-precision measurements of local

observables in different local bases. An even more ambitious task for experiments is the

one of probing directly the existence of interactions among l-bits, which is a defining

feature distinguishing MBL from AL. Measuring the consequences of such interactions

on correlation and entanglement dynamics is currently the focus of a considerable

experimental effort based on state-of-the-art quantum simulation platforms [21–23].

The purpose of this work is to show that, in the case of strongly localized phases,

the existence of l-bits can offer striking signatures in the dynamics of the Loschmidt

echo, namely in the logarithm of the return probability to the initial state |ψ0〉

λ(t) = − 1

L

[
log |〈ψ0|e−iHt|ψ0〉|2

]
av
. (1)

Here H is the system’s Hamiltonian and L the lattice size; [...]av indicates the disorder

average. Please note that we employ the “Loschmidt echo” terminology similar to other

recent works in which singular behavior has been observed in the quench dynamics of

many-body quantum systems [24–31]. Nonetheless, In the quantum-chaos literature the

Loschmidt echo is more generally defined as the scalar product between the evolution of

the same state |ψ0〉 with two different Hamiltonians, H1 and H2 [32, 33]. Starting from

L(t) = 〈ψ|eiH2te−iH1t|ψ〉, our definition is retrieved in the case of H1 = H and H2 = 0.
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When |ψ0〉 has a simple factorized form, and in the case of strong disorder, we find that

the Loschmidt echo displays periodic singularities, decaying very slowly in amplitude

– as illustrated using a model of disordered spinless fermions in 1d (corresponding to

the S = 1/2 XXZ model in a fully random or quasi-periodic field) initialized in a

charge density-wave (CDW) state. The singularities in the Loschmidt echo are fully

explained quantitatively by a simple model of a collection of localized 2-level systems

(2LS) undergoing independent Rabi oscillations, and approximating strongly localized l-

bits. The same minimal model captures quantitatively the dynamics of the entanglement

entropy at short times as well as of the number entropy at longer times; and the dynamics

of the density imbalance characterizing the initial state.

At longer times the deviation of the exact results for the MBL dynamics from the

predictions of the 2LS ensemble offers direct evidence of the interactions among the l-

bits in the form of a faster decay of the Loschmidt-echo singularities and imbalance

oscillations. As the Loschmidt echo and the imbalance are generally accessible to

quantum simulators, either measuring individual degrees of freedom [26, 34] or even

global ones [35–37], our results show that strong direct signatures of l-bits dynamics and

interactions are within the immediate reach of state-of-the-art experiments on disordered

quantum systems.

The structure of the paper is as follows: section 2 introduces the XXZ model in

a random/quasi-periodic field; section 3 discusses the observation of Loschmidt echo

singularities in the exact dynamics, as well as their quantitative understanding via a

model of 2LS as well as three-level systems (3LS); section 5 discusses the dynamics

of imbalance, and the comparison with the prediction of the 2LS and 3LS model;

section 6 discusses the departure of the exact data (for the Loschmidt echo and imbalance

dynamics) from the 2LS/3LS predictions as a signature of l-bit interactions; section 7

shows that the 2LS/3LS models capture quantitatively the entanglement dynamics at

short time, and of number entropy at longer times; conclusions are drawn in section 8.

2. Model

Our platform for the investigation of Loschmidt-echo dynamics is given by a

paradigmatic model, namely the S = 1/2 XXZ chain in an inhomogeneous magnetic

field [38, 39], corresponding to a model of spinless fermions with nearest-neighbor

interactions in an inhomogeneous local chemical potential [40]

H =
L−1∑
i=1

[
−J

2

(
S+
i S
−
i+1 + h.c.

)
+ JzS

z
i S

z
i+1

]
−

L∑
i=1

hiS
z
i

=
L−1∑
i=1

[
−J

2

(
c†ici+1 + h.c.

)
+ Jznini+1

]
−

L∑
i=1

hini,

(2)

where Sαi (α = x, y, z) are spin operators and ci, c
†
i and ni = c†ici are fermionic operators;

the equality between the two Hamiltonians is true up to an additive constant via

Jordan-Wigner mapping. In the following the external field/potential hi is taken to
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be either quasi-periodic (QP) [41, 42], namely hi = ∆ cos(2πκi + φ) with κ = 0.721

(inspired by experiments on bichromatic optical lattices [35, 43]) and φ a random

phase; or to be fully random (FR) and uniformly distributed in the interval [−∆,∆].

