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ABSTRACT
We present cosmological constraints from 2D weak gravitational lensing by the large-scale
structure in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) which spans
154 deg2 in five optical bands. Using accurate photometric redshifts and measured shapes
for 4.2 million galaxies between redshifts of 0.2 and 1.3, we compute the 2D cosmic shear
correlation function over angular scales ranging between 0.8 and 350 arcmin. Using non-
linear models of the dark-matter power spectrum, we constrain cosmological parameters by
exploring the parameter space with Population Monte Carlo sampling. The best constraints
from lensing alone are obtained for the small-scale density-fluctuations amplitude σ 8 scaled
with the total matter density �m. For a flat �cold dark matter (�CDM) model we obtain
σ 8(�m/0.27)0.6 = 0.79 ± 0.03.

We combine the CFHTLenS data with 7-year Wilkinson Microwave Anisotropy Probe
(WMAP7), baryonic acoustic oscillations (BAO): SDSS-III (BOSS) and a Hubble Space
Telescope distance-ladder prior on the Hubble constant to get joint constraints. For a flat
�CDM model, we find �m = 0.283 ± 0.010 and σ 8 = 0.813 ± 0.014. In the case of a curved
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wCDM universe, we obtain �m = 0.27 ± 0.03, σ 8 = 0.83 ± 0.04, w0 = −1.10 ± 0.15 and
�K = 0.006+0.006

−0.004.
We calculate the Bayesian evidence to compare flat and curved �CDM and dark-energy

CDM models. From the combination of all four probes, we find models with curvature to
be at moderately disfavoured with respect to the flat case. A simple dark-energy model is
indistinguishable from �CDM. Our results therefore do not necessitate any deviations from
the standard cosmological model.

Key words: methods: statistical – cosmological parameters.

1 IN T RO D U C T I O N

Weak gravitational lensing is considered to be one of the most pow-
erful tools of cosmology. Its ability to measure both the geometry
of the Universe and the growth of structure offers great potential to
obtain constraints on dark energy and modified gravity. Moreover,
to first order, weak lensing does not rely on the relation between
galaxies and dark matter (bias), and is therefore a key probe of the
dark universe.

Cosmic shear denotes the distortion of images of distant galax-
ies due to the continuous deflection of light bundles propagating
through the inhomogeneous universe. The induced correlations be-
tween shapes of galaxies are directly related to the statistical prop-
erties of the total (dark + luminous) large-scale matter distribution.
With an estimate of the redshift distribution of the lensed galaxies,
theoretical predictions of weak-lensing observables can be tested
to obtain constraints on cosmological parameters and models. Re-
cent reviews which also summarize past observational results are
Bartelmann & Schneider (2001), Van Waerbeke & Mellier (2003),
Munshi et al. (2008), Hoekstra & Jain (2008), Bartelmann (2010).

The Canada–France–Hawaii Telescope Legacy Survey1

(CFHTLS) is a large imaging survey, offering a unique combi-
nation of depth (iAB � 24.5 at 5σ point source limiting magnitude)
and area (154 deg2). It is the largest survey volume over which
cosmic shear has ever been measured. This paper presents the first
cosmological analysis of the complete CFHT Legacy Survey with
weak gravitational lensing. We measure the second-order cosmic
shear functions from the Canada–France–Hawaii Telescope Lens-
ing Survey (CFHTLenS),2 which comprises the final CFHTLS data.
Earlier analyses of the CFHTLS used the first data release (T0001)
with 4 deg2 of the Deep survey (Semboloni et al. 2005) and 22
deg2 of the Wide part of the survey (Hoekstra et al. 2006), followed
by the third data release (T0003) comprising 55 deg2 (Benjamin
et al. 2007; Fu et al. 2008, hereafter F08). The T0003 lensing data
were subsequently employed in further studies (Doré et al. 2008;
Kilbinger et al. 2009; Tereno et al. 2009). Only CFHTLS-Wide
i′-band data were used for those lensing analyses, and the redshift
distribution was inferred from the photometric redshifts from the
Deep survey (Ilbert et al. 2006). Photometric redshifts in the Wide
were obtained subsequently with the T0004 release (Coupon et al.
2009). The current series of papers uses the final CFHTLenS data
release of 154 deg2 in the five optical bands u∗, g′, r′, i′, z′. The
analysis improved significantly in several ways.

(i) The CFHTLS data have been reanalysed with a new pipeline
(Erben et al. 2009, 2013).

(ii) Photometric redshifts have been obtained for each individual
galaxy in the lensing catalogue from point spread function (PSF)

1 http://www.cfht.hawaii.edu/Science/CFHTLS
2 http://www.cfhtlens.org

homogenized images (Hildebrandt et al. 2012). The accuracy has
been verified in detail by an angular cross-correlation technique
(Benjamin et al. 2013).

(iii) PSF modelling and galaxy shape measurement have been
performed with the forward model-fitting method lensfit, which has
been thoroughly tested on simulations and improved for CFHTLenS
(Miller et al. 2013).

(iv) Systematics tests have been performed in a blind way, to
yield unbiased cosmological results (Heymans et al. 2012).

(v) The cosmology-dependent covariance matrix is obtained by
a mixture of numerical simulations on small scales and analytical
predictions on large scales.

The reliability and accuracy of our photometric redshifts allow
for 3D weak lensing analyses. The measurement of the lensing
correlations for different redshift combinations allows us to obtain
information on the growth of structure (e.g. Hu 1999), and has a
great potential to constrain dark energy and modified gravity models
(e.g. Albrecht et al. 2006; Uzan 2010). In several companion pa-
pers, we perform 3D cosmic shear analyses by splitting up galaxies
into redshift bins using correlation function methods presented here
(lensing tomography: Benjamin et al. 2013; Simpson et al. 2013,
Heymans et al., in preparation).

In this paper, we perform a 2D lensing analysis using a single-
redshift distribution. Despite the fact that the redshift information
is not used in an optimal way, our analysis has several advantages.
First, it yields the highest signal-to-noise ratio (S/N) for a sin-
gle measurement. This is particularly important on large angular
scales, where the S/N is too low to be used for tomography. These
large scales probe the linear regime, where non-linear and baryonic
effects do not play a role, and one can therefore obtain very robust
constraints on cosmology (Semboloni et al. 2011). Secondly, we
can include low-redshift galaxies without having to consider in-
trinsic alignments (IA; Hirata & Seljak 2004). For a broad redshift
distribution, IA is expected to be a sub-dominant contribution to
the cosmological shear–shear correlation with an expected bias for
σ 8 which is well within the statistical uncertainty (Kirk, Bridle &
Schneider 2010; Joachimi et al. 2011; Mandelbaum et al. 2011),
see also a joint lensing and IA tomography analysis over the full
available redshift range (Heymans et al., in preparation). Therefore,
despite the fact that a 2D lensing is more limited than tomography,
it is less noisy and more immune to primary astrophysical system-
atics. It is therefore a necessary basic step and puts any further
cosmological exploitation of CFHTLenS using more advanced to-
mographic or full 3D lensing techniques on solid grounds. Such
analyses are presented in the CFHTLenS companion papers.

This paper is organized as follows. Section 2 provides the expres-
sions for the second-order lensing observables used in this analysis,
both obtained from theoretical predictions and estimated from data.
The measured shear functions and covariances are presented in Sec-
tion 3. Cosmological models and sampling methods are introduced
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in Section 4. The results on cosmological parameters and models
are presented in Section 5, followed by consistency tests in Section
6. The paper is concluded with a discussion in Section 7.

2 W E A K C O S M O L O G I C A L L E N S I N G

In this section the main relations between second-order weak
lensing observables and cosmological quantities are given. See
Bartelmann (2010) and Hoekstra & Jain (2008) for recent reviews.

2.1 Theoretical background

Weak lensing by the large-scale structure measures the conver-
gence power spectrum Pκ , which can be related to the total matter
power spectrum Pδ via a projection using Limber’s equation (Kaiser
1992):

Pκ (�) =
∫ χlim

0
dχ G2(χ ) Pδ

(
k = �

fK (χ )
; χ

)
. (1)

The projection integral is carried out over comoving distances χ ,
from the observer out to the limiting distance χ lim of the survey.
The lens efficiency G is given by

G(χ ) = 3

2

(
H0

c

)2
�m

a(χ )

∫ χlim

χ

dχ ′p(χ ′)
fK (χ ′ − χ )

fK (χ ′)
, (2)

where H0 is the Hubble constant, c the speed of light, �m the total
matter density and a(χ ) the scale factor at comoving distance χ .
The comoving angular distance is denoted with fK and depends on
the curvature K of the Universe;

fK (w) =

⎧⎪⎨
⎪⎩

K−1/2 sin
(
K1/2w

)
for K > 0

w for K = 0

(−K)−1/2 sinh
(
(−K)1/2w

)
for K < 0 .

