
HAL Id: hal-03645548
https://hal.science/hal-03645548

Submitted on 11 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CFHTLenS tomographic weak lensing: quantifying
accurate redshift distributions

Jonathan Benjamin, Ludovic van Waerbeke, Catherine Heymans, Martin
Kilbinger, Thomas Erben, Hendrik Hildebrandt, Henk Hoekstra, Thomas D.

Kitching, Yannick Mellier, Lance Miller, et al.

To cite this version:
Jonathan Benjamin, Ludovic van Waerbeke, Catherine Heymans, Martin Kilbinger, Thomas Erben,
et al.. CFHTLenS tomographic weak lensing: quantifying accurate redshift distributions. Monthly
Notices of the Royal Astronomical Society, 2013, 431, pp.1547-1564. �10.1093/mnras/stt276�. �hal-
03645548�

https://hal.science/hal-03645548
https://hal.archives-ouvertes.fr


MNRAS 431, 1547–1564 (2013) doi:10.1093/mnras/stt276
Advance Access publication 2013 March 8

CFHTLenS tomographic weak lensing: quantifying accurate redshift
distributions

Jonathan Benjamin,1‹ Ludovic Van Waerbeke,1 Catherine Heymans,2

Martin Kilbinger,3,4,5,6 Thomas Erben,7 Hendrik Hildebrandt,1,7 Henk Hoekstra,8,9

Thomas D. Kitching,2 Yannick Mellier,4,10 Lance Miller,11 Barnaby Rowe,12,13

Tim Schrabback,7,8,14 Fergus Simpson,2 Jean Coupon,15 Liping Fu,16

Joachim Harnois-Déraps,17,18 Michael J. Hudson,19,20 Konrad Kuijken,8

Elisabetta Semboloni,8 Sanaz Vafaei1 and Malin Velander8,11

1University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
2Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK
3CEA Saclay, Service d’Astrophysique (SAp), Orme des Merisiers, Bât 709, F-91191 Gif-sur-Yvette, France
4Institut d’Astrophysique de Paris, CNRS, UMR 7095, 98 bis Boulevard Arago, F-75014 Paris, France
5Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
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ABSTRACT
The Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) comprises deep multi-
colour (u∗g′r′i′z′) photometry spanning 154 deg2, with accurate photometric redshifts and
shape measurements. We demonstrate that the redshift probability distribution function
summed over galaxies provides an accurate representation of the galaxy redshift distribu-
tion accounting for random and catastrophic errors for galaxies with best-fitting photometric
redshifts zp < 1.3.

We present cosmological constraints using tomographic weak gravitational lensing by large-
scale structure. We use two broad redshift bins 0.5 < zp ≤ 0.85 and 0.85 < zp ≤ 1.3 free of
intrinsic alignment contamination, and measure the shear correlation function on angular scales
in the range ∼1–40 arcmin. We show that the problematic redshift scaling of the shear signal,
found in previous Canada–France–Hawaii Telescope Legacy Survey data analyses, does not
affect the CFHTLenS data. For a flat � cold dark matter model and a fixed matter density
�m = 0.27, we find the normalization of the matter power spectrum σ 8 = 0.771 ± 0.041.
When combined with cosmic microwave background data (Wilkinson Microwave Anisotropy

� E-mail: jonben@gmail.com

C© 2013 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/431/2/1547/1459040 by guest on 11 August 2022



1548 J. Benjamin et al.

Probe 7-year results), baryon acoustic oscillation data (BOSS) and a prior on the Hubble
constant from the Hubble Space Telescope distance ladder, we find that CFHTLenS improves
the precision of the fully marginalized parameter estimates by an average factor of 1.5−2.
Combining our results with the above cosmological probes, we find �m = 0.2762 ± 0.0074
and σ 8 = 0.802 ± 0.013.

Key words: techniques: photometric – galaxies: distances and redshifts – galaxies: photome-
try – cosmological parameters – cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

Weak gravitational lensing by large-scale structure provides valu-
able cosmological information that can be obtained by analysing the
apparent shapes of distant galaxies that have been coherently dis-
torted by foreground mass (Bartelmann & Schneider 2001). Since
weak lensing is sensitive to the distance–redshift relation and the
time-dependent growth of structure, it is a particularly useful tool
for constraining models of dark energy (Albrecht et al. 2006, 2009;
Peacock et al. 2006). To measure the contribution of dark energy
over time, the lensing signal must be measured at several redshifts,
which is known as weak lensing tomography (see, for example, Hu
1999; Huterer 2002). Several observations of weak lensing tomog-
raphy have been completed (Bacon et al. 2005; Semboloni et al.
2006; Massey et al. 2007). Most recently a study of the Cosmic
Evolution Survey (COSMOS) by Schrabback et al. (2010) found
evidence for the accelerated expansion of the Universe from weak
lensing tomography.

Redshift information is vital to weak lensing interpretation since
the distortion of light bundles is a geometric effect and the growth of
structure is redshift dependent. Weak lensing data sets necessitate
the use of photometric redshifts due to the large number of galaxies
they contain. Spectroscopic redshifts typically exist for a small and
relatively bright fraction of galaxies, providing a training set for
photometric redshifts at brighter magnitudes. Several approaches
for determining the redshift distribution of galaxies have been used
in past weak lensing studies. Many early studies (see, for exam-
ple, Van Waerbeke et al. 2002; Bacon et al. 2003; Hamana et al.
2003; Jarvis et al. 2003; Van Waerbeke, Mellier & Hoekstra 2005;
Hoekstra et al. 2006; Benjamin et al. 2007; Fu et al. 2008), lack-
ing multiband photometry, relied on external photometric redshift
samples such as the Hubble Deep Field-North and South, and the
Canada–France–Hawaii Telescope Legacy Survey (CFHTLS) Deep
fields. Due to the small area of these fields, sampling variance was
an important, but often neglected, source of error in these studies,
as presented by Van Waerbeke et al. (2006).

Current and planned weak lensing surveys have multiband pho-
tometry enabling photometric redshift estimates for all galaxies.
Methods for measuring photometric redshifts use various model-
fitting techniques with the goal of finding a match between the
observed photometry and template galaxy spectra which are dis-
placed in redshift and convolved with the optical response of the
filter set, telescope and camera. Depending on the set of photometric
filters, degeneracies can exist between different template spectra at
different redshifts. We refer to large errors in the best-fitting param-
eters due to mismatches under these degeneracies as catastrophic
errors. The effect of catastrophic errors on weak lensing parameter
constraints has been investigated in several studies, for example Ma,
Hu & Huterer (2006), Bernstein & Huterer (2010) and Hearin et al.
(2010). Using a detailed Fisher matrix analysis, Hearin et al. (2010)
show the importance of properly characterizing catastrophic errors
to dark energy parameter constraints using weak lensing tomogra-

phy. The implication of neglecting these errors is not well known,
although Hearin et al. (2010) argue that there are many factors gov-
erning the final impact on dark energy parameters and each survey
needs to be carefully considered to make any definitive statement. It
is clear that catastrophic errors will become increasingly important
in the next generation of weak lensing cosmic shear surveys.

In this paper, we present a tomographic weak lensing anal-
ysis of the Canada–France–Hawaii Telescope Lensing Survey1

(CFHTLenS), with redshifts measured in Hildebrandt et al. (2012)
using the Bayesian photometric redshift code (BPZ; Benı́tez 2000).
The BPZ analysis of the CFHTLenS photometry uses a set of six
recalibrated spectral energy distribution galaxy templates from Ca-
pak et al. (2004) and a magnitude-dependent prior on the redshift
distribution (see Hildebrandt et al. 2012 for further details). If the
galaxy template set and prior used are an accurate and complete
representation of the true galaxy population at all redshifts, then
the probability distribution function (PDF) calculated using BPZ de-
termines the true error distribution. The redshift distribution of a
galaxy sample can then be calculated from the sum of the PDFs
to determine an accurate redshift distribution that includes the ef-
fects of both statistical and catastrophic errors. This is in contrast to
the standard method of using a histogram of photometric redshifts
taken from the maximum of the posterior. We test the accuracy
of the summed PDFs with overlapping spectroscopic redshifts at
bright magnitudes and with resampled COSMOS-30 redshifts (Il-
bert et al. 2009) at faint magnitudes. In both cases, we also assess
the level of contamination between redshift bins using an angular
cross-correlation technique (Benjamin et al. 2010).

Demonstrating the accuracy of the summed PDFs is of particular
interest to those using the CFHTLenS data products. However, the
results in this paper also contribute to a broader understanding of the
use of redshift PDFs as measures of the redshift distribution. The
CFHTLenS photometric redshifts are measured using BPZ (Benı́tez
2000); however, other methods also produce posterior PDFs such
as the ZEBRA photometric redshift code (Feldmann et al. 2006) and
a photometric redshift-independent method presented in Lima et al.
(2008) and extended in Cunha et al. (2009). The Cunha et al. (2009)
method estimates a probability distribution based on the redshifts of
nearest-neighbour galaxies in multidimensional phase space. There
have been several studies focused on using redshift PDFs as esti-
mates of the redshift distribution. Brodwin et al. (2006) show that
the summed PDFs of galaxies can be used instead of the maximum
likelihood values, as a better estimate of the redshift distribution
of galaxies. This was tested on simulated galaxy samples using a
Monte Carlo technique. Using the full PDF for galaxies has been
shown to dramatically reduce the weak lensing calibration bias for
galaxy–galaxy lensing (Mandelbaum et al. 2008). Wittman (2009)
presents a technique to estimate an unbiased redshift using the PDF
of a galaxy, effectively correcting the maximum likelihood value.
The work in this paper builds on these results and most notably we

1 http://www.cfhtlens.org
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will use two methods to assess the accuracy of the summed PDFs
at faint magnitudes where spectroscopic redshift coverage does not
exist.

