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1 INTRODUCTION

ABSTRACT

We present a simulation analysis of weak gravitational lensing flexion and shear measurement
using shapelet decomposition, and identify differences between flexion and shear measurement
noise in deep survey data. Taking models of galaxies from the Hubble Space Telescope Ultra
Deep Field (HUDF) and applying a correction for the HUDF point spread function, we
generate lensed simulations of deep, optical imaging data from Hubble’s Advanced Camera
for Surveys, with realistic galaxy morphologies. We find that flexion and shear estimates
differ in our measurement pipeline: whereas intrinsic galaxy shape is typically the dominant
contribution to noise in shear estimates, pixel noise due to finite photon counts and detector
read noise is a major contributor to uncertainty in flexion estimates, across a broad range of
galaxy signal-to-noise. This pixel noise also increases more rapidly as galaxy signal-to-noise
decreases than is found for shear estimates. We provide simple power-law fitting functions
for this behaviour, for both flexion and shear, allowing the effect to be properly accounted
for in future forecasts for flexion measurement. Using the simulations, we also quantify the
systematic biases of our shapelet flexion and shear measurement pipeline for deep Hubble
data sets such as Galaxy Evolution from Morphology and SEDs, Space Telescope A901/902
Galaxy Evolution Survey or Cosmic Evolution Survey. Flexion measurement biases are found
to be significant but consistent with previous studies.

Key words: gravitational lensing: weak —methods: data analysis —methods: observational —

cosmology: observations.

Weak lensing studies have typically measured the small but co-
herent distortions in the ellipticities of distant galaxies, due to the

The study of weak gravitational lensing has progressed to become
one of the most important techniques in observational cosmology
(see e.g. Schneider 2006; Hoekstra & Jain 2008 for a review). As
it does not depend upon the microscopic composition of the mass
by which it is caused, gravitational lensing requires no assumptions
to be made regarding baryon-dark matter physics. It can thus be
used to make direct observations of the matter distribution on large
scales (e.g. Hoekstra et al. 2006; Benjamin et al. 2007; Massey
et al. 2007c; Fu et al. 2008; Schrabback et al. 2010; Huff et al.
2011; Heymans et al. 2012b, 2013; Benjamin et al. 2013; Jee et al.
2013; Kilbinger et al. 2013; Van Waerbeke et al. 2013).

* E-mail: browe @star.ucl.ac.uk
t Scottish Universities Physics Alliance.

shear y, and have used these measurements to constrain the distri-
bution of the intervening matter field. The weak lensing description
has been extended to higher order via the flexion formalism (see
Goldberg & Bacon 2005; Irwin & Shmakova 2005; Bacon et al.
2006, hereafter B06; Irwin & Shmakova 2006; Irwin, Shmakova
& Anderson 2007), which describes the slight arcing of galaxy
shapes. Despite being a weaker effect than shear, it has been hoped
that the flexion signal may yet be profitably measured — galaxies
typically display less intrinsic curvature than intrinsic ellipticity,
and so the contribution to noise from intrinsic shape is reduced for
measurements of flexion. Studies have suggested (e.g. B06; Leonard
etal. 2007; Okura, Umetsu & Futamase 2007, 2008; Leonard, King
& Goldberg 2011) that flexion measurements can provide extra
constraints upon galaxy—galaxy lensing results and cluster mass
reconstructions.
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For all weak lensing analyses, the correct treatment of systematic
errors is vital: image distortions and shape bias due to convolu-
tion with an anisotropic point spread function (PSF), as possessed
by all optical instruments, are commonly an order of magnitude
greater than the gravitational signal we wish to measure. The opti-
mal, unbiased estimation of weak lensing signals from real data is
the subject of much ongoing research, involving a variety of differ-
ent approaches towards the accurate inference about galaxy shapes,
accounting for telescope optics, detector effects and noise. Many
of the current methods used to correct for the effects of the PSF
are based on the scheme proposed by Kaiser, Squires & Broadhurst
(1995), Luppino & Kaiser (1997) and Hoekstra et al. (1998), com-
monly referred to as KSB or KSB+. The use of these techniques
has proved to be both successful and widespread, to date.

Despite its practical success, there are certain elements of the
KSB treatment that are unsatisfactory: Kaiser (2000) provides
one compelling discussion of these potential limitations. This has
prompted efforts to develop alternative weak lensing methods (e.g.
Kaiser 2000; Rhodes, Refregier & Groth 2000; Bernstein & Jarvis
2002; Refregier 2003; Refregier & Bacon 2003; Hirata et al. 2004;
Massey & Refregier 2005; Kuijken 2006; Melchior, Meneghetti &
Bartelmann 2007; Nakajima & Bernstein 2007; Miller et al. 2007,
2013; Kitching et al. 2008; Bernstein 2010; Melchior et al. 2011;
Viola, Melchior & Bartelmann 2011; Kacprzak et al. 2012; Zuntz
etal. 2013). The Shear TEsting Program (STEP; see Heymans et al.
2006; Massey et al. 2007a) and GRavitational 1Ensing Accuracy
Testing (GREAT) challenge series (Bridle et al. 2009, 2010; Kitch-
ing et al. 2011, 2012) have compared a wide range of current weak
shear estimation methods, using blind-tests on simulated lensing
data.

The shapelet approach, proposed by Bernstein & Jarvis (2002)
and Refregier (2003), is one such alternative to KSB methods.
Shapelets expresses galaxy images as a sum of simple basis func-
tions — Gauss—Laguerre or Gauss—Hermite polynomials — that be-
have well under deconvolution with a modelled PSF. In addition,
the first method for the practical estimation of the flexion signal
was built within the shapelets framework (Goldberg & Bacon 2005;
B06). Further work by Massey et al. (2007b), hereafter referred
to as M07, investigated shear and flexion measurement within the
polar shapelets formalism of Massey & Refregier (2005); results
suggested that polar shapelets provided an apparently natural frame-
work for estimating both quantities. Velander, Kuijken & Schrab-
back (2011) used shapelets (in an implementation closely related
to that of Kuijken 2006) to constrain flexion in Hubble Space Tele-
scope (HST) data, although following a somewhat different mod-
elling strategy to that suggested in M0O7. An alternative method
for measuring flexion, referred to as Higher Order Lensing Image
Characteristics (HOLICS) has also been suggested, and indeed em-
ployed in cluster modelling from real data (Goldberg & Leonard
2007; Okura et al. 2007, 2008; Leonard et al. 2007, 2011). Showing
signs that it may provide less noisy measurements than shapelets
(Leonard et al. 2007, 2011), HOLICS is conceptually a generaliza-
tion of KSB methods to higher order image moments. The correction
for an anisotropic PSF within HOLICS is, however, of significant
complexity (Okura et al. 2008).

In this paper, we present an analysis of simulations of space-based
lensing data, such as that taken using the HST Advanced Camera
for Surveys (ACS; see, e.g. Hartig et al. 2003; Rhodes et al. 2007).
Several wide-area imaging surveys that may be used for weak lens-
ing exist for this instrument, including the Galaxy Evolution from
Morphology & Seps survey (GEMS; see, e.g. Rix et al. 2004; Hey-
mans et al. 2005), the Cosmic Evolution Survey (COSMOS; see,
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e.g. Scoville et al. 2007; Leauthaud et al. 2007) and the Space Tele-
scope A901/902 Galaxy Evolution Survey (STAGES; see, e.g. Gray
et al. 2009). The imaging data from these surveys share important
characteristics as regards lensing measurement, having a small but
non-Gaussian PSF and significant correlation in the noise between
pixels due to the dithering and drizzling strategies employed (see
e.g. Leauthaud et al. 2007). In addition, there exist a wealth of galaxy
cluster imaging data in the ACS archive that are also of interest for
shear and flexion lensing analysis. Mindful of these factors, we
construct realistic simulations of ACS lensing data using real sky
noise taken from blank areas in the GEMS survey data, and with a
PSF that matches the radial profile of the GEMS PSF. Within these
simulations we apply known input shears and flexions, and use the
resulting measurements to calculate the necessary calibration for
the shapelet measurement of shear and flexion from space.

Our paper is organized as follows. Sections 2 and 3 begin with
a brief description of the flexion formalism and a summary of our
adopted shapelet measurement method. In Section 4, we describe
how we make shapelet models of Hubble Ultra Deep Field (HUDF)
data, including both stars and galaxies. These are used to generate
simulations of lensed ACS data, which we describe in Section 5.
In Section 6, we test how well we can measure flexion on this
simulated data. Finally, we discuss our findings in Section 7.

2 WEAK SHEAR AND FLEXION FORMALISM

To begin, we review the flexion formalism developed by Goldberg
& Bacon (2005) and B06, examining briefly how weak flexion
is defined in relation to weak shear. We restrict the discussion to
lensing measurements in the weak regime, so we do not consider
the reduced shear or flexion (see Schneider & Seitz 1995; Schneider
& Er 2008).

Gravitational lensing conserves surface brightness, so the effects
of lensing may be described in terms of coordinate transformations
between the lensed and unlensed sky coordinate plane. In general,
the relationship between these coordinates is non-linear and is de-
scribed by the lens equation (e.g. Bartelmann & Schneider 2001;
Schneider 2006).

However, if we may assume that changes in the lens properties of
a system occur only on angular scales that are large compared to the
angular size of the lensed light source, then the lens equation may be
locally linearized. In what follows, lensed and unlensed coordinates
are denoted by # and @', respectively, and we define position relative
to a galaxy centroid as A@ = 0 — 0. and A9’ = 6’ — 0/, where 0,
and @, are the coordinate centroids of the galaxy in the image
and source plane, respectively. Approximately linearizing the lens
equation around this centroid, we write

AQ;:A,']'AQJ', (1)

where Aj; is the Jacobian matrix of the transformation given by the
lens equation. This matrix may be written as

00’
Aij(o) = 601- = 5ij - aiajlﬁ(o)
J
_ l—k—y -V @
) l—k4+n)’

where ¥ (0) is the lensing potential, a two-dimensional projection
of the gravitational potential along the line of sight (e.g. Schneider
2006). These equations define the two components of weak shear y
and y,, and the convergence «, which is a measure of the projected
matter density.
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However, the assumption of gradual variation in lens properties
across the sky is not always justified, especially in very dense regions
or those with significant dark matter substructure along the line of
sight. In these situations, the lens transformation is more accurately
described by

1
which is simply the expansion of (1) to second order, where
%0/
D," = L =6A,=—8,66 . 4
jk ag/ a@}( kAij J klp ( )

Equation (3) describes the lensing distortions known as flexion,
which skew galaxy light distributions and lead to weak lensing
arcs, and which may be described upon an image /(@) using the
conservation of surface brightness under lensing

10) = 190" = 10, + A). &)

Employing equation (3) in this surface brightness transformation
takes weak lensing one order closer to the fully generalized non-
linear treatment. By expanding the surface brightness as a Taylor
series and substituting (3), Goldberg & Bacon (2005) showed that
the lensed surface brightness of a galaxy may be approximated as

1
10) = I1900) + (A —1);;A8; + 5 Dijn A8; A6 9, 19(8), (6)

an expression which is useful in the construction of weak shear and
flexion estimators using shapelets (Refregier 2003; B06; M07).

For its clarity and convenience, we will often employ the complex
notation introduced in BO6. The complex gradient operator on the
sky plane is defined as

0=0; +10,. @)

It is shown in BO6 that using this notation, the convergence and
complex shear y = y; + iy, may be written as

K= %a*aw, 8)

1 .
y =500y = lyle™, ©)

which neatly encapsulates the spin-2 rotational symmetry properties
of the shear. Taking a further complex gradient, we may define two
more complex fields:

1 .
F = Ea*aax/f = |Fle", (10)

g= %aaaw = |Gle*, (11)

referred to as the first flexion (spin-1) and second flexion (spin-3),
respectively. Using equation (4) we may write D entirely in terms
of the components of F and G, as follows:

b 1 (3F1+G Fo+G,

ij1 = —= ,

! 2\ P+ G Fi-Gi
1 {F2+G Fi—-G

D,‘jzz—* . (12)
2\Fi-G 3F-G

Equations (2), (6) and (12) allow the formulation of practical esti-
mators for y, F and G. In the following section, we outline how
shapelets may be used to make estimators of shear and flexion.

3 SHAPELET MODELLING

3.1 Shapelet basis sets

The underlying concept of the shapelet approach, as introduced by
Refregier (2003) and Bernstein & Jarvis (2002), is the expression
of an object’s surface brightness as a sum of orthonormal, two-
dimensional basis functions:

FO=">" furmBun®:B). (13)

n1=0n=0

The choice of basis functions is free in general, but the Cartesian
shapelet basis set is defined by the basis function

H,,(61/B)H,, 6,/ B)e " 12"
20 B frtn i,

where H,, (x) is a Hermite polynomial of order #;, and the important
free quantity g is the scale size of the shapelet basis set. We refer to
the sum of the two parameters n; and n, as the order of the shapelet
basis function, and will generally truncate shapelet models to some
limiting order n,,x such that n + 1y < nyax.

The formalism of polar shapelets, introduced by Massey &
Refregier (2005), is closely related to that of Cartesian shapelets.
Instead of the basis set defined by equations (13) and (14), polar
shapelets express the object surface brightness f(0) as

By, (0;8) = (14)

oo

FO=F06,)=>"" funPun® 6;8), (15)
n=0 m=—n

where 6 is the modulus of the complex sky position vector 6, + i6,,

and ¢ = arctan (6,/6,). The polar shapelet basis functions, which

we label P, ,,, are defined by Massey & Refregier (2005) as

e (D2 [ — /200
Frn®-9:P) = g {n[m = Im)/2]! }
m| 6? 02282 —1
X 0" LG (E) e /eI 16)

using the following definition of the associated Laguerre polyno-
mials (see e.g. Arfken & Weber 2005):

x~9¢* d*

p! dxp

L‘;(x) = (xp“’e*") . (17)
Each separate member of the basis set is uniquely described using
the two integers n and m, with n > 0 and |m| < n.