(3)

The 3D power spectrum is evaluated at the wavenumber k = �/fK(χ ),
where � denotes the projected 2D wave mode. The function p rep-
resents the weighted distribution of source galaxies.

2.2 Flavours of real-space second-order functions

From an observational point of view, the most direct measurement
of weak cosmological lensing is in real space, by using the weak
gravitational shear signal as derived from galaxy ellipticity mea-
surements. The two-point shear correlation functions (2PCFs) ξ+
and ξ− are estimated in an unbiased way by averaging over pairs of
galaxies (Schneider et al. 2002b),

ξ̂±(ϑ) =
∑

ij wiwj [εt(ϑ i) εt(ϑ j ) ± ε×(ϑ i) ε×(ϑ j )]∑
ij wiwj

. (4)

The sum is performed over all galaxy pairs (ij) with angular dis-
tance |ϑ i − ϑ j | within some bin around ϑ . With εt and ε× we
denote the tangential and cross-component of the galaxy ellipticity,
respectively. The weights wi are obtained from the lensfit shape
measurement pipeline (Miller et al. 2013). The 2PCFs are the Han-
kel transforms of the convergence power spectrum Pκ or, more
precisely, of linear combinations of the E- and B-mode spectra, PE

and PB, respectively. Namely,

ξ±(ϑ) = 1

2π

∫ ∞

0
d� � [PE(�) ± PB(�)] J0,4(�ϑ), (5)

where J0 and J4 are the first-kind Bessel functions of order 0 and 4,
and correspond to the components ξ+ and ξ−, respectively.

It is desirable to obtain observables which only depend on the
E mode and B mode, respectively. Weak gravitational lensing, to
first order, only gives rise to an E-mode power spectrum and, there-
fore, a non-detection of the B mode is an important sanity check
of the data. To this end, we calculate the following second-order
shear quantities which can be derived from the correlation func-
tions: the aperture-mass dispersion 〈M2

ap〉 (Schneider et al. 1998),
the shear top-hat rms 〈|γ |2〉 (Kaiser 1992), the optimized ring statis-
tic RE (Fu & Kilbinger 2010) and Complete Orthogonal Sets of
E-/B-mode Integrals (COSEBIs; Schneider, Eifler & Krause 2010).
The optimized ring statistic was introduced as a generalization of
the so-called ring statistic (Schneider & Kilbinger 2007). The cor-
responding filter functions have been obtained to maximize the
figure-of-merit of �m and σ 8 for a CFHTLS-T0003-like survey.
We use these functions for CFHTLenS which, despite the larger
area, has similar survey characteristics. COSEBIs represent yet an-
other generalization and contain all information about the E- and
B-mode weak-lensing field from the shear correlation function on
a finite angular range.

Being quantities obtained from the 2PCFs by non-invertible re-
lations, these derived functions do not contain the full information
about the convergence power spectrum (Eifler, Kilbinger & Schnei-
der 2008), but separate the E and the B mode in a more or less pure
way, as will now be described. The derived second-order functions
can be written as integrals over the filtered correlation functions.
They can be estimated as follows:

XE,B = 1

2

∑
i

ϑi �ϑi [F+ (ϑi) ξ+(ϑi) ± F− (ϑi) ξ−(ϑi)] . (6)

Here, �ϑ i is the bin width, which can vary with i, for example
in the case of logarithmic bins. With suitable filter functions F+
and F− (Appendix A), the estimator XE (XB) is sensitive to the E
mode (B mode) only. The filter functions are defined for the various
second-order observables in Table 1 and Appendix A.

All derived second-order functions are calculated for a family
of filter functions. For the aperture-mass dispersion, the optimized
ring statistic and the top-hat shear root mean square (rms), these are
given for a continuous parameter θ which can be interpreted as the
smoothing scale. Here and in the following we will use the notation
‘ϑ’ as the scale for the 2PCFs, and ‘θ ’ as the smoothing scale for
derived functions.

For COSEBIs, the filter functions are a discrete set of functions.
The latter exist in two flavours, Lin-COSEBIs and Log-COSEBIs,
defined through filter functions F± which are polynomials on lin-
ear and logarithmic angular scales, respectively. Here we use Log-
COSEBIs, for which many fewer modes are required to capture
the same information as Lin-COSEBIs (Schneider, Eifler & Krause
2010; Asgari, Schneider & Simon 2012). See Appendix A for more
details.

All of the above functions can be expressed in terms of the
convergence power spectrum. The general relation is

XE,B = 1

2π

∫ ∞

0
d� � PE,B(�)Û 2(�). (7)

The functions F± and Û 2 are Hankel-transform pairs; their re-
lation is given by Crittenden et al. (2002) and Schneider, Van
Waerbeke & Mellier (2002a) as

F±(x) =
∫ ∞

0
dt t J0,4(xt)Û 2(t). (8)
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Table 1. E- and B-mode separating second-order functions. They are estimated as integrals, or sums in the discrete case, over the 2PCFs ξ±
multiplied with the filter functions F± with the formal integration range [ϑmin; ϑmax] (see equation 6). The argument ϑ denotes the integration
variable.

Name XE, B F± (equation 6) Û (equation 7) ϑmin ϑmax Reference

Aperture-mass dispersion 〈M2
ap,×〉(θ = ϑmax/2) T±(ϑ/θ )/θ2 (equation A1) equation (A2) 0 2θ Schneider et al. (1998)

Top-hat shear rms 〈|γ |2〉(θ ) S±(ϑ/θ )/θ2 (equation A3) equation (A4) 0 ∞ Kaiser (1992)
Optimized ring statistic RE,B(θ = ϑmax) T±(ϑ) (equation A6) n/a ϑmin ϑmax Fu & Kilbinger (2010)

COSEBIs En, Bn T
log
±,n(ϑ) (equation A8) n/a ϑmin ϑmax Schneider et al. (2010)

2.2.1 Finite support

The measured shear correlation function is available only on a finite
interval [ϑmin; ϑmax]. The upper limit is given by the finite survey
size. We choose 460 arcmin, which is roughly the largest scale for
which a sufficient number of galaxy pairs are available on at least
three of the four Wide patches.3 The lower limit comes from the
fact that for close galaxy pairs, shapes cannot be measured reliably.
For lensfit, galaxies with separations smaller than the postage stamp
size of 48 pixels �9 arcsec tend to have a shape bias along their
connecting direction (Miller et al. 2013). Since this direction is ran-
domly orientated to a very good approximation, we do not have to
remove those galaxies altogether; setting a minimum angular sepa-
ration of ϑmin = 9 arcsec does avoid the correlation of those pairs.
Both galaxies from a close pair can be independently correlated
with other, more distant galaxies, for which the close-pair shape
bias acts as a second-order effect and can safely be neglected.

If the support of the filter functions F+ and F− exceeds the
observable range, equation (6) leads to biased results, and a pure E-
and B-mode separation is no longer guaranteed.

This is the case for the aperture-mass dispersion and the top-hat
shear rms. For the former, only the lower angular limit is problematic
and causes leakage of the B mode into the E-mode signal on small
smoothing scales. On scales larger than θmin = 5.5 arcmin however,
this leakage is below 1.5 per cent for ϑmin = 9 arcsec (Kilbinger,
Schneider & Eifler 2006). We therefore choose θmin = 5.5 arcmin
to be the smallest smoothing scale for 〈M2

ap〉(θ ). Note that on scales
smaller than ϑmin we set the correlation function to zero and do not
use a theoretical model to extrapolate the data on to this range, to
avoid a cosmology-dependent bias.

The B-mode leakage for the top-hat shear rms 〈|γ 2|〉 is a function
of both the lower and upper available angular scales. Over our range
of scales, the predicted leaked B mode for the 7-year Wilkinson Mi-
crowave Anisotropy Probe (WMAP7) cosmology is nearly constant
with a value of 5.3 × 10−7.

The first pure E-/B-mode separating function for which the cor-
responding filter functions have finite support was introduced in
Schneider & Kilbinger (2007). Following that approach, the opti-
mized ring statistic and COSEBIs were constructed in a similar way
to not suffer from an E-/B-mode leakage.

An additional bias arises from the removal of close galaxy pairs
in the lensing analysis, as was first reported by Hartlap et al. (2011).
As previously discussed, lensfit produces a shape bias for galaxies
separated by less than 9 arcsec, but this bias is random and the
close pairs are therefore used in the analysis, to be correlated with
other galaxies at larger distances. That said, for very close blended
galaxies, where it is non-trivial to determine if there is one or

3 W2 as the smallest patch extends to 400 arcmin, whereas W1 probes
scales as large as 685 arcmin.

two galaxies observed, galaxy shapes cannot even be attempted.
These blended pairs are therefore not reliably detected and lost
from our analysis. This causes a potential bias, since these galaxies
are removed preferentially at low redshift, where galaxy sizes are
larger, and from high-density regions compared to voids, because
galaxies trace the large-scale structure. From fig. 3 of Hartlap et al.
(2011) we infer that the magnitude of this effect is at the per cent
level on scales larger than 0.8 arcmin for the 2PCFs.