Previous CFHTLS results were found to be biased, underesti-
mating the shear at high redshifts, thus requiring the addition of a
nuisance parameter when model fitting (Kilbinger et al. 2009). Fur-
thermore, field selection was discriminated based on a cosmology-
dependent criterion possibly resulting in a confirmation bias. The
CFHTLenS catalogues we use in this paper have been thoroughly
tested for systematic errors. These tests are cosmology insensitive
and were completed without any cosmological analysis of the data
(Heymans et al. 2012b). One of the primary goals of this paper is
to demonstrate that the redshift scaling of the shear is consistent
with expectations. We limit our cosmic shear analysis to two broad
redshift bins in order to obtain parameter constraints that do not
depend on the modelling of intrinsic alignment (Croft & Metzler
2000; Heavens, Refregier & Heymans 2000; Hirata & Seljak 2004).
A study of cosmological constraints from CFHTLenS with several
redshift bins, accounting for intrinsic alignment, is presented in
Heymans et al. (2012a). Kilbinger et al. (2013) present a thorough
investigation of 2D cosmic shear, including a comparison of all
popular second-order shear statistics. Simpson et al. (2013) use
the tomographic shear signal presented in this paper to constrain
deviations from General Relativity on cosmological scales.

CFHTLenS has an effective area of 154 deg2 with deep photom-
etry in five broad bands u∗g′r′i′z′ and a 5σ point source limiting
magnitude in the i′ band of i ′

AB ∼ 25.5. These data were obtained as
part of the CFHTLS, which completed observations in early 2009.
Heymans et al. (2012b) present an overview of the CFHTLenS anal-
ysis pipeline summarizing the weak lensing data processing with
THELI (Erben et al. 2012), shear measurement with lensfit (Miller
et al. 2013) and photometric redshift measurement from point spread
function matched photometry (Hildebrandt et al. 2012) using BPZ.
Each galaxy in the CFHTLenS catalogue has a shear measurement
εobs, an inverse variance weight w, a PDF giving the posterior prob-
ability as a function of redshift and a photometric redshift estimate
from the peak of the PDF zp. The shear calibration corrections de-
scribed in Miller et al. (2013) and Heymans et al. (2012b) are applied
and we limit our analysis to the 129 of 171 pointings that have been
verified as having no significant systematic errors through a series of
cosmology-insensitive systematic tests described in Heymans et al.
(2012b).

This paper is organized as follows: in Section 2, we use a series
of tests to determine whether the PDFs are sufficiently accurate to
determine the redshift distributions for the many different science
analyses of the CFHTLenS data set, and then apply our findings to
the first tomographic analysis of the CFHTLenS data set in Sec-
tion 3. We investigate the effect of non-linear modelling of the mass
power spectrum and baryons on our tomographic weak lensing re-
sults in Section 4. Section 5 contains our concluding remarks.

2 G ALAXY REDSHIFT DISTRIBU TIONS
D E T E R M I N E D FRO M TH E P H OTO M E T R I C
REDSHIFT PDF

When considering the redshift of an individual galaxy, a best-fitting
redshift must be measured from the PDF, typically corresponding
to the peak of the PDF. If many galaxies are considered, the sum
of their PDFs can be used as an estimate of the redshift distribution
instead of the distribution of best-fitting redshifts. We show in this
section that, by using information from the entire PDF, we achieve
an accurate model of the redshift distribution. The accuracy of

the PDFs is not known a priori since this depends on whether the
template spectral energy distributions and prior information are a
representative and complete description of the galaxies in the survey.

We compare the summed PDFs against several other meth-
ods of measuring the redshift distribution. These methods include
a comparison with the overlapping VIMOS VLT Deep Survey
(VVDS) and DEEP2 spectroscopic redshifts (see Section 2.1), sta-
tistical resampling of the CFHTLenS photometric redshifts using
the COSMOS-30 redshifts (see Section 2.2) and a photometric red-
shift contamination analysis (see Section 2.3).

We divide the data into six redshift bins and measure the redshift
distribution of each. We are limited in the total number of bins by
the pairwise contamination analysis, which breaks down for larger
numbers of bins (see Section 2.3 for a more detailed discussion).
The redshifts are most reliable in the range 0.1 < zp < 1.3 where
comparison to spectroscopic redshifts, for i′ < 24.5, shows the
scatter to be 0.03 < σ�z < 0.06, with an outlier rate of less than
10 per cent (Hildebrandt et al. 2012). Here σ 2

�z is the variance in the
value of �z, which is given by

�z = zp − zs

1 + zs
, (1)

where zp and zs are the photometric and spectroscopic redshifts,
respectively.

The redshift bins are chosen such that each bin is approximately
four times wider than the photometric redshift error 0.04(1 + zp).
This is done to avoid excessive contamination between adjacent
bins. For zp > 1.3, there are only a small number of galaxies,
making a subdivision of this range difficult. The six bins are as
follows:

Bin 1: 0.00 < z1 ≤ 0.17
Bin 2: 0.17 < z2 ≤ 0.38
Bin 3: 0.38 < z3 ≤ 0.62
Bin 4: 0.62 < z4 ≤ 0.90
Bin 5: 0.90 < z5 ≤ 1.30
Bin 6: 1.30 < z6.

2.1 Comparison with spectroscopic redshifts

We begin by investigating the redshift distribution given by spectro-
scopic redshifts. Spectroscopic redshifts from the VVDS (Le Fèvre
et al. 2005) and the DEEP2 galaxy redshift survey (Newman et al.
2012) overlap with CFHTLenS and were used to test the photomet-
ric redshifts. For a given photometric redshift bin, we can select
those galaxies that have spectroscopic redshifts and examine their
redshift distribution. The spectroscopic sample is complete for i′ �
22.0, dropping to ∼90 per cent completeness for i′ < 23.0. We adopt
the latter cut to ensure that there are a sufficient number of galaxies
for our analysis. The catalogues are also cut to exclude objects on
masked regions and those that are flagged as stars. Stars are selected
with star_flag (see Erben et al. 2012 for more details). Due to
the dithering pattern, which ensures that exposures exist between
individual CCD chips, there are a variable number of exposures
over a single pointing. This changing photometric depth is difficult
to account for when constructing a random catalogue with the same
properties, which is necessary for the contamination analysis pre-
sented in Section 2.3. To avoid this complexity, a final cut is made
to select galaxies on areas of the sky that were detected during every
exposure, and random objects are placed only in these areas. We do
not expect this to bias our results as there is no correlation between
the physical properties of a galaxy and the part of the CCD mosaic
it was observed on.
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Figure 1. Comparison of the predicted redshift distributions within each broad redshift bin, labelled zi. A magnitude cut of i′ < 23.0 is used for comparison
with spectroscopic redshifts. The solid lines (pink) show the summed PDFs for all galaxies within a given redshift bin. The dashed lines (green) show the
spectroscopic redshift distribution. The listed P-values are the result of a two-sample Kolmogorov–Smirnov test of the distributions; we adopt a significance
level of α = 0.05 rejecting the null hypothesis that the two distributions are drawn from the same population for the highest redshift bin.

A comparison of redshift distributions for i′ < 23.0 is presented
in Fig. 1. For each redshift bin, we show the redshift distribution
predicted by the summed PDF (solid line) and the spectroscopic
redshift distribution (dashed line). The PDFs of all galaxies within
a given redshift bin are summed and the resulting distribution nor-
malized to obtain the solid line. If the summed PDF is a good
representation of the true error distribution, then we would expect
this distribution to agree with the redshift distribution measured
with the spectroscopic redshifts.

We use the Kolmogorov–Smirnov two-sample test (KS test) to
determine if the two distributions in Fig. 1 are consistent with being
drawn from the same population (details of this test can be found
in, for example, Wall & Jenkins 2003). Before performing the test,
we adopt as a discriminating criterion a significance level of α =
0.05. The P-values found from the KS test are presented as labels
in Fig. 1. We find that the distributions for the first five redshift bins
are consistent with having been drawn from the same population at
a significance level of α = 0.05. However, we can reject the null
hypothesis for the last redshift bin at the same level of significance,
indicating that the two distributions are significantly different. This
is indicative of the large uncertainties in the photometric redshifts at
zp > 1.3 and confirms the choice of this cutoff made by Hildebrandt
et al. (2012).

2.2 Comparison with COSMOS photometric redshifts

The agreement at bright magnitudes shown in Fig. 1 is encouraging.
However, the majority of lensing studies include fainter galaxies;
for example, a magnitude limit of i′ < 24.7 is adopted for the
measurement of CFHTLenS galaxy shapes (Miller et al. 2013).
Therefore, we wish to investigate the redshift distribution with this
deeper magnitude cut. The spectroscopic redshift sample described
in Section 2.1 cannot be used for comparison since the completeness
of this sample drops sharply beyond i′ ∼ 23. Instead, we use the
COSMOS-30 photometric redshift catalogue (Ilbert et al. 2009),

which is accurate to σ�z � 0.012 due to 30 bands of wavelength
coverage from the ultraviolet to the mid-infrared. Quoting values for
the Subaru i band, the COSMOS-30 data are 99.8 per cent complete
for i < 25.5, and have a 5σ point source limiting magnitude of i ∼
26.2 (Ilbert et al. 2009). A resampling procedure is used to estimate
the redshift distribution of deep CFHTLenS galaxies based on the
distribution of COSMOS-30 redshifts with CFHTLS overlap.

Although the 1.6 deg2 COSMOS field contains the 1 deg2

CFHTLS-Deep field D2, there are no overlapping CFHTLS-Wide
fields. Therefore, it is not possible to directly match CFHTLenS
galaxies to objects in the COSMOS-30 catalogue. This issue can
be circumvented in a novel way using the photometric catalogue
of D2 provided in Hildebrandt et al. (2009). Using the fact that the
photometric systems for the CFHTLS-Wide and Deep data are iden-
tical, we add random Gaussian noise, scaled to simulate data taken
at CFHTLS-Wide depth, to the multicolour magnitude estimates
in the D2 photometric catalogue. Using artificially degraded cata-
logues generated in this way, we calculate a Wide-like photometric
redshift estimate zp using the maximum of the posterior distribu-
tion as described in Hildebrandt et al. (2012). This is done for each
D2 object in a catalogue matched to the COSMOS-30 catalogue of
Ilbert et al. (2009), employing an association radius of 1.0 arcsec.
The COSMOS-30 redshifts in the matched catalogue are labelled
z30.

