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ABSTRACT
We present the first direct measurement of the galaxy–matter bispectrum as a function of
galaxy luminosity, stellar mass and type of spectral energy distribution (SED). Our analysis
uses a galaxy–galaxy–galaxy lensing technique (G3L), on angular scales between 9 arcsec
and 50 arcmin, to quantify (i) the excess surface mass density around galaxy pairs (excess
mass hereafter) and (ii) the excess shear–shear correlations around single galaxies, both of
which yield a measure of two types of galaxy–matter bispectra. We apply our method to the
state-of-the-art Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS), spanning
154 square degrees. This survey allows us to detect a significant change of the bispectra with
lens properties. Measurements for lens populations with distinct redshift distributions become
comparable by a newly devised normalization technique. That will also aid future comparisons
to other surveys or simulations. A significant dependence of the normalized G3L statistics on
luminosity within −23 ≤ Mr ≤ −18 and stellar mass within 5 × 109 M� ≤ M∗ ≤ 2 × 1011 M�
is found (h = 0.73). Both bispectra exhibit a stronger signal for more luminous lenses or those
with higher stellar mass (up to a factor of 2–3). This is accompanied by a steeper equilateral
bispectrum for more luminous or higher stellar mass lenses for the excess mass. Importantly,
we find the excess mass to be very sensitive to galaxy type as recently predicted with semi-
analytic galaxy models: luminous (Mr < −21) late-type galaxies show no detectable signal,
while all excess mass detected for luminous galaxies seems to be associated with early-type
galaxies. We also present the first observational constraints on third-order stochastic galaxy
biasing parameters.

Key words: gravitational lensing: weak – galaxies: haloes – dark matter – large-scale structure
of Universe.

� E-mail: psimon@astro.uni-bonn.de

1 IN T RO D U C T I O N

Over the course of the last two decades, the gravitational lensing ef-
fect has allowed us to establish a new branch of science that exploits
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the distortion of light bundles from distant galaxies (‘sources’) in
order to probe the large-scale gravitational field produced by in-
tervening matter. Strong tidal gravitational fields cause an obvi-
ous distortion of individual galaxy images (‘strong lensing’; cf.
Meylan et al. 2006), whereas weak deflections can only be in-
ferred by statistical methods utilizing many galaxy images (‘weak
lensing’; cf. Schneider 2006). For the latter, usually shear image
distortions are harnessed, although the study of higher order flexion
distortions may also be feasible in the near future (cf. Goldberg
& Natarajan 2002; Goldberg & Bacon 2005; Velander, Kuijken
& Schrabback 2011). Recently, the lensing magnification effect has
also moved into the focus of research as a new source of information
on cosmological large-scale structure (Hildebrandt, van Waerbeke
& Erben 2009). As the gravitational field is solely determined by the
mass density of the objects under examination, no further assump-
tions on their properties need to be made when studying lensing.
This makes it a unique tool for cosmologists to examine the large-
scale structure of the Universe, in particular the relation between
luminous components, such as galaxies and the dark component.
Within the current � cold dark matter (�CDM) standard model of
cosmology (Peacock 1999; Dodelson 2003), the major fraction of
matter is so-called dark matter, whereas ordinary baryonic matter is
subdominant (Komatsu et al. 2011). Therefore, lensing plays a key
role in scrutinizing the dominant matter component or in testing the
standard model.

Statistical methods have been developed that quantify the average
mass distribution around galaxies by cross-correlating tangential
shear, as observed from background sources, with foreground lens
galaxy positions. Galaxy–galaxy lensing (GGL), as the first highly
successful application, in effect measures the stacked projected sur-
face mass density profiles around galaxies (Brainerd, Blandford &
Smail 1996; Hudson et al. 1998; Fischer et al. 1999; McKay et al.
2001; Hoekstra et al. 2003; Hoekstra, Yee & Gladders 2004; Seljak
& Warren 2004; Sheldon et al. 2004; Kleinheinrich et al. 2006;
Mandelbaum et al. 2006a; Parker et al. 2007; van Uitert et al. 2011;
Leauthaud et al. 2012; Mandelbaum et al. 2012). The GGL signal is
thus a function of lens–source separation (and their redshifts) only,
i.e. a two-point statistic that is based on a lens and the image elliptic-
ity of a source galaxy. For a review see Schneider (2006) or Hoekstra
& Jain (2008). GGL studies revealed, e.g. a mass distribution far
exceeding the extension of visible light: lenses are embedded in
a dark matter halo of a size with at least ∼100 h−1 kpc (Hoekstra
et al. 2004) and a mean density profile consistent with those found in
�CDM simulations (Navarro, Frenk & White 1996; Springel et al.
2005). As an extension of GGL, the light distribution within the lens
can be utilized to align the stacked mass fields, which allows the
measurement of the mean ellipticity of the halo mass distribution
in a coordinate frame aligned with the stellar light distribution of
a lens (Hoekstra et al. 2004; Mandelbaum et al. 2006b; van Uitert
et al. 2012; Schrabback & CFHTLenS team 2012, in preparation).
More generally, on larger spatial scales the technique has been ex-
ploited to infer the spatial distribution of lenses with respect to
the matter distribution, the second-order galaxy biasing (Hoekstra,
Yee & Gladders 2001; Hoekstra, Van Waerbeke & Gladders 2002;
Pen et al. 2003; Sheldon et al. 2004; Seljak et al. 2005; Simon
et al. 2007; Jullo et al. 2012). More recently, GGL in combination
with galaxy clustering in redshift surveys has been employed to test
general relativity (Reyes et al. 2010), or to successfully constrain
cosmological parameters (Mandelbaum et al. 2012).

Schneider & Watts (2005, SW05 hereafter) introduced two new
GGL correlation functions that involve three instead of two galaxies,
either two lenses and one source (‘lens–lens–shear’) or two sources

and one lens (‘lens–shear–shear’). Therefore, this new class of cor-
relators represents the third-order level of GGL or simply galaxy–
galaxy–galaxy lensing (‘G3L’). Both correlators express new as-
pects of the average matter distribution around lenses, which can
be translated into third-order galaxy biasing parameters (SW05),
especially if represented in terms of aperture statistics (Schneider
1998). This paper chooses the aperture statistics to represent the
G3L signal. Thereby, we essentially express the angular bispectrum
of the (projected) matter–galaxy three-point correlation. A rigorous
mathematical description of the aperture statistics is given in the
following section.

A more intuitive interpretation (Simon, Schneider & Kübler
2012) of G3L is given by the definition of the real-space corre-
lation functions: the lens–lens–shear correlation function measures
the average excess shear (or excess mass, Simon et al. 2008) around
clustered lens pairs, i.e. in excess of the average shear pattern around
pairs formed from a hypothetical set of lenses that is uniformly ran-
domly distributed on the sky (unclustered) but exhibit the same
GGL signal as the lenses in the data. It is a probe for the joint
matter environment of galaxy pairs, not single galaxies. This cor-
relator promises to put additional constraints on galaxy models
(Saghiha et al. 2012) as it appears to be very sensitive to galaxy
types. On the other hand, the lens–shear–shear correlation func-
tion measures the ‘excess shear–shear correlation’: it quantifies the
shear–shear correlation function in the neighbourhood of a lens
in excess of shear–shear correlations as expected from randomly
scattered lenses. Thereby it picks up the (projected) matter density
two-point correlation function of matter physically associated with
lenses. In a way this makes the lens–shear–shear correlator similar
to the traditional GGL, but now also probing the variance in the
surface matter density around lenses instead of merely the average.
The angular matter–galaxy bispectra are Fourier transforms of these
correlators.

Simon et al. (2008) have demonstrated with the Red-Sequence
Cluster Survey (RCS1; Gladders & Yee 2005) that both G3L cor-
relation functions can readily be measured with existing lensing
surveys. The RCS1 study aimed to obtain a high signal-to-noise
ratio of the lensing signal, for which all available lenses were com-
bined into one lens catalogue. Therefore, apart from this feasibility
study in existing data, little more is known on the dependence of the
G3L signal on galaxy properties. This paper is a first step to fill this
gap by systematically measuring G3L for a series of lens samples
with varying properties. The amount of data available through the
Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS)
analysis allows this to be done for the first time. An accompany-
ing paper by Velander et al. (2012) explores the GGL signal of
CFHTLenS in the light of the halo model (Cooray & Sheth 2002).

The paper is laid out as follows. Section 2 summarizes the aper-
ture statistics that are devised to express the G3L signal, give their
practical estimators and list possible sources of systematics. In Sec-
tion 3, we outline the selection criteria of our source and lens sam-
ples. Lenses are selected by luminosity, stellar mass, redshift and
two galaxy spectral types, all to be analysed separately. Section 4
presents our G3L results. For a large range of angular scales covered
in this study, the G3L signal is characterized by a simple power law
whose parameters are given. Section 5 offers a physical interpreta-
tion of the G3L statistics in terms of 3D galaxy–matter bispectra.
In this context, we also introduce a normalization scheme to re-
move, to the lowest order, the impact of the exact shape of the
lens redshift distribution and the source redshift distribution from
the signal. Finally, the Sections 6 and 7 present our discussion and
conclusions.
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Throughout the paper, we adopt a Wilkinson Microwave
Anisotropy Probe 7 (WMAP7) (Komatsu et al. 2011) fiducial cos-
mology for the matter density �m = 0.27, the cosmological con-
stant �� = 1 − �m = 0.73 (both in units of the critical density)
and H0 = 100 h km s−1 Mpc−1. These parameters are consistent
with gravitational lensing constraints obtained from CFHTLenS it-
self (Benjamin et al. 2012; Kilbinger et al. 2012; Heymans et al.,
submitted). If not stated otherwise, we explicitly use h = 0.73,
in particular for the absolute galaxy magnitudes and their stellar
masses.

2 FORMALISM

This section summarizes the theory and notation of G3L as detailed
in SW05, and lists possible G3L specific systematics.

2.1 Galaxy–galaxy lensing preliminaries

The weak gravitational lensing effect (see Schneider 2006, and ref-
erences therein) probes the three-dimensional relative matter den-
sity fluctuations δm(R⊥, χ ) = �ρm/ρ̄m in projection along the line
of sight in terms of the lensing convergence

κ(θ) = 3�m

2D2
H

∫ χh

0
dχ

g(χ )fK(χ )

a(χ )
δm(fK(χ )θ, χ ) . (1)

Here R⊥ = fK(χ )θ is a 2D vector perpendicular to a reference
line of sight and θ the angular position on the sky. The comoving
angular diameter distance fK(χ ) is written as a function of comoving
radial distance χ . By DH := c/H0 we define the Hubble length, and
a(χ ) is the cosmic scale factor at a distance χ ; we set a(0) = 1
by definition; c is the vacuum speed of light. By χh we denote
the comoving Hubble radius of today as the theoretical maximum
distance at which we can observe objects. The lensing efficiency
averaged over the probability density distribution function (pdf)
pb(χ ) dχ of background galaxies (‘sources’) is expressed by

g(χ ) =
∫ χh

χ

dχ ′ pb(χ ′)
fK(χ ′ − χ )

fK(χ ′)
. (2)

Although the convergence in principle is observable through mag-
nification of galaxy images, past weak lensing analyses and this
paper focus on the related gravitational shear (Kaiser & Squires
1993)

γc(θ ) = 1

π

∫
d2ϑ D(ϑ − θ )κ(ϑ) ; D(θ ) := − 1

(θ∗)2
. (3)

By θ∗ we denote the complex conjugate of θ . For this purpose, the
complex ellipticity of the galaxy image

ε(θ) ≈ γc(θ ) + εs ; 〈εs〉 = 0 (4)

serves as a noisy estimator of γ c; the noise term originates from the
unknown intrinsic shape εs. In addition, due to the finite number
of sources, one also experiences sampling noise of the shear field.
Note that we adopt the commonly used complex notation of 2D
vectors and spinors (in the case of shears and ellipticities), where
real and imaginary parts are the components along two Cartesian
axes in a tangential plane on the sky.

GGL techniques correlate the total matter distribution κ(θ ) with
the relative number density distribution κg(θ ) of lens galaxies
(‘lenses’) on the sky by means of cross-correlating the lensing signal
with positions of foreground galaxies,

κg(θ ) = ng(θ ) − ng

ng
=

∫ χh

0
dχ pf (χ ) δg(fK(χ )θ, χ ) , (5)

where pf(χ ) dχ is the pdf of the lens (foreground) comoving dis-
tances along the line of sight; ng(θ) is the projected number density
of lenses and n̄g its statistical mean. For the scope of this paper, pf(χ )
is estimated from a redshift pdf pz(z) dz = pf(χ ) dχ of a selected
lens sample.