We consider chains of length L (up to L = 22) with open boundaries, and we

average our results over ∼ 103 realizations of the random phase (QP) or of the full

random potential (FR). All the unitary evolutions considered in this study are obtained

using exact diagonalization (ED), and they start from the charge-density wave state

|ψ0〉 = |1010101...〉, corresponding to a Néel state for the spins. We shall focus on

the case of interacting fermions Jz = J (corresponding to an SU(2) invariant spin-spin

interaction) and contrast it with the limit of free fermions Jz = 0. In the latter case,

the QP potential leads to a transition to fully localized single-particle eigenstates for

∆ ≥ J , with an energy independent localization length ξ = 1/ log(∆/J); while the FR

potential leads to AL of the whole spectrum at any infinitesimal value of disorder. In

the interacting case, instead, a QP potential of strength ∆ & 4J [44] and a FR potential

of strength ∆ & 3.5J [45–52] are numerically found to lead to MBL. In the following

sections we shall generally start our discussion from the case of the QP potential, which

has a simpler spatial structure devoid of rare regions, leading to stronger localization

effects; and we shall later discuss how to enrich the picture in the case of the FR

potential, in order to account for the existence of rare regions.

3. Loschmidt echo singularities and imbalance oscillations

Figure 1 shows the dynamics of the Loschmidt echo λ(t), (1), along with that of the

imbalance

I(t) =
1

L

∑
i

(−1)i(2[〈ni〉]av − 1) . (3)

The latter saturates to its maximum value of 1 in the initial state and probes the

persistence of the initial density/spin pattern [35–37]. We observe that for both the

QP and FR potentials, and for disorder strengths compatible with the onset of the

MBL regime, the Loschmidt echo displays a sequence of periodic cusp-like peaks at

times tm = (2m + 1)π/J (m = 0, 1, 2, ...). These times correspond to minima in the

imbalance, as the system reaches instantaneous configurations which are the farthest

from the initial spin/density pattern.

A closer inspection shows that, for sufficiently strong disorder, all the peaks

become sharp cusps, namely they represent genuine non-analyticities of the Loschmidt

echo. They are rather remarkable given that they survive disorder averaging, and they

seemingly appear in a finite fraction of disorder realizations (see Appendix C for further

details); and in particular they decay very slowly in time, as we shall discuss in detail

later on. The rest of this work will be devoted to developing a quantitative understanding

of the dynamics of Loschmidt-echo singularities and imbalance oscillations as signatures

of the existence of l-bits and of their interacting nature.
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Figure 1. Loschmidt echo and imbalance dynamics for an L = 22 chain with QP

potential (a-c) and FR potential (b-d), for various disorder strengths ∆ = 2, . . . , 8 as

indicated by the colors.

4. Quantitative modeling of the Loschmidt echo singularities

4.1. Modeling with an ensemble of two-level systems

All the essential details of the short-time evolution of the Loschmidt echo can be

captured with a surprisingly simple, yet rather insightful model. This model is best

understood (and justified) in the case of the QP potential, as illustrated in figure 2.

In the case of strong disorder, the fastest dynamics in the system starting from a

Fock state will be offered by those particles that sit on a site i which is nearly resonant

with its unoccupied neighbor (say i+1), because the hopping J/2 is either larger than the

energy offset δi = hi+1−hi (in the non-interacting case) or larger than the screened offset

δi−Jz (in the presence of nearest-neighbor repulsion). These 2-site clusters, representing

nearly resonant two-level systems (2LS), have the property of being spatially isolated in

the QP potential, because of the strong anticorrelation among two consecutive energy

offsets (δi and δi±1 – see Appendix B). As a consequence, a nearly resonant 2-site

system will be generally surrounded by highly non-resonant pairs of sites, which can be

considered as nearly frozen to the initial state. This invites us to write for the evolved

state a 2LS Ansatz

|ψ(t)〉 ≈
(
⊗p|ψ(p)

2LS(t)〉
)
⊗ (⊗′i|ψ0,i〉) , (4)

where the first tensor product ⊗p runs over the nearly resonant 2LS, while the second

tensor product ⊗′i runs over the leftover sites (we have taken the freedom of reordering
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the sites arbitrarily in the tensor product; see [53–55] for a similar Ansatz to study the

long-time dynamics). |ψ(p)
2LS(t)〉 is the evolved state of the p-th (isolated) 2LS system,

corresponding to two states split by an energy difference δ′p = δp− Jz and connected by

a Rabi coupling J ; while |ψ0,i〉 is the (persistent) initial state of the site i belonging to

the remainder of the system. The Loschmidt echo for such a system is readily calculated

as

λ(t) = − 1

L

∑
p

log
[
1− p(δ′p, J, t)