This matched catalogue of z30 and noise-degraded Wide-like zp

estimates can then be used to acquire information about the joint
probability distribution of COSMOS-30 and CFHTLenS redshifts.
We generate 100 realizations of the artificially degraded Wide-like
catalogues, running the Bayesian photometric redshift estimation of
Hildebrandt et al. (2012) for each realization. Using this ensemble of
(z30, zp) pairs, we construct a two-dimensional histogram of galaxy
number counts in square bins of width 0.0025 in redshift for both
z30 and zp. This histogram is then used as an empirical estimate
of the conditional probability density function P(z30|zp) and allows
us to estimate the corresponding cumulative PDF P(<z30|zp) for
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Figure 2. Comparison of the predicted redshift distributions with a magnitude cut of i′ < 24.7. The solid lines (pink) show the summed PDFs for all galaxies
within a given redshift bin. The dot–dashed histogram (cyan) shows the result of resampling the CFHTLenS redshifts using the constructed conditional
probability P(z30|zp). The P-values are the result of a KS test; we reject the null hypothesis for the highest redshift bin at α = 0.05.

each zp bin. Then, using inversion sampling from P(<z30|zp) with
a uniform pseudo-random number generator, samples of redshifts
distributed according to P(z30|zp) can be drawn.

With the assumption that P(ztrue|zp) = P(z30|zp), the contamina-
tion in tomographic redshift bins can be estimated by resampling
CFHTLenS redshifts according to P(z30|zp). The resulting redshift
distributions predicted from this method are given as dot–dashed
lines in Fig. 2, and the summed PDFs are presented as solid lines.
Note that the fine structure seen in the resampled redshifts is due to
structures in the COSMOS field and does not represent real struc-
tures in the distribution of CFHTLenS galaxies. The small size of
COSMOS means that it is limited by sample variance, and individ-
ual clusters are able to leave an imprint on the resampled galaxies.
This only affects the fine details of the resampled redshifts leading
to a breakdown of the assumption that P(ztrue|zp) = P(z30|zp) for
small redshift intervals.

We again adopt the null hypothesis that the two distributions are
drawn from the same population. Using a KS test we find that the
null hypothesis can be rejected at a significance level of α = 0.05
for the zp > 1.3 redshift bin, but not for any of the other bins.
The P-values found from the KS test are presented as labels in
Fig. 2. Our results again confirm that the CFHTLenS photometric
redshifts of the zp > 1.3 galaxies are unreliable. However, we find
no evidence that the galaxies at zp < 0.1, which is the lower limit
for the high-confidence redshift range (Hildebrandt et al. 2012), are
unreliable. This is likely because our lowest redshift bin extends
to zp = 0.17 and is therefore dominated by galaxies with well-
measured photometric redshifts.

2.3 Redshift contamination from angular
correlation functions

In order to further test the accuracy of the photometric redshift
PDFs, we measure the redshift contamination using an angular
cross-correlation technique (Benjamin et al. 2010). This method
has few assumptions and is sensitive to any contamination between

redshift bins. Since it only relies on the angular correlation function
of the galaxies, it is independent of the other methods used and
serves as a critical test.

2.3.1 Overview of method

Galaxies cluster in overdense regions, leading to an excess in the
number of pairs found at a separation θ when compared to a random
distribution of points. The two-point angular correlation function
ω(θ ) quantifies this excess probability of finding pairs. A common
estimator (Landy & Szalay 1993) is

ωij = (DiDj )θ
(RR)θ

NRNR

NiNj

− (DiR)θ
(RR)θ

NR

Ni

− (DjR)θ
(RR)θ

NR

Nj

+ 1, (2)

where (DiDj)θ is the number of pairs separated by a distance θ

between data sets i and j, (RR)θ is the number of pairs separated
by a distance θ for a random set of points, (DiR)θ is the number of
pairs separated by a distance θ between data set i and a random set
of points, NR is the number of points in the random sample and Ni

(Nj) is the number of points in data sample i (j). The autocorrelation
is described by the case i = j, and the cross-correlation by the case
i �= j. Our analysis would hold for any estimator of the angular
correlation function.

In the � cold dark matter (CDM) model, galaxies in well-
separated non-overlapping redshift bins are not significantly clus-
tered with each other. Therefore, clustering between these bins
should be consistent with a random distribution of points, result-
ing in ωij = 0. Adjacent redshift bins will have a small positive
ωij owing to galaxy clustering at their shared edge, which becomes
more pronounced for narrow redshift bins. If any non-zero angular
cross-correlation is detected between the photometric redshift bins,
they must share galaxies with similar redshifts.

As shown in Benjamin et al. (2010), this simple realization can be
exploited to estimate contamination between photometric redshift
bins. The reader is referred to that work for the full details of the
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method. Here we present only a few key equations and concepts
before we apply the method to the CFHTLenS data.

The contamination fraction, fij, is defined as the number of galax-
ies contaminating bin j from bin i as a fraction of the total number of
galaxies NT

i which have a spectroscopic redshift that lies within red-
shift bin i. If there is no overlap or contamination between redshift
bins, fij = 0 when i �= j, and NT

i = No
i , where No

i is the total num-
ber of galaxies which have a photometric redshift that lies within
redshift bin i. In the standard case of overlapping photometric red-
shift bins, the contamination fraction relates the observed number of
galaxies in each photometric redshift bin No

i to the true underlying
number of galaxies NT

i as follows:

⎛
⎜⎜⎜⎜⎝

No
1

No
2

. . .

No
m

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f11 f21 . . . fm1

f12 f22 . . . fm2

. . . . . . . . . . . .

f1m f2m . . . fmm

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

NT
1

NT
2

. . .

NT
m

⎞
⎟⎟⎟⎟⎠, (3)

where m is the number of redshift bins and fii = 1 − ∑m
k �=i fik . We

determine the contamination fractions fij from measurements of ωo
ij ,

the observed two-point correlation function between photometric
redshift bins i and j. For two redshift bins, it can be shown that

ωo
12 =

ωo
11

(
No

1
No

2

)
f12(1 − f21) + ωo

22

(
No

2
No

1

)
f21(1 − f12)

(1 − f12)(1 − f21) + f12f21
. (4)

Since ωo
12 is measured at multiple angular scales, it is possible to

determine the contamination fractions f12 and f21. Degeneracy exists
between f12 and f21, which can be broken if the angular autocorre-
lation functions ωo

11 and ωo
22 have significantly different shapes. We

expect this to be the case for the angular correlation functions of
galaxy samples at different redshifts.

When considering more than two redshift bins, we measure the
contamination fractions using equation (4) for each pair of bins
in turn. This pairwise approximation assumes that higher order
contamination can be safely ignored, that is, the angular cross-
correlation is not affected by the mutual contamination of the pair
of bins by another redshift bin. As the number of bins increases or
if the contamination fractions become large, this assumption is no
longer valid and the method breaks down.

Once the contamination fractions fij have been measured, we
can invert2 the contamination matrix in equation (3) to determine
the true underlying number of galaxies in each redshift range NT

i

from the observed number of galaxies in each photometric redshift
bin No

i . The true redshift distribution ni(zj) for each photometric
redshift bin i is then calculated over the full redshift range, sampled
at each redshift zj from

ni(zj ) = fijN
T
i . (5)

2.3.2 Contamination analysis

In order to estimate the contamination fractions in the CFHTLenS
data, the angular correlation functions must be measured. Brute-
force pair counting algorithms are O(N2), where N is the number
of galaxies, which for our data set results in prohibitively large com-
putation times. The publicly available code ATHENA3 employs a tree

2 Since we expect the non-diagonal contamination fractions to be small, the
matrix should be diagonally dominant and therefore invertible.
3 http://www2.iap.fr/users/kilbinge/athena/

data structure to increase the speed of pair counting to O(N log(N ))
at the cost of accuracy. The level of approximation is parametrized
by the opening angle. Larger values indicate larger approxima-
tions with an opening angle of zero representing no approximation.
Galaxies are grouped together into nodes in the tree data structure
based on angular position. The structure is a hierarchy with the
nodes on top containing more galaxies. The opening angle deter-
mines when to descend to lower nodes and higher spatial resolution.
Tests of ATHENA against a more simplistic and robust algorithm are
used to determine that with an opening angle of 0.03 we make at
most a 1 per cent error on the angular correlation function. This
value of opening angle is used when measuring the angular corre-
lation function.

For each pointing we measure the angular correlation function
in six angular bins spaced logarithmically in the range 0.15 < θ <

30 arcmin. Above 30 arcmin, the signal is very small providing
little additional information. For each pointing, the contamination
fractions are estimated via the angular correlation function as out-
lined in Section 2.3.1. The covariance is estimated via a bootstrap
technique, with an additional contribution coming from the field-
to-field variance for the angular cross-correlations. The details of
the maximum likelihood technique and covariance matrix are pre-
sented in appendix A of Benjamin et al. (2010). The likelihoods for
the contamination fractions from each field are then combined with
equal weighting.

The following matrices contain the measured contamination frac-
tions with 68 per cent confidence regions. All values are multiplied
by 100 for ease of viewing. For the bright sample, i′ < 23.0, we
find

fij =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

65 ± 5 4 ± 1 < 1 < 1 < 1 6 ± 6

28 ± 4 87 ± 3 8 ± 2 < 1 < 1 7 ± 7

1 ± 1 7 ± 2 85 ± 3 9 ± 2 1 ± 1 7 ± 7

1 ± 1 < 1 6 ± 2 85 ± 2 38 ± 6 5 ± 5

< 1 < 1 < 1 4 ± 1 56 ± 7 29 ± 12

3 ± 1 < 1 < 1 < 1 3 ± 1 18 ± 16

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

With a cut of i′ < 24.7, we measure

fij =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

42 ± 8 3 ± 2 < 1 1 ± 1 < 1 9 ± 6

32 ± 4 75 ± 3 8 ± 2 < 1 < 1 1 ± 1

< 1 18 ± 2 79 ± 3 7 ± 2 < 1 1 ± 1

4 ± 4 < 1 11 ± 2 78 ± 3 20 ± 3 3 ± 3

< 1 < 1 < 1 9 ± 2 73 ± 4 42 ± 5

18 ± 4 2 ± 1 < 1 4 ± 1 5 ± 3 36 ± 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(7)

Many of the contamination fractions are 1 per cent deviations from
zero, which is expected since we have this level of uncertainty
in our estimation of the angular correlation functions. Note that
the ith column contains the location of all bin i galaxies. Due to
the pairwise treatment of redshift bins, columns do not sum to
exactly 100 per cent. These matrices are extremely well conditioned
with condition numbers of 8.72 and 6.35 for the i′ < 23.0 and
i′ < 24.7 cases, respectively, indicating that matrix inversion is
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Figure 3. Comparison of the predicted true redshift distribution within each broad redshift bin, labelled zi. A magnitude cut of i′ < 23.0 is used for comparison
with spectroscopic redshifts. All horizontal error bars denote the width of the redshift bin and points are offset horizontally for clarity. The crosses with solid
lines (pink) denote the summed PDFs when integrated within a given broad redshift bin; the error is calculated as the standard deviation from 1000 bootstrap
samples. The filled circles with dotted lines (blue) show the result from our contamination analysis with 68 per cent confidence region. The filled squares
with dashed lines (green) show the spectroscopic redshift data integrated within each broad redshift bin. The error is the standard deviation of 1000 bootstrap
samples.

numerically stable and does not contribute a significant uncertainty
to the solution of equation (3).