2.2 G3L aperture statistics

For practical purposes, the aperture statistics are a convenient mea-
sure for a lensing analysis (Schneider 1998; Schneider et al. 1998;
van Waerbeke 1998; Crittenden et al. 2002). They quantify moments
of fluctuations in κ(θ) and κg(θ ) within apertures of a variable angu-
lar scale θ . The moments are determined from the smoothed fields
κ(θ ) and κg(θ ),

Map(θ ) =
∫

d2ϑ

θ2
u

(|ϑ |θ−1
)

κ (ϑ) , (6)

N (θ ) =
∫

d2ϑ

θ2
u

(|ϑ |θ−1
)

κg(ϑ) , (7)

where u(ϑ/θ )θ−2 is the smoothing kernel. For mathematical con-
venience, we placed the aperture centre at θ c = 0 in the previous
definition. Third-order moments are defined by considering the en-
semble average of

〈N 2Map〉(θ1; θ2; θ3) := 〈N (θ1)N (θ2)Map(θ3)〉 , (8)

〈NM2
ap〉(θ1; θ2; θ3) := 〈N (θ1)Map(θ2)Map(θ3)〉 , (9)

over all random realizations of the fields κ(θ) and κg(θ ). Due to
the assumed statistical homogeneity of the fields, the averages do
not depend on the aperture centre position. Therefore, in practice,
where only one realization or survey is available, these quantities
are estimated by averaging the products N (θ1)N (θ2)Map(θ3) and
N (θ1)Map(θ2)Map(θ3) for different aperture centres covering the
survey area. See Fig. 1 for an illustration.

For a compensated filter u, i.e.
∫ ∞

0 dθ θu(θ ) = 0, the aperture
mass can in principle be obtained directly from the observable shear
through (Schneider et al. 1998)

Map(θ ) =
∫ ∞

0

∫ 2π

0

dϕ dϑ ϑ

θ2
q(ϑθ−1) 
(γ (ϑ ; ϕ)) , (10)

where γ (ϑ ; ϕ) := −e−2iϕγc(ϑ) denotes the Cartesian shear γ c at
angular position ϑ rotated by the polar angle ϕ. The real part of
γ (ϑ ; ϕ) is the tangential shear, the imaginary part the cross shear.
The relation between the filters u(x) and q(x) is given by

q(x) =
(

2

x2

∫ x

0
ds s u(s)

)
− u(x) . (11)

This paper uses the exponential aperture filter from van Waerbeke
(1998), exponential filter hereafter,

u(x) = 1

2π

(
1 − x2

2

)
e−x2/2 , (12)

which effectively has a finite support because of the Gaussian factor
that suppresses the filter strongly to zero for ϑ � 3θ (SW05). The
Fourier transform of the aperture filter is

ũ(�) =
∫

d2θ u(θ )e+i�·θ = �2

2
e−�2/2 . (13)

We generally denote a Fourier transform of f (θ ) by f̃ (�) in the
following. The exponential filter ũ(�) peaks in Fourier space at an
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Figure 1. Illustration of the aperture statistics. Fluctuations N (θ ) in the
projected galaxy number density (top panel), smoothed to the characteristic
filter scale θ , are statistically compared to the filtered projected matter fluc-
tuations Map(θ ) (lensing convergence; bottom panel). We takeN 2(θ )Map(θ )
or N (θ )M2

ap(θ ), and average these for different aperture centres (dashed cir-
cles) to estimate third-order moments of the joint probability distribution of
N (θ ) and Map(θ ).

angular wavenumber of � = √
2, which determines a characteristic

angular scale selected by an aperture radius of θ .

2.3 Aperture statistics estimators

To obtain the third-order moments of the galaxy–matter aperture
statistics, we utilize the lens–lens–shear correlation function G in
the case of 〈N 2Map〉 and the lens–shear–shear correlation function
G± for 〈NM2

ap〉. This section provides only a brief description of
this approach. For more details, its computationally optimized im-
plementation as well as verification, we refer the reader to section 3
of Simon et al. (2008).

In practice, the aperture moments 〈N 2Map〉 or 〈NM2
ap〉 are not

computed from the aperture mass Map or aperture number counts N
directly. The information contained in the aperture statistics is also
contained inside two classes of three-point correlation functions
(SW05), which are relatively straightforward to estimate. Once the
correlation functions have been determined, they can be transformed
to the corresponding aperture statistics by an integral transforma-
tion. The estimation process thus proceeds in two basic steps. In the

Figure 2. Illustration of the parametrization of the lens–lens–shear three-
point correlator G̃(ϑ1, ϑ2, φ3) (top panel), and the lens–shear–shear correla-
tion function G̃±(ϑ1, ϑ2, φ3) (bottom panel). These statistics are employed
to estimate the aperture statistics in Fig. 1. The figure is copied from SW05.

first step, for 〈N 2Map〉 one estimates the source tangential ellipticity
relative to the midpoint connecting two lenses,

G̃(ϑ1, ϑ2, φ3) = 1

n2
g

〈
ng(θ1)ng(θ2)γ

(
θ3;

ϕ1 + ϕ2

2

) 〉
. (14)

The meaning of the notation is illustrated in the left-hand panel of
Fig. 2. For 〈NM2

ap〉 one estimates the correlation of the elliptici-
ties of two sources relative to the line connecting the sources as a
function of separation from one lens (right-hand panel),

G̃±(ϑ1, ϑ2, φ3) = 1

ng

〈
γ (θ1; ϕ1)γ ±(θ2; ϕ2)ng(θ3)

〉
. (15)

Here and in the following equations a superscript ‘±’ as in γ ±

means γ for γ − (in case of G̃−) and the complex conjugate γ ∗ for
γ + (in case of G̃+).

Both correlation functions are estimated inside the bins of similar
triangles, i.e. lens–source triples within a configuration of compa-
rable side lengths ϑ1, 2 and opening angles φ3, by summing over
all relevant galaxy triplets. Any triple of three galaxy positions
θ i , θ j , θ k that meets the criteria of a relevant triangle is flagged by
�

ϑ1ϑ2φ3
ijk = 1 and �

ϑ1ϑ2φ3
ijk = 0 otherwise. For this study, we utilize

100 logarithmic bins for both ϑ1 and ϑ2, and 100 linear bins for the
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opening angle φ3. For estimating G̃ we utilize

G̃est(ϑ1, ϑ2, φ3) =

−
Nd∑
i=1

Nd∑
j=1

Ns∑
k=1

wk εk e−i(ϕi+ϕj )[1 + ω(|θ i − θ j |)]�ϑ1ϑ2φ3
ijk

Nd∑
i=1

Nd∑
j=1

Ns∑
k=1

wk�
ϑ1ϑ2φ3
ijk

, (16)

and for G̃± the estimator

G̃est
± (ϑ1, ϑ2, φ3) =
Nd∑
i=1

Ns∑
j=1

Ns∑
k=1

wj wk εj ε
±
k e−2iϕj e±2iϕk �

ϑ1ϑ2φ3
ijk

Nd∑
i=1

Ns∑
j=1

Ns∑
k=1

wj wk�
ϑ1ϑ2φ3
ijk

, (17)

where Nd and Ns are the number of lenses and sources, wi are
statistical weights of sources, ϕi are polar angles of the position
vectors of galaxies with respect to the coordinate origin, εi are the
source ellipticities, and

ω(|�θ |) = 〈κg(θ )κg(θ + �θ )〉 (18)

is the angular two-point clustering of the lenses (e.g. Peebles 1980).
In this paper, the angular clustering of lenses is estimated by means
of the estimator in Landy & Szalay (1993) prior to the estimation
of G̃ and then interpolated. Sources are weighed by the inverse-
variance uncertainty in the lensfit ellipticity measurement (Miller
et al. 2012).

In the second step, we transform the estimates of G̃ and G̃±
to the aperture statistics by devising the transformation integrals
equations 57, 59 and 63 in SW05. There is no need to remove
the unconnected terms in the correlation functions. As shown in
SW05 (section 7.2 therein), the transformation from G to 〈N 2Map〉
yields the same result when G̃ is taken instead of G. Therefore, the
integral transformation automatically ignores unconnected second-
order terms in the triple correlator, resulting in aperture statistics
that are only determined by pure (connected) third-order correlation
terms. The same holds true for G̃± and 〈NM2

ap〉.

2.4 Relation to 3D galaxy–matter bispectra

The aperture statistics are directly connected to the angular cross-
bispectra of the projected matter and lens distribution

〈N 2Map〉(θ1; θ2; θ3) =∫
d2�1

(2π)2

∫
d2�2

(2π)2
ũ(�1θ1)ũ(�2θ2)ũ(|�1 + �2|θ3)bggκ (�1, �2) ,

(19)

〈NM2
ap〉(θ1; θ2; θ3) =∫
d2�1

(2π)2

∫
d2�2

(2π)2
ũ(�1θ1)ũ(�2θ2)ũ(|�1 + �2|θ3)bκκg(�1, �2) ,

(20)

where the angular galaxy–galaxy–matter bispectrum is

〈κ̃g(�1)κ̃g(�2)κ̃(�3)〉 = (2π)2δ
(2)
D (�1 + �2 + �3)bggκ (�1, �2) (21)

and the angular matter–matter–galaxy bispectrum is

〈κ̃(�1)κ̃(�2)κ̃g(�3)〉 = (2π)2δ
(2)
D (�1 + �2 + �3)bκκg(�1, �2) . (22)

For statistically homogeneous random fields, the triple correlators
on the left-hand side of the previous two equations can only be
non-vanishing when �1 + �2 + �3 = 0, which is reflected by the
2D Dirac delta functions δ

(2)
D (x) on the right-hand sides. Owing

to homogeneity, the bispectra thus depend only on two indepen-
dent arguments �, for which we arbitrarily choose �1 and �2. This
automatically implies �3 = −(�1 + �2). In addition, the statistical
isotropy implies that the bispectra are solely functions of the moduli
of �1,2 and the angle enclosed by both wave vectors.

As can be seen from equations (19) and (20), the aperture statistics
are a locally filtered version of the bispectrum because the exponen-
tial u-filter is relatively localized in �-space with a filter maximum
at �max = √

2/θ . By means of filtering, the aperture statistics ba-
sically become a band power bispectrum version of bggκ or bκκg.
Hence the aperture statistics equations (8) and (9) measure two
different angular galaxy–matter band power cross-bispectra.

By virtue of the Limber approximation (Kaiser 1992; Bartelmann
& Schneider 2001) the angular bispectra and thereby the aperture
statistics equations (19) and (20) can directly be related to the 3D
cross-bispectrum of the matter and lens distribution (SW05) as
primary physical quantities that are assessed by the statistics

bggκ (�1, �2) =
3�m

2D2
H

∫ χh

0
dχ

g(χ )p2
f (χ )

f 3
K(χ )a(χ )

Bggm

(
�1

fK(χ )
,

�2

fK(χ )
, χ

)
, (23)

bκκg(�1, �2) =
9�2

m

4D4
H

∫ χh

0
dχ

g2(χ )pf (χ )

f 2
K(χ )a2(χ )

Bmmg

(
�1

fK(χ )
,

�2

fK(χ )
, χ

)
, (24)

where the 3D bispectra are determined by the Fourier transforms
of the matter density contrast, δ̃m(k, χ ), and galaxy number density
contrast, δ̃g(k, χ ), at radial distance χ , namely

〈δ̃g(k1, χ )δ̃g(k2, χ )δ̃m(k3, χ )〉 =
(2π)3δ

(3)
D (k1 + k2 + k3)Bggm(k1, k2, χ ) , (25)

〈δ̃m(k1, χ )δ̃m(k2, χ )δ̃g(k3, χ )〉 =
(2π)3δ

(3)
D (k1 + k2 + k3)Bmmg(k1, k2, χ ) . (26)

The vector k is the comoving wavenumber of modes entering the
triple correlator. As before with the angular bispectra, the spatial
bispectra are also isotropic, i.e. they are only functions of |k1|, |k2|
and the angle spanned by k1 and k2.

To refine the previous RCS1 measurement in Simon et al. (2008)
for different galaxy populations, we focus on equally sized apertures
with θ1 = θ2 = θ3 only. This leads us to the short hand notations
〈N 2Map〉(θ ) := 〈N 2Map〉(θ ; θ ; θ ), likewise for 〈NM2

ap〉. Due to the
action of the u-filter in the equations (19) and (20) this picks up
mainly bispectrum contributions from equilateral triangles |�1| =
|�2| = |�1 + �2|, albeit also mixing in signal from other triangles
because of the finite width of the u-filter in �-space.

2.5 Systematics indicators

The gravitational shear of distant galaxy images is produced by
small fluctuations δφ in the intervening gravitational potential. To
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the lowest order in δφ/c2 this is expected to only produce curl-
free shear fields (B-modes vanish). Current surveys do not have the
power to measure higher order effects, such that we expect these
to be undetectable in our data. Shear-related correlation functions,
or aperture moments involving the aperture mass, hence vanish af-
ter the rotation of all sources by 45◦, i.e. after γc(θ ) �→ −i γc(θ ).
Translated into data analysis, a 45◦ rotation of the source elliptic-
ities should result in a measurement that is statistically consistent
with the experimental noise (e.g. Hetterscheidt et al. 2007). We use
this as a necessary (but not sufficient) indicator for the absence of
systematics in the data.