]
, (5)

with p(δ,Ω, t) = (Ω/Ω′)2 sin2(Ω′t/2) (and Ω′ =
√

Ω2 + δ2) the well-known probability

of finding the 2LS in the state orthogonal to the initial one while performing Rabi

oscillations [56] – see also Appendix A. When averaging Eq. (5) over disorder, it is

immediate to obtain the following simple expression

λ2LS(t) = −
∫
P (δ′ + Jz) log [1− p(δ′; J, t)] , (6)

where P (x) is the probability that the energy offset between two neighboring sites takes

the value x. Going from Eq. (5) to Eq. (6) implies that we in fact count all of the L pairs

of sites in a chain as nearly resonant 2LS, thereby counting twice every site. The mistake

that one makes in doing this is minor, though, because the non-resonant pairs of sites

give a very small contribution to the Loschmidt echo; and, if neighboring pairs of sites

are not simultaneously resonant, a site will not be counted twice in practice. Eq. (6) is

an analytical integral formula which depends uniquely on the (known) statistics of the

(1) (2)

(a)

(b)

(1) Jz = 0
J/2

Jz

δ − Jz

J/2

δ

(2) Jz ≠ 0

δ

Figure 2. (a) Example of a L = 22 chain in a QP potential (lines) in the initial

CDW state |1010...〉. Particles are denoted as coloured balls. (b) Zoom on two quasi-

resonant regions (shaded areas): in the case of non-interacting particles (Jz = 0) the

region (1) presents a pair of quasi-resonant sites for the particle in orange; in the

case of interacting particles, region (2) shows two quasi-resonant sites for the orange

particle, thanks to the partial screening of disorder offered by the interaction with the

red particle.
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disorder potential via the P distribution. In the case of the QP potential

P (x) =
[1− (x/∆̃)2]−1/2

π∆̃
(7)

with ∆̃ = ∆ sin(πκ) [57]; while for the FR potential P (x) is the normalized triangular

distribution defined on the [−2∆, 2∆] interval.

The cusp singularities in λ(t) at times tmJ = (2m + 1)π, m = 0, 1, 2, . . ., descend

from the fact that the integrand function f(δ; tm) = log[1−p(δ, J, tm)], seen as a function

of δ, develops a logarithmic singularity at δ = 0, as shown in figure 3, while it is fully

regular at any other time. The singular peak centered at δ = 0 has a support shrinking

with tm as t
−1/2
m – as seen in figure 3 when plotting the function f(δ; tm) vs δ

√
tm, which

leads to a collapse of the peak widths at different times (when m� 1). The integral of

the f function outside the peak contributes to the regular part of the Loschmidt echo,

while the integral of the peak dictates fundamentally the height of the cusps above

the regular background (estimated as the long-time average λ̄), namely the quantity

λP (tm) = λ(tm) − λ̄. The decay of the height of these cusps as t
−1/2
m will be verified

numerically in section 6. Figure 4(a-b) shows that, for the case of the QP potential,

Eq. (6) is able to predict with high accuracy the ED results deep in the MBL phase

without any adjustable parameter. In particular the cusp singularities of the ED results

are easily explained as descending from the divergent singularity of the Loschmidt echo

for a fully resonant 2LS with Ω = Ω′ = J , reaching a state orthogonal to the initial one

after odd multiples of half a Rabi oscillation tm = (2m+ 1)π/Ω. These divergences are

smoothened into cusp singularities due to the fact that such resonant 2LSs are a set of

zero measure in the disorder statistics. This result has important consequences. Indeed

the nearly resonant 2LSs captured by the model are clearly an ensemble of approximate

l-bits with Hamiltonian

H ≈
∑
p

Kpτp, (8)

-1 -0.5 0 0.5 1

δ/J

0

2

4

6

8

f
(δ

;t
)

(a)

-4 -2 0 2 4√
Jtδ/J

(b)
Jt = π

Jt = 5π

Jt = 15π

Jt = 25π

Figure 3. Function f(δ; t) vs. δ at different singularity times tmJ = (2m + 1)π; as

shown in the right panel, for large tm the width of the central peak becomes time-

independent when f is plotted as a function of
√
t δ.
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Figure 4. Comparison between the LE λ(t) for and L = 22 chain and the predictions

of the 2LS and 3LS models: (a-c) QP potential; (d-f) FR potential.

where τp = δ′p/Kpσ
z
p − J/Kpσ

x
p is a Pauli matrix expressed as a rotation of the Pauli

operators σzp = Szi+1 − Szi (when projected onto the subspace with Szi + Szi+1 = 0) and

σx = S+
i S
−
i+1 + h.c., built from the original spin operators for the pair p = (i, i + 1);

and Kp =
√
δ2p + J2 is the l-bit splitting. Hence the Loschmidt-echo singularities are

a striking manifestation of the existence of such (nearly free) l-bits, to be found in the

short-time dynamics of the system.