With the contamination fractions measured, the true number of
galaxies in each redshift bin can be calculated from equation (3).
The redshift distribution is then found from equation (5). This is
done with a Monte Carlo procedure for finding global solutions
to the contamination matrix presented in Benjamin et al. (2010).
We can now compare our contamination results with those found
from the spectroscopic redshifts and the COSMOS-30 photometric
redshifts. However, since our contamination results exist in only six
redshift bins, we must also sum the distributions shown in Figs 1
and 2 within these six redshift bins.

For i′ < 23.0, we present our contamination results in Fig. 3. For
each redshift bin we show the redshift distribution predicted by the
PDFs (crosses with solid lines), the contamination analysis (filled
circles with dotted lines) and the spectroscopic redshift distribution
(filled squares with dashed lines). The horizontal error bars on all
points denote the width of the redshift bins. The vertical scale is
proportional to the number of galaxies but uses arbitrary units. For
the summed PDF, the vertical error bar is calculated as the standard
deviation of the summed PDFs for 1000 bootstraps of the galaxies
within each bin zi. Note that given the large number of galaxies in
each bin (∼40 000−600 000), the statistical error of the summed
PDF is very small. The vertical error bars on the contamination
results enclose the 68 per cent confidence region which comes from
a procedure for finding global solutions to the contamination (Ben-
jamin et al. 2010). The vertical error on the spectroscopic redshift
distribution is taken as the standard deviation from 1000 bootstraps
of the spectroscopic catalogue. For both cases where bootstraps
are used, we verified that 1000 bootstraps yield stable error esti-
mates. For each bootstrap, objects are sampled with replacement
and the resulting redshift distributions measured; the total num-

ber of galaxies sampled is equal to the number in the original
catalogues.

Fig. 3 shows the predicted redshift distribution for each of the
six redshift bins used. The contamination points for a given subplot
are contained within the corresponding row of the contamination
matrix in equation (6). For example, the top row shows that the
majority of galaxies from bin 1 remain in bin 1, with f11 = 65 ±
5 per cent. Contamination from other bins is less than the per cent
level except for the neighbouring bin with f21 = 4 ± 1 per cent
and the highest redshift bin with f61 = 6 ± 6. Keep in mind that
the relative heights of points in the z1 subplot do not follow these
contamination values because the contamination fij represents the
number of galaxies in bin j from bin i divided by the true num-
ber in bin i. However, investigating the matrix in relation to Fig. 3
can help in grasping the presented information. We expect that the
spectroscopic redshift distribution is the true distribution, assuming
that the limited area of the spectroscopic samples does not bias the
results, which is a reasonable assumption for our purposes. The
contamination model is in poor agreement with the spectroscopic
sample in the z1 and z6 subplots. For z1, the contamination model
underpredicts the contamination from bin 2 to bin 1, underestimat-
ing f21 as evidenced by the discrepancy between the contamination
point and the spectroscopic point in the second bin of the z1 sub-
plot. Similarly, the contamination is overpredicted for f12 which is
seen in the first bin of the z2 subplot. This represents a fundamental
degeneracy in the angular cross-correlation method. Although an
angular cross-correlation is detected between these two bins, un-
less the angular autocorrelations have significantly different slopes,
the method cannot distinguish easily between bin 1 galaxies con-
taminating bin 2 or vice versa. A similar degeneracy explains the
discrepancies in the z6 subplot; there we see that f56 predicted by
the angular cross-correlation is too low and f65 in the z5 subplot is
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Figure 4. Same as Fig. 3 except for the following differences. A magnitude cut of i′ < 24.7 is used. The filled squares with dot–dashed lines (cyan) show the
resampled COSMOS-30 data integrated within each broad redshift bin. The error is given as the standard deviation of the 100 low-resolution reconstructions
(see Section 2.2).

too high. The contamination between these bins is detected but the
direction of scatter is misidentified.

We use a KS test to determine if the distributions in Fig. 3 are
consistent with being drawn from the same population. Since there
are three distributions and the KS test is a two-sample test, we apply
it to each pair of distributions. Furthermore, due to the small number
of bins we must rely on tabulated critical values which exist for a
very few significance levels; therefore, we are not able to list the
P-values for each redshift bin. For each pair of distributions, we
find that we cannot reject the null hypothesis (drawn from the same
population) at a significance level of α = 0.05 for any of the redshift
bins.

We present the results of the contamination analysis for i′ < 24.7
in Fig. 4. The summed PDF and contamination results are presented
similarly to Fig. 3. The resampled redshifts using COSMOS-30 are
given as the dot–dashed lines and filled squares. The vertical error
on the COSMOS-30 points is taken as the standard deviation of the
100 low-resolution resamplings (see Section 2.2). If we compare the
contamination results to the resampled redshifts, the greatest dis-
crepancies are for the z1, z5 and z6 subplots. The f12 − f21 and f56 −
f65 degeneracies noted for the bright sample above appear again in
Fig. 4. Additionally, the resampled redshifts predict a larger f61 and
smaller f16 than do the contamination results which can be seen in
the first and last bins of the z1 and z6 subplots, respectively. The
contamination analysis predicts that a significantly lower number
of galaxies belong to bin 5 compared to the other methods; see
bin 5 of the z5 subplot. However, this is not due to scattering of
bin 5 galaxies elsewhere, note that f55 = 73 ± 4 per cent; instead
the contamination analysis simply predicts fewer galaxies occu-
pying this bin. To determine if these differences are statistically
significant, we use a KS test. We again have three distributions
and apply the test between each pair. For each pair of distributions,
we find that we cannot reject the null hypothesis (drawn from the
same population) at a significance level of α = 0.05 for any of the
redshift bins.

When using the finely binned spectroscopic and resampled red-
shifts in Sections 2.1 and 2.2, we were able to reject the null hypoth-
esis for the high-redshift bin zp > 1.3. The smallest P-value found
was in the high-redshift bin when comparing the summed PDF
with the spectroscopic distribution in Fig. 1. Performing the same
comparison with these distributions when summed within the six
redshift bins of the contamination analysis, we are not able to reject
the null hypothesis. The coarse binning required by the contamina-
tion analysis has reduced the statistical power of the test. However,
the contamination analysis provides a complementary estimation of
the redshift distribution, which agrees well with the other estimates
and strengthens our confidence in the summed PDF as an accurate
measure of the redshift distribution.

We conclude that the summed PDF can be used to estimate the
redshift distribution for the high-confidence redshift range 0.1 <

zp < 1.3 determined by Hildebrandt et al. (2012). The comparison
with the resampled COSMO-30 redshifts and the contamination
analysis for i′ < 24.7 suggest that an accurate estimate of the redshift
distribution, including statistical and catastrophic errors, can be
obtained from the sum of the PDFs. This result suggests that the
model galaxy spectra and priors used in Hildebrandt et al. (2012)
are a fair and sufficiently complete representation for the population
of galaxies studied here.

3 W E A K L E N S I N G TO M O G R A P H Y

In this paper, we present an analysis of the CFHTLenS tomographic
weak lensing signal using two broad redshift bins and compare our
results with a 2D analysis over the same redshift range. Setting our
analysis in a flat �CDM cosmology framework, the initial aim is to
use the consistent results we find between successive tomographic
bins as a demonstration that the CFHTLenS catalogues are not sub-
ject to the redshift-dependent systematic biases that were uncovered
in an earlier analysis of CFHTLS data (Kilbinger et al. 2009). This
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cosmology-dependent demonstration is the last in an extensive se-
ries of tests, which investigate the robustness and accuracy of the
CFHTLenS catalogues. We stress, however, that this analysis was
performed after the conclusion of a series of cosmology-insensitive
tests presented in Heymans et al. (2012b) and the photometric red-
shift accuracy analysis presented in Section 2. Most importantly,
no feedback loop existed between this cosmology-dependent test
and the systematics and image simulation tests that determined the
calibration corrections and the subset of reliable data that we use
from the survey.

We choose to use two broad mid- to high-redshift bins for our
tomographic analysis in order to reduce the potential contamination
to the signal from intrinsic galaxy alignments (see, for example,
Heavens et al. 2000; Heymans et al. 2012a, and references therein).
We estimate the expected contamination of the measured weak
lensing signal using the linear tidal field intrinsic alignment model
of Hirata & Seljak (2004) and following Bridle & King (2007) by
fixing its amplitude to the observational constraints obtained by
Brown et al. (2002). By limiting the redshift bins to photometric
redshifts 0.5 < zp ≤ 0.85 and 0.85 < zp ≤ 1.3, we estimate that any
contamination from intrinsic alignments is expected to be no more
than a few per cent for each redshift bin combination. We therefore
ignore any contributions from intrinsic alignments in this analysis as
they are expected to be small in comparison to our statistical errors.
Note that a low level of contamination would not be expected if
we instead used the six narrow redshift bins that were analysed in
the redshift contamination analysis in Section 2. We present a fine
six-bin tomographic analysis of the data in Heymans et al. (2012a)
where the impact of intrinsic galaxy alignments is mitigated via the
simultaneous fit of a cosmological model and an intrinsic alignment
model. The findings of Heymans et al. (2012a) support the approach
taken in this paper to neglect the contribution of intrinsic alignments
for our choice of redshift bins.

The 2D lensing analysis presented here is restricted to the same
redshift range used in our tomographic analysis 0.5 < zp ≤ 1.3. We
measure the shear correlation function on angular scales from ∼1
to ∼40 arcmin. The upper limit is set by our ability to measure the
covariance matrix from simulations, see Section 3.3.1.