3 C F H T L E N S SH E A R C O R R E L AT I O N DATA
A N D C OVA R I A N C E

The CFHTLenS data are described in several companion papers;
for a full summary see Heymans et al. (2012). Stringent systematic
tests have been performed in Heymans et al. (2012) which flag
and remove any data in which significant residual systematics are
detected. It is this cleaned sample, spanning ∼75 per cent of the
total CFHTLenS survey area, that we use in this analysis. This
corresponds to 129 out of 171 MegaCam pointings. In this paper,
we complement those tests by measuring the B mode up to large
scales (Section 3.5). Comparing this to the previous analysis of F08
shows the improved quality of the lensing analysis by CFHTLenS.

3.1 Redshift distribution

A detailed study of the reliability of our photometric redshifts, the
contaminations between redshift bins and the cosmological impli-
cations is performed in Benjamin et al. (2013). This work shows
that the true redshift distribution p(z) is well approximated by the
sum of the probability distribution functions (PDFs) for all galax-
ies. The PDFs are output by BPZ (Bayesian Photometric Redshift
Estimation; Benı́tez 2000) as a function of photometric redshift zp,
and have been obtained by Hildebrandt et al. (2012). The resulting
p(z) is consistent with the contamination between redshift bins as
estimated by an angular cross-correlation analysis (Benjamin et al.
2010). The contamination is relatively low for galaxies selected with
0.2 < zp < 1.3, which is confirmed by a galaxy–galaxy–lensing red-
shift scaling analysis in Heymans et al. (2012). The resulting p(z)
is shown in Fig. 1. The mean redshift is z̄ = 0.748. In contrast, the
mean redshift of the best-fitting zp histogram is biased low with
z̄ = 0.69.

3.2 Angular correlation functions

We calculate the 2PCFs by averaging over pairs of galaxies, using
the tree code ATHENA.4 Galaxies are partitioned into nested branches
of a tree, forming rectangular boxes in right ascension α and dec-
lination δ. For two branches at angular distance ϑ and box sizes di

4 http://www2.iap.fr/users/kilbinge/athena
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Figure 1. The redshift distribution p(zp) histogram, estimated as the sum of
PDFs for 0.2 < zp < 1.3 (thick red curve). For comparison, the histogram of
the best-fitting photo-zs is shown as thin blue curve. Error bars correspond
to the variance between the four Wide patches.

Figure 2. Angles and coordinates on a sphere for two galaxies i = 1, 2
located at (αi, δi). Great circle segments are drawn as bold lines.

(i = 1, 2 along the α and δ direction, respectively) if both open-
ing angles ωi ≡ di/ϑ are smaller than a threshold angle ωth, the
tree is not followed further down by descending into sub-branches.
Instead, the weighted average shear in each branch is used for the
2PCF estimator (equation 4). We found that a value of ωth = 0.03
gives sufficient accuracy compared to the brute-force approach.

We use distances and angles on the sphere to calculate the shear
correlation functions, see Fig. 2. For two galaxies i = 1, 2 at right
ascension and declination (αi, δi), we calculate the great-circle dis-
tance ϑ with

cos ϑ = cos(α2 − α1) cos δ1 cos δ2 + sin δ1 sin δ2. (9)

Each galaxy’s ellipticity is measured in a local Cartesian coordinate
system with the x-axis going along the line of constant declination
and the y-axis pointing to the North pole. We project this ellipticity
to the tangential and radial component with respect to the connecting
great circle. For that, we calculate the angle β i between the great
circle segments ϑ and αi. Then, the projection or so-called course

angles are φi = π/2 − β i. With the sine and cosine rules on the
sphere, we get

cos φ1 = sin(α2 − α1) cos δ2

sin ϑ
;

sin φ1 = cos δ2 sin δ1 − sin δ2 cos δ1 cos(α2 − α1)

sin ϑ
, (10)

and corresponding expressions for φ2 by exchanging indices.
To estimate the smoothed second-order quantities, we compute

the 2PCFs on 10 000 linear angular bins. This is large enough not to
cause a significant E-/B-mode leakage due to the approximation of
the integrals over the correlation functions by the direct sum (equa-
tion 6). We verified this using CFHTLenS numerical simulations
with no B mode (see the next section; see also Becker 2012). We
choose the smallest angular distance between two galaxies to be
9 arcsec, corresponding to the first bin centre to be 10.4 arcsec. We
calculate the 2PCFs (equation 4) as the weighted mean over the four
Wide patches, using the number of galaxy pairs as weight for each
bin.

3.3 Data covariance

To model and interpret the observed second-order shear functions,
we need to estimate the data covariance and its inverse. The cosmic
shear covariance C is composed of the shot-noise D, which only
appears on the diagonal, a cosmic-variance contribution V, and a
mixed termM (Schneider et al. 2002b). The covariance of the 2PCFs
comprises four block matrices. The diagonal consists of C++ and
C−− which are the auto-correlation covariance matrices of ξ+ and
ξ−, respectively. The off-diagonal blocks are C+− and C−+ = Ct

+−
which denote the cross-correlation covariance between ξ+ and ξ−.

Since the cosmic shear field is non-Gaussian on small and
medium angular scales, the cosmic variance involves four-point
functions. Neglecting those can yield overly optimistic cosmolog-
ical constraints (Semboloni et al. 2007, hereafter S07; Takada &
Jain 2009; Hilbert, Hartlap & Schneider 2011).

To account for non-Gaussianity, we use N-body simulations from
Harnois-Déraps, Vafaei & Van Waerbeke (2012). From these sim-
ulations, a ‘Clone’ of the CFHTLenS data has been produced with
the same galaxy redshift distribution, galaxy clustering, masks and
noise properties. The cosmological lensing signal is added using
ray-tracing through the light cones. The Clone cosmology is a flat
�cold dark matter (�CDM) model with �m = 0.279, �b = 0.046,
ns = 0.96, σ 8 = 0.817 and h = 0.701. The lensing signal for each
galaxy is constructed by ray-shooting through the simulated dark-
matter distribution. Each simulated line of sight spans a field of
view of 3.5 × 3.5 deg2. We fit close to 4 × 4 MegaCam pointings
on each line of sight, which is possible because of overlapping ar-
eas between pointings. A total of 184 independent lines of sight
are used to calculate the field-to-field covariance matrix. The fi-
nal matrix is scaled with the ratio of the effective areas (including
masks) of 0.11 which corresponds to 90 per cent of the area of 16
MegaCam pointing that fit into each line of sight, divided by 129
MegaCam pointings used in this analysis. We average over three dif-
ferent samples of the galaxy redshift probability distribution, where
galaxy redshifts were drawn from the corresponding PDF.

As shown in the upper panel of Fig. 3, the Gaussian prediction for
the cosmic variance (Kilbinger & Schneider 2004) for ξ+ provides
a good match to the Clone covariance on intermediate scales, 10 ar-
cmin � ϑ � 30 arcmin. On larger scales, up to ϑ < 200 arcmin,
the numerical simulations underpredict the power due to the finite
box size (e.g. Power & Knebe 2006). Only the last two data points
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Figure 3. Diagonal of the covariance C++ (top panel) and C−− (bottom),
split up into various terms: shot-noise D (solid red line), mixed term M
(dashed green), cosmic-variance V (dotted blue line and crosses) and shear
calibration covariance Cm (see Section 3.4).

show an increased variance, which is due to the finite Clone field
geometry. When comparing the Clone mean correlation function to
a theoretical prediction with cut-off scale k = (2π/147) h−1 Mpc,
we get a rough agreement between the two, indicating that the lack
of power is indeed caused by the finite box. We draw similar con-
clusions for the cosmic variance of ξ−, shown in the lower panel
of Fig. 3. Further, we verified that a Jackknife estimate of the vari-
ance by sub-dividing the CHFLTenS data into 129 subfields gives
consistent results.

3.3.1 Grafting the covariance matrix

We construct the total covariance out to ϑ = 350 arcmin by grafting
the Clone covariance Vcl to the analytical Gaussian prediction. For
the latter, we use the method developed in Kilbinger & Schneider
(2004), which takes into account the discrete nature of the galaxy
distribution and the field geometry. First, we add the Clone covari-

ance Vcl to the Gaussian cosmic covariance term VG. The combined
cosmic covariance is

Vij = gijVcl,ij + (1 − gij )VG,ij , (11)

where the modulation function gij alleviates discontinuities in the
combined matrix. We choose gij to be a bi-level step function, with
gs, s = 1/2; gij = 1 if both indices i, j are smaller than the step index
s; and gij = 0 if at least one of the indices i or j is larger than or equal
to s. The step index s is chosen such that ϑ s is the scale closest to
30 arcmin. Equation (11) is applied to all covariances between the
two shear correlation functions, i.e. V++,V+− and V−−.