4.2. Relationship to dynamical quantum phase transitions

It is worthwhile to mention at this point that the existence of singularities in the quench

dynamics of the Loschmidt echo is currently the subject of several theoretical and

experimental investigations, as they represent the main signature of so-called dynamical

quantum phase transitions, studied both in non-random systems [24–26,30,31] as well as

in disordered quantum systems [27, 28, 58]. Nonetheless our observation of Loschmidt-

echo singularities is fully explained by a model of individual 2LS, without the need of

any many-body effect. Therefore we shall refrain from associating them to any form of

time-dependent transition.

4.3. From two-level systems to three-level ones

Figure 4(d-f) shows that, in the case of the FR potential, the 2LS model of (6) still

predicts the correct frequency of the Loschmidt echo singularities, but not the correct

height; and it also misses a global offset. This is not surprising, as in the case of the

FR potential the assumption of anti-correlation between the energy offset of contiguous

pairs is no longer valid, namely the potential can host “rare” regions in which contiguous
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pairs of sites – (i−1, i) and (i, i+1) – are nearly resonant at the same time. To take those

regions into account (at least partially) one can easily promote the 2LS model to a model

of 3-site systems (amounting to effective three-level systems – 3LS), and approximate

the evolved state as that of a collection of independent 3LS. The Hamiltonian of a three-

site system (i, i+ 1, i+ 2) containing two interacting fermions in an initial |101〉 state is

explicitly given by

H101 = −J
2

(
c†ici+1 + c†i+1ci+2 + h.c.

)
+ δini+1 + (δi+1 + δi)ni+2

+ Jz (nini+1 + ni+1ni+2) + const.

(9)

Here all single-site energies are referred to the energy of site i, and δi = hi+1 − hi. The

above Hamiltonian assumes that the sites i− 1 and i+ 3 remain empty during the time

evolution. The Hilbert space of the 3-site system is restricted to the three states |101〉,
|110〉 and |011〉, making of it a three-level system (3LS), with a generic time-dependent

wavefunction

|ψ101(t)〉 = α(t) |011〉+ β(t) |101〉+ γ(t) |110〉 . (10)

Its explicit form can be easily calculated numerically for any specific choice of the energy

differences δi.

A similar calculation can be done for a three-site system hosting a single particle,

and starting from the |010〉 configuration, with Hamiltonian

H010 = −J
2

(
c†ici+1 + c†i+1ci+2 + h.c.

)
+ Jzni + δini+1 + (δi+1 + δi + Jz)ni+2,

(11)

which assumes that the sites i−1 and i+3 host two pinned particles. The Hilbert space

|100〉, |010〉, |001〉 defines a 3LS, whose instantaneous state takes the generic form

|ψ010(t)〉 = α̃(t) |100〉+ β̃(t) |010〉+ γ̃(t) |001〉 . (12)

For the two types of clusters the Loschmidt echo can be readily evaluated as

λ101(t; δi, δi+1) = − log |β(t)|2 and λ010(t; δi, δi+1) = − log |β̃(t)|2.
We can then model a chain in a QP or FR potential as an ensemble of independent

3LSs by generating sequences of energy offsets δi, δi+1 between adjacent site pairs

according to the distribution P (δi, δi+1). The 3LS prediction for the Loschmidt echo

of the ensemble is

λ3LS =
1

2

∫
dδ1dδ2 P (δ1, δ2) [λ101(t; δ1, δ2) + λ010(t; δ1, δ2)] . (13)

In practice, the above integral can be sampled numerically by simply averaging over a

large number of different realizations of the potential on 3-site systems, such as those

offered by a very long chain, namely

λ3LS(t) ≈ 1

L

L∑
i=1

λαi
(t; δi, δi+1), (14)
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where αi = 101 if i is odd and 010 if i is even, and L� 1.

Eq. (14) for the Loschmidt echo has the apparent drawback of triple-counting each

site. Nonetheless, similarly to what was argued for the 2LS case, it is fair to assume

(and it can be numerically tested) that, out of the three clusters containing each site,

only one at most will contribute significantly to the Loschmidt echo. As a consequence

the triple counting has only a mild effect on the final result. One could avoid triple

counting by thoughtfully decomposing a chain into non-overlapping clusters of up to 3

sites, in such a way as to maximize the Loschmidt echo; yet this procedure introduces

significant complications which are not justified a posteriori, given the quality of the

results offered already by the naive ensemble average. As shown by figure 4(c-d), the

improvement offered by the 3LS model for the FR potential is substantial; these results

can further be improved by moving to 4-site clusters etc., albeit at an exponential cost.