3.1 Overview of tomographic weak lensing theory

The complex weak lensing shear γ = γ 1 + iγ 2, which is directly
analogous to the complex galaxy ellipticity, can be decomposed into
two components: the tangential shear γ t and the cross component
γ x. These are defined relative to the separation vector for each pair
of galaxies, with γ t describing elongation and compression of the
ellipticity along the separation vector and γ x describing elongation
and compression along a direction rotated 45◦ from the separation
vector. The following shear–shear correlation functions can then be
computed:

ξk,l
± (θ )= i,j

[
γ k

t,i(ϑ i)γ l
t,j (ϑ j ) ± γ k

x,i(ϑ i)γ l
x,j (ϑ j )

]
wiwj�ij

i,jwiwj�ij

, (8)

where galaxy pairs labelled i,j are separated by angular distance
ϑ = |ϑ i − ϑ j |. If ϑ falls in the angular bin given by θ , then �ij =
1, otherwise �ij = 0. The labels k,l identify redshift bins. The
summation is performed for all galaxies i in bin k and all galaxies
j in bin l. The contribution of each galaxy pair is weighted by its
inverse variance weight wiwj. This gives greater significance to
galaxy pairs with well-measured shapes.

Shear calibration is performed as described in Miller et al. (2013)
and Heymans et al. (2012b). This signal-to-noise (S/N) and size-

dependent calibration include an additive (c) and a multiplicative
(m) correction term as follows:

γ obs = (1 + m)γ true + c. (9)

An average additive correction of 2 × 10−3 is found for γ 2. The
additive correction for γ 1 is found to be consistent with zero. The
multiplicative correction to ξ± is found by calculating the weighted
correlation function of 1 + m (Miller et al. 2013),

1 + Kk,l(θ ) = i,j (1 + mk
i )(1 + ml

j )wiwj�ij

i,jwiwj�ij

. (10)

The shear correlation functions ξ± are then corrected by dividing
them by 1 + K.

The shear–shear correlations can also be expressed as filtered
functions of the convergence power spectra

ξk,l
+/−(θ ) = 1

2π

∫ ∞

0
d� � J0/4(�θ )P k,l

κ (�), (11)

where Jn is the nth order Bessel function of the first kind and �

is the modulus of the two-dimensional wavevector. These can be
related to line-of-sight integrals of the three-dimensional matter
power spectrum

P k,l
κ (�) = 9 H 4

0 �2
m

4c4

∫ χh

0
dχ

gk(χ )gl(χ )

a2(χ )
Pδ

(
�

fK (χ )
, χ

)
, (12)

where c is the speed of light, �m is the matter energy density, H0

is the Hubble constant, fK(χ ) is the comoving angular diameter
distance out to a distance χ , χh is the comoving horizon distance,
a(χ ) is the scale factor and Pδ is the three-dimensional mass power
spectrum computed from a non-linear estimation of dark matter
clustering (Smith et al. 2003). The two terms, gk(χ ), are the geo-
metric lens efficiency, which depend on the redshift distribution of
the sources, nk(χ ′),

gk(χ ) =
∫ χh

χ

dχ ′nk(χ ′)
fK (χ ′ − χ )

fK (χ ′)
. (13)

Given a cosmological model, matter power spectrum and redshift
distribution of the sources, we can model the shear correlation
functions. Bayesian model-fitting techniques are then used to obtain
the posterior probability on the model vector given the observed
shear correlation functions. We discuss this further in Section 3.3.

3.2 The tomographic weak lensing signal

Based on the results presented in Section 2, the redshift distribution
in each bin is taken to be the sum of the PDFs determined from
the photometric redshift analysis of Hildebrandt et al. (2012). We
refer to the maximum posterior photometric redshift estimate as the
‘photometric redshift’. The histogram of photometric redshifts and
the sum of the PDFs for each redshift bin are presented in Fig. 5.
Note that the summed PDFs extend to lower and higher redshifts
than the photometric redshifts do, broadening the range below z =
0.5 and above z = 1.3. The summed PDFs for the two redshift bins
also overlap considerably with one another. The average redshift
from the summed PDFs is 0.7 for the low-redshift bin and 1.05 for
the high-redshift bin. For the photometric redshifts, we find 0.69 and
1.03 for the low- and high-redshift bins, respectively. The average
redshift for both bins taken together is found to be 0.87 from the
summed PDFs and 0.84 from the photometric redshifts.

We use ATHENA with an opening angle of 0.02 to measure the
shear–shear correlation function. We have tested that the differ-
ence to the shear–shear correlation function when using an opening
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Figure 5. Redshift distributions used in the weak lensing analysis. Low- and
high-redshift bins correspond to zp = (0.5, 0.85] and (0.85, 1.3], respectively.
The smooth curves show the result of summing the photometric redshift
PDFs of all galaxies within the respective redshift bin. The smooth solid
and dashed curves are used in the tomographic analysis and the sum of the
PDFs over the entire redshift range is given by the smooth dot–dashed line
which is used in the 2D lensing analysis. For comparison, the histograms
show the redshift distribution obtained from the photometric redshifts.

angle of 0.02 compared to a brute-force calculation is negligible,
approximately 8 per cent of the size of the errors. The signal is first
measured on each of the four wide mosaics: W1, W2, W3 and W4,
applying the shear calibration described in Section 3.1. The cor-
relation functions are then combined by calculating the weighted
average. The weight for a given angular bin and wide mosaic is the
sum of the inverse variance weight terms for each pair of galaxies.
We present ξ+ and ξ− for each redshift bin combination in Fig. 6.
The error bars correspond to the diagonal elements from the covari-
ance matrix, discussed in more detail in Section 3.3.1. The lines
denote the theoretical prediction for a fiducial cosmological model
using Wilkinson Microwave Anisotropy Probe ′7-year (WMAP7)
best-fitting results (Komatsu et al. 2011); hence, the following pa-
rameter vector is used: (�m = 0.271, σ 8 = 0.78, h = 0.704, �b =
0.0455, ns = 0.967, �� = 0.729, w0 = −1). Descriptions of each
parameter can be found in Table 1. To compute the theoretical mod-
els we employ the halo model of Smith et al. (2003) to estimate the
non-linear matter power spectrum and the analytical approximation
of Eisenstein & Hu (1998) to estimate the transfer function.

Emphasizing that no cosmology-dependent systematic tests were
used to vet the catalogues (Heymans et al. 2012b), Fig. 6 demon-
strates the robustness of the CFHTLenS catalogues. The tomo-
graphic shear signal shows no evidence of a redshift-dependent
bias as was seen in earlier CFHTLS data analyses (Kilbinger et al.
2009). We discuss further tests of the redshift scaling of the shear
in Section 3.3.3.

3.3 Cosmology

From the signal measured in Section 3.2, cosmological parameters
are estimated using COSMOPMC. COSMOPMC is a freely available4 Pop-
ulation Monte Carlo (PMC) code, which uses adaptive importance
sampling to explore the posterior likelihood (Kilbinger et al. 2011).
COSMOPMC documentation can be found in Kilbinger et al. (2011);

4 http://cosmopmc.info

Figure 6. The filled circles with solid lines and filled squares with dashed
lines show the measured signal for ξ+ and ξ−, respectively. Each panel
shows the shear correlation functions for a unique pairing of redshift bins.
The top, middle and bottom panels correspond to low redshift correlated
with low redshift (low–low), low with high redshift (low–high) and high
with high redshift (high–high). Error bars are the square root of the diagonal
of the covariance matrix measured from mock catalogues (see Section 3.3.1).
Theoretical predictions for a fiducial (WMAP7; Komatsu et al. 2011) cos-
mology are presented as lines; these are not the best-fitting models. There
are two negative data points for ξ− in the top panel; their values are −2.3 ×
10−6 and −4.9 × 10−6 for scales 1.34 and 2.18 arcmin, respectively.

discussion of Bayesian evidence and examples of its application
to various cosmological data sets can be found in Kilbinger et al.
(2010) and Wraith et al. (2009). The PMC method is detailed in
Cappé et al. (2007). The non-linear matter power spectrum is es-
timated using the halo model of Smith et al. (2003). The transfer
function is estimated using the analytical approximation of Eisen-
stein & Hu (1998).

We explore two cosmologies: a flat �CDM universe and a curved
�CDM universe. The model-dependent data vector used with COS-
MOPMC contains the following seven parameters: (�m, σ 8, h, �b, ns,
��, w0). Physical descriptions and priors are presented in Table 1.
For the flat �CDM model we have a five-parameter fit, where we
fix �� = 1 − �m and w0 = −1. For the curved �CDM model we
have six free parameters as �� is allowed to vary, while w0 remains
fixed.
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Table 1. Details of the model-dependent cosmological parameters for each of the considered cosmologies. Parameter ranges denote hard priors.
A flat distribution is used throughout the range. The bottom three parameters are constrained by WMAP7 and are required in order to deduce σ 8.

Parameter Flat �CDM Curved �CDM Description

�m [0, 1.0] [0, 1.2] Energy density of matter (baryons+dark matter).
σ 8 [0.2, 1.5] [0.2, 1.5] Normalization of the matter power spectrum.
h [0.4, 1.2] [0.4, 1.2] The dimensionless Hubble constant h = H0

100 km s−1 Mpc−1 .

�b [0, 0.1] [0, 0.1] Energy density of baryons.
ns [0.7, 1.3] [0.7, 1.3] Slope of the primordial matter power spectrum.
�� 1 − �m [0, 2] Energy density of dark energy.
w0 −1 −1 Constant term in the dark energy equation of state, w(a) = w0.

τ [0.04, 0.20] [0.04, 0.20] Reionization optical depth.
�2

R [1.8, 3.5] [1.8, 3.5] Amplitude of curvature perturbations, units of 10−9 times the amplitude of density fluctuations.
ASZ [0.0, 2.0] [0.0, 2.0] Sunyaev–Zel’dovich template amplitude.

Three other cosmological data sets are used to provide com-
plementary constraining power. Constraints from the cosmic mi-
crowave background (CMB) are taken from the seven-year results
of WMAP (Komatsu et al. 2011, hereafter referred to as WMAP7).
To obtain parameter constraints we use the publicly released WMAP
likelihood code. Baryon acoustic oscillation (BAO) data are taken
from the BOSS experiment (Anderson et al. 2012, hereafter re-
ferred to as BOSS). We consider the ratio DV/rs = 13.67 ± 0.22
of the apparent BAO at z = 0.57 to the sound horizon distance to
be Gaussian distributed. The Hubble constant is constrained with
the results from the Hubble Space Telescope distance ladder (Riess
et al. 2011, hereafter referred to as R11). Following R11, we use
a Gaussian prior of mean value h = 0.738 and standard deviation
σ = 0.024. For more details of these data sets, see Kilbinger et al.
(2013). With WMAP7 the parameter set is expanded to include τ ,
ASZ and �2

R, from which we deduce σ 8. Prior ranges and brief de-
scriptions are given in Table 1. For further details, see WMAP7 and
references therein. Throughout this section when stating parameter
values we quote the 68.3 per cent confidence level as the associated
uncertainty with all other parameters marginalized over.