The estimator G̃est
± in equation (17) incorporates two sources with

two uniquely different possibilities to probe systematics: rotating
the ellipticities εj and εk of both sources results in the so-called
B-mode channel of 〈NM2

ap〉(θ ), denoted here by 〈NM2
⊥〉(θ ), and

the P-mode channel, 〈NM⊥Map〉(θ ), if only either εj or εk are ro-
tated. As pointed out by Schneider (2003), a P-mode is a signature
of a parity-invariance violation in the shear data, which in a parity-
invariant universe can only be generated by systematics in the point
spread function (PSF) correction pipeline, or in the algorithm for
the statistical analysis of the data. Non-vanishing B-modes, on the
other hand, can have a physical cause. For example, they can be
associated with the intrinsic clustering of sources (Schneider, van
Waerbeke & Mellier 2002), intrinsic alignment correlations of phys-
ically close sources or intrinsic shape–shear correlations (Heymans
et al. 2006, and references therein). Especially the latter two are
a concern for this analysis, as these effects are known to affect
the E-mode channel of the aperture statistics, which is the prime
focus of this work. However, currently it is unclear by how much
this really affects G3L. We discuss in the following Section 2.6
that the influence of these systematics can be suppressed by sep-
arating lenses and sources in redshift, which is carried out in our
analysis.

Since the estimator G̃est in equation (16) involves one source,
there is only a single systematics indicator of 〈N 2Map〉(θ ), which
is a parity violation indicator, a P-mode channel. In the following,
we will denote these statistics as 〈N 2M⊥〉(θ ). As shown in SW05,
the B- and P-modes of the statistics can be computed from G̃ and
G̃± directly by utilizing an alternative integral kernel in the trans-
formation from correlation functions to aperture statistics; see their
sections 7.1 and 7.2.

2.6 Reduction of intrinsic–intrinsic and shear-intrinsic
correlations

One possible source of systematics is correlations with intrinsic el-
lipticities εs of sources. A correlation between εs of different sources
(II-correlations) or between εs and a fluctuation in the mass density
field generating shear (GI-correlations) is known to contribute to
the shear correlation functions (e.g Hirata & Seljak 2004; Heymans
et al. 2006; Joachimi et al. 2011). For a discussion of intrinsic align-
ments in CFHTLenS see also Heymans et al. (submitted). We argue
here that selecting lenses and sources from well-separated distances
ideally removes contaminations by II- or GI-correlations in the G3L
statistics.

Consider the galaxy number density contrasts κg, 1 and κg, 2

in two arbitrary line of sight directions θ1 and θ2, respectively,
and a source ellipticity εs + γ in a third direction θ3. The
shear γ and εs are rotated in direction of the mid-point be-
tween the two lenses according to the definition of G. If lenses
and sources are well separated in distance, then their proper-

ties are statistically independent. The lens–lens–shear correlator
measures

G = 〈κg,1κg,2(γ + εs)〉
= 〈κg,1κg,2γ 〉 + 〈κg,1κg,2〉〈εs〉
= 〈κg,1κg,2γ 〉 , (27)

free of any systematic contribution from the intrinsic shape εs, if εs

is statistically independent of the lens number density fluctuation
κg, i.e.

〈κg,1κg,2εs〉 = 〈κg,1κg,2〉〈εs〉 , (28)

vanishing due to 〈εs〉 = 0.
Now, consider a lens number density contrast κg in one direction

and the ellipticities εs, i + γ i of two source images i = 1, 2 in
two other directions. The ellipticities are rotated in direction of line
connecting the sources in accordance with the definition of G±. The
triple correlator measures

G± = 〈κg(γ ±
1 + ε±

s,1)(γ2 + εs,2)〉
= 〈κgγ

±
1 γ2〉 + 〈κgε

±
s,1γ2〉 + 〈κgγ

±
1 εs,2〉 + 〈κgε

±
s,1εs,2〉

= 〈κgγ
±
1 γ2〉 + 〈κgε

±
s,1γ2〉 + 〈κgγ

±
1 εs,2〉 + 〈κg〉〈ε±

s,1εs,2〉
= 〈κgγ

±
1 γ2〉 + 〈κgε

±
s,1γ2〉 + 〈κgγ

±
1 εs,2〉 . (29)

The last term in the third line vanishes because κg in the foreground
is independent of the intrinsic shape of the sources in the background
and because of 〈κg〉 = 0. The latter follows from the definition of
density fluctuations κg.

The last two terms in the last line are less clear. For example in
〈κgε

±
s,1γ2〉, γ 2 could be correlated with both εs, 1 (GI signal, if source

2 is behind source 1) and κg (GGL signal). However, on the level of
accuracy of the Born approximation that is used in equation (1), the
shear γ 2 is linear in the matter density contrast δm up to the distance
of source 2. We can, therefore, split the contributions to γ 2 into
three parts γ 2 = γ κ + γ ε + γ rest, namely (i) in contributions from
matter within correlation length to the lens, γ κ , (ii) matter within
correlation distance to source 1, γ ε and (iii) the rest γ rest, which is
neither correlated with κg nor with εs, 1. In this case, we find

〈κgε
±
s,1γ2〉 = 〈κgγκ 〉〈ε±

s,1〉 + 〈κg〉〈ε±
s,1γε〉 + 〈κg〉〈ε±

s,1〉〈γrest〉 . (30)

All three terms vanish owing to 〈κg〉 = 〈ε±
s,1〉 = 0. A similar rational

shows that also 〈κgγ
±
1 εs,2〉 vanishes to the lowest order, such that

we expect to find in the weak lensing regime

G± = 〈κgγ
±
1 γ2〉 . (31)

2.7 Magnification of lenses

Another conceivable systematic effect is through cosmic magnifi-
cation (Narayan 1989; Bartelmann & Schneider 2001) that is gener-
ated by matter density fluctuations in front of lenses. To the lowest
order, foreground matter density fluctuations with lensing conver-
gence κ< (equation 1) integrated to the lens distance modify the
observed clustering of lenses on the sky above a certain flux limit
flim according to

κ ′
g = κg + λκ< + O(κ2

<) , (32)

compared to the unmagnified lens number density κg. Here, we
have λ := 2(ν − 1) with n̄g(> flim) ∝ f −ν

lim being the mean
number density of lenses with flux greater than flim. Normally
ν − 1 is of the order of unity (van Waerbeke 2010) or smaller.
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Figure 3. Prediction of the third-order moment of the aperture mass 〈M3
ap〉

for sources at redshift zs = 0.4.

Likewise the shear distortion γ = γ < + γ >, equation (3), into the
same los direction contains a contribution γ < related to κ< and
γ > that is the shear originating from matter fluctuations beyond
the foreground. This in combination produces as additional contri-
bution to G = 〈κ ′

g,1κ
′
g,2(γ< + γ>)〉 the term λ2〈κ<, 1κ<, 2γ <〉 and to

G± = 〈κ ′
g(γ<,1 + γ>,1)(γ<,2 + γ>,2)〉 the term λ〈κ<γ <, 1γ <, 2〉.

These terms are basically third-order cosmic shear correlations
or, in terms of the aperture statistics, related to the 〈M3

ap(θ )〉 statis-
tics (Schneider, Kilbinger & Lombardi 2005). Third-order shear
correlations have been measured (Bernardeau, van Waerbeke &
Mellier 2003; Pen et al. 2003; Jarvis, Bernstein & Jain 2004; Sem-
boloni et al. 2011) and 〈M3

ap(θ )〉 has been found (Jarvis et al. 2004;
Semboloni et al. 2011) to be of the order of �10−7 for aperture
scales of θ ∼ 1 arcmin and sources at zs ∼ 1.0. As this includes
contributions from the entire integrated matter up to zs, whereas
the G3L magnification effect only contributions from the matter
integrated up to the lens redshifts zd ∼ 0.4, we consider this as an
empirical upper limit for the magnification effect. In Fig. 3, we show
a prediction of 〈M3

ap(θ )〉 with sources at zs = 0.4 for a WMAP7-
like cosmology based on the theory described in Semboloni et al.
(2011). This result implies that the impact of lens magnification on
the G3L aperture statistics is smaller than �10−8.

3 DATA

3.1 Object selection and photometric redshifts

This work uses the full CFHTLenS data set, which originates from
the CFHTLS-Wide Survey. The CFHTLS-Wide imaged 171 Mega-
Cam (mounted on the CFHT) pointings in the five broad-band filters
u∗, g′, r′, i′ and z′. During the observation campaign of CFHTLS,
the i′-band filter was replaced by a new filter with a slightly differ-
ent transmission curve. For some of the pointings only the updated
i′-band filter magnitudes are available, which are treated as the old
filter magnitudes in the analysis. For details, see Erben et al. (2012).

CFHTLenS has an effective area (different pointings partly over-
lap) of about 154 square degrees with high-quality photometric
redshifts down to i′ ≈ 24.7. The data set and the extraction of our
photometric redshift catalogue are described in Hildebrandt et al.
(2012). Our data processing techniques and recipes are described

Figure 4. Total number of lenses (red) and sources (blue) in the catalogue
between 0.2 ≤ zphoto < 1.2 and 17.5 ≤ i′ < 22.5 for lenses or 17.5 ≤
i′ < 24.7 for sources. The figures comprise all galaxies, complying with
the selection cuts, contained within all 172 pointings. For the G3L analysis,
the lens sample is further subdivided in luminosity, stellar mass bins and
photometric redshift, while sources are rejected for a photo-z of zphoto <

0.65.

in Erben et al. (2009) and Erben et al. (2012). As primary selec-
tion criterion, we select sources brighter than i′ < 24.7 and lenses
brighter than i′ < 22.5. This will be further subdivided in the fol-
lowing by using photometric redshifts (Fig. 4) and, in the case of
lenses, Mr rest-frame magnitudes, stellar masses or SED informa-
tion (details below). 43 pointings out of 171 exhibit a significant
PSF residual signal, according to the detailed tests in section 4.2 of
Heymans et al. (2012) and are therefore discarded for the analysis
(∼25 per cent area); 129 pointings are included in the analysis. This
leaves a total effective survey area of ∼120 deg2 that is eventually
used in the analysis. Of this area, an additional ∼20 per cent is
lost due to masking. The analysis is performed on individual fields
which allows us to use field-to-field variances of the measurements
to estimate the covariance of measurement errors directly from the
data.

3.2 Lens samples

To guarantee a high reliability of the photo-z estimates for the lenses,
a magnitude cut of i′ ≤ 22.5 is applied. A detailed account and tests
of the CFHTLenS photo-z pipeline can be found in Hildebrandt et al.
(2012). Based on the galaxies endowed with photometric redshifts,
three classes of lens samples are selected (Table 1).

(i) A luminosity or L-sample class, which consists of six distinct
rest-frame Mr-bins (SDSS r-filter; York et al. 2000), labelled L1–
L6. The same formal luminosity bin limits as in Mandelbaum et al.
(2006a) or Velander et al. (2012) are applied, although we do not
automatically expect equivalent completeness of the samples. To
quantify the completeness, we introduce the fc parameter below.

(ii) A stellar mass or sm-sample class, which is also further sub-
divided using seven distinct stellar mass bins. Again, we are guided
by Mandelbaum et al. (2006a) for compiling this sample class. The
sm class has sub-classes with labels sm1–sm7.

(iii) A galaxy type class using the T_B parameter in BPZ (Benitez
2000), which provides the most likely galaxy SED for a given galaxy
and its estimated photo-z; see Erben et al. (2012) for more details.
T_B=2 as division line, we separate early-type galaxies (‘ETG’),
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Table 1. Selection criteria of lens samples and source sample for the G3L analysis applied to the samples in Fig. 4, following Mandelbaum et al.
(2006a) for the lenses. The luminosity bins (L), stellar mass bins (sm) and galaxy type bins (ETG: early-type galaxies; LTG: late-type galaxies)
are again subdivided by 0.2 ≤ zphoto < 0.44 (‘low-z’) and 0.44 ≤ zphoto < 0.6 (‘high-z’). Sources attributed no statistical weight w by lensfit are
not used in the source sample. The galaxy numbers are for all pointings of which the final analysis discards roughly 25 per cent. Luminosities and
stellar masses assume h = 0.73. (1) z̄: mean redshift, σ z: rms variance of p(z); (2) and (3): best-fitting parameters of ω(θ ) = Aω(θ/1′)−λ + IC
within 0′.2 ≤ θ < 10′; (4): sample completeness; (5): mean r-band luminosity; (6): mean stellar mass in units of 1010 M�.