Both the Cartesian and polar shapelet basis set have relatively
simple behaviour under convolution (Refregier 2003) and decon-
volution (Refregier & Bacon 2003); this makes them particularly
suited for correcting images for the effects of an instrumental PSF.
We now describe the methodology required for this correction.

3.2 Image deconvolution using shapelets

Within the shapelet framework, there are two possible methods with
which to correct galaxy images for the effects of the optical system.
Both approaches begin with the construction of a shapelet model
of the PSF g(#) at the location of each galaxy: this model should
be as accurate as possible and will include any variation of the
PSF across the image plane of the instrument (e.g. Hoekstra 2004;
Jarvis & Jain 2004; Rowe 2010; Heymans et al. 2012a; Kitching
et al. 2013). The model may also need to include some treatment of
time-dependent effects (see e.g. Heymans et al. 2005; Rhodes et al.
2007; Schrabback et al. 2007).
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The deconvolution method used in this work is that proposed
by Massey & Refregier (2005), which is implemented within the
SHAPELETS software package made available by these authors." In this
approach, the deconvolved shapelet coefficients f,, ,, are estimated
by ‘forward’ convolving the shapelet basis functions with the PSF
model in advance, creating a new basis set which we label

Dyy .y (05 B) = g(0) * By, (0 B), 18

with an equivalent expression for the case of the polar shapelet basis
functions P, ,,(0; B). Fitting the data 4(@) with this new basis set
D, »,, one returns a deconvolved shapelet model as follows:

h(@) = g(0) = f(6)

=80)% | D> furmBun®:8)

n1=0n,=0
=3 furm [80) % By, 1y (63 B)]
n1=0n=0
=" forny Duyy (03 ). (19)
n1=0ny=0

As can be seen by comparison with equation (13), the returned
shapelet coefficients f,, ,, will reconstruct the deconvolved image
when they are used with the original basis set B, ,,,(6; B).

There are obvious caveats to this approach, particularly that the
convolved basis set D,,, ,,(@; B) will in general no longer be orthog-
onal. However, errors due to this fact are small wherever the scale
size of the galaxy image is larger than that of the PSF (Massey &
Refregier 2005). The alternative shapelet deconvolution approach
is that described by Refregier & Bacon (2003) and developed in
some detail by Melchior et al. (2009), involving the inversion of a
‘PSF matrix’ that describes the transformation between the shapelet
model coefficients of f and 4. This PSF matrix is large and may be
sparse, even despite efficient truncation (Refregier 2003; Refregier
& Bacon 2003), causing the latter authors and Massey & Refregier
(2005) to argue against its inversion as a slow and potentially un-
stable process. However, Melchior et al. (2009) find this not to be
necessarily the case for sufficiently small and lightly structured PSF
models, and so argue in favour of a modified inversion scheme for
computational efficiency.

For ACS data, we find (see Appendix A3) that a simple, low 72«
model is insufficient to describe the PSF. This makes matrix inver-
sion schemes problematic, and thus for this HST-focused analysis
we will test a shape measurement pipeline based upon the software
of Massey & Refregier (2005), using the forward deconvolution
method described above.

The estimation of deconvolved galaxy images using shapelet
modelling is important at two stages in this paper. In Section 6,
shapelet models will provide estimates of the weak lensing signal
in samples of simulated images. First, however, the technique is
used to estimate the deconvolved shapes of a sample of galaxies
from which simulated images will be created. Shapelet models are
convenient for creating such simulations: they are trivially rotated
and inverted, and as they provide an estimate for the full surface
brightness profile of a galaxy they allow a full range of distortions
(including flexion) to be simulated. In the following section, we

Uhttp://www.astro.caltech.edu/~rjm/shapelets/
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describe the construction of a shapelet galaxy weak lensing simu-
lation using a set of deep ACS galaxy images.

4 SHAPELET MODELS OF THE HUDF

In order to simulate lensing data, we require a set of real galaxy
images which are used in turn to create a set of galaxy shapelet
models which we will refer to as the ‘starter set’. The real images
are obtained from the publicly available Hubble Ultra Deep Field
(HUDF; see Beckwith et al. 2006 for a detailed description), a mul-
ticolour galaxy survey image composed of a single ACS pointing,
with a 10°s total integration time over four broad spectral bands:
F435W (3435), V606w (V(,()()), FT75W (i775) and F850LP (185())- The
highest redshift objects are only visible in the i775 and zgso bands,
but the Vi filter provides good sensitivity to objects at redshifts
lower than >~ 4 (Beckwith et al. 2006). As this is also the ACS filter
used in the GEMS and STAGES lensing studies (due to its rich
source number density, see Heymans et al. 2005, 2008), we choose
the Ve filter image for the construction of the shapelet starter set,
as representative of typical lensing source galaxies. A detailed de-
scription of the modelling of galaxies in the HUDF can be found
in Appendix A. Given the input parameters, postage stamps, and
model of the HUDF PSF described in this appendix, the SHAPELETS
software was then used to find a best-fitting model of each HUDF
galaxy. A total of 3867 of the 4128 input HUDF galaxies (94 per
cent) were successfully modelled.

On examination of these 6 per cent of catastrophic modelling
failures, it was found that they were caused either by:

(i) Galaxy images lying too close to the edge of the HUDF or
other objects in the field (being thus automatically rejected and
flagged in the output shapelet catalogue); or

(i1) A population at faint magnitudes which appear to suffer from
either star—galaxy confusion or general modelling degeneracy.

The great majority of this second type of catastrophic failures were
for objects with Veos > 27, which is currently beyond the realm
of plausible lensing measurement with even deep imaging surveys
such as GEMS or COSMOS. Without a clear means of further reduc-
ing this failure rate, it is tolerated given the fact that it predominantly
affects objects beyond the detection limit of the simulations (See
Section 5.5).

An additional cut was imposed on the sample, based upon the
value of the reduced x 2 output for each galaxy model. A histogram
of this output statistic is shown in Fig. 1 for the HUDF galaxies.
A cut of reduced x> < 5, beyond which the chances of a good
fit are vanishingly small for the high degree-of-freedom shapelet

800 [ | 4

L | 4

600 - | ]
oI w ]
= i ‘ 1
5 400 | _
o r | 4
O 8 | 1
L | 4

200 | _

L | 4

[ ! ]

0 . - — I
0 1 2 3 4 5 6
X2 (reduced)

Figure 1. Histogram of reduced x2 values for the HUDF-deconvolved
galaxy models; the dashed line is the cut introduced to exclude very poorly
modelled galaxies.
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Figure 2. Upper panel: distribution of Vgps magnitudes of shapelet galaxy
models in the HUDF starter set. Lower panel: distribution of VRZ (sce
equation C5 for a definition) in the HUDF starter set for two different
magnitude cuts. The Vgoe < 27 cut approximately corresponds to the limiting
magnitude at which weak lensing measurements may be made in ACS
surveys such as GEMS (Heymans et al. 2005) and COSMOS (Leauthaud
et al. 2007).

models used, removed a further 153 very poorly modelled galaxies
not identified by shapelet flags or other indicators of total modelling
failure. The remaining 3714 PSF-corrected galaxy models form the
galaxy starter set that are now used to construct simulated lensing
survey images with realistic galaxy morphologies. This corresponds
to a high density of approximately 410 galaxies arcmin~2, giving
considerable freedom to realistically simulate shallower HST data
than the HUDF (an important caveat is the limited size of the sample
itself, which we discuss in the following section). Fig. 2 shows the
distribution of Vgps magnitudes and an rms size measure in the
model starter set (this size is based on the shapelet-derived quantity
R?: see equation C5 in the appendices). The distribution of sizes
illustrates the compact nature of galaxies in deep ACS images, also
illustrated in Fig. Al.

5 SIMULATIONS OF ACS DATA

5.1 Source galaxy images

The galaxy models in the starter set described in the previous section
are the fundamental data used to generate our simulations. However,
there is additional processing required before models may be used
to accurately simulate flexion and shear measurement.

A first problem is that the starter set itself contains the signa-
ture of gravitational shear and flexion due to the matter structure
along the line of sight of the HUDF, along with any residual, uncor-
rected HUDF PSF anisotropy. These signals are largely eradicated
by the random rotation and inversion of galaxy models. These two
transformations can be performed by simple analytic manipulations

of the galaxy shapelet models in the polar shapelets formalism of
Massey & Refregier (2005), and so this process is fast and accurate.

A second problem is that the starter galaxy set represents a limited
sample of galaxy morphologies. This may be alleviated to an extent
by introducing small random perturbations to the shapelet models
of the galaxy images (e.g. Massey et al. 2004; Meneghetti et al.
2008). We follow Meneghetti et al. (2008) and add an independent
Gaussian random variable N(0, o, ,,) to the real and imaginary
part of each shapelet coefficient f,, ,,. We choose o, ,, = 0.1 x
| fu1.n2 |, which we found ensured that galaxy shapes are randomized
in a way that did not introduce a high incidence of noticeably
unphysical features such as negative flux (see Massey et al. 2004
for a discussion of over-randomized galaxy models).

Randomly rotated, inverted and perturbed galaxy models are
then a suitable population of source galaxies, and can be assigned
to locations in the final output images. Unlike the GREATOS8 or
GREAT10 simulations (Bridle et al. 2010; Kitching et al. 2012),
we choose to assign galaxy images to random locations upon the
output science tile, rather than on a regular grid. Although this
complicates the analysis it has the benefit that the impact of object
detection and deblending is included in our pipeline tests. These
effects are important as they likely contribute to noise on shear
and flexion estimates, one of the primary topics of investigation in
this work, enhancing the value of any noise forecasts based on the
results.

5.2 Applying shear and flexion: shapelet transformations
versus raytracing

In the previous section, we arrived at a set of shapelet models suit-
able for use as source galaxies. The desired weak lensing distortion,
a coordinate transformation governed by the lens equation, must
now be applied to these galaxies. There are two approximate means
by which this coordinate transformation may be applied in practice:

(1) In ‘shapelet-space’: shear and flexion distortions may be rep-
resented by an infinite sum of transformations upon the shapelet co-
efficient values in the galaxy model itself (Refregier 2003; Massey
& Refregier 2005; M07). Applying successive shapelet transforma-
tions therefore allows the lensing distortion to be represented with
arbitrary precision. The lensed shapelet model may then be ana-
Iytically integrated across square pixels as described by Massey &
Refregier (2005).

(ii) In ‘real-space’: the shear and flexion distortions may be rep-
resented directly using the lens equation 7(8) = I)(’) to raytrace
from the regular grid of image pixels back to an irregular sampling
of points on the source plane. This is possible as each shapelet
model encodes the surface brightness I at all points in the source
plane.

Previous shapelet-based simulation methods have preferred the for-
mer (Massey et al. 2007a; Meneghetti et al. 2008) for weak lensing
transformations. For our simulations, designed to mimic space-
based flexion and shear observations as closely as possible, we
choose the latter real-space method for reasons that we now de-
scribe.

In the shapelet-space approach, it is necessary to apply multi-
ple shapelet transformations to each galaxy model, each operation
capturing successive terms in a series expansion representation of
the true distortion, to ensure that the final distortion approximates
a real shear or flexion accurately. Doing this is important if subse-
quently we wish to test shapelet measurement methods fairly. As
shown by equation 41 of Massey & Refregier (2005), performing
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a shapelet shear transformation accurate to first order in y in-
creases the order n,,x of the model from 7,5 t0 nyax + 2, resulting
in 2n,,c + 5 extra coefficients overall. At third order in y, the
minimum that should be considered for precision work where the
applied shear y may approach 0.1, the order of the model is in-
creased to ny,x + 6, an extra 6n,,, + 27 coefficients in total.

The situation is worse for flexion. MO7 showed that a first-
order approximation to gravitational flexion increases the order of
a shapelet model to n,,, + 3. Performing a shapelet flexion trans-
formation that is accurate to third order therefore increases 7 max
by 9, meaning that a modest ny,,x = 12 shapelet galaxy requires
a far more complex n,x = 21 model once flexed. The SHAPELETS
software suffers extreme memory demands and reductions in speed
beyond n,,x = 20, and so this method of introducing accurate dis-
tortions becomes prohibitively slow (see Appendix A4). Unfortu-
nately, re-truncating the shapelet model back to a more manageable
Nmax 1S NOt a simple solution to these problems. This degrades the
congruence between the exact and shapelet-approximated lensing
transformations in a way that is difficult to describe, as it varies with
both the distortion applied and the surface brightness distribution
of each individual object.

Also of concern is the action of the lensing transformations upon
the B scale parameter. Lensing distortions magnify images, which
for the linear-order shear and convergence transformations can be
simply represented by a small change in 8. With flexion a funda-
mental complication with g arises: as shown by Schneider & Er
(2008), the determinant of the Jacobian matrix varies as a function
of position for flexion-order lensing. This varying transformation in
the area element cannot be reproduced via a single rescaling of the
B scale parameter.