3.3.1 Covariance matrix

In order to estimate a covariance matrix for our measured shear
correlation functions in equation (8), we analyse mock CFHTLenS
surveys constructed from the three-dimensional N-body numerical
lensing simulations of Harnois-Déraps, Vafaei & Van Waerbeke
(2012). The 10243 particle simulations have a box size of 147.0
or 231.1 h−1 Mpc, depending on the redshift of the simulation, and
assume a flat �CDM cosmology parametrized by the best-fitting
constraints from Komatsu et al. (2009). There are a total of 184 fully
independent lines of sight spanning 12.84 deg2 with a resolution of
0.2 arcmin sampled at 26 redshift slices in the range 0 < z <

3. The two-point shear statistics match the theoretical predictions
of the input cosmology from 0.5 < θ < 40 arcmin scales at all
redshifts (Harnois-Déraps et al. 2012); this sets the upper angular
limit for our tomographic analysis. See Heymans et al. (2012a) for a
detailed discussion of covariance matrix estimation from the N-body
simulations presented in Harnois-Déraps et al. (2012), including the
required Anderson (2003) correction that we apply to de-bias our
estimate of the inverse covariance matrix used in the likelihood
analysis that follows.

3.3.2 Flat �CDM

We present marginalized two-dimensional likelihood constraints in
the �m−σ8 plane in Fig. 7. The best constraint from weak lensing

Figure 7. Marginalized parameter constraints (68.3, 95.5 and 99.7 per cent
confidence levels) in the �m−σ8 plane for a flat �CDM model. Results are
shown for CFHTLenS (blue), WMAP7 (green), CFHTLenS combined with
WMAP7 (black), and CFHTLenS combined with WMAP7, BOSS and R11
(pink).

alone is for a combination of �m and σ 8, which parametrizes the
degeneracy. We find σ8

(
�m
0.27

)α = 0.771 ± 0.040 with α = 0.553 ±
0.016.

When combining CFHTLenS with WMAP7, BOSS and R11 data
sets, we find �m = 0.2762 ± 0.0074 and σ 8 = 0.802 ± 0.013. The
precision is ∼20 times better than for CFHTLenS alone where we
find �m = 0.27 ± 0.17 and σ 8 = 0.67 ± 0.23. Constraints on the
full set of parameters are presented in Table 3. We show the results
for CFHTLenS tomography, CFHTLenS combined with WMAP7,
BOSS and R11, and, to assess the contribution of our data set to these
constraints, we include results for WMAP7 combined with R11 and
BOSS. The most valuable contribution from CFHTLenS is for �m,
σ 8 and �b, where we improve the precision of the constraints by an
average factor of 1.5.

For comparison we perform the analysis with a single redshift
bin spanning the range of our two-bin analysis, 0.5 < zp ≤ 1.3. We
refer to this as the 2D lensing case, in contrast to the tomographic
case where we split the galaxies into two redshift bins. Fig. 8 shows
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Figure 8. Marginalized parameter constraints (68.3 per cent confidence
level) in the �m−σ8 plane for a flat �CDM cosmology. We compare the
results for 2D lensing (blue) and two-bin tomography (green). We combine
CFHTLenS with WMAP7, BOSS and R11. Results are shown for 2D lensing
(black) and two-bin tomography (pink).

Table 2. Constraints orthogonal to the �m − σ 8 degeneracy for
a flat �CDM cosmology. Results are shown with and without
highly non-linear scales which are potentially biased due to non-
linear modelling and the effects of baryons (see Section 4). ‘All
scales’ refers to scales on which the correlation functions are
measured: 1 < θ < 40 arcmin. We remove scales correspond-
ing to ξ− < 10 arcmin in the case labelled ‘Removed: ξ− <

10 arcmin’.

Data σ8

(
�m
0.27

)α
α

Tomography:
All scales 0.771 ± 0.040 0.553 ± 0.016
Removed: ξ− < 10 arcmin 0.776 ± 0.041 0.556 ± 0.018

2D lensing:
All scales 0.785 ± 0.036 0.556 ± 0.018
Removed: ξ− < 10 arcmin 0.780 ± 0.043 0.611 ± 0.015

the marginalized parameter constraints in the �m−σ8 plane for both
2D lensing and tomography, and the two cases result in very similar
constraints. For 2D lensing we find σ8

(
�m
0.27

)α = 0.785 ± 0.036 and
α = 0.556 ± 0.018, which are in agreement with what we find for
tomography (Table 2). When combining the 2D lesning results from
CFHTLenS with WMAP7, BOSS and R11 data sets, we find �m =
0.2774 ± 0.0074 and σ 8 = 0.810 ± 0.013, which are nearly identical
to those found for tomography (listed above and in Table 3). This
level of agreement is also found for all other parameters when
combining CFHTLenS with the other data sets. We note that all
the parameter estimates agree within the 68.3 per cent errors and
the sizes of the error bars from 2D lensing are very similar to those
found with tomography when combining CFHTLenS with WMAP7,
BOSS and R11 data sets.

For CFHTLenS alone, the parameter estimates for 2D lens-
ing and tomographic lensing agree with each other within their

Table 3. Parameter constraints with 68.3 per cent confidence limits. The
following parameters are deduced for CFHTLenS: �K and q0. When com-
bining data sets the deduced parameters are: σ 8, �� and q0. The label
CFHTLenS+Others refers to the combination of CFHTLenS, WMAP7,
BOSS and R11.

Parameter Flat �CDM Curved �CDM Data

0.27 ± 0.17 0.28 ± 0.17 CFHTLenS
�m 0.288 ± 0.010 0.285 ± 0.014 WMAP7+BOSS+R11

0.2762 ± 0.0074 0.2736 ± 0.0085 CFHTLenS+Others

0.67 ± 0.23 0.69 ± 0.29 CFHTLenS
σ 8 0.828 ± 0.023 0.819 ± 0.036 WMAP7+BOSS+R11

0.802 ± 0.013 0.795 ± 0.013 CFHTLenS+Others

1 − �m 0.38 ± 0.36 CFHTLenS
�� 1 − �m 0.717 ± 0.019 WMAP7+BOSS+R11

1 − �m 0.7312 ± 0.0094 CFHTLenS+Others

0 0.19 ± 0.43 CFHTLenS
�K 0 −0.0020 ± 0.0061 WMAP7+BOSS+R11

0 −0.0042 ± 0.0040 CFHTLenS+Others

0.84 ± 0.25 0.81 ± 0.24 CFHTLenS
h 0.692 ± 0.0088 0.694 ± 0.012 WMAP7+BOSS+R11

0.6971 ± 0.0081 0.693 ± 0.011 CFHTLenS+Others

0.030 ± 0.029 0.031 ± 0.030 CFHTLenS
�b 0.0471 ± 0.0012 0.0472 ± 0.0016 WMAP7+BOSS+R11

0.045 95 ± 0.000 86 0.0470 ± 0.0015 CFHTLenS+Others

−0.57 ± 0.27 −0.29 ± 0.40 CFHTLenS
q0 −0.568 ± 0.016 −0.574 ± 0.025 WMAP7+BOSS+R11

−0.585 ± 0.011 −0.594 ± 0.014 CFHTLenS+Others

0.93 ± 0.17 0.91 ± 0.17 CFHTLenS
ns 0.965 ± 0.012 0.969 ± 0.014 WMAP7+BOSS+R11

0.960 ± 0.011 0.972 ± 0.012 CFHTLenS+Others

0.086 ± 0.014 0.086 ± 0.015 WMAP7+BOSS+R11
τ 0.081 ± 0.013 0.085 ± 0.015 CFHTLenS+Others

2.465 ± 0.086 2.45 ± 0.13 WMAP7+BOSS+R11
�2

R 2.429 ± 0.081 2.361 ± 0.094 CFHTLenS+Others

0.97 ± 0.62 1.35 ± 0.61 WMAP7+BOSS+R11
ASZ 1.33 ± 0.60 1.39 ± 0.57 CFHTLenS+Others

68.3 per cent uncertainties; however, the parameter constraints do
not improve. With two broad overlapping redshift bins of average
redshifts 0.7 and 1.05, there appears to be insufficient additional
information to tighten parameter constraints. Previous estimates of
the improvement in constraints from weak lensing tomography use
non-overlapping redshift bins, Gaussian covariance and estimate
errors using a Fisher matrix analysis (see Simon, King & Schneider
2004). For two redshift bins with z < 3 and divided at z = 0.75,
they find the ratio of the error on individual parameters from to-
mography to those from a 2D analysis to be �tomo/�2D = 0.88.
With our overlapping redshift bins and non-Gaussian covariance,
it is not surprising that this marginal improvement is significantly
degraded. Additionally, our 2D lensing result is for redshifts 0.5 <

zp < 1.3; this removes low-redshift galaxies with small signal-to-
noise improving constraints and weakening the gains from dividing
the redshift range. We therefore expect a modest improvement at
best. We find that the ratio of our tomographic errors to our 2D
lensing errors is �tomo/�2D = 1.16. The fact that we find larger
errors for tomography is surprising and warrants further discussion.

To test our covariance matrices we perform the analysis again,
replacing the measured shear correlation function with that pre-
dicted from our model using a WMAP7 cosmology. In this case,
we find that the tomographic errors are a factor of 0.98 of the 2D
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errors. Therefore, the increase in the tomographic errors compared
to the 2D errors is not an inherent product of the covariance matrices
used. This result confirms that for the case of overlapping redshift
bins and non-Gaussian covariance, the expected improvement from
tomography is marginal at best.