5. Imbalance dynamics

The 2LS model prediction for the imbalance is very similar to that of the Loschmidt

echo, as the imbalance is simply related to the persistence probability of the initial state

(|10〉 or |01〉) on the 2-site cluster – given that the orthogonal state contributes zero to

the imbalance. Therefore the 2LS expression for the imbalance simply reads

I2LS(t) =

∫
dδ P (δ) [1− p(δ, t)] . (15)

The times tm giving cusp singularities in the Loschmidt echo correspond to dips in the

imbalance, and these dips come from local dips in the g(δ; t) = 1 − p(δ, t) function

centered around δ = 0 and touching zero for t = tm. The width of these dips is

also shrinking in time as t
−1/2
m . Therefore one expects the depth of the minima in the

fluctuations of the imbalance to decay to the long-time average as t
−1/2
m as well – this

prediction will be verified in section 6.

Extending the 2LS model to 3LS, the imbalance can be calculated as

I3LS(t) ≈ 1

3L

∑
i

(
−|αi|2 + 3|βi|2 − |γi|2

)
(16)

with αi, βi, γi = α(t), β(t), γ(t) or α̃(t), β̃(t), γ̃(t) depending on whether i is odd or even.

Figure 5 shows the comparison between the ED results for the imbalance dynamics of

interacting fermions immersed in a QP and fully random potentials of variable strength,

compared with the predictions of the 2LS and the 3LS models. For sufficiently strong

disorder (∆ & 6J) the 2LS predictions are already rather accurate in the case of the

QP potential, and the 3LS model offers further improvement. On the other hand in the

case of the FR potential the 3LS model offers a more substantial improvement, fixing

an overall offset (for sufficiently strong disorder) which is seen in the 2LS predictions.
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6. Dephasing in the Loschmidt echo and imbalance oscillations: evidence of

l-bits interactions

A significant feature of the Loschmidt echo singularities is their slow decay in time –

which is remarkable given that they result from the Rabi oscillations of a collection of

2LS with a distribution of frequencies that can be a priori expected to lead to fast

dephasing. The reason behind the slow decay is also captured by the 2LS model,

Eq. (6) – namely by the fact that the integral expressing the Loschmidt echo takes

contributions from a small window of detunings δ′ around zero, the smaller the longer

the time, as mentioned in section 4.1. When looking at the singularity times t = tm, a

direct inspection of the function log(1− p(δ′,Ω, tm)) seen as a function of δ′ shows that

it has a large peak centered on δ′ = 0 with a width depending on time as t
−1/2
m . The

singularity in the average Loschmidt echo comes from the integral of this peak, while

the rest of the integral contributes essentially to the regular part of the Loschmidt echo;

hence it is immediate to predict that the height of the cusp singularity should decay as

the peak width, (namely as t
−1/2
m ).

Figure 6(a) shows the time evolution of singularity peaks in the Loschmidt echo

for free as well as interacting fermions in the QP potential, compared to the prediction

of the 2LS model (for the interacting case): we observe that the t−1/2 decay is indeed

confirmed by the ED data for free fermions, as well as by the ED data for interacting

fermions at sufficiently short times (tJ . t∗ ≈ 100 for ∆ = 8J). On the other hand,

at longer times the interacting data are found to display a strong deviation from the

2LS model prediction, exhibiting a much faster decay. This crossover to an interaction-

induced dephasing (IID) regime clearly shows the limits of the 2LS model as a model
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Figure 5. Comparison between the imbalance I(t) for a L = 22 chain and the

predictions of the 2LS and 3LS models given by (15), (16): (a-c) QP potential; (d-f)

FR potential.
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Figure 6. (a-b) Decay of the peak heights of the Loschmidt echo, λ(tm)− λ̄ (λ̄ stands

for the time-averaged Loschmidt echo). (c-d) Decay of the depth of the imbalance

minima I(tm) with respect to the average value I. ED data in both absence (Jz = 0)

and presence (Jz = 1) of interactions are compared with 2LS and 3LS predictions.

The data are obtained for ∆ = 8J ; the 2LS and 3LS predictions are for Jz = J . The

grey-shaded area marks the interaction-induced dephasing (IID) regime exhibited by

the exact data for Jz = J .

of free l-bits, and it marks a fundamental difference between AL and MBL in the QP

system. Indeed the faster decay of the Loschmidt echo must be related to the effect of

l-bit interactions, which are a defining feature of MBL, and which add terms of the kind∑
pq

Upqτpτq +
∑
pql

Vpqlτpτqτl + ... (17)

to the effective l-bit Hamiltonian (8). Such terms are responsible for the persistent

growth of entanglement entropy in the system [7] as the logarithm of time, and indeed

the onset of the log t growth of entanglement occurs at a time compatible with t∗ (see

section 7 - figure 7). A similar crossover from a slow power-law decay of the Loschmidt-

echo peak height to a faster decay, dictated by the presence of interactions, is also

exhibited by the comparison between the ED data for interacting fermions in the FR

potential with the same data for non-interacting fermions and for the 3LS model – as

shown in figure 6(b).