Sample Selection No. of Galaxies z̄ ± σ
(1)
z Aω/0.1(2) λ(3) f

(4)
c 〈Mr〉(5) 〈M∗〉(6)

L1 low-z −18 ≤ Mr < −17 36 372 0.22 ± 0.16 2.40 ± 0.29 0.45 ± 0.11 0.14 −17.75 0.04
L1 high-z ” – – – – – – –
L2 low-z −19 ≤ Mr < −18 157 306 0.28 ± 0.15 1.91 ± 0.23 0.35 ± 0.05 0.45 −18.60 0.10
L2 high-z ” – – – – – – –
L3 low-z −20 ≤ Mr < −19 220 329 0.34 ± 0.14 1.41 ± 0.12 0.43 ± 0.05 0.81 −19.52 0.26
L3 high-z ” 75 902 0.48 ± 0.11 1.63 ± 0.18 0.54 ± 0.08 0.42 −19.72 0.29
L4 low-z −21 ≤ Mr < −20 149 190 0.34 ± 0.12 1.63 ± 0.07 0.53 ± 0.03 0.95 −20.50 0.91
L4 high-z ” 185 286 0.51 ± 0.10 1.62 ± 0.08 0.69 ± 0.04 0.82 −20.53 0.98
L5 low-z −22 ≤ Mr < −21 88 916 0.34 ± 0.11 2.19 ± 0.14 0.60 ± 0.05 0.98 −21.48 3.09
L5 high-z ” 134 369 0.51 ± 0.09 2.06 ± 0.05 0.74 ± 0.02 0.99 −21.49 3.06
L6 low-z −23 ≤ Mr < −22 31 373 0.35 ± 0.10 3.02 ± 0.24 0.65 ± 0.07 0.99 −22.40 8.56
L6 high-z ” 55 315 0.52 ± 0.08 2.50 ± 0.10 0.92 ± 0.04 1.00 −22.42 8.11

sm1 low-z 0.5 ≤ M∗/1010 M� < 1.0 78 181 0.34 ± 0.12 2.41 ± 0.34 0.43 ± 0.09 0.94 −20.49 0.71
sm1 high-z ” 69 784 0.50 ± 0.10 1.72 ± 0.33 0.58 ± 0.15 0.77 −20.66 0.73
sm2 low-z 1.0 ≤ M∗/1010 M� < 2.0 61 650 0.34 ± 0.11 3.75 ± 0.82 0.36 ± 0.11 0.98 −20.98 1.42
sm2 high-z ” 82 411 0.51 ± 0.09 2.39 ± 0.07 0.60 ± 0.07 0.90 −20.99 1.45
sm3 low-z 2.0 ≤ M∗/1010 M� < 4.0 48 632 0.34 ± 0.10 3.47 ± 0.31 0.51 ± 0.07 0.99 −21.46 2.85
sm3 high-z ” 81 305 0.51 ± 0.08 2.44 ± 0.13 0.72 ± 0.05 0.98 −21.45 2.85
sm4 low-z 4.0 ≤ M∗/1010 M� < 8.0 33 218 0.35 ± 0.09 4.05 ± 0.39 0.59 ± 0.08 0.99 −21.91 5.60
sm4 high-z ” 57 049 0.51 ± 0.08 2.72 ± 0.11 0.77 ± 0.04 0.99 −22.00 5.59
sm5 low-z 8.0 ≤ M∗/1010 M� < 16.0 15 527 0.36 ± 0.08 5.00 ± 0.41 0.70 ± 0.07 1.00 −22.40 10.86
sm5 high-z ” 27 598 0.51 ± 0.08 3.56 ± 0.24 0.81 ± 0.07 1.00 −22.81 10.88
sm6 low-z 16.0 ≤ M∗/1010 M� < 32.0 4605 0.36 ± 0.07 6.58 ± 0.50 1.51 ± 0.07 1.00 −23.00 21.13
sm6 high-z ” 7121 0.52 ± 0.07 4.18 ± 0.78 1.58 ± 0.16 1.00 −23.22 20.90
sm7 low-z 32.0 ≤ M∗/1010 M� < 64.0 526 0.38 ± 0.06 8.89 ± 1.37 1.64 ± 0.15 1.00 −23.60 40.81
sm7 high-z ” 775 0.52 ± 0.07 5.61 ± 1.30 1.28 ± 0.21 1.00 −23.67 38.52

ETG low-z 0 ≤T_B<2 | − 23 ≤ Mr < −21 89 359 0.34 ± 0.10 3.43 ± 0.08 0.68 ± 0.02 0.99 −21.88 5.91
ETG high-z ” 137 144 0.51 ± 0.08 2.90 ± 0.09 0.83 ± 0.03 1.00 −21.91 5.74
LTG low-z 2 ≤T_B<6 | − 23 ≤ Mr < −21 30 926 0.35 ± 0.13 0.70 ± 0.13 0.87 ± 0.18 0.96 −21.64 1.73
LTG high-z ” 52 527 0.51 ± 0.10 1.33 ± 0.16 0.78 ± 0.11 0.99 −21.73 2.05

SOURCES 0.65 ≤ zphoto < 1.2 | w > 0 2926 894 0.93 ± 0.26 – – – – –

which have T_B<2, from late-type galaxies (‘LTG’).1In order to
define a volume-limited sample of ETG and LTG, we select only
luminous galaxies with rest-frame luminosities −23 ≤ Mr < −21.
With this luminosity cut, ETG and LTG are actually subsamples of
L5 and L6 combined.

The stellar masses of the lenses are determined from the galaxy
multi-colour data as described in section 2.1 of Velander et al.
(2012). The estimators assume a Chabrier (2003) star initial mass
function.

All three classes are further split into two photo-z bins: a ‘low-z’
bin with 0.2 ≤ zphoto < 0.44 and a ‘high-z’ bin with 0.44 ≤ zphoto <

0.60. As redshift estimators, we use the maximum probability red-
shifts of the redshift posterior provided by BPZ. The redshift bound-
aries give comparable numbers of lenses prior to attributing them
to one of the three lens classes (Fig. 4). Not counting the high-z L1

1 Within BPZ values of T_B denote best-fitting galaxy templates: 1=CWW-
Ell, 2=CWW-Sbc, 3=CWW-Scd, 4=CWW-Im, 5=KIN-SB3, and 6=KIN-
SB2. Note that the templates are interpolated such that fractional numbers
occur.

and L2 samples, which have too faint limits to contain lenses,2 we
have in total 28 lens subsamples.

The true redshift distribution of a lens sample is not identical
to the distribution of their photometric redshifts due to the errors
in the photo-z estimators. For a magnitude cut of i′ < 22.5, the
errors are approximately σ z � 0.04(1 + z) with a ∼3 per cent
outlier rate (Hildebrandt et al. 2012). We combine the posterior
redshift pdf of all lenses given by BPZ, see Fig. 5, to quantify
the redshift uncertainties of complete lens samples. The depicted
redshift probability distributions will be utilized when normalizing
the G3L aperture statistics.

To help the comparison of our G3L results to future studies, we
also quote the angular clustering and completeness of the lens sam-
ples. The results are listed in Table 1, the details are described in
Appendices B1 (clustering) and B2 (completeness). In short, for
the angular clustering of lenses, we approximate the angular galaxy
two-point correlation function by a power law over the angular
range 0.2 ≤ θ < 10 arcmin. For each lens sample with the photo-z
bin [z1, z2], we quote the completeness factor fc that expresses the

2 Actually, we find a few galaxies in the high-z L1/L2 samples. These are
probably extreme outliers with greatly inaccurate redshift estimates.
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Figure 5. In contrast to Fig. 4, this figure shows the full BPZ redshift posterior of the various samples. Low-z lenses are selected from zphoto ∈ [0.2, 0.44],
high-z lenses from zphoto ∈ [0.44, 0.6] and sources from zphoto ∈ [0.65, 1.2]. The dashed black line enclosing the source pdf is a parametrized fit, see Section 3.3
for best-fitting parameters.

average V(z1, zmax)/V(z1, z2) of all lenses in the sample; V(z1, z2) is
the light cone volume between redshift z1 and z2, and zmax ≤ z2 is the
maximum redshift up to which a lens is still above the flux limit i′ =
22.5. A small fc is a sign of a strong incompleteness because many
galaxies similar to those observed near z1 are presumably missing
at higher redshifts. Due to the magnitude limit, samples containing
a substantial portion of faint galaxies are most affected by incom-
pleteness, most notably L1 and L2. As expected, the completeness
drops if one moves from the low-z to the high-z bin in almost all
cases. The few minor exceptions, L5 for instance, are probably due
to shot noise in the fc estimator. We conclude that L4–L6, sm3–sm7
and ETG/LTG are the most complete, volume-limited samples for
our study (fc > 0.80 for both low-z and high-z). In Table 1, we
also quote the average absolute r-band flux of the samples, listed as
magnitude 〈Mr〉 and the their average stellar mass 〈M∗〉.

3.3 Source sample

All details concerning the galaxy shape measurement (employing
the lensfit algorithm; Miller et al. 2007, 2012; Kitching et al. 2008),
CFHTLenS source catalogue generation and the discussion of shear
systematics are presented in Heymans et al. (2012) and Miller et al.
(2012). We account for the multiplicative shear bias by employ-
ing the Miller et al. (2012) normalization scheme adjusted to our
estimators (see Appendix A).

In order to reduce the level of undesired II- and GI-correlations
in the measurements, we attempt to separate sources and lenses by
redshift, utilizing photometric redshifts as estimators. As a compro-
mize between accurate redshift estimates and a large numbers of
sources, we apply a magnitude limit i′ < 24.7 to the lensfit shear
catalogue and select sources within 0.65 ≤ zphoto < 1.2. As for the
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lenses, the true redshift distribution is derived from the combined
posterior redshift pdf of individual sources, shown in every panel of
Fig. 5 in comparison to the redshift distribution of the lens samples.
The individual posteriors are weighted with the source weight that
is also used in the lensing analysis. The source redshift pdf is well
fitted by a broken exponential distribution

pb(z) ∝
{

exp (−p0(z0 − z)p1 ) if z ≤ z0,

exp (−p2(z − z0)p3 ) otherwise
(33)

with fit parameters p0 = 91.14, p1 = 2.623, p2 = 4.093, p3 = 1.378
and z0 = 0.794 (dashed black lines). With our selections, we find
about 3 × 106 sources with mean redshift z̄ ≈ 0.93. As can be seen
in Fig. 5, the overlap of the various pf(z) and the source pb(z) is small
but not entirely vanishing, mainly at z = 0.5–0.7 for the high-z and
at z ∼ 0.6 for the low-z samples. The typical overlapping area of
the redshift probability distribution functions (visible in Fig. 5) is
∼12 per cent for the high-z samples and ∼4 per cent for the low-z
samples.

4 R ESULTS

4.1 Measurements and their uncertainties

In order to obtain measurements for the lensing aperture statistics,
we use the method outlined in Section 2.3. As the binning grid for
G̃est and G̃est

± , 100 log bins ranging between 9 arcsec and 50 arcmin
are set up for ϑ1/2, 100 linear bins are used for the opening angle
φ3, yielding overall 106 bins with bin widths �φ3 = 3.6.◦ and
�ln ϑ = 0.058. All measurements are performed separately on
every individual pointing, out of 129 square pointings with roughly
1 deg2 each. Adjacent pointings partly overlap; however, which
reduces the area that is actually used. In our study, we crop the
pointings to remove the overlap. For the final result, individual
estimates are combined by averaging the individual G̃est and G̃est

±
weighted by the number of triangles within each bin.

Finally, the combined estimates are transformed to the aperture
statistics by the integral transformations discussed in SW05. In this
way, the aperture statistics within 0.5 ≤ θap ≤ 10 arcmin for 10 aper-
ture scale radii are computed. As addressed in Simon et al. (2008),
the transformation from G̃ or G̃± to aperture statistics becomes bi-
ased towards small and large aperture radii due to an insufficient
sampling of the correlation functions. A similar transformation bias
is also known for the aperture mass statistics (Kilbinger, Schneider
& Eifler 2006). For the small separations, the bias depends in de-
tail on the mean number density of the galaxies, most crucially the
lenses, and the clustering of the lenses, which in combination deter-
mines the sampling of the correlation functions by small triangles.
By comparison to simulated data, we made sure that this bias is neg-
ligible (below ∼10 per cent) within the range of 1 � θ � 10 arcmin
in our case (see fig. 1 in Saghiha et al. 2012 for an illustration of
the transformation bias). The variance of the measurements across
all 129 pointings is used to estimate the covariance of measurement
errors (Jackknifing; Appendix B1). The inverse covariance matrix
is estimated from the pointing-to-pointing covariance according to
the method in Hartlap, Simon & Schneider (2007).

4.2 E-mode measurements

Fig. 6 summarizes the E-mode results for the luminosity and stellar
mass bins of the 〈N 2Map〉 (top) and 〈NM2

ap〉 statistics (bottom). Due
to the incompleteness in the samples, L1 and L2 are empty in the

higher redshift bin and hence are missing in the corresponding plots.
Likewise, due to the small number of lenses and correspondingly
large error bars, also the data points of sm7 are missing. The signal
dependence on galaxy type is displayed separately in Fig. 7. For
aperture radii greater than ∼2 arcmin the measurements seem to be
well approximated by power laws, which will be determined below.
Below roughly 2 arcmin there are indications of deviations from the
power-law behaviour at smaller radii in several cases, e.g. 〈N 2Map〉
of low-z L1/L4, or 〈NM2

ap〉 of high-z L4/L6.
The result of 〈N 2Map〉 of the LTG stand out as being the only

one that is completely consistent with zero despite relatively small
error bars. Therefore, the excess mass around LTG pairs vanishes
within the statistical uncertainties. In strong contrast to that, the
corresponding signal of the ETG sample is highly significant. From
the LTG signal upper limit, we estimate the ETG signal to be greater
by a factor of at least ∼10. This confirms the prediction of Saghiha
et al. (2012) that is based on galaxy population synthesis models.