As discussed in detail in Section 4 we have also analysed the data
after removing small scales which could be affected by errors in the
non-linear modelling of the matter power spectrum and baryonic
effects. When removing these scales (ξ− < 10 arcmin) from both
the tomographic and 2D lensing analyses, we see an improvement in
the errors for tomography finding �tomo/�2D = 1.04. The remain-
ing discrepancy could be due to several factors. The Smith et al.
(2003) non-linear prescription could easily be biased at the few per
cent level. Residual errors in the redshift of galaxies or other per
cent level systematics could be present. In addition we expect some
degradation of the tomography errors due to the bias correction
of the inverse covariance matrix (Anderson 2003). The covariance
is estimated from a finite number of mock catalogues (see Sec-
tion 3.3.1), since the tomographic covariance contains three times
the number of elements as the 2D covariance, measuring it from
the same number of mock catalogues results in a noisier measure.
Hartlap, Simon & Schneider (2007) predict an erroneous increase
in the likelihood area of 3 per cent given our number of mock cat-
alogues 184 and the size of the data vector for 2D lensing 16 and
tomography 48.

Finally, we note that our two redshift bins are chosen based on
concerns of intrinsic alignment contamination; as such, they are not
optimized for constraining cosmology. With more carefully selected
redshift bins, it may be possible to overcome the issues discussed
above and obtain improved cosmological constraints.

3.3.3 Redshift scaling of the cosmic shear signal

Previous CFHTLS data were found to underestimate the shear sig-
nal at high redshift, necessitating additional calibration param-
eters when performing cosmological fits to the data (Kilbinger
et al. 2009). We demonstrate here that the CFHTLenS data have
a redshift-dependent shear signal which agrees with expectations
from the modelled �CDM cosmology.

The excellent agreement between the 2D and tomographic lens-
ing results (Fig. 8) suggests that the shear signal across our two
redshift bins scales as expected. This is also observed in the excel-
lent agreement between the measured shear and the shear prediction
based on a fiducial WMAP7 cosmology shown in Fig. 6.

The shear correlation function for each pair of tomographic red-
shift bins is analysed separately, corresponding to the shear corre-
lation functions shown in each panel of Fig. 6. In Fig. 9 we present
marginalized parameter constraints (68.3 per cent confidence level)
in the �m−σ8 plane for each redshift bin combination. Since each
contour is obtained from a subsample of the full data set, the degen-
eracy between the parameters is more pronounced and the area of the
contours is larger than when analysing the full data set (Fig. 7). The
agreement between the contours in Fig. 9 is a convincing demonstra-
tion that the redshift scaling of the shear in the CFHTLenS data is
consistent with expectations from the modelled �CDM cosmology.

The power-law fits to the degenerate parameter constraints
in Fig. 9 for each case are σ8

(
�m
0.27

)α = 0.820 ± 0.067, 0.753 ±
0.053 and 0.753 ± 0.050 with α = 0.662 ± 0.020, 0.621 ±
0.016 and 0.535 ± 0.013 for the low–low, low–high and high–high
redshift bin pairings, respectively. Note the expected evolution of α

with redshift.

Figure 9. Marginalized parameter constraints (68.3 per cent confidence
level) in the �m−σ8 plane for a flat �CDM cosmology. The results are
shown for each combination of the two redshift bins. The low- and high-
redshift bins correspond to 0.5 < zp ≤ 0.85 and 0.85 < zp ≤ 1.3, respectively.
The excellent agreement shows that redshift scaling of the signal is consis-
tent with the modelled �CDM cosmology.

We reiterate that the cosmological model-dependent verification
of redshift scaling presented here is completely independent of the
calibration of the data and the rejection of bad fields, which were
done with tests which are not sensitive to cosmology (Heymans
et al. 2012b).

3.3.4 Curved �CDM

A curved �CDM cosmology is modelled, for the full details of
parameters and priors used see Table 1. We present constraints
in the �m−σ8 and �m−�� planes in Fig. 10. One-dimensional
marginalized results when combining CFHTLenS with WMAP7,
BOSS and R11 are �m = 0.2736 ± 0.0085, �� = 0.7312 ± 0.0094,
�K = −0.0042 ± 0.0040 and σ 8 = 0.795 ± 0.013. The constraints
on �m and σ 8 do not change significantly from the flat �CDM case.
Parameter constraints for both models are presented in Table 3.
The addition of CFHTLenS to WMAP7, BOSS and R11 is most
helpful at constraining �m, σ 8, �K and ��. The precision for these
parameters improves, on average, by a factor of 2.

We again find excellent agreement with the 2D lensing analy-
sis. When combining the 2D lensing of CFHTLenS with WMAP7,
BOSS and R11 data sets, we find �m = 0.2766 ± 0.0082, �� =
0.7273 ± 0.0089, �K = −0.0035 ± 0.0035 and σ 8 = 0.804 ±
0.016. We do not show the complete details of our 2D lensing
parameter estimations. However, we note that in all cases, either
with CFHTLenS alone or combined with the other cosmological
probes, the 2D results agree with the tomographic results within
the 68.3 per cent errors and the size of the error bars is similar for
both cases. We again find that for CFHTLenS alone, the ratio of
individual parameter uncertainties from the tomographic analysis
to those of the 2D lensing analysis is �tomo/�2D = 1.16.
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Figure 10. Marginalized parameter constraints (68.3, 95.5 and 99.7 per cent
confidence levels) for a curved �CDM cosmology. Results are shown for
CFHTLenS (blue), WMAP7 (green), CFHTLenS combined with WMAP7
(black), and CFHTLenS combined with WMAP7, BOSS and R11 (pink). Top
panel: constraints in the �m−σ8 parameter space. Bottom panel: constraints
in the �m−�� parameter space.

3.3.5 Constraining the deceleration parameter

The deceleration parameter q0 parametrizes the change in the expan-
sion rate of the Universe. We calculate this as a deduced parameter
for both the flat and the curved �CDM models. The deceleration
parameter depends on the energy density parameters

q0 ≡ − ä(t0)a(t0)

ȧ2(t0)
= �m

2
− �� (curved �CDM)

= 3�m

2
− 1 (flat �CDM), (14)

Figure 11. Marginalized constraints on the deceleration parameter using
the CFHTLenS two-bin tomographic weak lensing results. An accelerating
universe (q0 < 0) is found at the 82 per cent confidence level for a curved
�CDM model (pink), and at the 89 per cent confidence level for a flat �CDM
model (blue).

where the scale factor at present time is a(t0) and derivatives with
respect to time are denoted with a dot. For the flat case, q0 is simply
a transformation of our results for the matter density parameter
�m. We present marginalized constraints for q0 in Fig. 11. The
pink line is for the curved case where we find q0 = −0.29 ± 0.40,
and the blue line is for the flat case where we find q0 = −0.57 ±
0.27. Negative values indicate acceleration of the expansion of the
Universe. Summing the posterior for q0 < 0 gives us the confidence
level at which we have measured an accelerating Universe. For the
curved and flat models, we find that q0 < 0 at the 82 and 89 per cent
confidence level, respectively.

Schrabback et al. (2010) constrain q0 with a six-bin tomographic
analysis of the COSMOS-30 data. Besides having more tomo-
graphic bins, the redshift range probed is also greater, extending
to z = 4. For a curved �CDM cosmology, holding �b and ns fixed
and using a Gaussian prior on the Hubble constant of h = 0.72 ±
0.025, they find q0 < 0 at 96 per cent confidence. If we do a similar
analysis with �b and ns held fixed and using the a Gaussian prior of
h = 0.738 ± 0.024 (R11), we find q0 < 0 at 84 per cent confidence.
The difference in constraints on the deceleration parameter can be
understood as a result of the much larger values of the dark energy
density preferred by COSMOS-30 �� = 0.97+0.39

−0.60, which lead to
smaller values of q0, whereas the dark energy density found here
from CFHTLenS is �� = 0.38 ± 0.36, resulting in larger values of
q0 for CFHTLenS.

With CFHTLenS alone, we are not able to put a strong constraint
on the acceleration of the expansion of the Universe. With the
addition of the other cosmological probes, the entire posterior dis-
tribution of q0 is less than zero. For a curved model with CFHTLenS
combined with the other probes, we find q0 = −0.594 ± 0.014 (see
Table 3). An accelerating Universe is unambiguously detected.
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4 IM PAC T O F N O N - L I N E A R EF F E C T S A N D
BA RYO N S O N T H E TO M O G R A P H I C
C O S M O L O G I C A L C O N S T R A I N T S

We have presented cosmological parameter constraints from an
analysis of the tomographic two-point shear correlation function
ξk,l
± (θ ) (equation 11), incorporating the non-linear dark matter only

power spectrum from Smith et al. (2003) as our theoretical model of
Pδ(k, z) in equation (12). Note that k = �(fK(χ ))−1. This halo-model
prescription for the non-linear correction has been calibrated on nu-
merical simulations and shown to have an accuracy of 5−10 per cent
over a wide range of scales (Eifler 2011). The N-body simulations
used to estimate the covariance matrices used in this analysis suggest
that the accuracy is even better than this for a WMAP5 cosmology
(Harnois-Déraps et al. 2012) over the redshift range covered in this
analysis. While these comparisons give us confidence in our re-
sults, and suggest that any error from the non-linear correction will
be small in comparison to our statistical error, it is prudent to assess
how errors in the non-linear correction will impact our results.

A fully 3D weak lensing analysis of the CFHTLenS data is pre-
sented in Kitching et al. (in preparation). This power spectrum
analysis allows for exact redshift-dependent cuts in the wavevector
k, which can be motivated by either the comparison of the power
spectrum measured from N-body simulations to the non-linear pre-
scription or the selection of linear scales where the non-linear cor-
rection is negligible. For real-space statistics, as used in this paper
and in Kilbinger et al. (2013), it is not possible to make an un-
ambiguous separation of scales. The two-point correlation function
ξk,l
± (θ ) is related to the underlying matter power spectrum Pδ(k, z)

through integrals over k and z, modulated by the lensing efficiency
g(z) (equation 13) and Bessel functions J0/4(�θ ) for ξ+/ −(θ ) (see
equations 11 and 12). The measured tomographic two-point shear
correlation function ξk,l

± at a fixed scale θ therefore probes a range of
k in the underlying matter power spectrum. In addition, owing to the
different Bessel functions, ξ+ preferentially probes much smaller
k, and hence larger physical scales, than ξ−.

Kilbinger et al. (2013) present an analysis of the 2D shear cor-
relation function out to large angular scales θ < 350 arcmin. The
consistent constraints obtained from the large quasi-linear regime
θ > 53 arcmin in comparison to the full angular range, analysed
using the Smith et al. (2003) non-linear power spectrum, give us
confidence that the accuracy of this correction is sufficient, falling
within our statistical errors.