Remarkably, the same crossover between the dynamics of effectively independent

l-bits to a regime of interacting ones is observed in the decay of imbalance oscillations.

Figure 6(c) shows the evolution of the depth of the minima of the imbalance at

times t = tm, taken with respect to the long-time average, namely the quantity

IM(tm) = Ī − I(tm). We observe that the predictions of the 2LS system for the

fermionic chain immersed in the QP potential shows a clear, slow power-law decay

at long times, compatible with t−1/2, which is indeed reproduced in the case of non-

interacting fermions. In the case of interacting fermions, on the other hand, a crossover



Loschmidt echo singularities as dynamical signatures of strongly localized phases 13

is observed at long times (t & t∗ ≈ 100) to a faster decay, marking the IID regime.

A similar picture is offered by the case of the FR potential. There the ED results are

compared with the predictions from the 3LS model; the latter model predicts correctly

the decay of the minima depth in the non-interacting case at all times, while the exact

results for the interacting system show a clear crossover towards a faster decay for times

t & t∗ ≈ 50. For both kinds of disorder, the crossover time t∗ is compatible both with

what is observed in the decay of the Loschmidt echo as well as with the evolution of the

entanglement entropy (see again figure 7 in the next section). Therefore we conclude

that the crossover to the IID regime is a robust feature of MBL dynamics, clearly

exposing the interactions among l-bits.

7. Entanglement dynamics

7.1. Entanglement entropy from the 2LS and 3LS model

The 2LS and 3LS models allow for a simple calculation of the entanglement entropy of

a A/B bipartition of the system into two adjacent chains, defined as the von Neumann

entropy of the reduced density matrix

SA(t) = −Tr [ρA(t) log ρA(t)] , (18)

where ρA(t) = TrB|ψ(t)〉〈ψ(t)| is the partial trace (over the degrees of freedom in B) of

the instantaneous pure-state density matrix associated with the evolved state |ψ(t)〉.
The entanglement associated with such a bipartition simply comes from the

entanglement inside the 2-site or 3-site cluster which contains the cut defining the

bipartition. In the case of the 2LS model the disorder-averaged entanglement entropy

of a bipartition is simply predicted as the entropy of the reduced state of one site in the

2-site cluster, namely

SA(t) =

∫
dδ P (δ) h[p(δ; t)], (19)

and h[x] = −x log x − (1 − x) log(1 − x). Notice that, unlike for the formulas of

the Loschmidt echo and of the imbalance, no-double counting is implied in the above

formula, since the entanglement is referred to a cut of the chain, and there is one unique

cut per 2-site cluster.

On the other hand a 3-site cluster can be cut in two different ways, that we will

indicate as ◦ | ◦ ◦ and ◦ ◦ | ◦ in the following (where ◦ stands for a site and | stands for

the cut). The reduced density matrices for the two cuts are readily obtained from the

cluster wavefunctions described in section 4.3; e.g. for a 101 cluster the reduced density

matrix associated with the ◦ | ◦ ◦ cut reads

ρ
◦|◦◦
101 (t) =

( |α(t)|2 0

0 |β(t)|2 + |γ(t)|2
)
, (20)

with associated entanglement entropy

S
◦|◦◦
101 = −|α(t)|2 log |α(t)|2 −

(
|β(t)|2 + |γ(t)|2

)
log
(
|β(t)|2 + |γ(t)|2

)
; (21)
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the one associated with the ◦ ◦ | ◦ cut reads

ρ
◦◦|◦
101 (t) =

( |γ(t)|2 0

0 |α(t)|2 + |β(t)|2
)
. (22)

The density matrices ρ
◦|◦◦
010 and ρ

◦◦|◦
010 and related entropies associated with a 010 cluster

can be calculated similarly. The disorder-averaged entanglement entropy of the whole

system within the 3LS model is then given by

S(t) =
1

2L

∑
i

Si(t), (23)

where

Si =

{
S
◦|◦◦
101 (t) + S

◦◦|◦
101 (t) if i odd,

S
◦|◦◦
010 (t) + S

◦◦|◦
010 (t) if i even.

(24)

The factor 1/2 in (23) comes from the double counting of each cut (which is contained

both in a 101 cluster as well as in a 010 cluster).

Figure 7 shows a comparison between the entanglement entropy of interacting

fermions in a QP potential and the 2LS prediction. We observe that at moderate

disorder in the MBL phase (∆ = 8J) the 2LS and 3LS models only capture the initial

rise of the entanglement entropy and (partly) the first maximum; in particular the very

existence of a maximum is explained by the models as the result of nearly resonant small

clusters returning close to the initially factorized state – albeit at different times due to

the inhomogeneously broadened local frequencies, which explains why the entanglement

entropy does not come back to (nearly) zero. The 2LS and 3LS models on the other

hand completely miss the long-time logarithmic growth of the entanglement entropy

– something which is fully expected, given that such a growth is the consequence of

interactions between l-bits, not included in the 2LS and 3LS models by construction.