The Clone covariance also contains an additional variance term,
which was discovered recently (Sato et al. 2009). This so-called halo
sample variance (HSV) stems from density fluctuations on scales
larger than the (finite) survey size that are correlated with fluctua-
tions on smaller scales. For example, the number of haloes in the
survey depends on the large-scale modes outside the survey, since
haloes are clustered and do not just follow a Poisson distribution.
This introduces an extra variance to the measured power spectrum.
The HSV is proportional to the rms density fluctuations at the survey
scale (Sato et al. 2009). Since our simulated light-cones are cut-outs
from larger boxes of size L = 147 Mpc h−1 (L = 231 Mpc h−1) at
redshift below (above) unity, they do contain Fourier scales outside
the survey volume and their coupling to smaller scales. The HSV is
important on small scales, where our cosmic variance is dominated
by the Clone covariance. Following Sato et al. (2009), we estimate
the HSV to dominate the CFHTLenS total covariance at �≈ 2 × 103,
corresponding to 5 arcmin which is the Clone covariance regime.

The missing large-scale Fourier modes in the simulation box
cause the HSV to be underestimated. A further underestima-
tion comes from the rescaling of the Clone lines of sight to the
CFHTLenS area since, in contrast to the other covariance terms,
the HSV term decreases less strongly than the inverse survey area
(Sato et al. 2009). According to Kayo, Takada & Jain (2013), when
naively rescaling from a 25 deg2-survey to 1500 deg2, the S/N is
too optimistic by not more than 10 per cent. For a re-scaling to the
smaller CFHTLenS area, this bias is expected to be much less.

3.3.2 Cosmology-dependent covariance

Our grafted covariance of the 2PCF is estimated for a fiducial cos-
mological model, which is given by the N-body simulations. In order
not to bias the likelihood function of the data (Section 4.2) at points
other than that fiducial model, we need to account for the fact that
the covariance depends on cosmological parameters. We model the
cosmology-dependence of the covariance matrix following Eifler,
Schneider & Hartlap (2009), who suggested approximative schemes
for the mixed term M and the cosmic-variance term V. Accordingly,
for the cosmic-variance term, we assume a quadratic scaling with
the shear correlation function. This is true on large scales, where
the shear field is close to Gaussian and the covariance is indeed
proportional to the square of the correlation function. We calibrate
the small-scale Clone covariance in the same way, as any differ-
ences in the way the non-Gaussian part might scale are likely to be
small.

For the mixed term M, we use the fitting formula provided by
Eifler et al. (2009). They approximate the variation with �m and
σ 8, leaving the matrix fixed for other parameters. The shot-noise
term D does not depend on cosmology. The final expression for the
covariance matrix is
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Cμν,ij ( p) = Diδij δμν

+Mμν,ij ( p0)

(
�m

0.25

)α(μ,ν,i,j ) ( σ8

0.9

)β(μ,ν,i,j )

+Vμν,ij ( p0)
ξμ(ϑi, p)

ξμ(ϑi, p0)

ξν(ϑj , p)

ξν(ϑj , p0)
, (12)

where the indices μ, ν stand for the components ‘+’ and ‘−’, and i,
j are the angular-scale indices. Here, p = (�m, σ8, . . .) denotes the
cosmological parameter for which the covariance is evaluated, with
p0 being the fiducial model of the Clone simulation (Section 3.3).
The shot-noise term Di and the mixed term Mμν, i, j are estimated
using the method of Kilbinger & Schneider (2004). The cosmic-
variance term Vμν, ij is given in equation (11). The power-law indices
α and β depend on the angular scales and the covariance component
(μ, ν) ∈ {‘+’,‘−’}, and have been obtained in Eifler et al. (2009).
We note that the inverse covariance is very sensitive to two apparent
outliers of α and β for the C+−-part. To avoid numerical issues,
we replace these two numbers by the mean of their neighbouring
values. In our case the mixed term of the covariance is important and
cannot be neglected (see also Kilbinger & Schneider 2004; Vafaei
et al. 2010), in contrast to recent findings by Jee et al. (2012).

During the Monte Carlo sampling (Section 4.2), the covariance is
updated at each sample point p using equation (12). We make sure
that each calculation of the covariance resulted in a numerically
positive-definite matrix, and discard the (rare) sample points for
which this is not the case.

In Fig. 4 we show the total covariance C = D + M + V and com-
pare it to the Gaussian prediction CG = D + M + VG. Both cases
are similar on most scales. On small scales the grafted covariance

Figure 4. Correlation coefficient of the total covariance, shot-noise plus
mixed plus cosmic variance. The lower right triangle (within the red bound-
ary) is the Gaussian prediction; the upper left (blue) triangle shows the total
covariance with non-Gaussian parts from the Clone. The four blocks are
C+−,C−−,C++ and C−+, respectively, as indicated in the plot. The axes
labels are the matrix indices i and j.

shows stronger cross-correlations between scales, indicating non-
Gaussian effects. We find that the additional covariance Cm due to
the shear calibration (see Section 3.4) can be neglected, as can be
seen in Fig. 3 and Section 6.2.

3.3.3 Inverse covariance estimator

It has been shown in Anderson (2003) and Hartlap, Simon & Schnei-
der (2007) that the maximum-likelihood (ML) estimator of the in-
verse covariance is biased high. The field-to-field covariance from
the Clone is such an ML estimate. The bias depends on the number
of realizations or fields n, and the number of bins p. The ML estima-
tor can be de-biased by multiplication with the Anderson–Hartlap
factor α = (n − p − 2)/(n − 1) (Hartlap et al. 2007).

Our final 2PCF covariance, however, is the mixture of an ML es-
timate and analytical expressions. The ML estimator is modulated
with the Gaussian cosmic variance via equation (11), to which we
add the shot-noise and mixed terms, equation (12). We quantify a
possible bias of the inverse covariance (C++)−1 by varying n for
a fixed p = 10. For a step index s = 7, corresponding to ϑ s =
37 arcmin, Fig. 5 shows that the trace of (C++)−1 does not depend
on the ratio p/n for our grafted cosmic covariance matrix. Multi-
plication with α for p = 10 results in an overcorrection, causing a
strong decrease of tr(C++)−1 with p/n. A similar albeit less strong
decrease is seen when naively taking into account the fact that the
Clone covariance only contributes to an effective number of scales
peff = 6, according to equation (11) with s = 7. The three curves
for the inverse seem to converge for p/n → 0. Therefore, we have
reason to be confident that any bias of the unaltered inverse of equa-
tion (12) is small, and hence we do not need to apply the scalar
correction factor α. The addition of a deterministic component to
the ML covariance seems to be sufficient to render the estimate of
the inverse to be unbiased.

Figure 5. Trace of the covariance and inverse grafted cosmic covariance,
plotted against the ratio of the number of bins p to the number of realizations
n. Shown are the cases for covariance (red squares), the inverse (green
filled circles) and two cases where the inverse has been multiplied with
the Anderson–Hartlap factor α, corresponding to the number of bins p = 10
(blue open circles), and p = 6 (magenta triangles), causing an overcorrection
in both cases. This shows that we can use the inverse covariance estimator
without correction (green curve).
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3.3.4 Covariance of derived second-order functions

Expressions for the covariance of the derived second-order statistics
(equation 6) are straight-forward to obtain, and can be calculated
by integrating the covariance of the 2PCFs (Schneider et al. 2002b).
However, the necessary precision for the numerical integration re-
quires a large number of angular bins for which the 2PCF covariance
has to be calculated, which is very time-consuming. Consequently,
for all derived second-order functions we choose not to graft the
Clone covariance to the Gaussian covariance, but instead only use
the Clone to calculate the total covariance of the derived functions.
To include shot noise, we add to each galaxy’s shear an intrinsic
ellipticity as a Gaussian random variable with zero mean and disper-
sion σ ε = 0.38. The latter is calculated as σ 2

ε = ∑
i εiε

∗
i , where the

sum goes over all CFHTLenS galaxies in our redshift range. There-
fore, the covariance between the 184 Clone lines of sight gives us
the total covariance D + M + V. Contrary to the case of the 2PCFs
(previous section), this covariance stems from a pure ML estimate,
and therefore the inverse needs to be de-biased by the Anderson–
Hartlap factor α. With a typical number of angular scales of p =
10 to 15 the corresponding α is of the order of 0.9. We show that
our cosmological results are independent of the number of reali-
sations in Section 6.2. Note that for all the derived estimators, the
cosmology-dependence of the covariance is neglected.