Comparing the theoretical expectation of ξk,l
± (θ ) (equation 11)

for a WMAP7 cosmology, calculated using a non-linear and a linear
power spectrum, we determine the angular scale below which the
non-linear and linear models differ in amplitude by greater than
10 per cent. For ξ+, this quasi-linear limit ranges from 10 to 14 ar-
cmin for the three different tomographic combinations (the lowest
redshift bin requiring the largest θ cut). For ξ−, the quasi-linear limit
ranges from 100 to 140 arcmin. In this analysis, we limit our angular
range to scales with θ � 40 arcmin where we can accurately assess
a covariance matrix from the lensing simulations (Harnois-Déraps
et al. 2012). We are therefore unable to follow Kilbinger et al. (2013)
by limiting our real-space analysis to this quasi-linear regime as we
do not probe sufficiently large angular scales. We can however make
an assessment of how an error on the non-linear correction would
impact our results. We first compare the WMAP7 theoretical expec-
tation of ξk,l

± (θ ) calculated using a non-linear correction boosted by
7 per cent, with a model calculated with the non-linear correction
decreased by 7 per cent. Note that we choose the value of 7 per cent
from the average error over the range of k tested in Eifler (2011).

We find that these two limits on the non-linear correction cause
at least a 10 per cent change in the amplitude of ξk,l

± (θ ) for scales
θ � 1 arcmin for ξ+ and θ � 10 arcmin for ξ−. Applying these
cuts in angular scale corresponds to removing the first five angular
scales for ξ− for each tomographic bin shown in Fig. 6. All ξ+
scales remain in the analysis. With these scales removed, any re-
maining uncertainty due to the non-linear modelling is well within
our statistical error.

For reference, we calculate the approximate wavenumber cor-
responding to the physical separation of the source galaxies
when the small-scale cuts are applied. Using the relation k =
2π(θfK (χ ))−1, and assuming a flat �CDM cosmology, the an-
gular scale cuts correspond to wavenumbers kθ=1′ ∼ 12 h Mpc−1

and kθ=10′ ∼ 1.2 h Mpc−1. Here we have calculated the angular
diameter distance to the mean redshift of the low-redshift bin
fK (χ ) = 1800 h−1 Mpc. To determine what wavenumber the shear
correlation functions are sensitive to, we must account for the Bessel
functions, power spectrum and lensing efficiency in equations (11)
and (12). To get a rough estimate we take the power spectrum to
be a pure power law with exponent −2, and take the mid-point of
the angular diameter distance since this is approximately where the
lensing efficiency will peak fK (χ ) ∼ 900 h−1 Mpc. We perform the
integral in equation (11) for both ξ+ and ξ− and note for which �

90 per cent of the final value is reached. This results in an approxi-
mate wavenumber of k ∼ 2.5 h Mpc−1 for both ξ+ and ξ−.

Fig. 12 compares cosmological parameter constraints in the
�m−σ8 plane for this limited number of scales in comparison to
the full data set analysed in Section 3. The removal of small scales
results in a slight change to the degeneracy of the parameters. This

Figure 12. Marginalized parameter constraints (68.3, 95.5 and 99.7 per cent
confidence levels) in the �m−σ8 plane for a flat �CDM cosmology. The
pink contours show the result when all eight scales are included; this is the
same as the result for CFHTLenS shown in Fig. 7. The blue contours show
the result of removing highly non-linear scales, which are possibly biased
due to the non-linear correction to the matter power spectrum or the effect
of baryons. We remove the five smallest scales of ξ−, corresponding to θ <

10 arcmin. The contours are only slightly different, indicating that we are
not sensitive to these effects given the level of precision of our results.
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test gives us confidence that the non-linear correction used is suf-
ficiently accurate given the statistical error of the survey. This is
unlikely to be true for future surveys, where the increased statistical
accuracy will require better knowledge of the non-linear correction
to the power spectrum (Eifler 2011).

Finally we turn to the impact of baryons on our results. In our
analysis, we assume that the underlying matter power spectrum
is sufficiently well represented by the non-linear dark matter only
power spectrum, neglecting the role of baryons. The impact of
baryons on the power spectrum is sensitive to the baryonic feedback
model used. Therefore, the magnitude of the impact of baryons
remains uncertain. Semboloni et al. (2011) present an analysis of
cosmological hydrodynamic simulations to quantify the effect of
baryon physics on the weak gravitational lensing shear signal using
a range of different baryonic feedback models. Their work suggests
that a conservative weak lensing analysis should be limited to those
scales where k � 1.5 h Mpc−1. We implement such a conservative
scheme in the 3D power spectrum analysis of Kitching et al. (in
preparation). As discussed above, our real-space analysis mixes k
and z scales, leaving us unable to perform a similarly clear test
here.

Semboloni et al. (2011) also present a comparison of ξk,l
± (θ ) mea-

sured for both the cosmological hydrodynamic simulations and a
dark matter only simulation for different redshifts, which we use
to judge the level of error we should expect baryons to introduce.
Assuming the realistic AGN feedback model, and considering the
scales used in the conservative analysis of Fig. 12 (θ ≥ 1.34 arcmin
and θ ≥ 15.4 arcmin for ξ+ and ξ−, respectively), we expect baryons
to cause a decrease in the modelled signal of less than 10 per cent.
The fact that we see very little difference between the conservative
and full analysis presented in Fig. 12 demonstrates that the under-
lying matter power spectrum is indeed sufficiently well represented
by the non-linear dark matter only power spectrum for our statis-
tical accuracy. It also indicates that the impact of baryons on the
non-linear dark matter only power spectrum is unlikely to be larger
than that predicted by Semboloni et al. (2011). However, baryonic
effects will have to be carefully considered for the next genera-
tion of weak lensing surveys that will have significantly smaller
statistical errors. Semboloni, Hoekstra & Schaye (2012) show the
importance of baryonic effects on three-point shear statistics and
propose a modification to the modelling of the non-linear matter
power spectrum to account for these effects.

5 C O N C L U S I O N

The most important result of this study is that the sum of the pho-
tometric redshift PDFs within a redshift bin provides an accurate
measure of the true redshift distribution of those galaxies, account-
ing for the scatter due to catastrophic as well as statistical errors.
To demonstrate the accuracy of the PDFs, we have compared the
summed PDFs with the redshift distribution predicted by spectro-
scopic redshifts, resampled COSMOS-30 redshifts and predictions
from a redshift contamination analysis using the angular correlation
function. We find excellent agreement for the redshift range zp <

1.3. This result indicates that the priors and spectral templates used
in Hildebrandt et al. (2012) to derive the photometric redshifts pro-
vide an accurate and complete description of the galaxies at zp <

1.3. This also motivates our use of the summed PDF as a measure of
the redshift distributions in our tomographic weak lensing analysis.
Furthermore, the proven accuracy of the summed PDFs provides

a reliable method for estimating the source redshift distribution in
future weak lensing studies.

We have performed a cosmological analysis of the CFHTLenS
data on angular scales 1 < θ < 40 arcmin, using two broad redshift
bins, 0.5 <zp ≤ 0.85 and 0.85 <zp ≤ 1.3, which are not significantly
affected by the intrinsic alignment of galaxy shapes. We model
two cosmologies: flat and curved �CDM. Due to complementary
degeneracies, our results add valuable constraining power when
combined with those from the CMB (WMAP7), BAOs (BOSS) and
a prior on the Hubble constant (R11). The addition of our weak
lensing results to these other cosmological probes increases the
precision of individual marginalized parameter constraints by an
average factor of 1.5−2.

For a flat �CDM model, the joint parameter constraints for
CFHTLenS, WMAP7, BOSS and R11 are �m = 0.2762 ± 0.0074
and σ 8 = 0.802 ± 0.013. For a curved �CDM model, combining
the same data sets, we find �m = 0.2736 ± 0.0085, �� = 0.7312 ±
0.0094, �K = −0.0042 ± 0.0040 and σ 8 = 0.795 ± 0.013. Full de-
tails of our parameter estimates for both cosmologies are presented
in Table 3. Our results are consistent with those presented in other
studies of the CFHTLenS data: a 2D lensing analysis probing much
larger scales where linear theory provides a more accurate model to
the matter power spectrum (Kilbinger et al. 2013) and a fine-binned
tomographic analysis with six redshift bins accounting for intrinsic
alignments (Heymans et al. 2012a).

We compare the tomographic constraints with those from a 2D
lensing analysis spanning the same range of redshift 0.5 < zp ≤
1.3. We find the two analyses to be completely consistent with all
parameter estimates agreeing within their 68.3 per cent confidence
levels. We note that the ratio of uncertainties on individual pa-
rameters from tomography to those from 2D lensing is on average
�tomo/�2D = 1.16. This statistic is 0.98 if we replace our data vec-
tors with a fiducial model, indicating that our covariance matrices
do show a slight improvement for tomography. We argue that our
non-Gaussian covariance and broad overlapping redshift bins de-
grade the modest improvement (�tomo/�2D = 0.88) expected from
idealized Fisher matrix calculations (Simon et al. 2004). We identify
small scales as being largely responsible for the observed increase,
finding �tomo/�2D = 1.04 when these scales are removed from
the analyses. These scales could be biased due to uncertainties in
the modelling of the non-linearities in the matter power spectrum
and baryonic effects. Although small scales have inflated our un-
certainties from tomography, we show in Section 4 that they do not
significantly affect our results.

Previous analyses of CFHTLS data were hindered by a strong
redshift-dependent bias in the weak lensing shear, necessitating
additional nuisance parameters when analysing the tomographic
shear (Kilbinger et al. 2009). We demonstrate that the redshift scal-
ing of the CFHTLenS cosmic shear signal agrees with expectations
from the modelled �CDM cosmology. The strongest test of this
is presented in Fig. 9, which shows the agreement of cosmologi-
cal constraints measured for each combination of redshift bins in
the �m−σ8 plane for a flat �CDM cosmology. This demonstrates
the effectiveness of the cosmology-independent tests of residual
systematics presented in Heymans et al. (2012b), including the re-
jection of 25 per cent of the MegaCam pointings which failed to
pass these tests. Note also that the shear calibration performed on
numerical simulations (Miller et al. 2013) was completed before
any cosmological analysis was performed on the data. The two-bin
analysis presented here is sensitive to redshift-dependent cosmol-
ogy without introducing additional parameters to model intrinsic
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alignments, as such it is an excellent final test of the CFHTLenS
data product.
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