This potentially increases the difficulty of exactly reproducing
non-linear flexion transformations using the shapelet formalism.
When constructing simulations for flexion measurement we must
be extremely careful that we are accurately describing the dis-
tortion if we wish to construct a fair test of current and future
methods. The real-space, raytracing option listed above is therefore
adopted for applying both flexion and shear in the simulations. As
this scheme requires numerical approximation of the integration of
model surface brightness over pixels, it was necessary to test the
degree of approximation necessary for accurately describing shear
and flexion. Details of these tests, and their results, can be found in

GEMS average PSF
T T T
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Appendix B1. It is found that shear and flexion can be added to our
simulation galaxies with sufficient accuracy for current purposes.
We turn now to the problem of convolution with an instrumental
PSF.

5.3 Applying the PSF

Once flexion and shear has been applied to simulation galaxies, the
next stage is to convolve these correctly lensed objects with a simu-
lation kernel that mimics a realistic target PSF. The PSF we choose
for the simulations in this study is based on ACS observations of
stars from Vg observations in the GEMS survey (Rix et al. 2004;
Caldwell et al. 2008), specifically the 909 stellar objects selected
as described by Heymans et al. (2005). Shapelet decompositions
of these objects are created using n,, = 20, 8 = 1.80 pixels, and
stacked to make an inverse-variance-weighted average GEMS PSF
model (the same procedure as described in Appendix A3 for mod-
elling the HUDF PSF). This model can be seen as the leftmost panel
in Fig. 3.

As described by Massey & Refregier (2005), any image described
using polar shapelets may be easily ‘circularized’ (i.e. circularly av-
eraged) by setting the model coefficients f, , = 0 for all m # 0.
The circularized GEMS PSF generated in this way can be seen in
the central panel of Fig. 3 (imaged at a resolution of 0.015 arcsec
pixel™!), and in the rightmost panel (at the final output resolution of
the simulations, 0.03 arcsec pixel~!). We choose to use the circu-
larized GEMS PSF for the simulations in this paper as its symmetry
simplifies the interpretation of lensing measurement results, while
still incorporating a radial profile characteristic of space-based data
such as that from ACS. Diffraction spikes, such as caused by support
struts for the secondary mirror, will be lacking from this adopted
PSF model, but the extent to which these are successfully character-
ized by shapelets PSF models is unclear even when not circularizing,
as in Fig. A2. The radial profile of this circularized PSF model is
shown in Fig. 4. Since shapelet models are no longer being used
to describe galaxies after shear or flexion is applied, the convolu-
tion must be performed numerically using a pixelized image of this
PSF. As a shapelet model PSF such as that in Fig. 3 is not formally
band-limited (see e.g. Marks 2009), this therefore requires another
empirical investigation into the effects of finite sampling.

GEMS circularized PSF (0.015 arcsec pixels)

GEMS circularized PSF (0.03 arcsec pixels)
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Figure 3. Left-hand panel: PSF pattern created from the weighted average of 909 shapelet models of selected stars in the GEMS Vg science tiles. Central
panel: circularized version of this same GEMS PSF made by setting to zero all the polar shapelet coefficients f, , with m # 0, and shown at the upsampled
0.015 arcsec pixel~! resolution used for performing the real-space convolution. Right-hand panel: the circularized GEMS PSF, shown at the final ACS
0.03 arcsec pixel ™! resolution for reference. In all panels, the grey-scale is linear in surface brightness whereas the contours are logarithmic.
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Radial profile of GEMS circularized PSF
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Figure 4. Radial profile of the shapelet model describing the circularized
GEMS PSF as depicted in the central and right-hand panels of Fig. 3.

That this investigation is numerically feasible also illustrates a
further advantage of not performing the calculation using shapelet
transformations. As shown by Melchior et al. (2009), an exact
shapelet treatment of convolution results in a convolved image of
order ., given by

M max,convolved = Mmax, galaxy + N max,PSF- (20)

The PSF in ACS images requires nm,x pse 2, 20, which makes de-
scribing perfect convolution on even modestly sized galaxy shapelet
models extremely expensive. Re-truncating the convolved model to
the original 7., spoils the exactness of the shapelet convolution
treatment in a way that varies depending on the shape of each
galaxy. In contrast, convolutions on images, performed using the
fast Fourier transform (FFT, a fast algorithm for performing dis-
crete Fourier transforms; see e.g. Press et al. 1992), can be per-
formed to great accuracy in a fraction of the time. We test the ac-
curacy that may be achieved using this technique in Appendix B2,
and find that, as in the case of the raytracing representation of
shear and flexion upon shapelet galaxy models, a desired level
of accuracy can be achieved without great additional numerical
cost.

5.4 Design strategy for distorted, convolved images
for the ACS simulations

The results of Appendices B1 and B2 now allow informed decisions
to be made regarding the construction of the ACS simulations to
test the measurement of flexion and shear with shapelets. Current
shear measurement methods are able to measure shear at per cent-
level accuracy (Bridle et al. 2010; Kitching et al. 2012), and it
is unlikely that flexion measurement will approach this capability
within the near term. A conservative requirement is therefore that
the treatment of distortion and convolution in the simulations should
be accurate at the 1073 level in terms of the impact on y, F and
G in simulated galaxies. This also matches stated requirements on
the estimation of shear for an all-sky, space-based survey mission
(Amara & Réfrégier 2008).

We therefore adopt an upsampling ratio of r = 2 when apply-
ing both the lensing image distortions (shear and flexion) and for

Table 1. Flexion and shear input signal values for the 270
simulated ACS tiles, where the first flexion input is given by
finpul = |-7:input‘el¢, the shear by Vinput = |Vinpul|ezl¢ and the
third flexion input by Ginput = |Ginput|e (see Section 5.4).

Set |-7:input" ‘ginputl ‘Vinputl ¢ Tiles
a.rcsec’l

1 0.05 0.1 0° 1-10

‘high’ 2 0.05 0.1 30 1120
3 0.05 0.1 45°  21-30

4 0.01 0.05 0° 3140

‘mid’ 5 0.01 0.05 30°  41-50
6 0.01 0.05 45°  51-60

7 0.005 0.01 0°  61-70

‘Tlow’ 8 0.005 0.01 30°  71-80
9 0.005 0.01 45°  81-90

subsequent convolution with the circularized PSF of Fig. 3, cor-
responding to an absolute resolution of 0.015 arcsec pixel™'. It
is computationally convenient that both distortion and convolu-
tion occur at this same resolution. The results of Appendices B1
and B2 suggest that errors in the pertinent moments of simulated
galaxy images will be thus controlled to better than 0.1 per cent on
average.

A remaining issue is the level of input shear and flexion distortions
which should be applied to the simulation images. For shear, we
require successful recovery of the signal due to correlated large-
scale structure, but also for galaxy—galaxy lensing and the stronger
shears expected around cluster lenses. For flexion, it is unlikely
that the cosmological signal is measurable in the near future, but
the galaxy—galaxy signal may be of interest (e.g. B06) and there
are certainly applications in the field of cluster reconstruction (e.g.
Leonard et al. 2007, 2011).

For the suite of simulations, we choose to split our input sig-
nals into three broad groups exploring a range of distortion signal
strengths, labelled as ‘high’, ‘mid’ and ‘low’. These designations
refer to the magnitude of the input gravitational signal applied,
chosen to be |Vinpu| = 0.1, 0.05, 0.01, respectively, for the shear
simulations.

For the flexion simulations, it was decided to bring the ‘mid’ and
‘low’ samples closer together (to concentrate on exploring sensitiv-
ity to galaxy—galaxy flexion) and extend the high signal somewhat
further to investigate measurement of values which may be found
in cluster studies (B06; Leonard et al. 2007, 2011). We choose
| Finputl 1Ginpuc| = 0.05, 0.01, 0.005 arcsec™! for ‘high’, ‘mid’ and
‘low’, respectively.

In order to explore any anisotropy in signal recovery (due, e.g.,
to alignment with pixel axes), we split each of the three sets into a
further three subsets by the angle of orientation of the input signal
with respect to the image x-axis. Orientations of ¢ = 0°, 30° and
45° were chosen for the input signals Fiyp, = |F inpm|ei¢, Vinput =
[Vinpue|€? and Ginpue = |Ginpue|€*?, giving atotal of 3 x 3 =9 subsets
overall for each of the three lensing distortions. These values and
choices are summarized in Table 1. We note that these values span
a predominantly positive range of values in the components of y,
F and G: this asymmetry in the applied signal is benign due to the
circular symmetry of the adopted simulation PSF (Fig. 3). 10 survey
tiles were then simulated for each image set described above, each
witha 3.53 x 3.63 arcmin? sky coverage area (an ACS pointing) and
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at an output resolution of 0.03 arcsec pixel~!. These were created
by:

(i) Randomly selecting with replacement from the HUDF starter
set described in Section 4.

(i1)) Randomly perturbing, rotating and inverting each starter set
galaxy model as described in Section 5.1.

(iii) Applying a lensing distortion as prescribed by Table 1 using
the raytracing method presented in Section 5.2 with an upsampling
ratio of r = 2.

(iv) Convolving each distorted image with the circularized
GEMS PSF of Fig. 3. This convolution was performed at the image
level using FFTs as described in Appendix B2, again using » = 2
for the upsampling ratio.

(v) Placing each simulated galaxy image at a random position in
the tile.

In this way, 3 x 90 simulated ACS tiles were created for each of y,
JF and G. We note that it was decided not to include simulation tiles
containing both shear and flexion input signals simultaneously. The
possibility of cross-contamination between these signals is inter-
esting (see Viola, Melchior & Bartelmann 2012), but in this initial
study, we concentrate on examining each signal individually.

In order to take advantage of the reduction in shape noise that
can be achieved by combining lensing measurements from appro-
priately rotated galaxy images (Massey et al. 2007a), we generate
a further set of ‘rotated” simulation images. These are identical to
those described above except for an additional rotation of 180°,
90° and 60° (for F, y and G, respectively), given to the starter set
galaxies immediately after step (ii) above.

This allows the distortion measurements for matched pairs of
rotated images to be averaged, cancelling the leading order impact
of noise from the intrinsic galaxy shape upon shear and flexion
measurement. This also allows the relative impact of galaxy shape
noise and image pixel noise to be compared, which is of particular
interest for flexion. The total number of simulated ACS tiles in each
suite is therefore 2 x 90, leading to a full suite of 6 x 90 = 540
simulated ACS pointings (~100 Gb of data in total).

5.5 Correlated noise

The final ingredient in the creation of simulated images is the ad-
dition of realistic measurement noise, due to diffuse background
light and finite photon number counts. An important consideration
for shape measurement is the impact of spatially correlated noise.
This is present due to the standard practice of combining multiple,
dithered ACS exposures to generate single ‘science’ images using
software such as MuLTIDRIZZLE (Fruchter & Hook 2002; Koekemoer
et al. 2002), and is generic even for more carefully optimized linear
combination schemes (e.g. Rowe, Hirata & Rhodes 2011). Such
dithered images were used as the basis for weak lensing measure-
ment in each of GEMS, COSMOS and STAGES (Rix et al. 2004;
Heymans et al. 2005, 2008; Leauthaud et al. 2007; Caldwell et al.
2008; Gray et al. 2009).

We add realistic correlated noise to the simulation tiles described
in Section 5.4 in a novel manner, using a ‘noise mosaic’ image
constructed as part of the imaging reduction of the GEMS survey
(Rix et al. 2004). This composite image, which is the size of a
single ACS pointing, is a mosaic of multiple blank sky regions in
the GEMS V6 science images described by Caldwell et al. (2008).
Each 0.03 arcsec pixel ! GEMS science image was generated from
a dithered combination of three 0.05 arcsec pixel ™! exposures, each
of total duration 2160s. The composite noise image therefore re-
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flects precisely the noise-correlating effects of the GEMS dither
and drizzle strategy, which is typical of the reduction strategies em-
ployed for high-resolution, space-based imaging data. The galaxy
image magnitude zero-points were set to match the GEMS data,
resulting therefore in simulated survey images with a detection
threshold around Vioe ~ 27, matching the GEMS survey character-
istics quite closely (Caldwell et al. 2008). The fact that the images
include many more simulated objects, buried in the noise down to
the HUDF starter set cutoff magnitude of Vg < 29, is another
realistic feature of the simulations.

As galaxies are placed at random locations in each successive
simulation tile, it is possible to re-use this noise image each time.
Only a small fraction of galaxy images within tiles will consist
of galaxy models that, by chance, have been repeatedly placed
into the same location in the ACS pointing-sized noise mosaic
(~3.53 x 3.63 arcmin? in total area), so the level of unwanted
pixel noise repetition in the simulation images will be low. In these
simulations, we do not add an additional Poisson noise term to
image pixels to account for variation in variance due to varying
flux. However, as the overwhelming majority of simulated galaxies
in the catalogues are faint relative to the background, this can be
shown to represent a very small correction to the images, arguing
that the effect can be safely neglected in light of other uncertainties
in the modelling overall.

One final concern in the use of the GEMS noise mosaic might
be if there were to be found to be some preferred direction in the
noise pattern. Visual inspection of the noise map did not suggest
any such artefact, and it will be seen in Section 6 that there is
no evidence for an additive bias in shear or flexion results, or a
variation in multiplicative ‘m’ biases (Heymans et al. 2006) with
polar angle with respect to the pixel grid. Global anisotropies or
preferred directions in the noise map might be expected to cause
such effects in the presence of a circularly symmetric PSF such
as that adopted (Fig. 3), and the fact that we are unable to detect
them within simulation uncertainties suggests that they exist at a
sufficiently low level as to not affect the conclusions of this study.

It should be noted that by reusing the GEMS noise mosaic for
each tile in this way, we are applying the same noise field to both
galaxy images in the rotated and un-rotated galaxy pairs, as in these
pairs the simulated galaxies share the same location. However, this
offers an opportunity to separate the effects of pixel noise in flexion
measurements from those of shape noise without diluting the former.
The price paid for this opportunity is a reduction in the overall
statistical power, by a factor of ~+/2 in the simplest estimate, with
which measurement bias parameters may be constrained.