For upcoming and future tomographic surveys such as Kilo De-
gree Survey,5 Dark Energy Survey,6 Hyper Suprime-Cam,7 Euclid8

(Laureijs et al. 2011) or Large Synoptic Survey Telescope,9 a much
larger suite of simulations will be necessary. The number of real-
izations n has to be substantially larger than the number of bins
p (Hartlap et al. 2007). For a multi-bin tomographic shear survey,
p can easily be of the order of several hundreds or more if other
probes are jointly measured such as galaxy clustering or magni-
fication. This necessitates on the order of a thousand and more
independent lines of sight. This number has to be multiplied by
many if a proper treatment of the cosmology-dependence is to be
taken into account. Moreover, a simple up-scaling of smaller sim-
ulated fields to full survey size might not be easy because of the
different area-scaling of the HSV term.

3.4 Ellipticity calibration corrections

We apply the shear calibration as described in Heymans et al. (2012),
which accounts for a potential additive shear bias c and multiplica-
tive bias m,

εobs = (1 + m) εtrue + c. (13)

The additive bias is found to be consistent with zero for ε1. The
second ellipticity component ε2 shows an S/N and size-dependent
bias which we subtract for each galaxy. This represents a correction
which is on average at the level of 2 × 10−3. The multiplicative
bias m is modelled as a function of the galaxy S/N and size r. It is
fit simultaneously in 20 bins of S/N and r (see Miller et al. 2013).
We use the best-fitting function m(S/N, r) and perform the global
correction to the shear 2PCFs [see equations (19) and (20) of Miller

5 kids.strw.leidenuniv.nl
6 www.darkenergysurvey.org
7 http://www.naoj.org/Projects/HSC/HSCProject.html
8 www.euclid-ec.org
9 http://www.lsst.org/lsst

Figure 6. The measured shear correlation functions ξ+ (black squares)
and ξ− (blue circles), combined from all four Wide patches. The error bars
correspond to the total covariance diagonal. Negative values are shown as
thin points with dotted error bars. The lines are the theoretical prediction
using the WMAP7 best-fitting cosmology and the non-linear model described
in Section 4.3. The data points and error bars are listed in Table B1.

et al. (2013)]. Accordingly, we calculate the calibration factor 1 +
K as the weighted correlation function of 1 + m,

1 + K(ϑ) =
∑

ij wiwj (1 + mi)(1 + mj )∑
ij wiwj

. (14)

The final calibrated 2PCFs are obtained by dividing ξ+ and ξ− by
1 + K. The amplitude of 1 + K is around 0.91 on all scales. The
errors on the correlation function from the fit uncertainty are negli-
gible compared to our statistical errors. Furthermore, we calculate
the covariance matrix Cm for the correlation function from this
uncertainty, and show in Section 6.2 that the cosmological results
remain unchanged by adding this term to the analysis.

Fig. 6 shows the combined and corrected 2PCFs, which are the
weighted averages over the four Wide patches with the number of
pairs as weights. Note that the data points are strongly correlated, in
particular ξ+ on scales larger than about 10 arcmin. Cosmological
results using this data will be presented in Section 5. The correlation
signal split up into the contributions from the four Wide patches is
plotted in Fig. 7. There is no apparent outlier field. The scatter
is larger than suggested by the Poisson noise on large scales, in
agreement with the expected cosmic variance.

3.5 E and B modes

The aperture-mass dispersion is shown in the upper panel of Fig. 8.
The B mode is consistent with zero on all scales. We quantify this by
performing a null χ2 test, taking into account the B-mode Poisson
covariance C× as measured on the Clone,

χ2
B =

∑
ij

〈M×〉 (θi)
[
C−1

×
]
ij

〈M×〉 (θj ). (15)

Since here the covariance is entirely estimated from the Clone
line of sight, the inverse has to be de-biased using the Anderson–
Hartlap factor. We consider the B mode over the angular range
[5.5; 140] arcmin. As discussed before, the lower scale is where
the B mode due to leakage is down to a few per cent. The upper
limit is given by the largest scale accessible to the Clone, which is
much smaller than the largest CFHTLenS scale: it is 280 arcmin,
resulting in an upper limit of 〈M2

ap〉 of half that scale. The resulting
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
〈|γ |2〉 is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
〈M2

ap〉 (left panel), shear top-hat rms 〈|γ |2〉 (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For 〈M2

ap〉 and 〈|γ |2〉 the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
�CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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Figure 9. COSEBIs with logarithmic filter functions. The left (right) panel
corresponds to a maximum angular scale of 100 arcmin (250 arcmin). The
filled (open) squares correspond to the CFHTLenS E mode (B mode). The
error bars are the Clone field-to-field rms (rescaled to the CFHTLenS area).
The dashed line is the theoretical prediction for a WMAP7 cosmology, and
the dotted curve shows the Clone mean COSEBIs.

numerical integration over the rapidly oscillating filter functions of
Log-COSEBIs for higher modes (Becker 2012). We will therefore
restrict ourselves to n ≤ 5 for the subsequent cosmological analysis.

The measured COSEBIs modes are shown in Fig. 9. We use as
smallest scale ϑ = 10 arcsec, and two cases of ϑmax of 100 and
250 arcmin. In both cases we do not see a significant B mode.
The S/N of the high mode points decreases when the angular range
is increased: for ϑmax = 250 arcmin only the first two modes are
significant. This is not unexpected, since the filter functions for
ϑmax = 250 arcmin sample larger angular scales and put less weight
on small scales where the S/N in the 2PCFs is larger.

A further derived second-order quantity is the shear E-/B-mode
correlation functions ξE, B (Crittenden et al. 2002; Pen, Van Waer-
beke & Mellier 2002), which have been used in F08. Whereas they
share the inconvenience with the top-hat shear rms of a formal upper

infinite integration limit, they offer no advantage over the latter, and
will therefore not be used in this work.

3.6 Conclusion on estimators

We compared various second-order real-space shear functions, start-
ing with the fundamental 2PCFs ξ±. From the 2PCFs we calculated
a number of E-/B-mode separating functions. The top-hat shear rms
〈|γ |2〉 is of limited use for cosmological analysis because of the
cosmology-dependent E-/B-mode leakage. For the aperture-mass
dispersion 〈M2

ap〉 this leakage is confined to small scales, whereas
the optimized ring statistic RE and COSEBIs were introduced to
avoid any leakage. The drawback of the 2PCFs is that they are sen-
sitive to large scales outside the survey area and thus may contain
an undetectable B-mode signal (Schneider et al. 2010). COSEBIs
capture the E-/B-mode signals in an optimal way on a finite angular-
scale interval [ϑmin; ϑmax]. The interpretation of COSEBIs and the
matching of modes to angular scales are not straightforward since
the corresponding filter functions are strongly oscillating.

For lensing alone, we obtain cosmological parameter constraints
on �m and σ 8 for the different estimators discussed in this section.
The results and comparisons are presented in Section 5.1.

We decided to use the 2PCFs to compute cosmological constraints
in combination with the other probes for the following reasons. The
goal of this paper is to explore the largest scales available for lens-
ing in CFHTLenS. This is only possible with a sufficiently large
S/N when using the 2PCFs. We note that on these large scales our
systematics tests, the star–galaxy shape correlation (Heymans et al.
2012) and the E-/B-mode decomposition (this work) were not pos-
sible. However, since both tests have revealed no systematics on
smaller scales, we are confident that the shear signal up to very
large scales is not significantly contaminated. Moreover, the imple-
mentation of a cosmology-dependent covariance is currently only
feasible for the 2PCFs.

4 C O S M O L O G Y S E T-U P

4.1 Data sets

We use the following data sets and priors.

(i) CFHTLenS 2PCFs and covariance as described in Section
3. We choose the smallest and largest angular bins to be 0.9 and
300 arcmin, respectively. This includes galaxy pairs between 0.8
and 350 arcmin.

(ii) Cosmic microwave background (CMB) anisotropies:
WMAP7 (Larson et al. 2011; Komatsu et al. 2011). The released
WMAP code10 is employed to calculate the likelihood (see also
Dunkley et al. 2009). We use camb11 (Lewis, Challinor & Lasenby
2000) to get the theoretical predictions of CMB temperature and
polarization power- and cross-spectra.

(iii) Baryonic acoustic oscillations (BAO): SDSS-III (BOSS). We
use the ratio DV/rs = 13.67 ± 0.22 of the apparent BAO at z = 0.57
to the sound horizon distance, as a Gaussian random variable, from
Anderson et al. (2012).

(iv) Hubble constant. We add a Gaussian prior for the Hubble
constant of h = 0.742 ± 0.036 from Cepheids and nearby Type
Ia supernovae distances from Hubble Space Telescope (Riess et al.
2009, hereafter R09).