The low-z sample L1, with the fewest number of lenses, presum-
ably is affected by the transformation bias. This can be seen by
the clear drop of the data points for 〈N 2Map〉 below θap ∼ 2 arcmin
compared to a power-law behaviour at larger scales.

4.3 Systematics tests

General tests for systematics on the level of shear catalogue gen-
eration are to be found in Heymans et al. (2012). We only use
CFHTLenS pointings that passed the therein described tests for
cosmic shear applications. To further test for systematics in our
measurements, we check for the consistency of the aperture statis-
tics B- and P-modes with a null signal. The details of this test and,
moreover, G3L measurements within separate CFHTLenS fields
(W1–W4) are presented in Appendix C. The null test also allows
us to quantify the significance of the signal in the E-mode channels
of the statistics. Table 2 summarizes the tests for all statistics and
galaxy samples.

In summary, we find that B/P-modes in the aperture statistics
are consistent with zero between 1 and 10 arcmin. When looking
at the combined L1–L6 sample, separate measurements within the
survey fields W1–W4 agree well for both the low-z and the high-z
redshift bin. This demonstrates the internal consistency of the data
and that the observed signals do not originate from a single, possibly
peculiar field. As to the E-mode channels of the statistics, we find
for 〈N 2Map〉 highly significant signals (95 per cent confidence)
for all low-z samples, except for sm6 and sm7, and most high-z
lens samples. Sm6 and sm7 pose exceptions because they contain
relatively small numbers of galaxies. Apart from the high-z L3, L4
and sm4, all high-z sample measurements of 〈NM2

ap〉 are consistent
with zero, whereas their low-z counterparts are mostly significant.
As 〈NM2

ap〉 involves a three-point correlation function with two
sources and one lens, the noise level of this measurement is naturally
higher than for 〈N 2Map〉.

5 IN T E R P R E TAT I O N

5.1 Lens-pair excess mass

Although aperture statistics and G3L correlators essentially contain
the same information, we would like to show our G-measurements
for at least the ETG and LTG samples. As outlined in Simon et al.
(2008) and Johnston (2006), the G3L correlation function G can
conveniently be interpreted as a convergence map (excess mass
map) once the separation of the two lenses is fixed; the E-mode in
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2486 P. Simon et al.

Figure 6. Measurements of the E-mode aperture statistics 〈N 2Map〉(θ ) (top figure) and 〈NM2
ap〉(θ ) (bottom figure) as a function of aperture scale radius θ .

The left-hand column depicts measurements for the low-z bin, the right-hand column the high-z bin. Different lines refer to different lens samples (Table 1).
Note that the values get biased for θ � 1 arcmin due to the transformation bias. The error bars indicate the 1σ standard deviation of the mean of all pointings
considered. The missing data points are outside the plotting range but consistent with zero. The numbers at the top indicate the effective scale of the statistics
according to the maximum in the u-filter. L1–L6: Mr-luminosities increasing from −17.8 mag to −22.4 mag; sm1–sm6: increasing stellar masses from 7 ×
109 M� to 2 × 1011 M�.
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Galaxy–galaxy–galaxy lensing in CFHTLenS 2487

Figure 7. Aperture statistics results for the late-type and early-type lens samples. The left-hand column shows the low-z redshift bin, the right-hand column the
high-z redshift bin. Top row and bottom row correspond to 〈N 2Map〉 and 〈NM2

ap〉, respectively. The numbers at the top indicate the effective scale according
to the maximum in the u-filter. ETG: early-type galaxies; LTG: late-type galaxies.

Table 2. Results of the null tests for the different channels of the statistics. The quoted values are the
reduced �χ2 with d.o.f. = 7. for the E-modes and P-mode, 〈N 2M⊥〉, and d.o.f. = 14 for the combined
B/P-mode, 〈NM2

⊥〉 and 〈NM⊥Map〉. E-modes consistent with a null signal are in bold, P- or P/B-modes
inconsistent with a null signal are underlined. The adopted confidence levels are 95 per cent. Only data
points within the range 1.5 ≤ θ < 10 arcmin were used for this test.

0.22 ≤ zphoto < 0.44 0.44 ≤ zphoto < 0.60
〈N 2Map〉 〈NM2

ap〉 〈N 2Map〉 〈NM2
ap〉

Sample E-mode P-mode E-mode P/B-mode E-mode P-mode E-mode P/B-mode

L1 3.22 1.27 2.64 1.24 – – – –
L2 7.32 1.57 2.31 1.75 – – – –
L3 3.79 0.66 4.93 0.75 3.21 0.94 2.38 1.22
L4 9.26 0.58 2.62 1.14 7.66 0.89 2.38 0.79
L5 6.72 1.00 4.31 0.80 7.08 1.95 0.81 1.06
L6 7.76 0.99 4.92 0.74 7.07 1.50 1.74 0.41

sm1 6.41 1.06 4.06 1.55 5.18 0.74 1.90 0.68
sm2 12.43 0.59 3.55 1.11 5.97 0.40 0.95 0.83
sm3 7.07 0.99 4.05 0.76 5.62 0.65 0.18 1.19
sm4 7.64 1.86 4.83 0.58 5.93 0.27 2.28 1.12
sm5 3.76 1.27 4.95 0.52 6.74 1.18 0.78 0.96
sm6 0.65 0.91 1.15 1.00 2.33 0.68 0.64 1.42
sm7 0.93 1.16 0.66 1.61 0.45 0.42 1.52 1.87

ETG 12.50 0.87 6.62 0.65 15.24 1.74 1.21 1.06
LTG 0.77 0.85 1.58 1.52 0.90 1.20 1.45 0.37

G is a series of such maps for varying lens–lens separations. After a
rotation, the correlator G̃ is a stacked shear field around the lens pair,
from which we subtract off the GGL signal around the individual
lenses to determine the connected part G. To obtain the excess mass
maps for the ETG and LTG in Fig. 8, we transform this stacked

shear field to a convergence map utilizing the algorithm in Kaiser &
Squires (1993). For these maps, we consider relatively small lens–
lens separations between 40 and 60 arcsec as in Simon et al. (2008),
and we combine the maps of the low-z and high-z samples; lens–
lens-source triangles are rescaled inside the map such that lenses
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2488 P. Simon et al.

Figure 8. Visualization of the G-measurement. Shown is the excess mass
〈κg(θ1)κg(θ2)κ(θ3)〉 (intensity scale) as function of θ3 around early-type
(top) and late-type galaxy pairs (bottom) with mean angular separations
|θ1 − θ2| between 40 and 60 arcsec; one map pixel corresponds to 1.67 arc-
sec (x- and y-axis labels). The lens positions θ1, θ2 are indicated as boxes,
the contours show the S/N levels 2, 3, . . . (positive excess mass) and −3,−2
(negative excess mass). To increase the signal-to-noise ratio the low-z and
high-z maps of the ETG and LTG samples have been combined. A smoothing
with a Gaussian kernel of rms size 6.7 arcsec has been applied to map.

are always at the same position in the map (boxes). We also exploit
the parity invariance of the maps by averaging the left and right half
of the map, thereby increasing the signal-to-noise ratio, see Simon
et al. (2008) for details.

The ETG map contains more significant structure and higher
convergence values compared to the LTG map, which has only a
weak signal. Qualitatively, the excess mass of the ETG sample is
concentrated between the lens pair, whereas the LTG lenses seem
to possess a small halo of excess mass around the individual lenses
and a convergence trough between them. The latter implies that
the average convergence about a LTG pair (both lenses at similar
distance) at given separation is lower than the sum of convergence
around two mean individual LTG. We will study these maps in more

detail in a forthcoming paper and focus on the aperture statistics for
the remainder of this paper.

5.2 Power-law fits to measurements

For aperture scale radii larger than θ � 2 arcmin, our measurements
are reasonably consistent with a simple power law. Therefore, we
fit power laws 〈N nMm

ap〉(θap) = A0(θ/1 arcmin)−α to data points
within 1.5 ≤ θ < 10 arcmin to quantify the measured profiles of the
statistics n = 2, m = 1 and n = 1, m = 2, see Table 3. The fit starts at
1.5 arcmin in order not to be too strongly influenced by the transfor-
mation bias. Fits use the Jackknife covariance matrices based on the
measurements in the different pointings, as in equation (B2). For the
fit, a multivariate Gaussian noise model for the measurement errors
is adopted. The quoted values indicate the posterior median and a
68 per cent credibility region about the median for the amplitude A0

and slope α. The posterior adopts a top-hat prior for the power-law
slope, only allowing values within α ∈ [0, 5].

Fig. 9 depicts the dependence of the slope α on the lens Mr-
magnitude and stellar mass for 〈N 2Map〉 of all samples with at least
a 95 per cent confidence detection (Table 2). We find a clear trend
towards steeper slopes (steeper equilateral bispectra) for more lumi-
nous galaxies and galaxies with higher stellar mass. Note that sm6
and sm7 contain on average galaxies more luminous than those of
L5 and L6 (Table 1). The figure also depicts the measured slopes
for the ETG samples, which are consistent with the L-subsamples
of comparable Mr-luminosity (between L5 and L6). Slopes weakly
constrained by the data have posterior medians that are drawn to-
wards the centre of the top-hat prior, α = 2.5. This mainly applies
to the noisier 〈NM2

ap〉 measurements, for which reason they are not
included in Fig. 9 but are listed in Table 3.

5.3 Normalized measurements

The G3L aperture statistics are directly related to the 3D matter–
galaxy cross-bispectra and the redshift distribution of lenses and
sources (Section 2.4). The radial galaxy distributions and the fidu-
cial cosmology define a smoothing kernel in radial and transverse
direction. To disentangle, to the lowest order, the dependence of the
signal on the physically relevant bispectrum from the dependence
on source or lens distribution, we introduce a normalization scheme.

Combining equation (19) and equation (23) shows that 〈N 2Map〉
constitutes a radially and transversely weighted average of the 3D
bispectrum Bggm(k1, k2, χ ), namely

〈N 2Map〉(θ1; θ2; θ3) =
3�m

2D2
H

∫ χH

0
dχ

g(χ )p2
f (χ )

f 3
K(χ )a2(χ )

∫
d2�1d2�2d2�3

(2π)6

× ũ(�1θ1)ũ(�2θ2)ũ(�3θ3)

× (2π)2δD(�1 + �2 + �3)Bggm

(
�1

fK(χ )
,

�2

fK(χ )
, χ

)
. (34)

By changing the integration variables as in �i = fK(χ )ki we write
this integral as

〈N 2Map〉(θ1; θ2; θ3) =:∫ χh

0
dχ qggm(χ )Bggm

(
1

fK(χ )θ1
,

1

fK(χ )θ2
,

1

fK(χ )θ3
, χ

)
,

(35)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/430/3/2476/1752236 by guest on 11 August 2022



Galaxy–galaxy–galaxy lensing in CFHTLenS 2489

Table 3. Power-law fits 〈N nMm
ap〉(θ ) = A0(θ/1′)−α to the measured aperture statistics in Fig. 6; A0 is the signal amplitude at an

aperture scale radius of θ = 1 arcmin. The fit considers only data within θ ∈ [1.5 arcmin, 10 arcmin]. The quoted errors bracket a 68
per cent credibility region about the median.