5.6 Summary and comparison to previous flexion simulations

After the addition of the noise image, the 540 ACS simulation tiles
are complete. We now briefly summarize the differences between
these simulations and those of Velander et al. (2011), in case such a
comparison is of utility to the interested reader. A primary difference
is that the simulations in this study employ complex morphologies in
the shapelet galaxy models, constructed from HUDF imaging data,
compared to the simpler parametric forms as used in Velander et al.
(2011). Our simulations also employ a continuous distribution of
object sizes and signal-to-noise ratio (SNR), taken directly from the
UDF sample, rather than fixing galaxy sizes and SNR at fixed values
of interest. Whereas the Velander et al. (2011) PSF is a Moffat profile
motivated by ground-based PSFs (and made elliptical for some sets
of simulated images), we instead employ a circular PSF with aradial
profile taken from shapelet fits to GEMS stellar images. Deblending,
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Figure 5. Illustrative 30 arcsec x 22.5 arcsec section of the 86th tile (chosen
at random) in the simulated, convolved, F-lensed images. The grey-scale is
linear in flux.

and realistic noise associated with deblending, is a feature in our
simulations, whereas Velander et al. (2011) placed galaxies on a
regular grid. Finally, our simulations employ correlated noise taken
from observations in the GEMS survey data (Caldwell et al. 2008).

InFig. 5, we show a small section from one of these tiles, illustrat-
ing some of the realistic diversity of galaxy morphology depicted in
the simulation images. All of these simulation images are available
by request from the authors. We now turn to a description of the
measurement of shear and flexion in these images using shapelets,
allowing a calibration of the shear and flexion signal recovery using
this method.

6 TESTING A SHAPELET FLEXION PIPELINE

We now describe measurements of flexion and shear made from
the simulations described in Sections 4 and 5, and investigate the
recovery of flexion and shear as a function of image properties such
as SNR and galaxy size.

6.1 Object detection and shapelet decomposition

To test and calibrate shapelet measurements of shear and flexion,
we treat the 540 ACS simulation tiles as if they were new tele-
scope data (with properties such as galaxy positions and shapes
unknown). The first step is therefore to detect objects in the images
from peaks in the surface brightness distribution, and we employ
the same techniques as described in Appendix Al to create a cata-
logue of galaxy objects in the HUDF. We detect galaxy objects in
the simulations using the SEXTRACTOR software with the parame-
ter choices given in Table Al. An initial cut of Vg < 27 is then
applied to the catalogues, along with requiring FLUX_RADIUS > 2.4
and FLUX_AUTO/FLUXERR_AUTO > 10 (see Bertin & Arnouts 1996 for
descriptions of these SEXTRACTOR output parameters). These cuts
are motivated by the choices made in Heymans et al. (2005), and
result in catalogues containing approximately 64 galaxies arcmin.
This figure agrees well with galaxy densities found in surveys at

similar depth to that simulated here, such as GEMS, COSMOS and
STAGES (e.g. Heymans et al. 2005; Leauthaud et al. 2007).

Postage stamp images of each detected galaxy object are then
created as described in Appendix A2 and shapelet models of the
galaxies are created as described in Appendix A4, except for two
important differences that we now describe. The first and most im-
portant difference is in the PSF: for this we use the shapelet model
of the circularized GEMS PSF (Fig. 3) described in Appendix B2.
Therefore, our calibration of flexion and shear measurement does
not include the potential effects of a poorly modelled PSF, such
as might be present working with real data. While unrealistic, this
simplification will allows any measurement biases to be interpreted
cleanly rather than being subject to external factors such as poor
PSF modelling. The problem of building accurate PSF models is
important enough to be addressed in its own right, and this is in-
creasingly reflected in the literature (e.g. Hoekstra 2004; Jarvis &
Jain 2004; Jarvis, Schechter & Jain 2008; Paulin-Henriksson et al.
2008; Paulin-Henriksson, Refregier & Amara 2009; Rowe 2010;
Kitching et al. 2011, 2013).

The second important difference is in the choice of the
NEIGHBOUR input parameter to the SHAPELETS software, setting
NEIGHBOUR = 1. As described in Appendix A2, this causes pix-
els in the masked areas of each postage stamp (i.e. those associated
with nearby objects, or cosmic rays, bad pixels, etc., in real data)
to be given zero weighting at the shapelet modelling stage. Having
made these changes to the input settings, the modelling provides
a catalogue of shapelet coefficient values for each galaxy in the
rotated and unrotated simulations.

The galaxies in the rotated and unrotated simulations are then
matched, treating as pairs all galaxies with centroids separated by
less than 0.15 arcsec in centroid (five 0.03 arcsec pixels) and 0.25
in Vg6 magnitude as estimated by SExtractor. This was found to
produce a total of ~51 000 matched galaxy pairs for each of the
shear and flexion simulation suites, reducing the galaxy density to
approximately 45 galaxies arcmin~2. More stringent pair exclusion
criteria were seen to cause significant reductions in the numbers of
matched pairs. Opting for more tolerant criteria produced slightly
greater numbers of galaxies (~1-3 per cent), but not in a manner that
substantially altered final results. The magnitude cut had greatest
impact of the pair matching criteria, suggesting that the allocation
of objects and flux in the deblending process was dominating over
centroid errors in the contribution to the loss of matching pairs.
The fraction of galaxies lost to catastrophic failures in shapelet
modelling was small (0.4 per cent).

The difficulty of matching galaxies suggests that significant num-
bers of objects are being affected by noise in the determination of
their properties at the SExTrACTOR detection and deblending stage;
we found ~20-30 per cent of pairs could not be matched in this sim-
ulation, although it should be stressed that, in general, deblending
errors will depend on PSF shape, noise correlation, other aspects
of data quality, galaxy population morphology and SNR. In these
simulations, the rate of successful matching depended upon SNR
in particular, with the brighter galaxies being matched better than
the faint. However, deblending does represent a realistic additional
source of noise for shear and flexion measurements that is not due
to the intrinsic shape of galaxies, and so it is an effect of interest
for these simulations and for the Caldwell et al. (2008) two-stage
object detection strategy in the adopted pipeline.

Unfortunately, this effect sets a ceiling on the number of objects
that can be successfully matched after simulating an end-to-end
pipeline in this way. While including deblending in the simulation
test contributes realistic noise to the end measurements, it also
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reduces the constraining power of the simulations as a whole when
significant numbers of objects are lost. To isolate the effects, it
may be preferable in future work to generate galaxies on grids as
done in GREATO8/GREAT10 (Bridle et al. 2009, 2010; Kitching
etal. 2011, 2012) and compare results. We will discuss the issue of
deblending further in Section 7 in the context of the results of the
pipeline tests.

For the pairwise matched sample, flexion and shear estimates
were then generated for each galaxy from the catalogue of shapelet
models, and the estimators chosen will now be described.

6.2 Estimating flexion and shear

To estimate shear and flexion from shapelet models of galaxies, we
adopt an approach similar to that described by M07, and compare
the relative values of the shapelet coefficients f,,, of best-fitting
shapelet models to derive estimators of lensing distortions. In Ap-
pendix C, we describe the generation of flexion and shear estimators
from catalogues of shapelet coefficient models for a population of
galaxies with a realistic distribution of fluxes and sizes. We note
that the multiple-decade variation in these two properties means
that small modifications to the estimators proposed in MO7 must be
adopted. Described in detail in Appendix C, we label these estima-
tors y, F and G for the shear, F flexion and G flexion, respectively.

We also note that in order to use these estimators, it was made a
condition that the shapelet model reach sufficient n,, as to contain
non-zero values for all the shapelet coefficients required by equa-
tions (C1), (C4) and (C9) when estimating y, F or G, respectively.
This is to avoid bias from artificially setting coefficient values to
zero when this is not the most appropriate prior expectation.

Overall, this approach differs from that of Velander et al. (2011),
who instead take circular profiles and estimate the shear and flex-
ion required to distort these objects to match the data, in a manner
similar to the shear-only estimators of Kuijken (2006) and Bern-
stein & Jarvis (2002). Both methods are similar in that they rely to
some extent upon shapelet models being an accurate description of
the underlying surface brightness distribution of galaxies to avoid
what has been identified as ‘underfitting bias’ in galaxy shape es-
timation (e.g. Voigt & Bridle 2010; Bernstein 2010). However, in
our simulation tests shapelet models have been used to provide the
underlying galaxy light profiles, and perfect knowledge of the PSF
is also available.

In principle, this allows the direct probing of potential biases
due to the use of noisy data, such as imperfect deblending with
SEXTRACTOR, or the biased response of non-linear estimators un-
der noise itself (so-called noise bias, e.g. Bernstein & Jarvis 2002;
Hirata et al. 2004; Kacprzak et al. 2012; Melchior & Viola 2012;
Refregier et al. 2012). However, in practice, the shapelet method
of Massey & Refregier (2005) truncates models once they become
consistent with the noise in the image, iterating the modelling pa-
rameters B and np,y until this is achieved, while always seeking the
model with the lowest n,,x that meets this criterion. Galaxy models
will therefore in general still be truncated, leading to the distinct
possibility of underfitting biases still being present in lensing esti-
mates from the shapelet models constructed in Section 6.1.

Using the method described in Appendix C, estimators of shear
and flexion are constructed for each of the galaxies with successful
detections and shapelet decompositions described in Section 6.1.
In the following sections, we compare these estimates to the in-
put gravitational signal, and explore how the properties of these
estimates vary with galaxy properties such as SNR and size.
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6.3 Flexion and shear estimator results

In Flg 6! we plOt (]7 - yinpul) versu~s Vinput (tOP panel), (]’T - Finput)
versus Fiyp (middle panel) and (G — Ginpu) versus Gippye (bottom
panel) for our simulated galaxies, with estimators for rotated and
unrotated pairs of galaxies being mean-averaged to reduce noise as
described by Massey et al. (2007a). Results were not found to differ
between components (i.e. results for y; were consistent with those
for y», etc.) and so the plots show both real and imaginary parts
for each signal. Results were binned according to input signal via
the image sets described in Section 5.4, and the points for each bin
represent the median of the averaged rotated and unrotated estimates
in each case. For shear, the median results were consistent with
results derived from the arithmetic mean; for flexion, the mean was
found to be very noisy due to the distribution of flexion estimators
(see Section 6.5), and so the median was preferred as the comparison
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Figure 6. Lensing measurement calibration results from the full set of

simulated galaxies in matched, rotated pairs, for 7 (top panel), F (central

panel) and G (bottom panel).
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statistic in both cases. The estimated median of each variate in
a bivariate distribution, taken along each of its two dimensions
independently, is a good estimator of the central tendency in both
variates provided that correlations between them are linear. We
found no evidence of non-linear correlations between the estimates
of F, and F,, indeed no evidence of correlations at all, and so
do not consider the use of the median (rather than, e.g. convex hull
stripping; Velander et al. 2011) to be a source of bias in this analysis.
The uncertainties plotted show the standard error on the median in
each bin (Lupton 1993).

We fit a linear relation to the results of Fig. 6, deriving best-fitting
slope m and offset ¢ bias parameters as used in the STEP project
(Heymans et al. 2006):

V- Yinput = M Yinput + C, 21

with similar expressions for the two flexion estimators. The best-
fitting values, and uncertainties, are given in Fig. 6. The real and
imaginary parts were again found to give consistent results, and
so the best-fitting m and c¢ describe input versus output for both
components. We found that the ¢ values were consistent with zero
in all cases. This is expected for the purely circular PSF chosen
for these simulations, and for the square grid which imparts no
preferred sign for any of the shears or flexion distortions applied.
However, it provides a useful null test of the algorithms adopted.

The value of the multiplicative bias m was found to be relatively
small in the case of shear, m = 0.028 + 0.013. These results are
comparable to those obtained with a number of shear estimation
methods in the GREAT challenges (Bridle et al. 2010; Kitching
et al. 2012), although there are a number of differences between
these simulations and those used in GREAT08 and GREAT10 (e.g.
correlated noise; the distribution of galaxy sizes and SNR; overlap-
ping objects; a purely circular PSF). For flexion, we detect stronger
multiplicative biases, finding m = —0.340 % 0.053 for the median
of the F estimators, and m = —0.45 =£ 0.21 for the median of the
G estimators. As discussed above in Section 6.2, the shapelet ap-
proach adopted may be affected by underfitting bias (or model bias)
caused by shapelet truncation, or bias due purely to noise, or both.

The values of the biases seen are comparable to those identified
by Velander et al. (2011), for galaxies based on analytic profiles and
a different distribution of sizes and SNR values. We now discuss
the variation of our measured estimator biases as a function of these
properties, and discuss some reasons for the possible presence of
this bias.

6.4 Dependence of bias on noise and apparent galaxy size

In Fig. 7, we plot the dependence of the multiplicative bias m (see
equation 21) upon observed galaxy SNR for pair-matched shear
and flexion estimates from the simulations. Here, SNR is defined
in terms of the SExTrRACTOR output parameters FLUX_AUTO and
FLUXERR_AUTO as

FLUX_AUTO
- AT V0316 2
FLUXERR_AUTO ~ ’ (22)

where the scaling factor 1/4/0.316 is taken from Leauthaud et al.
(2007) and adjusts SNR in drizzled HST images to account for cor-
related noise, adding the assumption that excess Poisson variance
due to object flux above the background is negligible (it is not in-
cluded in our simulations). This is only an approximate correction,
based on a simplified model (Casertano et al. 2000) and an assump-
tion that the COSMOS drizzling approach closely resembles that
used in the GEMS noise mosaic (it does, although there is a small
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Figure 7. Variation of multiplicative bias m in shear and flexion estimation
versus ‘observed’ SNR for the simulation galaxies (see equation 21). SNR
bins were chosen to give equal numbers of galaxy in each bin: the increase
in errors for low-SNR objects is due to the increasing scatter in individual
estimates. Solid, horizontal lines through points show the extent of each bin.

difference in the kernel used for the Mk II GEMS reduction; see
Caldwell et al. 2008). However, it does help take correlated noise
into account at a level of accuracy that is appropriate given that
differences between definitions of SNR can also introduce factor
~2 discrepancies.