10 http://lambda.gsfc.nasa.gov
11 http://camb.info
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In contrast to Kilbinger et al. (2009) we do not include supernovae
of Type (SNIa) Ia. BOSS puts a tight constraint on the expansion
history of the Universe, which is in excellent agreement with cor-
responding constraints using the luminosity distance from the most
recent compilation of SNIa (Conley et al. 2011; Suzuki et al. 2012).
Both BOSS and SNIa are geometrical probes, and adding SNLS to
WMAP7+BOSS yields little improvement on cosmological param-
eter constraints with the exception of w (Sánchez et al. 2012).

All data sets are treated as independent, neglecting any covari-
ance between those probes. Experiments which observe the same
area on the sky are certainly correlated since they probe the same
cosmological volume. However, this is a second-order effect, like
CMB lensing, the integrated Sachs–Wolfe effect (ISW) or the lens-
ing of the baryonic peak (Vallinotto et al. 2007). Compared to the
statistical errors of current probes, these correlations can safely be
ignored at present, but have to be taken into account for future
surveys (Giannantonio et al. 2012).

4.2 Sampling the posterior

To obtain constraints on cosmological parameters, we estimate the
posterior density π( p|d, M) of a set of parameters p, given the
data d and a model M. Bayes’ theorem links the posterior to the
likelihood L(d| p, M), the prior P ( p|M) and the evidence E(d|M),

π( p|d, M) = L(d| p, M)P ( p|M)

E(d|M)
. (16)

To estimate the true, unknown likelihood distribution L, a suite of N-
body simulations would be necessary (e.g. Hartlap et al. 2009; Pires
et al. 2009). This is not feasible in a high-dimensional parameter
space, and for the number of cosmological models probed in this
work. Instead, to make progress, we use a Gaussian likelihood
function L, despite the fact that neither the shear field nor the second-
order shear functions are Gaussian random fields. Nevertheless, this
is a reasonable approximation, in particular when CMB is added to
lensing (Sato, Ichiki & Takeuchi 2010).

The construction towards the true likelihood function can be
informed by further features of the estimators, for example con-
strained correlation functions (Keitel & Schneider 2011). These
constraints are equivalent to the fact that the power spectrum is pos-
itive. We do, however, not attempt to make use of these constraints.
The expected deviations are minor compared to the statistical un-
certainty of the data. The likelihood function is thus given as

L(d| p, M) = (2π)−m/2|C( p, M)|−1/2

× exp
[
(d − y( p, M))t C−1( p, M) (d − y( p, M))

]
,

(17)

where y( p, M) denotes the theoretical prediction for the data d for
a given m-dimensional parameter vector p and model M.

We sample the posterior with Population Monte Carlo (PMC;
Wraith et al. 2009; Kilbinger et al. 2010), using the publicly avail-
able code COSMO_PMC12 (Kilbinger et al. 2011). PMC is an adaptive
importance-sampling technique (Cappé et al. 2004, 2008) in which
samples pn, n = 1 . . . N are created under an importance function,
or proposal density q. The sample can be used as an estimator of

12 www.cosmopmc.info

the posterior density π, if each point is weighted by the normalized
importance weight

w̄n ∝ π( pn)

q( pn)
;

N∑
n=1

w̄n = 1. (18)

The main difficulty for importance sampling is to find a suitable
importance function. PMC remedies this problem by creating an
iterative series of functions qt, t = 1, . . . , T. In each subsequent iter-
ation, the importance function is a better representation of the pos-
terior, so the distribution of importance weights gets progressively
narrower. A measure for this quality of the importance sample is
the normalized Shannon information criterion,

HN = −
N∑

n=1

w̄n log w̄n. (19)

As a stopping criterion for the PMC iterations, we use the related
perplexity p,

p = exp(HN)/N, (20)

which lies between 0 and 1, where 1 corresponds to maximum
agreement between importance function and posterior.

Most PMC runs reach values of p > 0.7 after 10 or 15 iterations.
To obtain a larger final sample, we either perform a last importance
run with five times the number of points, sampled under the final
importance function, or we combine the PMC samples with the five
highest values of p. In each iteration we created 10k sample points;
the final sample therefore has 50k points.

An estimate Ê of the Bayesian evidence

E =
∫

dmp L(d| p, M)P ( p|M) (21)

is obtained at no further computing cost from a PMC simulation
(Kilbinger et al. 2010),

Ê = 1

N

N∑
n=1

wn. (22)

4.3 Theoretical models

We compare the measured second-order shear functions to non-
linear models of the large-scale structure, with a prediction of the
density power spectrum from the HALOFIT fitting formulae of Smith
et al. (2003). For dark-energy models, we adopt the scheme of the
ICOSMO13 code (Refregier et al. 2011), which uses the open-CDM fit-
ting formula for a model with w0 = −1/3, and interpolates between
this case and �CDM for models with differing w0. This scheme
was employed in Schrabback et al. (2010) who compared their non-
linear power spectrum with McDonald, Trac & Contaldi (2006) and
found good agreement in the range w0 ∈ [ − 1.5; −0.5] out to
k of a few inverse Mpc in the relevant redshift range. Vanderveld
et al. (2012) have shown that for �CDM the halofit accuracy of 5 to
10 per cent is sufficient for current surveys. From hydro-dynamical
simulations, baryonic effects have been quantified. The results de-
pend on the scenario and specific baryonic processes included in
the simulations. The bias in the power spectrum to k of few inverse
Mpc is between 10 and 20 per cent. The resulting bias on cosmo-
logical parameters is smaller than the CFHTLenS statistical errors

13 www.icosmo.org
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Table 2. Constraints from CFHTLenS orthogonal to the �m–σ 8 degeneracy direction,
using the 2PCF. The errors are 68 per cent confidence intervals. The four columns
correspond to the four different models.

Parameter Flat �CDM Flat wCDM Curved �CDM Curved wCDM

σ 8 (�m/0.27)α 0.79 ± 0.03 0.79+0.07
−0.06 0.80+0.05

−0.07 0.82+0.05
−0.07

α 0.59 ± 0.02 0.59 ± 0.03 0.61 ± 0.02 0.61 ± 0.03

(Jing et al. 2006; Rudd, Zentner & Kravtsov 2008; Semboloni et al.
2011).

We also see a good agreement with the �CDM simulations of
Harnois-Déraps et al. (2012). A more accurate non-linear power
spectrum on a wider range of cosmological parameters could be
obtained from the Coyote emulator14 (Heitmann et al. 2009, 2010;
Lawrence et al. 2010). Unfortunately, it is limited in wave mode
(k < 2.4 Mpc) and, more importantly, by an upper redshift of z = 1.
Due to the scatter in photometric redshifts, we would have to cut at a
very low redshift to limit the redshift tail at z > 1. For example, with
zph ≤ 0.8, the fraction of galaxies at z > 1 is 5 per cent, and ignoring
these galaxies would bias low the mean redshift by 0.05 which
would result in a bias on σ 8 which is larger than the uncertainty in
the halofit prescription. Alternatively, the hybrid approach of Eifler
(2011) could be taken, which pastes the HALOFIT power spectrum to
the Coyote emulator outside the k- and z-validity range of the latter.
However, this implies multiplying one of the spectra by a constant
to make the combined power spectrum continuous, We do not deem
this sufficiently justified, since this multiplicative factor does not
stem from a fit to numerical simulations and might introduce a bias
to σ 8.

We individually run PMC for CFHTLenS and WMAP7, respec-
tively. For the combined posterior results, we perform an impor-
tance sampling of the WMAP7 final PMC sample, multiplying each
sample point with the CFHTLenS posterior probability.

For weak lensing only, the base parameter vector for the flat
�CDM model is p = (�m, σ8, �b, ns, h). It is complemented by
w0 and �de for dark-energy and non-flat models, respectively. With
CMB, we add the reionization optical depth τ and the Sunyaev–
Zel’dovich (SZ) template amplitude ASZ to the parameter vector.
Moreover, we use �2

R as the primary normalization parameter, and
calculate σ 8 as a derived parameter. We use flat priors through-
out which, when WMAP7 is added to CFHTLenS, cover the high-
density regions and the tails of the posterior distribution well.

For model comparison, we limit the parameter ranges to phys-
ically well-motivated priors for those parameters which vary be-
tween models. This is important for any interpretation of the
Bayesian evidence, since the evidence directly depends on the prior.
The prior is an inherent part of the model, and we want to compare
physically well-defined models.

Thus, we limit the total matter and dark-energy densities �m

and �de ∈ [0; 1], setting a lower physical limit, and creating a
symmetrical prior for the curvature �K of [−1; 1], which is bound
from below by the physical limit of an empty universe. Note that by
sampling both �m and �de, the curvature prior is no longer uniform
but has triangular shape.