On the other hand, at stronger disorder (∆ = 15J) the interactions between l-bits are

parametrically suppressed, and the 2LS and 3LS description of entanglement becomes

accurate up to very long times.

7.2. Entanglement entropy vs. number entropy

The 2LS and 3LS models picture the entanglement between two adjacent subsystems as

arising uniquely from the coherent motion of particles within the restricted size of the

clusters they describe. When starting from a factorized state, this picture is certainly

valid at short times. At long times it remains valid only if particles remain localized

within the size of the clusters (namely if the localization length is smaller than the

cluster size), and if this is a sufficient condition for entanglement not to spread any

further. The latter aspect is true in the case of non-interacting fermions, for which the

only mechanism behind entanglement of different spatial partitions is particle motion

between them. On the other hand, in the case of interacting fermions in the MBL

regime, entanglement keeps growing due to the interactions between l-bits, and distant

degrees of freedom can become entangled even without any net particle exchange. In
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Figure 7. Half-chain entanglement entropy of interacting fermions in a QP potential

(a-b) and FR potential (c-d) for a chain of size L = 16, compared with the prediction

for the 2LS/3LS models for two different disorder strengths (∆/J = 8 and 15).

this context it is useful to decompose the entanglement entropy of a subsystem A into a

number entropy contribution, and a remainder part (called the configurational entropy),

SA = SA,N + SA,c [22, 59]. The number entropy is given by

SA,N = −
∑
NA

pNA
log pNA

, (25)

where pNA
is the probability of having NA particles in subsystem A. Eq. (25) accounts

for the particle number uncertainty appearing in subsystem A because of the coherent

exchange of particles with its complement B. On the other hand the configurational

entropy accounts for correlations establishing between the particle arrangements in A

and B once the partitioning of the particles between A and B has been fixed. The

2LS and 3LS models, completely lacking any form of correlations among the clusters,

can only capture the number entropy contribution in systems with a localization length

smaller than the cluster size. Nonetheless, this limited picture still offers a faithful

description of entanglement in the MBL regime for short times (the longer the stronger

disorder is), while it can describe entanglement at all times for strongly localized non-

interacting particles. Thus, as suggested above, a more appropriate comparison with the

entanglement entropies of the 2LS and 3LS models would involve the number entropy

from the ED data – shown in figure 8. For non-interacting fermions in a QP potential of

strength ∆ = 8J , SA,N is found to nearly coincide with the full entanglement entropy,

and to be very well described by the 2LS prediction – see figure 8(a). When adding

the interactions, the agreement between the number entropy and the 2LS entropy

deteriorates mostly at long times, seemingly due to the ∼ log log t growth of the number

entropy observed in the MBL phase [59]. Similar considerations can be made in the

case of the FR potential, i.e. the 3LS models describe well the entropies in the non-
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interacting case, and they miss the slow long-time growth of the number entropy in the

interacting case.

8. Conclusions

In this work we have shown that sharp cusp-like singularities in the Loschmidt echo are

a generic feature of the localized dynamics of an extended quantum system initialized

in a factorized state. These features can be fully explained by the dynamics of a simple

model, describing an ensemble of effective independent two-level (or even three-level)

systems, offering an explicit approximation to the conserved l-bits in the AL and MBL

regime. Such a model predicts very accurately the Loschmidt echo singularities for

strongly disordered systems as well as their decay, along with the imbalance oscillations.

A faster decay in the Loschmidt echo and imbalance dynamics compared to that

predicted by the model is a direct manifestation of the dephasing effect of interactions

between the l-bits, and it intervenes at a time consistent with the onset of the logarithmic

growth of entanglement entropy: hence it represents a defining feature of many-body

localization (MBL) with respect to Anderson localization (AL). Based on our results, we

can conclude that experimental evidence of l-bit dynamics and of their interactions is

readily accessible to state-of-the-art quantum simulators which have direct access to the

Loschmidt echo and imbalance dynamics, such as e.g. trapped ions [26, 34], cold-atom

simulators [22,35,37] or superconducting circuits [23,60].
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[34] Gärttner M, Bohnet J G, Safavi-Naini A, Wall M L, Bollinger J J and Rey A M 2017 Nature

Physics 13 781–786 ISSN 1745-2481 URL https://doi.org/10.1038/nphys4119
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Appendix A. Two-site cluster as a two-level system and its Rabi oscillations