The SNR ranges for the bins were chosen to give equal numbers
of galaxies in each bin; for reference, the bin maxima and minima
are given in Fig. 9 and indicated in Fig. 7 by solid horizontal lines.
It is difficult to discern strong support for overall trends — results for
the lower SNR bins are noisy compared to those in higher SNR bins,
particularly in the case of the flexion — although the higher SNR bin
consistently gives arguably better results. Overall, flexion results are
broadly consistent with Velander et al. (2011), within large errors,
hinting that the impact of more complex galaxy morphology (a key
difference between these simulations and those of Velander et al.
2011) upon flexion estimation bias is not great compared to other
properties of the observational data. In addition to the SNR of galaxy
objects, the size is an important observable quantity for measuring
flexion. Unlike shear, flexion has dimensions of inverse angle, and
larger objects provide greater leverage for measuring flexion. In
Fig. 8, we plot m for the simulated galaxy sample binned into
three bins reflecting angular size, chosen to given equal numbers of
galaxies in each bin. The size estimate adopted for this binning is
V/R? for the best-fitting shapelet models, plotted in arcsec, where
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Figure 8. Variation of multiplicative bias m in shear and flexion estima-
tion versus observed size for the simulation galaxies parametrized by VR?
(Massey & Refregier 2005). In a similar manner to the SNR binning, size
bins were chosen to give equal numbers of galaxy in each bin: the increase
in errors for smaller objects is therefore due to the increasing scatter in
individual estimates. Solid, horizontal lines through points show the extent
of each bin.

the size measure R> derived from shapelet model coefficients is
described by Massey & Refregier (2005) and given in equation
(C5). It is equivalent to an unweighted, integrated second-moment
size over the shapelet model.

Results are qualitatively similar to those found for the SNR tests,
which is not altogether surprising as we expect a positive correlation
between size and SNR among the simulated galaxy population.
There is some evidence that estimators are better for larger apparent
sizes; the shear in particular now shows a marked trend towards
improvement for larger objects. But the noise on estimates of m
for flexion estimators become large for smaller objects, and so for
flexion clear trends are difficult to discern.

The large uncertainty on flexion estimates, despite the cancel-
lation of intrinsic shape noise at leading order, also provides a
possible explanation for the clear detection of significant m biases.
Noise bias (sometimes referred to as noise rectification bias, e.g.
Bernstein & Jarvis 2002; Hirata et al. 2004; Kacprzak et al. 2012;
Melchior & Viola 2012; Refregier et al. 2012) is an inherent prop-
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erty of statistical estimators derived from non-linear combinations
of random deviates, in this case the values of noisy pixels. For the
shapelet technique used in this paper, the linearity of the decompo-
sition is broken by the presence of a convolving PSF (see Massey
& Refregier 2005). Flexion estimators, being sensitive to higher
order (and therefore noisier) shape moments in galaxy images, are
plausibly more sensitive to noise biases when compared to shear
estimators derived from shapelets, as well as to underfitting biases
caused by shapelet model truncation (see Section 6.2). Another
reason for a greater susceptibility to noise bias might be the need
to apply a centroid shift correction to in the estimation of F, al-
though this would not be able to account for the observed bias in G
estimators.

6.5 The distribution of flexion and shear measurements

The results of Section 6.4 (Figs 7 and 8) show a significant increase
in the uncertainty of estimates of m as SNR (and the related prop-
erty V'R?) decrease, despite the number of objects being the same
in each bin. This effect is strongest in the measurements of m for
F and G. This can be explained by considering the two separable
contributions to measurement uncertainty: the scatter in the intrinsic
shapes of galaxies prior to lensing, and the noise in shape estimates
due to noise in pixels. The latter will increase as SNR decreases,
and may also be a cause of bias as well as increased uncertainty in
individual shape estimates (Melchior & Viola 2012; Refregier et al.
2012). In Fig. 9, we plot the distributions of pair-matched shear
and flexion estimates as a function of SNR. These paired combi-
nations cancel the leading order contribution of intrinsic galaxy
shape to the estimation of each signal, so that the remaining scatter
is that solely that due to the differing pixel noise applied to each
simulated galaxy. The uncertainty of shear estimates increases as
SNR decreases, but the effect is far stronger for the estimators of
flexion.

Fig. 9 also illustrates the non-Gaussian distribution of the un-
certainty in shapelet shear and flexion estimators due to noise in
image pixels. For flexion in particular, this distribution is highly
non-Gaussian, but this is also noticeably true for the shear esti-
mates: the distributions show a sharp peak in the region of central
tendency, accompanied by broad wings. However, as the intrinsic
ellipticity in galaxy images is typically o, 2~ 0.3, the shear measure-
ment uncertainty in the left-hand panel of Fig. 9 only becomes a
very significant additional contribution for the lowest SNR galaxies.

For the first flexion F, estimation of the uncertainty due to
intrinsic galaxy shapes has proved to be difficult. A value of
or =~ 0.04 arcsec™! was measured by (Goldberg & Bacon 2005) for
a population of galaxies that was brighter, and mostly larger (within
the uncertainties of PSF correction for poorly resolved objects)
than those in the current simulation set. However, even incorporat-
ing scalings with galaxy size and population, it seems likely that
measurement error will represent a significant contribution to over-
all uncertainty for a broad range of interest in SNR. Indeed, the size
of the measurement uncertainty itself suggests that it may be quite
challenging to determine reliable estimates of o+ for deeper galaxy
populations than those explored in Goldberg & Bacon (2005): it
has proved to be so in practice. That there has been no detection of
gravitational G (despite a number of F detections) is also plausibly
attributable to the extreme measurement scatter seen in the right-
hand panel of Fig. 9, and while the intrinsic og is yet to be reliably
estimated for real galaxies this measurement uncertainty is likely
to be a significant contribution to noise in future. Flexion forecasts
which fail to account for the extra uncertainty due to pixel noise
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Figure 9. Distributions of matched measured 7 and 7, (solid and dashed lines, respectively; left-hand panel), 7 and F (solid and dashed lines, respectively;
centre panel), and G| and G, (solid and dashed lines, respectively; right-hand panel) from the mean of matched pairs of galaxies in the rotated and unrotated
simulations (see Section 5.4). These paired combinations will cancel the leading order contribution of intrinsic galaxy shape to the estimation of each signal:

what remains will be dominated by uncertainty due to pixel noise and deblending.
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Figure 10. NMAD for the distributions of shear and flexion measurement
error in Fig. 9, plotted as a function of SNR for the binned galaxy sample.
The best-fitting power-law models are plotted over the data points as straight
lines (model parameters listed in Table 2).

will provide overoptimistic estimates of future prospects for flexion
measurement.

To provide a simple description of the shear and flexion uncer-
tainty due to pixel noise as a function of SNR, we calculate the
normalized median absolute deviation (NMAD) for shear and flex-
ion measurement error distributions in six bins of SNR. The NMAD
is useful as a robust estimator of dispersion; for distributions such
as those in Fig. 9, the population standard deviation itself may be
poorly defined, and the sample standard deviation may be extremely
noisy and sensitive to object cuts and outlier removal. We plot the
NMAD as a function of SNR in Fig. 10, along with the best-fitting
power-law description of these data

NMAD = A;00(SNR/100)". (23)

Table 2. Best-fitting parameters for the
power-law model of equation (23), de-
scribing the NMAD of the shapelet es-
timator shear and flexion measurement
error as a function of SNR in this study.
These models are plotted over the data

in Fig. 10.

Lensing measurable  Ajqo b
y 0.10 —042
F 0.33 —0.83
g 1.52 —0.81

Here, SNR = 100 has been chosen as the reference scaling value
since this lies roughly in the middle range of simulated galaxies.
The best-fitting parameters are given in Table 2. The difference in
the power-law slope between the flexion and shear results, and the
similarity of the slopes for the F and G estimators, is interesting:
it suggests a common origin for the increased flexion measurement
noise in each case, despite differences in the amplitude of the ef-
fect. A definitive theoretical explanation for differences between
the shear and flexion slopes b is unclear in the presence of multiple
factors (noise on pixels, deblending, centroid uncertainties), but the
difference is a clear effect in these simulated data, for these esti-
mators. One possibility (suggested by anonymous referee) is that
since fainter galaxies are smaller, and flexion is a dimensional quan-
tity with units of inverse angle, the noise will necessarily increase
more steeply than shear as galaxy SNR decreases. We discuss this
scenario, along with alternatives and possible tests, in Section 7.
These results highlight the importance of considering measure-
ment noise when discussing flexion estimation in practice. We illus-
trate the significance of this contribution to uncertainty by adding
a marker, showing the Goldberg & Bacon (2005) intrinsic flexion
estimate, to Fig. 10 (it should be stressed that the galaxy population
from which this value was derived is not that we are simulating
here, and so this point is merely illustrative; the intrinsic G is still
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unmeasured, as has been mentioned above).” In these tests, flex-
ion estimation therefore appears to operate in a somewhat different
regime to that of shear estimation, where the measurement contri-
bution to uncertainty is dominated by the intrinsic ellipticity o, ~
0.3 of galaxies. This is true throughout the range of SNR 2> 10
where shear estimators have been shown have some success in con-
trolling bias (Bridle et al. 2010; Kitching et al. 2012). This fact has
allowed forecasts for shear surveys to proceed using the intrinsic
variance alone as a reasonable approximation to the uncertainty in
shear estimators from all sources. The results of this study suggest
that this should not be done for flexion, where noise due to the finite
numbers of photons arriving at the detector is significant.

7 DISCUSSION

We have undertaken a detailed investigation into the problem of
estimating flexion and shear from noisy galaxy images with sub-
stantial variation in underlying galaxy morphology. The simulated
galaxy models also display a realistic distribution of sizes and ap-
parent fluxes, drawn directly from the galaxy sample in the HUDF,
but with additional noise realistic for a wider area (e.g. GEMS;
COSMOS) survey.

We have found evidence of a qualitative difference between flex-
ion and shear measurement uncertainties. Whereas noise in shear
estimates is dominated by intrinsic galaxy ellipticity at typical sur-
vey image depths, the corollary appears not to be true for flexion.
Instead, there is large uncertainty due to a combination of: (i) noise
at the pixel level (due to read noise and finite photon number counts);
and (ii) (related) uncertainties in deblending. Furthermore this dis-
persion in flexion estimates increases steeply for fainter galaxy
images. It will be important to account for this fact when generat-
ing forecasts of the flexion information content in future surveys:
predictions based solely on the scatter in intrinsic galaxy flexion o
alone will be too optimistic. Existing forecasts such as those of B06
that use o7 2~ 0.04 arcsec™!' (Goldberg & Bacon 2005) may only
correspond to predictions in the limit of large image SNR, and are
only appropriate for the population of galaxies for which the figure
of o was measured. Other predictions, some of which have used
values as low as 0.03 arcsec™' for the intrinsic flexion dispersion,
will be yet more optimistic.

To provide some aid to more realistic forecasts in future, we fit a
simple power-law model to the dispersion of flexion measurements
due to noise on pixels and deblending, as a function of source
galaxy image SNR (Section 6.5). It was found that noise in flexion
estimates varies significantly more strongly with galaxy SNR than
was found for shear estimates, nearly a factor of 2 in power-law
slope. As the majority of galaxy images in any wide-area survey are
likely to be faint, it will be important to consider this effect when
forecasting what may be learned from flexion in practice.

As well as considering the noise in flexion measurements, sys-
tematic biases in shapelet shear and flexion estimators were also
investigated. Such tests had only previously been performed with
galaxy simulations with less morphological richness in the under-
lying models (Velander et al. 2011). The best-performing flexion
estimator in our shapelet pipeline showed comparable performance

2 Goldberg & Leonard (2007) found o4 7 >~ 0.03 arcsec™! where a is the
size of the galaxy, indicating expected intrinsic flexion dispersions in the
range 0.03-0.3 arcsec™! for the HUDF starter set described in Section 4.
However, it is unclear how much of this may have been intrinsic shape,
versus noise, dispersion.
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to the shapelet estimator tested by Velander et al. (2011). Because
of the direct use of the HUDF galaxy size and SNR distribution
in the simulations, exploration of the dependence of biases on
these properties is less clean, requiring broad bins. We found little
strong evidence of clear systematic trends within the errors for the
flexion results, except that flexion measurement appeared to per-
form somewhat better for large, high-SNR galaxies. Shear results
for the shapelet pipeline compare well alongside the better per-
forming methods in the most recent shear measurement simulation
challenges, GREAT08 and GREAT10 (Bridle et al. 2009, 2010;
Kitching et al. 2011, 2012).

In the future, theoretical tools from the increasing body of work
invested in understanding the effects of pixel noise in shear mea-
surement (e.g. Bernstein & Jarvis 2002; Hirata et al. 2004; Kacprzak
et al. 2012; Refregier et al. 2012; Melchior & Viola 2012; Miller
et al. 2013) will be useful in forming a deeper understanding of
noise and bias in flexion estimators. In particular, it may be possible
to understand the apparent qualitative differences between flexion
and shear estimators under pixel noise.