0.20 ≤ zphoto < 0.44 0.44 ≤ zphoto < 0.60
〈N 2Map〉 〈NM2

ap〉 〈N 2Map〉 〈NM2
ap〉

Sample A0/10−5 α A0/10−7 α A0/10−5 α A0/10−7 α

L1 10.57+5.12
−4.90 1.40+0.90

−0.34 54.38+25.92
−20.06 2.59+0.94

−0.59 – – – –

L2 5.15+1.05
−0.99 1.04+0.18

−0.16 9.48+8.30
−11.37 2.11+1.59

−0.73 – – – –

L3 3.66+1.04
−0.98 1.05+0.31

−0.24 28.22+7.95
−6.63 1.87+0.44

−0.29 8.56+3.78
−2.75 1.66+0.84

−0.41 41.07+27.18
−21.95 3.84+0.71

−1.06

L4 5.10+1.04
−0.95 0.97+0.20

−0.17 16.76+8.95
−6.88 1.95+1.14

−0.51 6.85+1.50
−1.34 1.49+0.29

−0.23 31.90+18.06
−13.26 3.30+0.95

−0.87

L5 12.30+2.47
−2.33 1.44+0.23

−0.18 34.56+14.41
−10.48 1.99+0.80

−0.37 9.15+1.80
−1.70 1.50+0.26

−0.20 −8.89+14.23
−18.56 3.58+0.88

−1.33

L6 35.54+9.15
−7.80 1.91+0.35

−0.26 62.85+25.33
−18.24 2.10+0.58

−0.36 19.89+6.28
−5.48 1.68+0.31

−0.30 42.07+29.43
−21.14 3.43+0.93

−1.02

sm1 11.95+2.57
−2.42 1.29+0.22

−0.18 42.70+19.94
−12.91 2.16+0.95

−0.46 9.34+4.01
−2.94 1.55+0.52

−0.34 28.69+28.52
−20.40 3.55+0.91

−1.26

sm2 19.91+3.09
−2.96 1.24+0.17

−0.14 38.15+16.87
−12.24 1.90+0.82

−0.39 14.48+3.63
−3.22 1.72+0.33

−0.23 25.94+22.36
−18.47 3.50+0.89

−1.08

sm3 24.49+5.22
−4.91 1.54+0.18

−0.16 45.06+16.95
−14.01 2.09+0.85

−0.36 11.11+3.28
−3.00 1.39+0.26

−0.24 −4.83+16.48
−19.77 3.52+0.91

−1.30

sm4 34.96+6.88
−6.40 1.65+0.25

−0.19 61.43+19.67
−16.56 1.95+0.51

−0.29 26.16+5.84
−5.50 2.10+0.32

−0.24 31.46+22.60
−16.94 3.10+1.04

−0.88

sm5 87.19+33.76
−25.14 1.87+0.65

−0.27 77.89+26.49
−22.99 1.96+0.45

−0.29 47.34+14.86
−13.26 1.79+0.24

−0.24 63.93+46.24
−35.21 3.61+0.82

−1.03

sm6 197.06+313.36
−347.35 3.60+0.84

−1.02 124.38+83.56
−64.46 3.21+1.00

−0.91 400.32+212.89
−189.83 3.68+0.72

−0.73 53.51+88.69
−68.50 3.71+0.81

−1.25

sm7 315.06+307.91
−274.91 3.26+1.04

−1.32 230.78+265.46
−198.85 3.81+0.74

−1.19 −136.21+521.62
−483.19 3.14+1.08

−1.15 407.91+307.45
−276.37 4.09+0.57

−1.11

ETG 23.27+3.05
−2.97 1.49+0.16

−0.13 41.94+10.22
−9.29 1.71+0.29

−0.21 21.51+2.85
−2.74 1.72+0.19

−0.16 19.73+16.79
−12.41 3.03+1.12

−1.03

LTG 10.82+13.05
−10.46 3.64+0.82

−1.16 59.49+42.99
−35.02 3.86+0.70

−1.04 3.25+5.85
−4.51 2.81+1.36

−1.52 −26.87+18.66
−23.95 3.41+0.94

−1.19

Figure 9. Dependence of the power-law index α in the normalized aperture statistics 〈N 2Map〉 within 1.5 ≤ θ < 10 arcmin with Mr-band magnitude (left-hand
panel) and stellar mass of lenses (right-hand panel). Table 3 lists the power-law indices of all statistics. Only fits to measurements with a 95 per cent confidence
detection are plotted. The shaded region highlights the 68 per cent credibility region of the combined low-z (open crosses) and high-z (open stars). Also shown
are the slopes for the early-type galaxy sample in the corresponding magnitude range (left-hand panel). For clarity, these data points are offset about their
actual mean 〈Mr〉 = −21.88(−21.91) for the low-z (high-z) sample.

for which we introduce the u-filtered bispectrum

Bggm

(
1

R1
,

1

R2
,

1

R3
, χ

)
:=

∫
d2k1d2k2

(2π)4D2
H

(
ũ(k1R1)ũ(k2R2)ũ(|k1 + k2|R3)Bggm(k1, k2, χ )

)
.

(36)

As implied by (35), the lensing aperture statistics are basically the
transversely u-filtered bispectrum Bggm averaged in radial direc-
tion by the kernel qggm(χ ). For equally sized aperture radii θ1 =
θ2 = θ3, the u-filter gives most weight to the equilateral bispec-
trum Bggm(k1, k2, χ ) with k1 = k2 = |k1 + k2|, but also mixes in
other triangle configurations to some degree. The radial weighting
kernel,

qggm(χ ) := 3�m

2

g(χ )p2
f (χ )fK(χ )

a(χ )
, (37)
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Figure 10. Radial weight of the matter–galaxy bispectrum for the different lens samples used in this study: 〈N 2Map〉 (top row) and 〈NM2
ap〉 (bottom row).

The left-hand column is for lenses with zphoto ∈ [0.2, 0.44] (low-z), the right-hand column for zphoto ∈ [0.44, 0.6] (high-z). L1–L6: Mr-luminosities increasing
from −17.8 mag to −22.4 mag; sm1–sm7: increasing stellar masses from 7 × 109 M� to 4 × 1011 M�; ETG: early-type galaxies; LTG: late-type galaxies.

is peaked at a radial distance χmax that is determined by the redshift
pdf of lenses and sources (top row of Fig. 10). Therefore, most
weight is given to the bispectrum at distance χmax.

The kernel qggm(χ ) is not normalized, i.e.
∫

dχ qggm(χ ) �= 1, such
that the aperture statistics assume a value that depends not only on
the underlying 3D bispectrum Bggm but also on the normalization.
In order to make measurements comparable for different lens and
source samples, we define a normalized statistic Bggm through the
relation

〈N 2Map〉(θ1; θ2; θ3) = Bggm(R1, R2, R3)
∫ χh

0
dχ qggm(χ ) (38)

with Ri := fK(χmax)θ i. We emphasize that by this definition Bggm

is not a deprojection of the angular aperture statistics to the
spatial 3D bispectrum. This would involve the inversion of the
χ -integral. Instead we, in effect, normalize the statistic by the area∫

dχ qggm(χ ), and we convert angular scales to projected physical
scales through the angular diameter distance fK(χmax) at maximum
weight qggm(χmax).

The same line of reasoning can be applied to the second G3L
aperture statistics for which we obtain

〈NM2
ap〉(θ1; θ2; θ3) = Bmmg(R1, R2, R3)

∫ χh

0
dχ qmmg(χ ) , (39)

with its own radial filter

qmmg(χ ) := 9�2
m

4D2
H

g2(χ )pf (χ )f 2
K(χ )

a2(χ )
. (40)

Examples of kernels qmmg(χ ) relevant for this work are depicted in
the bottom row of Fig. 10.

By definition the aperture statistics 〈N nMm
ap〉, as moments of

smoothed density contrasts on the sky, are dimensionless. As
qggm(χ ) has the dimension [length−1], equation (37), we deduce
from equation (35) that the u-filtered Bggm is also dimensionless.
This becomes also obvious from equation (38) because the normal-
ization integral is dimensionless. A similar argument applies to the
dimensionless Bmmg.

In our analysis, we estimate the equilateral Bggm or Bmmg am-
plitudes of all samples at a common comoving length scale of
Ri = R1Mpc = 1 h−1

100 Mpc (or k ≈ √
2/R1Mpc ∼ 1.4 h100 Mpc−1 for

the exponential u-filter). For this purpose, the power-law fits in
Table 3 to the aperture statistics are employed, which essentially
describe the data at the scales of interest, to interpolate in the case
of Bggm

Bggm(R) := Bggm(R, R, R) =
A0∫ χh

0 dχ qggm(χ )

(
fK(χmax) × 1′

h−1
100 Mpc

)+α

︸ ︷︷ ︸
=:Bggm(R1 Mpc)

(
R

h−1
100 Mpc

)−α

. (41)

We are quoting only the amplitude Bggm(R1Mpc) in the following.
Likewise for the matter–matter–galaxy bispectrum Bmmg we have

Bmmg(R) := Bmmg(R, R, R) =
A0∫ χh

0 dχ qmmg(χ )

(
fK(χmax) × 1′

h−1
100 Mpc

)+α

︸ ︷︷ ︸
=:Bmmg(R1 Mpc)

(
R

h−1
100 Mpc

)−α

. (42)
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Figure 11. Trends of the (significant) galaxy–matter bispectra Bmmg(R) and Bggm(R) for k = √
2/R = 1.03 h73 Mpc−1 with function of Mr-luminosity

(left-hand panel) and stellar mass (right-hand panel). Shown are both redshift bins together. The left-hand panel also includes Bggm(R) data points of the
early-type galaxy sample. These data points are somewhat offset with respect to their actual mean 〈Mr〉 = −21.88(−21.91) (high-z in brackets) for clarity. The
shaded area highlights the 1σ constraints of Bggm(R) for low-z and high-z combined.

To assess the uncertainty in the bispectrum amplitude, we marginal-
ize over the uncertainties in A0, the aperture statistics amplitude at
1 arcmin, and α, the power-law index, taking into account the cor-
relation of their errors. A value of R1Mpc corresponds to an aperture
scale radius between 2.5 to 3.5 arcmin depending on the mean red-
shift of the lens samples. The compiled results are plotted in Fig. 11
– one of the main results of our study – to highlight the trends with
Mr-magnitude and stellar mass. As before, only measurements with
highly significant detections are included in the plot.

At the corresponding Mr-magnitude range, we include also the
normalized 〈N 2Map〉 amplitude of the ETG sample. Their ampli-
tude is somewhat higher in comparison to L5 and L6. This can be
explained by the fact that the LTG sample is included in the L sam-
ples but not in the ETG sample of similar luminosity: the LTG have
a normalized amplitude considerably smaller than that of the ETG.

5.4 Third-order galaxy biasing

SW05 introduced a set of third-order galaxy biasing parameters
b3, r1, r2 to parametrize the galaxy–matter bispectra relative to the
matter bispectrum Bmmm,

Bggm(k1, k2, χ ) = b2
3r2 Bmmm(k1, k2, χ ) , (43)

Bmmg(k1, k2, χ ) = b3r1 Bmmm(k1, k2, χ ) . (44)

The coefficients b3, r1, r2 are also functions of k1, k2, χ , which
have been omitted here to save space. For galaxies faithfully tracing
the underlying matter distribution one finds r1 = r2 = b3 = 1
for all scales. This parametrization generalizes the earlier similar
second-order galaxy bias parametrization (e.g. Tegmark & Bromley
1999; Hoekstra et al. 2002; Pen et al. 2003) to the third-order. Our
normalized G3L measurements of Bggm(R) and Bmmg(R) can be
utilized to constrain the ratio r1/(r2b3) for a physical scale R by

considering the combined statistics

�(R) := Bmmg(R)

Bggm(R)

=
∫ χh

0 dχ qggm(χ )∫ χh
0 dχ qmmg(χ )

〈NM2
ap〉

(
Rf −1

K (χmax)
)

〈N 2Map〉
(
Rf −1

K (χmax)
) (45)

for a lens sample. We assume here that both kernels qggm and qmmg

peak at the same distance χmax, which is approximately valid for
our study. This bias parameters in r1/(r2b3) are smoothed in k
and χ with maximum weight at k ≈ √

2/R (equilateral triangles)
and χmax. The exact smoothing kernels are given in Appendix D.
A deviation of �(R) from unity hence indicates a biased galaxy
population.

We calculate the �(R) statistics for the samples L1–L6, sam-
ples sm1–sm5 and the ETG sample (all low-z only) for angular
scales between 1 and 10 arcmin. The remaining measurements are
too noisy for useful constraints. Fig. 12 summarizes these novel
measurements. The error distributions of the ratios �(R) are esti-
mated by employing Monte Carlo realizations of Bggm and Bmmg

(assumed Gaussian); depicted are the mean and variances σ� in the
resulting distributions. Alternatively, one could utilize the analytic
probability distribution function given in Hinkley (1969).

6 D I SCUSSI ON

We performed a G3L analysis of approximately 100 square degrees
of the CFHTLenS data set. The data are endowed with photomet-
ric redshifts of galaxies and lensfit estimates of the PSF-corrected
source ellipticities. For the first time, the signal-to-noise ratio of
the lensing data is sufficient to measure third-order GGL as a func-
tion of lens luminosity, stellar mass and galaxy type. The work of
Simon et al. (2008), analysing the RCS1 data, demonstrated that
G3L measurements are principally possible with contemporary
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Figure 12. Results of the �-statistics which probes the third-order galaxy biasing parameters of our lens samples. Plotted is r1/(b3r2) as a function of scale
k = √

2/R = √
2/(fK(χmax)θ ) for the angular range 1 ≤ θ < 10 arcmin. Used are only significant measurements in the low-z samples. Luminosity samples

are in the left-hand panel, stellar mass samples and the ETG sample in the right-hand panel. The data points with uncertainties larger than σ� > 0.8 are not
shown. The shaded area indicates the mean and standard deviation of the mean of combined samples. L1–L6: Mr-luminosities increasing from −17.8 mag
to −22.4 mag; sm1–sm5: increasing stellar masses from 7 × 109 M� to 1011 M�; ETG: early-type galaxies.

lensing surveys. This is confirmed by this study. We further sub-
divided the lens samples in Mr-luminosities, stellar masses, SED
types, and a ‘low-z’ (0.2 ≤ zphoto < 0.44) and a ‘high-z’ (0.44 ≤
zphoto < 0.6) redshift bin by utilizing the photometric redshifts of
the lenses. We presented the G3L measurements in terms of aper-
ture statistics that probe the angular bispectrum of the (projected)
matter–galaxy three-point correlations. In one case (‘lens–lens–
shear’), the measurements quantify correlations between two lens
positions and the surface matter density around the lens pair; this
can be interpreted as excess surface mass density about galaxy pairs
(Simon et al. 2012). In the other case (‘lens–shear–shear’), it ex-
presses correlations between a lens position and the surface mass
density in two different directions close to the lens. The here adopted
G3L aperture statistics have the practical advantage to separate E-
and B/P-modes from these measurements, which is utilized to de-
tect signatures of possible systematics in the data. On this level, no
significant G3L systematics signals were detected.