For the model comparison cases we limit w0 to [−1; −1/3],
therefore excluding phantom energy and dark-energy models which
are non-accelerating at the present time. These priors are the same as

14 http://www.lanl.gov/projects/cosmology/CosmicEmu

for the models that were compared using the Bayesian evidence in
Kilbinger et al. (2010). The prior ranges for the other parameters are
�b ∈ [0; 0.1], τ ∈ [0.04; 0.2], ns ∈ [0.7; 1.2], 109�2

R ∈ [1.8; 3.5],
h ∈ [0.4; 1.2] and ASZ ∈ [0; 2]. For the dark-energy model runs for
parameter estimation, which are not used for model comparison,
we use a wide prior on w0 which runs between −3.5 and 0.5.

5 C O S M O L O G I C A L R E S U LT S

The most interesting constraints from 2D weak lensing alone are
obtained for �m and σ 8, which we discuss below for the four cos-
mologies considered here. Table 2 shows constraints from lens-
ing alone on the combination σ 8(�m/0.27)α , which is the direc-
tion orthogonal to the �m–σ 8 degeneracy ‘banana’. To obtain α,
we fit a power law to the log-posterior values using histograms
with optimal bin numbers for estimating the posterior density
(Scott 1979) (Fig. 10). We also discuss constraints on �� (for
cases with free curvature) and w0 (for wCDM models). Table 3
shows the combined constraints from CFHTLenS+WMAP7 and
CFHTLenS+WMAP7+BOSS+R09. The comparison between cos-
mological models is shown in Table 4 and described in Section 5.4.

5.1 �m and σ 8

5.1.1 Flat �CDM

For a flat �CDM universe, the constraints in the �m − σ 8 plane
(left panel of Fig. 10) from CFHTLenS are nearly orthogonal to
the ones for WMAP7. CFHTLenS improves the joint constraints for
these parameters by a factor of 2. Lensing plus CMB constrains �m

and σ 8 to better than 5 per cent and 2 per cent, respectively. Adding
BOSS and R09 decreases the error on �m to 3.5 per cent, but does
not improve the constraint on σ 8.

5.1.2 Flat wCDM

If the dark-energy equation-of-state parameter w0 is kept free, CMB
and lensing display the same degeneracy direction between �m

and σ 8 (left-hand panel of Fig. 11). Combining both probes only
partially lifts this degeneracy; the uncertainty on �m remains at the
25 per cent level. This uncertainty decreases to 10 per cent with the
addition of the BOSS BAO distance measure.

The value of the Hubble constant from both
CFHTLenS+WMAP7 (h = 0.66+0.11

−0.07) and BOSS+WMAP7
(h = 0.65+0.08

−0.04) is slightly lower when compared to the R09 result,
h = 0.742 ± 0.036, although it is within the 1σ error bar. Since h
is degenerate with all other parameters except ns, those parameter
means change with the inclusion of the R09 prior. This causes the
relatively large �m and �b and low σ 8 if R09 is not added. The
joint Hubble constant with all four probes is h = 0.691+0.032

−0.029.
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Figure 10. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (red) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is flat �CDM (left-hand panel) and curved �CDM
(middle and right panels), respectively.

5.1.3 Curved �CDM

With curvature left free and no additional priors, CMB anisotropies
cannot determine �m anymore, since there is a degeneracy be-
tween matter density, curvature and the Hubble constant. Lensing,
however, shows a similar dependency on �m and σ 8 to the flat
model case. Therefore, the improvement on �m from CFHTLenS +
WMAP7 with respect to WMAP7 alone is an order of magnitude, to
yield an 8 per cent error. The joint error on σ 8 is 3.5 per cent.

5.1.4 Curved wCDM

The �m–σ 8 degeneracy holds nearly the same as in the previous
cases of models with fewer parameters, as displayed in the left-hand
panel of Fig. 12. The value of σ 8(�m/0.25)α is slightly increased but
well within the error bars. The joint CFHTLenS+WMAP7 results
on �m and σ 8 are similar to the flat wCDM case.

The BOSS+R09+WMAP7 results indicate a slightly smaller
�m and larger σ 8. The joint CFHTLenS+WMAP7+BOSS+R09
allowed region is therefore on the upper end of the
CFHTLenS+WMAP7 banana. The reason for this is, as in the flat
wCDM case, the degeneracy of �m and σ 8 with the Hubble constant.
WMAP7 alone prefers a low value, h = 0.5+0.14

−0.13, which increases to
h = 0.73 ± 0.04 when BOSS+R09 is added. As a consequence, �m

decreases and σ 8 increases. On the other hand, adding CFHTLenS
to WMAP7 leaves the Hubble constant at the relatively low value of
h = 0.60+0.08

−0.06.

5.2 Dark energy

For the following results on the dark-energy equation-of-state pa-
rameter w, we use the flat prior [−3.5; 0.5].

5.2.1 Flat wCDM

2D weak gravitational lensing alone is not able to tightly constrain
dark energy, in contrast with 3D tomographic weak lensing. The
68 per cent confidence limits for w0 (flat wCDM) are of the order
of unity, w0 = −1.2+0.8

−1.4. In combination with WMAP7 only, these
errors decrease by a factor of 4, and w0 gets constrained to about
30 per cent. The CFHTLenS+WMAP7+BOSS constraints on dark
energy are w0 = −0.78+0.09

−0.11. We discuss this deviation from �CDM
in Section 7. Adding the R09 prior on H0 does not reduce the error
but shifts the mean to the �CDM value, w0 = −0.99+0.11

−0.12.

5.2.2 Curved wCDM

The case of dark energy is similar in the curved case. CFHTLenS
alone results in w0 = −1.2+0.9

−1.8. Adding WMAP7 reduced this un-
certainty to 30 per cent. CFHTLenS+WMAP7+BOSS yield w0 =
−0.81+0.14

−0.19. Adding the R09 prior on H0, we find the �CDM-
consistent value of w0 = −1.10+0.15

−0.16.

5.3 Curvature

CFHTLenS helps to improve the constraint on the curvature density
�K. For �CDM, the uncertainty decreases by a factor of 10 from
around 0.1 (WMAP7 alone) to 0.01 (CFHTLenS+WMAP7). Adding
BOSS+R09 decreases the error by another factor of 2 to around
0.005. The combined constraints are thus consistent with a flat
universe within 5 × 10−3. For a wCDM model, this uncertainty is
of the same order.
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Table 3. Cosmological parameter results with 68 per cent confidence intervals. The first line for each
parameter shows CFHTLenS+WMAP7, and the second line is CFHTLenS+WMAP7+BOSS+R09.
Asterisks (∗) indicate a deduced parameter. The four columns correspond to the four different models.

Parameter Flat �CDM Flat wCDM Curved �CDM Curved wCDM

�m
0.274+0.013

−0.012 0.325+0.082
−0.076 0.275+0.023

−0.021 0.377+0.098
−0.079

0.283+0.010
−0.009 0.287+0.026

−0.023 0.286+0.011
−0.010 0.271+0.028

−0.025

0.815+0.016
−0.014 0.77+0.11

−0.07 0.815+0.030
−0.025 0.715+0.090

−0.070

σ 8
∗ 0.814+0.015

−0.014 0.809+0.039
−0.035 0.804 ± 0.018 0.826+0.037

−0.039

−0.86+0.22
−0.32 −0.72+0.20

−0.24

w0 −1 −0.99+0.11
−0.12 −1 −1.10+0.15

−0.16

0.726+0.016
−0.015 0.628+0.074

−0.094

�de 1 − �m 1 − �m 0.7186+0.099
−0.014 0.735+0.028

−0.032

�K
∗ −0.0003 ± 0.0086 −0.005+0.011

−0.012

0 0 −0.0047+0.0045
−0.0047 −0.0063+0.0064

−0.0045

0.702+0.014
−0.013 0.66+0.11

−0.07 0.703+0.037
−0.033 0.605+0.082

−0.062

h 0.693 ± 0.010 0.691+0.032
−0.029 0.683 ± 0.014 0.702+0.032

−0.030

�b
0.0456 ± 0.0012 0.054+0.014

−0.013 0.0457+0.0045
−0.0041 0.064+0.018

−0.014

0.0465 ± 0.0010 0.0471+0.0046
−0.0042 0.0482+0.0020

−0.0019 0.0457+0.0047
−0.0042

ns
0.966 ± 0.013 0.966 ± 0.014 0.965+0.013

−0.014 0.970+0.014
−0.013

0.961 ± 0.012 0.959+0.013
−0.014 0.966 ± 0.013 0.964+0.013

−0.014

0.089+0.016
−0.014 0.088+0.016

−0.014 0.088+0.016
−0.014 0.088+0.017

−0.013

τ 0.083+0.014
−0.013 0.084+0.015

−0.013 0.088+0.016
−0.014 0.087+0.015

−0.014

109�2
R

2.441+0.090
−0.084 2.433+0.095

−0.087 2.445+0.095
−0.090 2.395+0.093

−0.095

2.457+0.088
−0.081 2.465+0.097

−0.089 2.422+0.095
−0.088 2.425+0.094

−0.089

Table 4. Bayesian evidence E and Bayes’ factor with respect to �CDM for four different cosmo-
logical models. The columns for w0 and �K show the prior range for those two parameters. The
data are CFHTLenS+WMAP7 (fourth column) and CFHTLenS+WMAP7+BOSS+R09 (last column),
respectively.