As mentioned previously in Section 6.4, one possible source
of difference between estimators of F and estimators of y and
G is the need to apply a simultaneous correction for the induced
centroid shift (see Appendix C). This centroid term is itself noisy.
Furthermore, because it consistently appears in the denominator for
flexion estimators (e.g. Okura et al. 2008) the shift correction could
potentially increase rectification biases, as well as introduce large
wings to the distribution of estimates of F. In future work, it would
be interesting to explore the uncertainties in F flexion estimates
in synthetic test cases where galaxies model fits are forced to use
the fixed, true (i.e. pre-flexion) centroids. An additional study of
interest in a related topic would be an analysis in which rotated
pairs of model galaxies were fitted about the same centroid: although
unrealistic in practice and untenable as a remedy to the issue, such a
study might give an insight into the nature of F flexion measurement
noise.

However, the fact that the centroid shift affects only estimates of
F and not G suggests that it cannot provide a full explanation for the
steep power-law slope seen in the dispersion of measurements of
flexion as a function of SNR (see Fig. 10 and Table 2). The estimates
of this slope are similar for both F and G, and markedly different
from those of shear, suggesting that there may be a common origin
for these noise properties. One possibility for this difference, sug-
gested by anonymous referee, is the dimensionality of flexion as
briefly mentioned in Section 6.5. Fainter galaxies tend to be smaller
(although the slope of this relationship depends on the galaxy pop-
ulation), and flexion is a dimensional quantity with units of inverse
angle. An interesting experiment would be to return to tests such as
those of Velander et al. (2011) or Bridle et al. (2010), with simpler
parametric galaxy profiles and grid positions for galaxy centroids
(to remove noise due to deblending). These would allow a con-
trolled exploration of noise in flexion measurement, for example as
a function of galaxy size at constant SNR, or as a function of SNR
at constant galaxy size.

Recent examples of such tests in the case of shear (GREATO08
and GREAT10; Bridle et al. 2010; Kitching et al. 2012) provided a
compelling demonstration of the ubiquitous impact of noise biases
across many measurement methods. This was something that had
been pointed out as potential issue for certain shear measurement
methods prior to the GREAT challenges (e.g. Bernstein & Jarvis
2002; Hirata et al. 2004). However, the demonstration of clear ex-
perimental dependences on SNR excited a recent surge in interest
in the problem, leading to a greatly improved understanding of how
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noise biases are a consistent presence in all but the most carefully
constructed shear measurement methods (Melchior & Viola 2012;
Kacprzak et al. 2012; Refregier et al. 2012; Miller et al. 2013).
Similar work may provide an understanding of why the dispersion
on flexion measurements due to noise on image pixels increases so
steeply as a function of galaxy population. It would also be interest-
ing to compare results for a HOLICS-type method, for which there
are indications of lesser uncertainty in flexion estimates relative to
a shapelet treatment (Leonard et al. 2011, although we note that
some details of the implementation of shapelet estimates in this
work differed markedly from this analysis).

Some fraction of the dispersion in the flexion estimates presented
here is likely to be due to deblending. Deblending is an inevitably
non-linear process, which introduces a source of noise that is not
intrinsic to the individual galaxy shape, and will contribute most
greatly at low SNR. The simple gridded tests pursued by Bridle
et al. (2010), Velander et al. (2011) and Kitching et al. (2012),
while powerful for exploring many aspects of shape measurement,
are not able to elucidate noise due to deblending. The random
placement of galaxy models and the presence of many HUDF starter
set galaxy models too faint to be detected versus the GEMS-like
noise levels mean that these simulations are able to mimic some
important aspects of the deblending problem.

It was in order to capture a realistic contribution from this af-
fect that the adopted SEXTRACTOR parameters used in the pipeline
(see Table A1) were based on the GEMS-optimized choices made
by Caldwell et al. (2008). In fact, the two-pass strategy employed
by these authors is a relatively sophisticated attempt to tackle de-
blending: many more recent (e.g. COSMOS: Leauthaud et al. 2007;
CFHTLenS: Erben et al. 2013) and upcoming surveys rely on a
single-pass strategy alone, and will be still more susceptible to the
impact of deblending.

However, as discussed in Section 6.1, a fraction of galaxies could
not be matched with their pairwise rotated partner due to noise
on galaxy magnitudes and centroids from deblending. Matching
criteria were made quite stringent to ensure a high purity of le-
gitimate pairs, at the cost of the loss of objects from the sample
(particularly at low SNR where matching was most difficult by far).
Despite these precautions, it is a cause for concern if deblending
causes the misidentification of paired sources and the breakdown
of the pairwise cancellation of the intrinsic galaxy shape contri-
bution to dispersion in flexion measurements. This effect could,
potentially, lead to a contamination of the intrinsic shape dispersion
into the pairwise rotated pairs designed to be free from this addi-
tional source of noise. However, while these effects are plausibly
a contaminant for the lowest SNR results, the amplitude and slope
found at higher SNR are unlikely to be significantly contaminated.
This can be seen from the shear results of the lower-left panel of
Fig. 9, for which the full width at half-maximum (FWHM) of the
distribution is ~0.3 (corresponding to a standard deviation of o >~
0.3/2.35 = 0.128 in a Gaussian approximation to the distribution).
If this were fully contaminated by miscancelling pairs, we would
expect to see a Gaussian of o 22 0.3, and given that these additional
shape noise terms add approximately in quadrature it can be seen
that the overall level of contamination cannot be large even at low
SNR. At higher SNR, given the greater rate of successful matching
and the width of the shear distributions in Fig. 9, the contamination
is negligible.

The results of this study, originally designed to merely calibrate
a flexion measurement pipeline for an analysis of ACS data (in a
similar manner to Velander et al. 2011), warrant further investiga-
tion. The dispersion of flexion measurements due to pixel noise,

and the related issue of deblending, has been demonstrated to be an
extremely important contribution to flexion measurement and to de-
pend steeply on galaxy SNR. Understanding the fundamental source
of this strong dependence upon galaxy SNR (explanations include
centroiding effects, noise rectification or the additional angular di-
mensionality of flexion) would be a fascinating topic for further
investigation with custom-designed tests rather than simulations
seeking to represent all aspects of real data. The clear difficulties
of flexion measurement in practice call for a better understanding
of such issues if the potential of flexion as a probe of small-scale
power in matter structure is to be realized.
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APPENDIX A: SHAPELET GALAXY MODELS
FROM THE HUDF

We model the HUDF galaxies using version 2.2 of the SHAPELETS
software package, presented by Massey & Refregier (2005) and de-
scribed in practical detail by Bergé (2006). The modelling of these
galaxies, including PSF deconvolution, is a multistage process: cat-
alogue creation, postage stamp image creation and PSF modelling
all precede the construction of the deconvolved shapelet catalogue
for the starter set. These processes are now described in turn.

A1l Star and galaxy selection

The starting point for building accurate models of galaxy images is
an object catalogue. A primary science goal of the Beckwith et al.
(2006) analysis was a catalogue of full, multicolour photometry in
the HUDF, but we require only reliable object detection in the Vo6
in order to build galaxy models in the same filter. The Massey &
Refregier (2005) SHAPELETS software package requires certain input
parameters for each object that were not all provided in the cata-
logues of Beckwith et al. (2006). We chose to construct our own
catalogue from just the Vi data, using the SEXTRACTOR software
(Bertin & Arnouts 1996; version 2.5.2) in single-image mode. Using
this software successfully requires a number of choices regarding
configuration parameters, and we now describe the strategy adopted
for object detection in the HUDF V4 data. We note that this same
strategy will also be used in Section 6.1 as part of the lensing mea-
surement pipeline being tested, but for simulated imaging data at a
much shallower depth when compared to the HUDF data used to
provide galaxy models. We adopt a two-pass SEXTRACTOR deblend-
ing strategy when constructing a source catalogue (see e.g. Rix et al.
2004; Leauthaud et al. 2007; Caldwell et al. 2008). Two catalogues
are created, one with a low detection threshold so as to pick out
as many faint objects as possible, and one using a more conserva-
tive detection strategy so as to limit the overdeblending of bright
objects; these catalogues will be referred to as ‘hot’ and ‘cold’, re-
spectively. These are created using exactly the same input parameter
values as used by Caldwell et al. (2008) to create the hot and cold
samples of objects in the GEMS V6 science tiles, summarized in
Table Al.

All cold detections are then combined with non-overlapping ob-
jects in the hot catalogue. We define a hot object as overlapping if
its centroid lies within an ellipse of semimajor axis 5.5 x a and
semiminor axis 5.5 x b, where a and b are the SExTRACTOR-0Output
semimajor and semiminor axes, respectively, and this larger ellipse
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Table A1. SEXTRACTOR configuration parameters used to
detect galaxy objects in both the HUDF (Section 4) and
in the simulated ACS images (Section 6); these values
are the same as used for the GEMS survey galaxies in
the two-pass strategy of Rix et al. (2004) and Caldwell
et al. (2008).

Configuration parameter ~ Cold sample ~ Hot sample
DETECT_THRESH 2.30 1.4
DETECT_MINAREA 100 37
DEBLEND_MINCONT 0.065 0.060
DEBLEND_NTHRESH 64 32
BACK_SIZE 214 214
BACK_FILTERSIZE 5 5
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Figure Al. Size-magnitude diagram for SExTrRACTOR-selected objects in
the HUDF Vg6 science image, showing the stellar locus and 30 selected
stars (star-shaped points). The dashed lines show the size and magnitude
limits used to define the galaxy sample chosen for shapelet modelling for
inclusion in the simulation starter set.

is aligned with that defined by SExTtrAacTOR. This factor of 5.5 was
found, by visual inspection of the HUDF and segmentation maps
output by SEXTRACTOR, to provide a suitable compromise between
cold object overdeblending and the erroneous removal of hot ob-
jects. Finally, a mask is applied so as to exclude detections from
the boundary regions of the CCD image. The combined hot/cold
catalogue then contains a total of 8203 objects, corresponding to
~900 detections arcmin 2.

To select stars, we use the fact that the FLUX_RADIUS parame-
ter found by SEEXTRACTOR is typically constant, irrespective of flux,
for stellar images. This radial profile of the PSF will typically vary
little across a given single ACS tile (the same is therefore also true of
the object FWHM). This allows the stars to be easily identified via
a straight locus on a size-magnitude diagram, such as that showing
all the masked HUDF-selected objects in Fig. Al. The locus cho-
sen in the figure gives a total of 30 stellar images from which to
build a model of the HUDF PSF, avoiding the confused region at
greater magnitude and saturated images at lower magnitude. This
low number of stars is to be expected: the HUDF was specifically

chosen as a direction out of the plane of the Milky Way containing
as few stars as possible. These 30 stars will be decomposed into
shapelet models of the HUDF PSF in Appendix A3.

To isolate galaxies for shapelet modelling in Appendix A4, those
to be included in the simulation starter set, we cut for objects with
20.0 < Vgoe <29.0and 2.2 < FLUX_RADIUS < 150.0 (in pixels).
These cuts can also be seen in Fig. A1 (barring the large-radius cut
at FLUX_RADIUS = 150.0). There are then 4128 galaxies from
the original masked sample that make these cuts, corresponding
to approximately 460 galaxies arcmin~2. It is this extremely deep
sample that will be used for generating simulated galaxy images,
although of course many of these objects will be lost in noise when
simulating shallower data than the HUDEF.

A2 Postage stamp image extraction

The decomposition of stars and galaxy images into shapelet models
must be preceded by the creation of ‘postage stamp’ images of each
object in the catalogue, cropped around the object in question, and
masked for neighbours. A postage stamp is also made containing a
map of the noise and sky background in the same vicinity.

For each object, the SHAPELETS software draws circular postage
stamps centred on the SExTrRACTOR-measured centroid. The radius
of this circular image is the integer number of pixels closest to a
value rpg, defined in terms of the user-specified SHAPELETS input
parameter NFWHM as rps = NFWHM X a + 4, where a is the
SEXTRACTOR-output semimajor axis of the object. The name of the
parameter NFWHM appears to be from an earlier incarnation of
the software in which rpg was defined in terms of the FWHM. We
choose NFWHM = 6 in this analysis, the default value of 5 being
found to be often insufficiently large to allow the shapelet modelling
of the extended outer profiles of deep, space-based images.

The initial version of the SHAPELETS software used in this analysis
flagged as a modelling failure any objects for which the effective
outer boundary of the shapelet model, defined as a locus of ra-
dius O = BVImax + 1 (see Massey & Refregier 2005) around
the object centroid, extended beyond the edge of the postage stamp.
Small postage stamps led to an unacceptable number of model fail-
ures due to this extension of light profiles beyond the postage stamp
boundaries, but it was found that drawing overly large postage
stamps (NFWHM > 7) around every object was computationally
prohibitive. An algorithm for iteratively redrawing the postage
stamp in the event of such model failure provided an efficient so-
lution to this problem, and is now part of the SHAPELETS software,
documented and available for download online at the web loca-
tion given in footnote 1. In the iterative prescription used for this
analysis, model failures due to postage stamp outgrowth are resub-
mitted using a new postage stamp that is increased in size by a
factor REDRAW_FACTOR = 1.3. This process is repeated up to a
maximum of MAX_N_REDRAWS = 5 times, after which a catas-
trophic failure is flagged. In tests, these parameter choices were
found to give a better compromise between modelling success rates
and computation time than other values tried: the number of floating
point operations required to generate images approximately varies
o 1, s0 REDRAW_FACTOR and MAX_N_REDRAWS cannot
be made arbitrarily large without computational cost.