To reduce the impact due to intrinsic alignments of sources, we
separated lens and source galaxy samples physically from each other
by exploiting the photometric redshifts in the survey. We showed
that in the ideal case of no radial overlap, neither II-correlations
nor GI-correlations contribute to the correlator. Owing to the uncer-
tainty in the galaxy redshifts, however, perfectly non-overlapping
distributions are hard to achieve. We found that our low-z lens sam-
ples have still a small overlap of ∼4 per cent with the source sample,
the high-z samples a moderate overlap of ∼12 per cent (overlap of
redshift probability distribution functions). Because of the small
overlap, at least for the low-z samples we do not expect significant
contributions from intrinsic alignment correlations. To test the de-
gree of contamination by GI- and II-correlations, we compared the
aperture statistics of the combined sm3–sm5 samples, both low-z
(z̄d = 0.35) and high-z (z̄d = 0.51), for two cases. In one case, we
selected sources by 0.65 ≤ zphoto < 1.2 (z̄s = 0.93) as before. In the
second case, we were more conservative by selecting only sources

Figure 13. Plotted are the differences of 〈N 2Map〉(θ )/
∫

dχ qggm(χ )
for sources with zphoto ≥ 0.65 and zphoto ≥ 0.8 and the analogue for
〈NM2

ap〉(θ )/
∫

dχ qmmg(χ ). For fixed lens samples (sm3–5 combined; ei-
ther low-z or high-z), the result is expected to be consistent with zero. Note
that neighbouring error bars are correlated.

within 0.8 ≤ zphoto < 1.2 (z̄s = 1.02), thereby discarding about one-
third of our sources. However, the latter case reduced the overlap
from 3.3 per cent (10.9 per cent) to 0.6 per cent (2.5 per cent)
for the low-z (high-z) sample. The statistics were normalized by∫

dχqggm(χ ) (
∫

dχqmmg(χ )) to compensate the signal change ow-
ing to the different source depths. The maximum signal increase is
∼30 per cent for 〈NM2

ap〉 of the high-z lens sample. Fig. 13 shows
the difference in normalized statistics for fixed lens samples but
varying source depths. Here we assumed that fK(χmax) is identical
for both compared signals, i.e. both signals were differenced at the
same aperture scale radius. This assumption is accurate within a few
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per cent here. As expected, the difference is consistent with zero,
the level of GI/II-systematics in the statistics is therefore negligible
within the measurement errors.

As second possible source of systematics, we identified the mag-
nification of the lens number densities by matter fluctuations in front
of the lenses. To first-order this effect is comparable to the aperture
mass skewness 〈M3

ap(θ )〉 associated with sources at redshift zs ∼
0.4. We estimated this effect to be of the order of �10−8 at θ ∼ 1 ar-
cmin. We therefore conclude in comparison with our measurements
that in the range 1 � θ � 10 arcmin the lens number density mag-
nification effect is negligible for both 〈N 2Map〉 and for 〈NM2

ap〉.
For a more detailed investigation of systematics, however, realis-
tic models of intrinsic alignments and magnification for third-order
correlations are required, which are currently unavailable.

The observed aperture statistics depend on the redshift distribu-
tions of lenses and sources. Results of the statistics would hence
differ when changing the source or lens redshift distribution, even if
the underlying comoving spatial 3D matter–galaxy bispectrum was
unchanged throughout the light cone. In order to partially correct
for this effect, we employed a new technique that normalizes the
aperture statistics with the lensing efficiency and relates angular
scales to effective spatial scales; this yields two kinds of galaxy–
matter bispectra Bggm(R) and Bmmg(R), originating from 〈N 2Map〉
and 〈NM2

ap〉, respectively. The normalized statistics obtained are
basically band bispectra due to the smoothing of the exponential
u-filter in k-space and the radial smoothing of the lensing kernels.
Only by means of our or similar normalization schemes, measure-
ments for different lens samples or same galaxy selections at differ-
ent redshifts become comparable. In particular, the application of
our normalization simplifies the comparison with results from fu-
ture studies. The problem of unnormalized measurements becomes
particularly obvious for 〈N 2Map〉 of the low-z L1 sample in Fig. 6
(top left-hand panel) in comparison to the L6 sample in the same
panel: for θ � 2 arcmin both measurements are basically identical,
although the normalization reveals that the lower luminosity galax-
ies have a smaller bispectrum amplitude (Fig. 11, left-hand panel).
This effect results from a completely different redshift distribution
of the L1 lenses that, due to sample incompleteness, have a mean
redshift of z ∼ 0.22 instead of L6’s z ∼ 0.34.

We estimated the measurement errors directly from the data by
Jackknifing the signal variance across the survey pointings. Ideally,
with statistically independent pointings this would properly account
for uncertainties due to source shape noise, sampling noise and cos-
mic variance. However, the pointings are bundled together in large
fields W1–W4 with extensions of several degrees across the sky.
This makes pointings of the same field partly correlated. Therefore,
the cited uncertainties are probably somewhat too optimistic in the
sense that they underestimate the cosmic variance.

To refine the previous RCS1 measurement in Simon et al. (2008)
for different galaxy populations and to investigate the dependences
of bispectra amplitudes on galaxy populations, we focused here on
equally sized apertures. This gives most weight to the equilateral
bispectra. We found that the aperture statistics are reasonably well
described by a power law on angular scales ranging from roughly
2 arcmin to 10 arcmin. On smaller angular scales, we observe ev-
idence for a change of slope, but we are also increasingly affected
by the transformation bias. For instance, 〈N 2Map〉 of the fainter
low-z L4 sample clearly flattens below ∼2 arcmin. Qualitatively,
this behaviour is also observed in the semi-analytic galaxy models
studied in Saghiha et al. (2012), see their fig. 8. A similar change
of slope, maybe also a steepening, is visible for the 〈NM2

ap〉 statis-
tics of the luminosity samples. A comparison of galaxy models to

Table 4. Values of the normalized galaxy–matter bis-
pectra Bggm(R) (top half) and Bmmg(R) (bottom half)
at R = 1 h−1

100 Mpc for the LTG and ETG sample.

Sample Low-z High-z

ETG +1.04+0.17
−0.17 × 10−4 +9.48+1.19

−1.23 × 10−5

LTG +4.37+9.21
−5.01 × 10−6 +1.07+1.67

−1.02 × 10−5

ETG +5.98+1.35
−1.41 × 10−5 +1.42+1.37

−0.92 × 10−5

LTG +6.93+9.91
−4.46 × 10−6 −1.39+0.95

−1.62 × 10−5

our measurements requires a careful replication of the galaxy sam-
ple selections, their uncertainties and the survey incompleteness.
Moreover, as concluded in Saghiha et al. (2012), no reliable galaxy
model is currently available to predict the correct amplitude of G3L
measurements – or to even double-check whether our results may
be strongly effected by galaxy selection effects. We hence postpone
this task to a future paper.

The measurements of Bggm utilizing ETG and LTG pairs (subdi-
vision of the combined L5/L6 sample) show that the excess mass
around pairs is a strong function of galaxy type. The high excess
mass signal of ETG is comparable to the strong signal of pairs
in our sm-samples with stellar masses of ∼1011 M�, whereas the
excess mass of LTG is consistent with zero in our case (Table 4).
A plausible explanation for this is the fact that many ETG in the
ETG sample (〈M∗〉 ≈ 6 × 1010 M�) are satellites in dense cluster
environments, whereas LTG are frequently field galaxies. This was,
for instance, found by the GGL study of Mandelbaum et al. (2006a)
in SDSS. The splitting into ETG from over-dense and under-dense
regions that was conducted in this study is actually comparable
to the lens–lens–shear correlation function because the G3L cor-
relator gives more weight to pairs in cluster environments, simply
because more pairs are found in these regions. Recently, Saghiha
et al. (2012) studied the excess mass for two state-of-the-art semi-
analytic galaxy models. Although the G3L amplitudes and colour
distributions of the two considered models are inconsistent, both
models predict a large difference in 〈N 2Map〉 for zd = 0.17 red
and blue galaxies up to a factor of ∼102 at θ ∼ 2 arcmin. With our
uncertainties in the LTG signal, we estimate the difference to be at
least a factor of ∼10, strongly confirming the previous prediction.

By forming the ratios of normalized bispectra, our new statis-
tic �(R) := Bmmg(R)/Bggm(R) approximately yields the ratio
r1/(r2b3) of (smoothed) third-order biasing parameters (SW05).
The details of the smoothing are determined by the shapes of the
u-filter, the peaked kernels qmmg, qggm, and to some extent also
the matter bispectrum (Appendix D). Deviations of � from unity
indicate galaxies that not faithfully trace the underlying matter
density field, i.e. biased galaxies. This new technique for inves-
tigating galaxy bias with lensing advances the methodology of van
Waerbeke (1998) and that of Schneider (1998) that focus on second-
order galaxy bias. The application of the latter found that galaxies
are generally biased tracers (Hoekstra et al. 2001; Simon et al. 2007;
Jullo et al. 2012). We confirm this finding by employing third-order
galaxy–matter correlations.

7 C O N C L U S I O N S

(i) We detect G3L with unprecedented high significance in
the CFHTLenS for galaxy populations of different luminosity,
stellar mass and SED type. This applies to both third-order
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galaxy–galaxy–matter correlations (Bggm) and galaxy–matter–
matter correlations (Bmmg).

(ii) We find that the (equilateral) galaxy–matter bispectra are,
within the remaining statistical errors, reasonably well scale-
invariant for the spatial (comoving) scales 0.3 � k � 2.2 Mpc−1.
On smaller scales, not included in our power-law fits, there are in-
dications of deviations from the power-law shape in several cases.

(iii) The low-z and high-z counterparts of the same lens samples
yield very similar bispectra amplitudes Bggm (Fig. 11) and slopes
(Fig. 9). This points to a little evolution of the bispectrum between
redshift z ∼ 0.3–0.5, especially for our Mr-selected galaxies. There
is, however, some evidence for a change in the amplitude ofBggm for
stellar-mass selected galaxies below ∼1011 M�: high-z lenses show
a lower amplitude than the low-z lenses (right-hand panel of Fig. 11).
This implies an increase of excess mass about pairs of galaxies of
fixed stellar mass with time, as, e.g. may be expected in a CDM
scenario due to the continuous accretion of matter. The evolution
trends of Bmmg are unclear due to the measurement uncertainties in
the high-z samples.

(iv) For Bggm, the slope and the amplitude is a changing function
of galaxy luminosity, stellar mass and galaxy type. The amplitude
change is also observed for Bmmg. Brighter or more massive galax-
ies (by stellar mass) exhibit a steeper bispectrum, which implies
that the excess mass is more concentrated in these cases. Moreover,
there is a clear trend towards higher amplitudes for both more lumi-
nous and more massive galaxies. This shows that more luminous or
massive galaxies, or galaxy pairs in the case of Bggm, inhibit denser
environments than fainter or lighter galaxies.

(v) We observe a strong signal for the excess mass around ETG
pairs. LTG pairs, on the other hand, have a signal that is consis-
tent with zero when studied as aperture statistics. This remarkable
observation is in excellent agreement with the recent prediction of
Saghiha et al. (2012) based on semi-analytic galaxy models. The
measurement therefore suggests that virtually all signal in this mag-
nitude range originates from ETG pairs, and possibly mixed pairs of
ETG and LTG, rather than from LTG pairs. This can be explained
by the fact that a large fraction of ETG are satellite galaxies in
cluster. By explicitly mapping out the excess mass around LTG and
ETG galaxy pairs, we have also found that both maps are funda-
mentally different in their amplitudes as well as in their general
appearance.

(vi) The mismatch between Bggm and Bmmg for the same lens
galaxy sample immediately indicates galaxies biased with respect
to the matter distribution. This mismatch is captured by the galaxy
bias statistics �(R) (Fig. 12) that shows for our low-z samples
values comparable for a wide range of galaxy luminosities and
stellar masses. Therein, we probe the non-linear regime on scales
smaller than k ∼ 0.8 Mpc−1. We find best constraints on �(R) with
the stellar mass samples, which has for all samples sm1–sm5 and
scales combined (minimum-variance weighted) an average value
of � = 0.51 ± 0.07. This shows – for the first time employing
third-order lensing statistics – that galaxies are biased tracer of the
matter density field. Although �(R) indicates that the ratio r1/(r2b3)
stays relatively constant with scale, with a possible shallow local
minimum at k ≈ 1.8 Mpc−1, the additionally observed change of
the bispectrum amplitudes with galaxy luminosity or mass means
that the individual bias parameters have to differ between the galaxy
samples.