Let us isolate a two-site system (i, i + 1) hosting one particle in the fermionic chain,

with Hamiltonian

H2−site = −J
2

(
c†ici+1 + c†i+1ci

)
+ hini + (hi+1 + Jz)ni+1, (A.1)

where we assume that the site i + 2 is occupied by a (pinned) particle, while size i− 1

is empty (or occupied by a pinned hole). Introducing the spin operators

σz = ni − ni+1,

σx = c†ici+1 + c†i+1, ci, (A.2)

the Hamiltonian becomes simply

H2−site = −J
2
σx +

δ

2
σz + const., (A.3)

namely, a two-level system (2LS) with splitting δ and Rabi frequency J . If the system

starts from the |10〉 state, the return probability is given by the well-known formula for

the probability of persistence in the initial state during Rabi oscillations [56], namely

1− p(δ; t), where

p(δ; t) =
1

1 + (δ/J)2
sin2

(√
1 + (δ/J)2

2
tJ

)
. (A.4)

Appendix B. Spatial correlations in the quasi-periodic vs. fully random

potential

A fundamental assumption of the 2LS model described in the main text is that quasi-

resonant two-site systems are spatially isolated in a (quasi)-disordered chain – namely,

if a pair of sites (i, i+ 1) is quasi-resonant for the motion of a particle, the two adjacent

pairs of sites (i − 1, i) and (i + 1, i + 2) are not resonant. Defining δ1 = hi+1 − hi
as the energy difference of the two sites in question, and δ2 = hi+2 − hi+1 as that of

the following pairs of sites, in the case of non-interacting fermions, the above condition

requires that the two energy differences do not vanish simultaneously.

Such a form of correlation is indeed observed in the case of the quasiperiodic (QP)

potential: figure B1(a) shows the joint probability P (δ1, δ2) for two adjacent energy

differences, displaying a dip for δ1 = δ2 = 0 – an aspect which prevents two successive

pairs of sites from being resonant simultaneously. In the case of interacting fermions,

on the other hand, the above condition requires that if, e.g. Jz ± δ1 ≈ 0, then Jz ∓ δ2 is

non-zero, or vice versa – this prevents a state of the type |101〉 on the sites (i, i+1, i+2)

https://scipost.org/10.21468/SciPostPhys.7.2.020
https://scipost.org/10.21468/SciPostPhys.7.2.020
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Figure B1. Numerically sampled probability distribution P (δ1, δ2) for two energy

differences δ1 and δ2 on contiguous pairs of sites. Left panel: QP potential; Right

panel: FR potential.

from being simultaneously (quasi-)resonant with |110〉 and |011〉, or, similarly, the state

|010〉 from being quasi-resonant with |100〉 and |001〉. This is indeed guaranteed by

the fact that P (δ,−δ) is nearly vanishing for any finite δ, except for δ ≈ 1.25∆ – but

the latter situation does not lead to consecutive resonances when ∆ > 1.25J , which is

always the case in our study.

On the other hand the uniform potential has no correlations between two

consecutive energy differences, and the P (δ1, δ2) distribution is the product of two

triangular distributions for δ1 and δ2 – shown in figure B1(b). This implies that a

fundamental assumption behind the 2LS model description is not guaranteed to be

satisfied – while it is more likely to have two adjacent pairs of sites with different energy

offsets than with similar ones, one cannot exclude the existence of “rare” regions with

consecutive nearly resonant pairs. This requires to improve the 2LS model to a three-site

(three-level) one, as detailed in section 4.3.

Appendix C. Loschmidt-echo dynamics for different disorder realizations

Figs. C1 and C2 show the disorder average of the Loschmidt echo for a chain of L = 22

sites, along with all the disorder realizations (> 103) contributing the average, for various

strengths (∆/J = 1, 2, ..., 10) of the QP and FR potential, respectively. We observe

that sharp cusp singularities are exhibited by a signification portion of the disorder

realizations, and that for sufficiently strong disorder these realizations are a finite

fraction of the disorder statistics (in the asymptotic limit), so that cusp singularities

persist in the disorder-averaged results as well. These plots also suggest the fact that

cusp singularities can be observed with a limited disorder statistics, under realistic

experimental conditions.
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Figure C1. Averaged λ(t) (black line) at different disorder strengths ∆ = 1, . . . , 10

for a chain of L = 22 sites in a QP, plotted along with all the realizations used for

the averaging procedure (grey lines). The dotted line represents a typical individual

realization exhibiting singular behavior.
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Figure C2. Averaged λ(t) (black line) at different disorder strengths ∆ = 1, . . . , 10

for a chain of L = 22 sites in a FR potential, plotted along with all the realizations

used for the averaging procedure (grey lines). The dotted line represents a typical

individual realization exhibiting singular behavior.
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