After the drawing of a postage stamp around each object of in-
terest, a fundamental consideration in the shapelet approach is then
the masking of other, nearby objects: failure to do this well will
often result in the partial modelling of nearby objects as part of the
object of interest. Unlike in the KSB approach, image pixels at a
distance from the object centroid are not explicitly down-weighted

220z Ainr og uo 3senb Aq | 89821 L/2Z8/1/SEY/RIIME/SEIUW/WOD dNOOlWBpEedk//:SARY WOolj papeojumoq



increasing the importance of careful masking. The SHAPELETS soft-
ware therefore constructs over each object an elliptical mask de-
fined with semimajor axis MASK_NEIGH x a and semiminor axis
MASK_NEIGH x b, aligned with the SExTtracTOR-defined object
ellipse. The factor MASK_NEIGH = 4 was found to give better
results than the shapelet default value of 2.75: in the default set-
ting there were often portions of the outer galaxy light profile that
were unmasked and clearly visible. These caused an enhanced rate
of catastrophic modelling failure for the central galaxy of interest
in such postage stamps. The larger value MASK_NEIGH = 4 pro-
vided a significant reduction in such failures without generating
unacceptable numbers of cases where the nearby mask obscures the
object of interest in the postage stamp.

An inverse-variance noise weight map and an estimate of the sky
background level are then made via analysis of blank sky pixels in
the postage stamp, i.e. those unmasked by the central object or a
neighbour. The sky background can be subtracted from the image
postage stamp by fitting a choice of surfaces to blank sky pixels
(Bergé 2006). For the HUDF V6 image, only a very small amount
of residual sky background variation was found and the removal of
a simple constant sky level from each postage stamp was sufficient,
achieved by setting the SHAPELETS input parameter SKY = 1. In
order to make the noise map, we estimate the root-mean-square
(rms) blank sky pixel value to provide a constant, inverse-variance
weight.

There is a further choice in how noise values are assigned
for pixels corresponding to masked neighbours, a choice con-
trolled by the input parameter NEIGHBOUR. For the default value
NEIGHBOUR = 0, these pixels are assigned zero values in the
inverse-variance weight map, and are therefore not considered in
the shapelet modelling. For NEIGHBOUR = 1, the pixels are as-
signed the same weight as elsewhere in the noise map and set to the
background level in the science image. Although it is arguably bet-
ter not to include these masked pixels in any fit for shape inference
purposes, for the purposes of building a simulation galaxy starter set
from HUDF images it was found that NEIGHBOUR = 0 sometimes
caused large negative-flux patches in shapelet models for uncon-
strained regions of the image. So as to build as physically represen-
tative a starter set as possible, we therefore set NEIGHBOUR = 1
for the modelling of HUDF objects, but retain NEIGHBOUR = 0
when later testing the shapelet lensing analysis on the derived, nois-
ier, simulated galaxies.

Finally, after these choices for the construction of the postage
stamps, the trimmed, masked, sky-subtracted science images and
inverse-variance noise weight maps are then ready to be supplied to
the shapelet decomposition and modelling routines as described in
Massey & Refregier (2005). We now describe the use of this soft-
ware to model first the stars in the HUDF, and then the deconvolved,
high-resolution galaxy images that will be used in the flexion and
shear simulations.

A3 Modelling the HUDF PSF

Modelling the PSF in the HUDF is important. A good PSF model
allows an approximate deconvolution of the PSF from galaxy im-
ages, desirable for generating a starter set of models which ac-
curately reflects real galaxy properties for space-based data (see
e.g. Mandelbaum et al. 2012, who demonstrate a novel approach
to simulating convolution-corrected galaxy images). An alternative
approach is simply to model the ACS PSF-convolved galaxy im-
ages of the HUDF and use these as the starter set: such an approach
would be acceptable if the final use of the starter set was in simulat-
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ing observations with far larger PSF sizes, such as for ground-based
data (this was the approach taken in STEP2; Massey et al. 2007a).
However, when simulating ACS data such an approach would lead
to an unrealistic size distribution for the small, fainter objects that
are the most important carriers of weak lensing information. Fainter
galaxies, being not much larger than the ~0.1 arcsec PSF typical
in ACS images, would be noticeably oversmoothed, too large, and
with an unrepresentative radial profile. We therefore correct for this
image blurring as much as possible.

Taking the 30 stellar objects selected as described in Appendix Al
(see also Fig. A1), we first create masked image and noise postage
stamps as described in Appendix A2. We then construct shapelet
models of each star, choosing fixed values of § = 1.80 and
nmax = 20. The fact that these values are fixed, and not allowed to
vary as under the amoeba-driven optimization described by Massey
& Refregier (2005) is important: we wish to combine shapelet mod-
els to create an average PSF for the field, so a fixed np,, and 8 are
practical as they allow simple linear co-addition of models. The
SHAPELETS software also outputs the diagonal entries of the covari-
ance matrix for all shapelet coefficients, and so these are used to
combine the models for each star in an inverse-variance weighted
average, giving the resulting PSF model seen in Fig. A2.

That this model incorporates no spatial variation across the HUDF
field-of-view is not a great concern for the purposes of creating
a realistic starter set for lensing simulations. Although the bulk
effect of image convolution will be largely corrected for, it does
mean that some residual ellipticity and flexion will remain in the
starter set images due to the residual anisotropy variation in the
HUDF PSF. These faint distortions will therefore be retained in the
starter galaxy models, but as will be seen in Section 5 these starter
models are then randomly rotated, inverted and further distorted
before being used in simulations. Within these simulations they are
then lensed, reconvolved with a new PSF and significantly noise-
degraded. Distortions due to variation in the original HUDF PSF
will not have a significant, coherent impact on the final galaxy
images at the level of measurement possible for simulations of this
size.

A4 Modelling the HUDF galaxies

In constructing deconvolved (i.e. corrected for PSF convolution)
shapelet models of the HUDF galaxies, the Massey & Refregier
(2005) software takes as its inputs the object catalogue constructed
as described in Appendix Al, the accompanying postage stamp
images and noise maps, and the shapelet model of the PSF. The
best-fitting shapelet models output by the code will make up the
starter set that is used to create simulated galaxies.

However, as was necessary for the modelling of the HUDF PSF,
choices must be made for input parameter values that govern how
these best-fitting shapelet models are selected. The most important
of these are summarized in Table A2, and now described.

Unlike when modelling the PSF, for constructing galaxy models
we allow ny.x and g8 to vary. These quantities are chosen by an
amoeba-driven optimization process (described by Massey & Re-
fregier 2005; we note that other implementations of the shapelet
method do not necessarily allow ny,,x to vary, e.g. Kuijken 2006).
However, the SHAPELETS software does require the choice of a limit-
ing maximum value of n,,,x = N_MAX, and a lower starting point
N_MIN from which to begin the amoeba search.

The choice of N_MAX is largely motivated by computing re-
source constraints. In general, a significant fraction of overall
processing time is spent modelling a very small subset of
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Figure A2. Upper panel: PSF pattern created from the weighted average
of 30 shapelet models of selected stars in the HUDF Vi science image.
The grey-scale is linear in surface brightness whereas the contours are
logarithmic. Lower panel: mean residuals from shapelet model fits to the
HUDEF stars. A flux excess beyond the central region of the postage stamp is
visible. There are two primary contributions to this excess in the residuals:
the inability of the shapelet model to fully represent the extended wings
of the HUDF PSF, and light from nearby objects not being fitted in the
modelling.

large/bright galaxies with complex structure. The time taken and
memory required to model a given object increases roughly as
nﬁm (Massey & Refregier 2005). Above np,, = 20, the calcula-
tion of pre-multipliers for the shapelet basis functions (see equa-
tion 16) causes numerical overflow in the unsigned, 64-bit inte-
gers the SHAPELETS software uses for the calculation and tabulation
of factorial terms in the numerator and denominator of P, ,,. For
nmax > 20, the SHAPELETS software therefore calculates these num-
bers as double-precision floating point numbers, as and when they
are required. This leads to significant processing overheads, albeit
ones which might plausibly be averted with some changes to the
internal processing design of the SHAPELETS software itself.

Table A2. sHAPELETS software input parameters. Upper sec-
tion: input parameter settings that influence the construction
of postage stamps. Lower section: parameters that control the
shapelet modelling and deconvolution. No default value is in-
dicated for parameters added as a modification to the publicly
available software.

SHAPELETS input parameter ~ Chosen value  Default value

NFWHM 6 5
REDRAW_FACTOR 1.3 -
MAX_N_REDRAWS 5 -
MASK_NEIGH 4.0 2.75
NEIGHBOUR 19,0° 0
SKY 1 0
N_MIN (minimum 7y, ) 0 2
N_MAX (maximum 7,x) 20 20

THETA_MIN_GEOM 0.5%,1.0° 0.2

“Values chosen for modelling HUDF galaxies
PValues chosen for modelling the ACS simulated galaxies

However, the largest, brightest and best resolved galaxies are
also the most likely to be local and only very weakly lensed in
real data, and this reduces the motivation for dedicating significant
amounts of development effort and processing time to producing
high-order shapelet models of this population. We therefore choose
N_MAX=20, which nonetheless allows a high degree of galaxy
substructural complexity to be realized (e.g. Fig. 5). We choose
N_MIN =0 so as to give the SHAPELETS code freedom to model
galaxies with a simple circular Gaussian if there is no strong statis-
tical support for a more complex model.

The other input parameter chosen to differ from the default choice
was THETA_MIN_GEOM = 0.5. This parameter sets a lower limit
on the quantity defined by Massey & Refregier (2005) as Opin, =
B/~/Nmax + 1, which is the minimum geometric scale on which the
shapelet model varies. The requirement upon the shapelet modelling
amoeba of only accepting models with G, > 0.5, also suggested
by Melchior et al. (2007), prevents excessive subpixel modelling
that can lead to unphysical ‘ringing’ in shapelet models of galaxy
images.

The best-fitting galaxy models resulting from these chosen input
parameters, postage stamps and HUDF PSF model are described in
Section 4.

APPENDIX B: TESTING IMAGE OPERATIONS

B1 Weak lensing distortions

When performing real-space raytracing as described in Section 5.2,
we use the lens equation to map from the image pixel positions
back to a non-regular grid of positions in the source plane. At these
points, we sample the surface brightness from the shapelet model
of the source galaxy /. Ignoring the overall deflection of galaxy
images (equivalent to setting 6. = 8. = 0), and using equation (3),
we may write

10) = 1900 = IA; ;0; + D;j10;6:/2). (B1)

In practical terms, the raytracing scheme is simple: we assign 1(6)
for each desired image pixel position @ by taking the shapelet model
value of I at the position 8’ = 6'(9, y, F, G).

Square pixels in the image plane do not map to square pixels
in the source plane, and when flexion is included with shear, the
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mapped pixel boundaries become curved in the source plane. This
means that it is no longer possible to use the results of Massey &
Refregier (2005) to perform the exact flux integral of 7(6) across
each pixel. In the simplest approximation, one can adopt the pixel-
centre surface brightness to estimate flux but more accurate results
can be achieved by upsampling, i.e. by creating a higher resolution
image and then summing values at the high-resolution subpixel
locations to estimate the true integral. This allows approximation
of the exact shear and flexion transformation to an accuracy that
depends on the degree of upsampling adopted.

We can only upsample by a finite, preferably integral, factor. In
order to understand what factor is necessary in our simulations, we
now test its impact upon fundamental lensing measures (e.g. image
moments) for noise-free ACS galaxy models.

We first extracted a random sample of 1000 galaxies from the
HUDF starter set. For each galaxy, a control postage stamp image
was constructed by integrating across ACS imaging survey-size,
post-drizzling pixels (0.03 arcsec, as used in the HUDF, COSMOS,
GEMS and STAGES final science images; see Beckwith et al. 2006;
Leauthaud et al. 2007; Caldwell et al. 2008; Gray et al. 2009) using
the exact Massey & Refregier (2005) analytic results. We refer
to this ‘true’ pixelized control image as /). Simple, unweighted
moments for such images may be defined as follows:

S = /dzel(o), (B2)
1 2

qij = g/d O, A0 1(8), (B3)

qijk = é/d@Ae[Ae,Aekl(()), (B4)

Qiju = é / d*0 A6, AO; AO, A6 1(B), (B5)

where A@ =60 — 6. as before. In the noise-free case, the un-
weighted moments can be used to construct complex polarization
measures that provide estimators of shear and flexion (e.g. Kaiser
et al. 1995; Bartelmann & Schneider 2001; Okura et al. 2007).

We construct the unweighted polarization

. — g +2i
0= +ie, = DL TR (B6)
qi + g2
(see e.g. Kaiser et al. 1995; Bartelmann & Schneider 2001) and,
following Okura et al. (2007), we define
_ g+ qi2 + (g + o)

= fi+ifa= ) (B7)
f=h f2 qin +2qun + gnn

. g1 — 3q122 +1(3q112 — g222)
g =g +ig= ‘ (BS)
qin +2qun + gnn

as equivalent measures for F and G, respectively. We require that
any finite degree of upsampling must cause fractional errors in e,
f and g that are significantly smaller than those we expect due to
noise in the final simulation results.