(vii) Finally, we emphasize that theory is lacking behind in inter-
preting the G3L measurements. Reliable model predictions , e.g. in
the vein of Takada & Jain (2003), are needed, not only to properly
interpret the measurements, but also to gain a better understanding

of systematics and to verify that selection effects in the data do not
spoil the measurement.
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A P P E N D I X A : MU LT I P L I C AT I V E SH E A R B I A S

Miller et al. (2012) discuss a calibration scheme for correlation func-
tion estimators involving shear estimates from the lensfit pipeline.
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For details, we refer the reader to the mentioned article, Section
8.3 and 8.4. Analogous to the calibration scheme of the two-
point shear–shear correlation function detailed therein, we divide
G̃est, equation (16), and G̃est

± , equation (17), by 1 + KG(ϑ1, ϑ2, φ3)
and 1 + KG± (ϑ1, ϑ2, φ3), respectively. Both calibration factors are
given by

1 + KG(ϑ1, ϑ2, φ3) =
Nd∑
i=1

Nd∑
j=1

Ns∑
k=1

wk(1 + mk)�ϑ1ϑ2φ3
ijk

Nd∑
i=1

Nd∑
j=1

Ns∑
k=1

wk�
ϑ1ϑ2φ3
ijk

,

1 + KG± (ϑ1, ϑ2, φ3) =
Nd∑
i=1

Ns∑
j=1

Ns∑
k=1

wjwk(1 + mj )(1 + mk)�ϑ1ϑ2φ3
ijk

Nd∑
i=1

Ns∑
j=1

Ns∑
k=1

wjwk�
ϑ1ϑ2φ3
ijk

. (A1)

The multiplicative bias factors mi, provided in the CFHTLenS
catalogue3 for each source, are functions of the source signal-to-
noise ratio and angular size. Note that for non-vanishing values of
1 + mi > 0, the calibration is mathematically equivalent to employ-
ing the transformation εi �→ εi/(1 + mi) and wi �→ wi(1 + mi) in
the estimators G̃est and G̃est

± .

APP ENDIX B: LENS SAMPLES SUPPLEMENT

B1 Angular clustering of lenses

The angular correlation function ω(θ ) of the lenses as a function
of separation θ is approximated by a simple power law (Peebles
1980)

ω(θ ) = Aω

(
θ

1 arcmin

)−λ

+ IC , (B1)

where Aω is the clustering strength at a separation of 1 arcmin, λ the
slope of the correlation function and the constant offset IC, the inte-
gral constraint (Groth & Peebles 1977). We find this fitting function
to be a good description of ω(θ ) between 0.2 � θ � 10 arcmin. The
estimator of ω(θ ) by Landy & Szalay (1993), employed for this
paper, requires the repeated counting of galaxy pairs in separation
bins for the random realizations of unclustered galaxy distributions,
factoring in the incompleteness of the survey. The figures quoted
in Table 1 consider the masks of individual survey pointings, but
presuming the same survey completeness within regions that are not
masked out. For the final ω(θ ), all pair counts from all individual
survey fields are added so that, in effect, fields with more galaxies
attain a higher weight in the average. The binned ω(θ ) is stored as
data vector d.

Pointing-to-pointing Jackknife sampling to estimate the statis-
tical uncertainty of d, we prepare a set of Np Jackknife samples

d̄
jn
i , where d̄ i is the combined data vector omitting the ith patch.

3 Publicly available under http://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/
community/CFHTLens/query.html

The Jackknife covariance of the sample mean is then (Shao 1986;
Norberg et al. 2009)

C = 1

Np

Np∑
i=1

�d̄
jn
i

[
�d̄

jn
i

]t
, (B2)

where

�d̄
jn
i := (Np − 1)(d̄ − d̄

jn
i ) . (B3)

For Table 1, a power-law fit is applied to the ensemble average d of
all pointings, taking into account the Jackknife covariance C. The
θ -binning in d is also applied to the power-law model, equation
(B1), by averaging the model over the width of each bin. Note that
the inverse of C, required for the likelihood analysis of the model fit
parameters, has to be corrected to obtain an unbiased estimator of
the inverse covariance (Hartlap et al. 2007). Similar corrections of
inverse covariances are applied throughout the paper without further
mentioning.

B2 Completeness of lens sample

Here, we define a parameter that quantifies the completeness of
our lens samples. First, we define the comoving volume V(z1, z2)
confined by the redshift boundaries z1 ≤ z < z2,

V (z1, z2) = �

∫ χ(z1)

χ(z0)
dχ f 2

K(χ ) , (B4)

where � is the solid angle of the patch field of view minus the solid
angle of mask regions, and

χ (z) = DH

∫ z

0

dz′

E(z′)
, (B5)

where E(z) := H(z)/H0 is the Hubble parameter H(z) as a function
of redshift normalized to H0.

Due to the incompleteness in our flux-limited survey, a galaxy is
only visible up to a certain redshift zmax. In general, and especially
for faint galaxies, one can expect the limit zmax to be a compli-
cated function of intrinsic galaxy properties and position, survey
instrumentation, survey conditions and the data reduction pipeline.
Nevertheless, here we take the simplistic view that the main factor
is the apparent i′-band magnitude of the lens (extinction corrected),
which is limited to i′ ≤ 22.5, such that our lens samples are predom-
inantly magnitude limited. We further assume that a K correction
is negligible over the redshift bin [z1, z2] of interest. Under these
circumstances, one finds implicitly for zmax

DL(zmax) = 100.4(mlimit−m)DL(z) , (B6)

where z is the redshift of the galaxy, m its i′-band magnitude and
mlimit = 22.5 the asserted magnitude limit of the lens catalogue.
By DL(z) = (1 + z)fK(χ (z)), we denote the comoving luminosity
distance as a function of redshift.

In order to quantify for Table 1 the completeness of a sample of
Ng galaxies, we estimate over which fraction fc = V(z1, zmax)/V(z1,
z2) an observed galaxy in the sample would be observable. We take
the average of all volume fractions of all lenses in a sample,

fc = 1

Ng

Ng∑
i=1

∫ z2

z1

dz pi(z)
V

(
z1, MIN(zmax,i ; z2)

)
V (z1, z2)

, (B7)

and marginalize over the uncertainties in the galaxy redshifts, quan-
tified by the pdf pi(z) dz. Importantly, zmax, i denotes the maximum
redshift at which the ith galaxy would still be included within the
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galaxy catalogue, complying with all survey and sample selection
criteria. A completeness parameter close to unity means that essen-
tially all galaxies in the sample are visible throughout the entire
volume, whereas fc � 1 indicates a significant fraction of galaxies
that is only visible in a small subvolume at lower redshift. Obviously,
fc is merely an estimator (upper limit) for the sample completeness
as galaxies already not observed at redshift z1 are not accounted for.
Note that the solid angle � cancels inside the expression for fc and
is hence not needed.

APPENDIX C : SYSTEMATICS

C1 B/P-mode consistency with null

As indicator of possible systematics in the estimators, we test
〈N 2M⊥〉 and the combined 〈NM⊥Map〉, 〈NM2

⊥〉 against the null
hypothesis. A null measurement should result in

�χ2 = d tC−1d , (C1)

which is statistically consistent with a vanishing signal, with d being
a vector consisting of the measurements for the P-mode (〈N 2Map〉)
or both the P- and B-mode (〈NM2

ap〉). By C we denote the Jack-
knife covariance of the measurements as obtained from the variance
of B/P-mode measurements in the pointings, as explained in Sec-
tion B1. This covariance is larger than a null hypothesis covariance
as it possibly also contains power from B/P-modes present in the
data. A true null model would contain only power from galaxy
shape noise and sampling noise. The test results can be found in
Table 2. Measurements inconsistent with a null signal (95 per cent
confidence) are underlined, thus for �χ2 ≥ 2.0 (1.68) per degree of
freedom for 〈N 2Map〉 (〈NM2

ap〉). In total, we find two lens samples
that fail the test; they are plotted in comparison to their E-mode in
Fig. C1. In both cases the failures are related to the 〈NM2

ap〉 statis-
tics and significantly negative B-modes. Note that errors between
neighbouring bins are strongly correlated.

Finding two measurements out of 57 that fail the 95 per cent
test is what we would expect as false positive rate. We therefore
conclude that the influence of systematics on the E-mode measure-
ment that reveal themselves via the P- or B-modes is likely to be
small compared to our measurement uncertainties. Note that the

Figure C1. Plots of 〈NM⊥Map〉, 〈NM2
⊥〉 (L1 low-z and sm7 high-z) in

comparison to the E-mode (lines). Both samples failed the 95 per cent
confidence level null test for the P/B-modes, see Table 2.

sm7 sample that failed the null test is not used in the final analysis
because the corresponding E-mode signal is consistent with zero.

C2 Field dependence of the G3L signal

The CFHTLS wide survey consists of four contiguous fields W1
(∼72 deg2), W2 (∼33 deg2), W3 (∼49 deg2) and W4 (∼25 deg2);
the field areas do not include masking or excluded fields due to
significant PSF residuals. The fields are well separated on the sky
and were observed at different times of the year. By splitting the
measurements into W1–W4, we check whether the G3L measure-
ments are comparable for different subsets of the data. To have a
possibly large sample for this test, we combine the signals of the
samples L1 to L6 for each field, see Fig. C2. Only measurements
from pointings within the same fields W1–W4 are combined, their
statistical uncertainties originate from the Jackknife technique (as
in equation B2). Therefore, the error bars do not include the cosmic
variance between the fields, which should be most prominent at the
larger angular scales.

We find excellent agreement between the measurements, consid-
ering that statistical uncertainties at larger scales are higher than
indicated and that errors between neighbouring angular bins are
correlated. In particular, this separation of data shows that the G3L
signal does not originate from singular fields that are extreme out-
liers compared to the others. Since the uncertainties of the final
combined measurements are based on the pointing-to-pointing vari-
ance of the entire survey, a possible systematic deviation of one field
will be included as systematic error inside the error bars.

A P P E N D I X D : T H I R D - O R D E R G A L A X Y
BI ASI NG

The values Bggm (Bmmg) measure the u-filtered bispectrum Bggm

(Bmmg), radially smoothed with maximum weight at χmax. The
maximum weight of the u-filter in Fourier space is at k = √

2/R for
a given real space scale R. From the definition of the �-statistics,
equation (45), from equation (34) and from a similar equation for
〈NM2

ap〉 it follows that

�(R) =
∫

dχd2k1d2k2 Fmmg(k1, k2, χ ; R) (b3r1) (k1, k2, χ )∫
dχd2k1d2k2 Fggm(k1, k2, χ ; R)

(
b2

3r2

)
(k1, k2, χ )

,

where the smoothing kernels in k, χ -space are

Fmmg(k1, k2, χ ; R) :=
qmmg(χ )∫ χh

0 dχ qmmg(χ )
ũ(k1�)ũ(k2�)ũ(|k1 + k2|�)Bmmm(k1, k2, χ ),

Fggm(k1, k2, χ ; R) :=
qggm(χ )∫ χh

0 dχ qggm(χ )
ũ(k1�)ũ(k2�)ũ(|k1 + k2|�)Bmmm(k1, k2, χ )

(D2)

with � := RfK(χ )/fK(χmax). As can be seen, the detailed weight
within a band defined by the width of the u-filter is also determined
by the actual matter bispectrum Bmmm.

We can further exploit the statistical isotropy of the galaxy–matter
bispectra, which means that both Bmmm and the galaxy biasing
parameters r1, r2, b3 are only functions of |k1|, |k2|, φ; φ is the
angle spanned by k1 and k2. The previous expressions therefore
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Figure C2. Measurements of the aperture statistics (top row: 〈N 2Map〉, bottom row: 〈NM2
ap〉) for the combined L1–L6 sample (low-z and high-z redshift bin

separately). The measurements are split for the four fields W1–W4. The error bars indicate only the pointing-to-pointing variance within the same field. The
fields vary in size and thus the sizes of lens and source catalogues vary. The lines connect the data points to guide the eye.

simplify to

�(R) =
∫

dχdφ dk1dk2k1k2 Fmmg(. . .) (b3r1) (k1, k2, φ, χ )∫
dχdφ dk1dk2k1k2 Fggm(. . .)

(
b2

3r2

)
(k1, k2, φ, χ )

, (D3)

where

Fmmg(. . .) := qmmg(χ )∫ χh
0 dχ qmmg(χ )

× ũ(k1�)ũ(k2�)ũ(|k1 + k2|�)Bmmm(k1, k2, φ, χ ) ,

Fggm(. . .) := qggm(χ )∫ χh
0 dχ qggm(χ )

× ũ(k1�)ũ(k2�)ũ(|k1 + k2|�)Bmmm(k1, k2, φ, χ ) (D4)

and

|k1 + k2| =
√

k2
1 + k2

2 + 2k1k2 cos φ . (D5)

Note that for equilateral triangles we have k1 = k2 = |k1 + k2| and
thus cos φ = −1/2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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