The first step in the test is to calculate control values ¢, £ and
g using the moments as defined in equations (B2)—~(B8) for each
control image 1 from the sample of HUDF starter galaxies. We
then make a series of ray-traced estimates I, of I’ by performing
a numerical integral of the flux across the upsampled pixels. We
define the upsampling ratio r as the ratio between the linear scale
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Figure B1. Testing the impact of upsampling ratio for generating images
of lensed (by shear and flexion) galaxies using multiple ‘ray-traced’ image
samples. Plot of median fractional error in simple unweighted e (top panel),
(centre panel) and g (bottom panel) estimators, for a sample of 1000 galaxies
randomly selected from the starter set, with increasing upsampling ratios r
as described in Appendix B1. Each §e;, &f;, etc. is calculated by comparing
the upsampling-derived value relative to the exact (analytically integrated)
value. The wide solid error bars on each point give the standard error on the
median (Lupton 1993), whereas the dashed error bars illustrate the typical
range of the effect as described by the NMAD of the fractional error.

of output pixels and that of the subpixels in the upsampled image:
r =1 is equivalent to simply taking the central pixel value; r = 2 is
equivalent to four equally spaced subpixels; etc. For each galaxy /.,
we measure a corresponding e, f and g, and calculate the fractional
deviation in each component:

Se; e — eE')

Bei _ei—e (B9)
e; e;

with equivalent expressions for fand g, forr =1, ..., 7. In Fig. B1,

we plot the median of these fractional deviations across the sample
of galaxies, as a function of r.

As a measure of the typical range for the error due to finite
upsampling, in Fig. B1 we also plot as dashed line error bars, the
NMAD of the fractional error. The NMAD is a robust measure of
the width of a distribution of some variable x, defined as

2

NMAD(x) ~ 1.4826 x MAD(x) (B10)

1.4826 x Median (|Jx — Median (x)|), (B11)

where the MAD is simply the median absolute deviation, and
the constant scale factor 1.4826 ensures that the NMAD of a
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Gaussian distribution is approximately equal to its standard de-
viation, NMAD =~ o. Fig. B1 shows the NMAD for ée;/e;, &fi/f;
and 8g;/g; at each value of r, to give an idea of the typical range in
fractional errors for these quantities due to the use of finite element
upsampling techniques. It should be noted that median statistical
measures were used because the property of interest, which in this
case is specifically the fractional uncertainty on an ellipticity or
flexion measurement, leads to large outlier values when there are
small values of e;, f; or g; in the denominator. Adopting median
statistics downweights these noisy outliers to reduce overall statis-
tical uncertainty on the central tendency. As a check on the results,
simple means were also used and resulted in a consistent (but rather
noisier) trend.

The results of Fig. B1 are encouraging and as expected: there
is clear convergence towards smaller and smaller fractional errors
with increasing r. Practically, the results imply that for the HUDF
galaxies and an output pixel scale of 0.03 arcsec, we need only
upsample galaxies by a factor of 2 in order to give output images
that are typically accurate in e, f and g to within a factor of ~1073
of the correct value (a target value motivated by the results of, e.g.,
Amara & Réfrégier 2008). Interestingly, Fig. B1 shows that good
accuracy may be achieved for e, fand g, even when r = 1, for which
the error in the idealized measures is often less than 1 per cent of
the underlying value.

B2 Convolution

To test the accuracy of numerical convolution, we use the methods
developed in Appendix B1. We again select a random sample of
1000 HUDF galaxies from the starter set. For each galaxy, we
construct a set of seven images, upsampled by a linear factor r = 1,
..., 71, and perform a convolution via FFT using an image of the
circularized GEMS PSF (Fig. 3) upsampled by the same factor. The
convolved image is then summed back to the final resolution of
0.03 arcsec pixel™!, and then each of e, f and g are measured.

Because there is no practical way of generating the ‘true’ con-
volved image in this manner as a control (as discussed before the
exact shapelet treatment is computationally unfeasible), we instead
take the high-upsampling case of » = 11 as the reference point. The
fractional deviation from this r = 11 is then calculated for each
galaxy and each r, and in Fig. B2 we plot the resulting median val-
ues and range as in Appendix B1. As was found for the shear and
flexion upsampling tests, the results of Fig. B2 are encouraging:
an upsampling ratio of only r = 2 allows a systematic fractional
error in the estimates of e, f and g that is typically 0.1 per cent
or less. Interestingly, the effect is in the opposite direction to that
induced when performing raytracing lensing transformations. The
effect of a finite sampling approximation to convolution is to cause
anet reduction in these moments of a galaxy image, whereas a finite
sampling approximation to the lens mapping artificially exaggerates
these moments. The overall net effect of the two approximations
will thus, on average, be typically smaller than that described by
either of Figs B1 or B2 in isolation.

APPENDIX C: SHAPELET ESTIMATORS
OF FLEXION AND SHEAR

A variety of polar shapelet estimators for shear and flexion are
described by M07. In theory, the number of lensing estimators that
may be constructed using shapelets is only limited by the number of
shapelet models available, n,x. However, the majority of shapelet
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Convolution upsampling ratio r

Figure B2. Testing the impact of upsampling ratio in numerical convolution
via discrete Fourier transforms, using FFT. Plot of median fractional error
in simple unweighted e (top panel), f (centre panel) and g (bottom panel)
estimators, for a sample of 1000 galaxies randomly selected from the starter
set, after performing a convolution using discrete Fourier transforms at
an upsampling ratio r as described in Appendix B2. Each de;, df;, etc., is
calculated by comparing the ovesampling-derived value relative to the value
found for r = 11. The wide solid error bars on each point give the standard
error on the median (Lupton 1993), whereas the dashed error bars illustrate
the typical range of the effect as described by the NMAD of the fractional

€rror.

models will be highly truncated to somewhat low n,,,, in practice.
Estimators which make extensive use of higher order information
prove problematic for many galaxy images, particular those which
rely upon the convergence (in the sense of converging to a limit) of
sums over shapelet coefficients (see M07).

In this paper, we limit our investigations of shear and flexion
measurement primarily to the most simple, and therefore widely
available in noisy galaxies, shapelet estimators. We now describe
construction of useful estimators based on the results of MO7, taking
into account important practical realities such as the wide dynamic
range of galaxy fluxes and sizes.

C1 Normalizing shapelet coefficients by galaxy size and flux

The simplest shear estimator is that which employs the polar
shapelet coefficient f, , as the galaxy polarization estimator (see
MO7, section 3, for the precise usage of this term). This quantity
can in fact be straightforwardly shown to correspond to a Gaussian-
weighted quadrupole moment of the shapelet model, with a weight-
ing radius of B.
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The raw form of the simplest well-motivated estimator that can
be constructed from f; , is as follows:

~Gauss \/E f2.2 Cl
Y (foo — fao)’ b

where the expectation notation used in the denominator denotes an
estimate of the ensemble average over all galaxies in the source
sample (Refregier & Bacon 2003; M07).

However, we have found that this estimator suffers an important
disadvantage: both the numerator and denominator share the dimen-
sionality of the shapelet coefficients themselves, scaling with both
object flux and inverse scale size 8 (Massey & Refregier 2005). This
means that estimators of shear (and similarly constructed flexion es-
timators) vary strongly in magnitude as a function of the object size
and flux relative to those of the ensemble average.

It is therefore desirable to generalize the estimator of equation
(C1) to create a new estimator we label 7, defined as

5, = f# 2
4 (v(fo.o = fa0)) ()

where the parameter v is suitably chosen to be a property of the
galaxy image that helps normalize terms in the numerator and de-
nominator, helping to lessen the impact of the wide dynamic ranges
of flux and scale length in galaxy samples. This is analogous to the
adoption of a normalizing factor 1/S in the definition of the image
moments g;;, g and g, in Appendix B1. It should be stated from
the outset that if v is an estimated property of the image itself it may
add both uncertainty and bias to the shear estimator. We will discuss
how this danger weighs against the benefits of such a normalization
later in Appendix C3.

The simplest possible polar shapelet flexion estimators can be
constructed from similar combinations of shapelet coefficients. The
first-order F estimator can be expressed as

~Gauss:i Si
38 (di1)’

(C3)
where

R? R? 54/2R?
di = (1—ﬁ> Jfoo+ — fro+ V2 ———¢"fr2 — fio0. (CH

B 647
The shapelet model parameters ¢ and R? are defined in Massey &
Refregier (2005) as

/716 3 even

R = Z( + D fno- (C5)
/;16 3 even

= ~mp Z[( + 21" fuas (C6)

where F denotes the shapelet model flux,

even

F=pvany fuo, (€

and where all sums are over all even n coefficients f, ¢ and f,, » in
the model (m = 0 and m = 2 coefficients do not exist for odd n). We
note that & and R appear only in those terms necessary to correctly
account for the flexion centroid shift at linear order in the applied F
(see Goldberg & Bacon 2005; M07). It should also be noted that d, |
in equation (C4) contains a term proportional to £* X f;, », forn =2;
in M07 these were argued to vanish due to rotational symmetry in
the source plane. We argue that this term should not be omitted
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since the definition of ¢ above shows the inclusion of /> ; as the first
coefficient in the sum. For most galaxies, lower-n components of
the shapelet model will dominate those with higher-#, so that as a
first approximation &* x f» » ~ |f>.2|?. This does not cancel due to
rotational symmetry across a population of galaxies.

For the first-order G estimator, we have the expression

~Gauss % f3 C8)
38 (dss)’

where

dsz = (foo + fro — fao — feo) - (C9)

Analogously to the case of 7G2S these estimators of both F and
G are directly related to Gaussian-weighted octupole moments (e.g.
Okura et al. 2007) of the shapelet model galaxy.

As for shear, the large dynamic range in the shapelet coefficients
due to varying galaxy size and flux suggests it may be useful to
rescale numerator and denominator with a generalizing factor v,
defining

~ 4 l)fl 1
F, = ) C10
3,3 <Vd1‘1> ( )
~ 4\/6 Uf33
= 3 Cl1
0= 35 Todry (C11)

We now discuss options for a suitable choice of this normalization
parameter v.

C2 Choosing a suitable v

Adopting v = 1 recovers the M07 ?Gauss estimator. Natural alter-
native choices for v are combinations of shapelet model parameters
that make the numerator and denominator of equation (C2) dimen-
sionless. Two of the simplest and most easily motivated potential
combinations are

v=p/F; (C12)

v =1/fo0; (C13)

(cf. the dimensionless shapelet basis functions introduced in Re-
fregier 2003.) In Fig. C1, we plot histograms of the values of the
denominators of the shear and flexion estimators defined by equa-
tions (C2), (C10) and (C11), from shapelet fits to the simulation
galaxies in this study. We plot results for the two choices of v
expressed by equations (C13) and (C12). The shape of these his-
tograms appears to show a consistent trend: using v = 1/ ( results
in distributions of denominator values that have a more clearly de-
fined central tendency than v = B/F. This fact argues in favour of
the adoption of 1/ ¢ to normalize to a dimensionless combination
of shapelet coefficients.

To explore the distributions further, we define the following mea-
sure of skewness as a combination of the sample mean, arithmetic
median and standard deviation, commonly known as Pearson’s sec-
ond skewness coefficient:

I'(x) = 3 [Mean(x) — Median(x)] /o (x). (C14)

Estimates of I" for the distributions of Fig. C1, with uncertainties,
are given in Table C1. We see that the skewness in the v = 8/F
distributions is consistently greater than that in the distribution of
denominator values when choosing v = 1/fy 0. Once again, this
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Figure C1. Histograms showing distributions of the values averaged in the
denominators of equations (C2), (C10) and (C11) — upper, middle and lower
panels, respectively — for two choices of normalization parameter v. Solid
line: choosing v = B/F. Dot—dashed line: choosing v = 1/fy, ¢.

Table C1. Estimates of the skewness I" as defined by equation (C14)
for the distributions of Fig. C1.

Skewness I"(x)

v x=v(fo,0 — fo4) x=vd 1 x=vds 3
B/F 0.264 £+ 0.002 0.173 + 0.002 0.198 £+ 0.001
1/fo,o  0.0275 £ 0.0002 —0.0447 £+ 0.0004  0.153 £ 0.001

argues in favour of the adoption of v = 1/f;) ( as a measurable quan-
tity with which to make the numerators and denominators of our
shear and flexion estimators dimensionless. No other combination
of observables was seen to provide better performance, either in
terms of showing a clear location for the central tendency of the
denominator distributions shown in Fig. C1, or in terms of reducing
the required level of systematic bias calibration as shown in Fig. 6.
To estimate shear and flexion from shapelet fits to our simulated
images, we therefore adopt = 7,, F = F, and G = G,, where

v = 1/fo,0.

C3 Potential issues

The quantity v, which is estimated for each object individually, is a
function of random variables and therefore a random variable itself.
Its inclusion in the estimators of equations (C2), (C10) and (C11)
is therefore a cause of both additional uncertainty in estimators of
galaxy shape and potential bias (see e.g. Melchior & Viola 2012).

These undesirable properties must be weighed against the prac-
tical advantage of the technique in providing dimensionless com-
binations of shapelet coefficients for shape estimation. Given the
large dynamic range in both apparent galaxy sizes and fluxes in
extragalactic data, and thus in the raw values of best-fitting shapelet
coefficients f,, ,,, this advantage is considerable. Fig. C1 shows that
such combinations can provide distributions with a desirably com-
pact support, and the same is true for the denominators of the shear
and flexion estimators of equations (C2), (C10) and (C11).

To provide robust estimators of shear and flexion in the presence
of such a large dynamic range in f;, ,, values would probably require
the splitting of the galaxy sample into cells of apparent size and
flux in a manner similar to that described by Kaiser (2000). Such
a scheme carries its own biases, due to the action of shear and
flexion to carry galaxies between adjacent cells. Given the degree of
statistical uncertainty in both shear and flexion measurements from
space-based data sets in the near and medium term, the motivation
for constructing such dimensional cell-based estimators was not
strong. However, such a scheme, if correctly implemented, might
help reduce the calibration factors found in Section 6.3.
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