Name w0 �K ln B01 ln B01

CFHTLenS+WMAP7 CFHTLenS+WMAP7
+BOSS+R09

�CDM −1 0 0 0
Curved �CDM −1 [0; 2] −3.84 −4.0
Flat wCDM [ − 1; −1/3] 0 0.42 0.58
Curved wCDM [ − 1; −1/3] [0; 2] −3.19 −4.8

5.4 Model comparison

In Table 4, the evidence E and the logarithms of the evidence ratios,
ln B01 = ln E0/E1, between the baseline flat � model and the other
three models are shown. Here, E0 is the evidence for flat �CDM
and E1 the evidence for one of the three models curved �CDM, flat
wCDM and curved wCDM, respectively. B01 is called the Bayes
factor between model ‘0’ and model ‘1’.

An empirical scale to interpret such evidence values was sug-
gested by Jeffreys (1961) (see also Trotta 2008). Accordingly, two
models are not distinguishable when |ln B01| < 1. If the log-Bayes
factor is between 1 and 2.5, the evidence is called weak. Moderate
evidence is assumed for 2.5 < |ln B01| < 5, and strong for values
larger than that.

We compute the evidence for the two cases of probes
CFHTLenS+WMAP7 and CFHTLenS+WMAP7+BOSS+R09.
Although the evidence for the flat dark-energy model is slightly

larger than the one for the cosmological constant model, the models
are indistinguishable: their respective evidence values, or posterior
odds, are within a factor of 2. The evidence against curved models is
moderate, with log-Bayes factor ratios between 3.2 and 4.8, or pos-
terior odd ratios between 25 and 130 in favour of flat �CDM. The
significance increases when adding BOSS and R09, but stays in the
moderate range. We remind the reader that the dark-energy models
considered here have the flat prior [ − 1; −1/3] for w, which corre-
sponds to an accelerating non-phantom dark-energy component.

6 C O M PA R I S O N O F W E A K - L E N S I N G
STATI STI CS , SYSTEMATI CS AND
CONSI STENCY TESTS

In this section we obtain cosmological constraints from the derived
second-order estimators which were discussed in Section 2.2. The
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Figure 11. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is flat wCDM.

following tests are all performed under a flat �CDM model. The
results are listed in Table 5.

6.1 Derived second-order functions

As expected, the constraints from the derived second-order estima-
tors are less tight than from the 2PCFs, since they always involve in-
formation loss. Moreover, we use a smaller range of angular scales,
cutting off both on the lower and higher end, as discussed before.
All estimators give consistent results.

Aperture-mass dispersion and top-hat shear rms give very similar
constraints compared to the 2PCFs. The position and slope of the
banana are nearly identical, although the width is larger by a factor
of 2 (see Table 2). For 〈|γ |2〉, we analyse two approaches of dealing
with the finite survey–size E-/B-mode leakage:

(i) Ignoring the leakage. We fit theoretical models of the top-hat
shear rms (equations 7, A3) directly to the measured E-mode data
points 〈|γ |2〉(θ i). Since power is lost due to the leakage, we expect
σ8 �α

m to be biased low.

Figure 12. Marginalized posterior density contours (68.3 per cent, 95.5
per cent, 99.7 per cent) for CFHTLenS (blue contours), WMAP7 (green),
CFHTLenS+WMAP7 (magenta) and CFHTLenS+WMAP7+BOSS+R09
(black). The model is curved wCDM.

Table 5. Constraints from CFHTLenS orthogonal to the �m–σ 8

degeneracy direction. The main results from the 2PCF (first row)
are compared to other estimators.

Data α σ 8 (�m/0.27)α

2PCF 0.59 ± 0.02 0.79 ± 0.03

〈M2
ap〉 0.70 ± 0.02 0.79 ± 0.06

〈|γ |2〉 (ignoring offset) 0.60 ± 0.03 0.78+0.04
−0.05

〈|γ |2〉 (constant offset) 0.58 ± 0.03 0.80+0.03
−0.04

RE 0.56 ± 0.02 0.80+0.03
−0.04

COSEBIs (ϑmax = 100 arcmin) 0.60 ± 0.02 0.79+0.04
−0.06

COSEBIs (ϑmax = 250 arcmin) 0.64 ± 0.03 0.77+0.04
−0.05

2PCF, constant covariance 0.60 ± 0.03 0.78+0.03
−0.04

2PCF (ϑ ≥ 17 arcmin) 0.65 ± 0.02 0.78 ± 0.04

2PCF (ϑ ≥ 53 arcmin) 0.65 ± 0.03 0.79+0.07
−0.06
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(ii) We add a constant offset of 5.3 × 10−7 to the measured E-
mode points. This corresponds to the theoretical leakage for the
WMAP7 best-fitting �CDM model with σ 8 = 0.8. On scales θ <

5 arcmin, the assumption of a constant offset is clearly wrong;
however, the constant is two orders of magnitudes smaller than the
measured signal and does not influence the result much.

The difference between both cases is about half of the statistical
uncertainty (Table 2). More sophisticated ways to deal with this
leakage, e.g. going beyond a constant offset, or marginalizing over
a parametrized offset, are expected to yield similar results. Since
they all have the disadvantage of depending on prior information
about a theoretical model which might bias the result towards that
model, we do not consider this second-order estimator further.

The function RE on scales between ϑmax = 7.5 and 140 ar-
cmin, for η = ϑmin/ϑmax = 1/50 (implying ϑmin = 9 arcsec, . . . ,
2.8 arcmin) yields consistent results to the 2PCFs. The results for
COSEBIs are consistent with the 2PCFs for both cases of ϑmax.
For ϑmax = 250 arcmin we find that the modes which are consis-
tent with zero do contain information about cosmology. When only
using the first two modes, we obtain σ8(�m/0.27)0.7 = 0.78+0.06

−0.07,
corresponding to a larger uncertainty of 30 per cent.

6.2 Robustness and consistency tests

In this section, we test the robustness of our results, by considering
various potential systematic effects, and by varying the angular
scales and estimators.

6.2.1 Shear calibration covariance

We add the shear calibration Cm (Section 3.4) covariance to the total
shear covariance. The correlation coefficient of Cm between angular
bins is nearly unity, implying that the shear calibration varies very
little with angular separation. Since the magnitude of the covariance
is much smaller than the statistical uncertainties, the cosmological
results are virtually unchanged.

6.2.2 Large scales only

The largest S/N for cosmic shear is on small, non-linear scales.
Unfortunately, those scales are the most difficult to model, because
of uncertainties in the dark-matter clustering, and baryonic effects
on the total power spectrum. To obtain more robust cosmological
constraints, we exclude small scales from the 2PCFs in two cases,
as follows. First, we use the cut-off ϑc = 17 arcmin. At this scale,
the non-linear halofit prediction of ξ+ is within 5 per cent of the
linear model. Baryonic effects, following Semboloni et al. (2011),
are reduced to sub per cent level. The component ξ−, being more
sensitive to small scales, is still highly non-linear at this scale.
However, since most of the constraining power is contained in ξ+,
the resulting cosmological constraints will not be very sensitive to
non-linearities. Nevertheless, we use a second, more conservative,
cut-off of ϑc = 53 arcmin, where the non-linear models of ξ− is
within a factor of 2 of the linear one. On these scales, ξ− is affected
by baryonic physics by less than 5 per cent (Semboloni et al. 2011).
In both cases, we obtain a mean parameter value for σ 8(�m/0.27)0.7

which is consistent with the result from all angular scales down to an
arcmin. In comparison, the error bars on this combined parameter
are larger by 30 per cent for ϑc = 17 arcmin, and 100 per cent for
ϑc = 53 arcmin (see Table 2).

6.2.3 Reduced shear

Since the weak-lensing observable is not the shear γ , but the re-
duced shear g = γ /(1 − κ), the relation between the shear correla-
tion function and the convergence power spectrum ignores higher-
order terms (see for an overview, Krause & Hirata 2010). The full
calculation of only the third-order terms, involving the convergence
bispectrum, is very time-consuming and unfeasible for Monte Carlo
sampling, requiring the calculation of tens of thousands of different
models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
�CDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB param-
eter constraints. The changes in �m and σ 8 for a �CDM model are
less than a per cent.

6.2.4 Number of simulated lines of sight

Following Huff et al. (2011), we examine the influence of the num-
ber of simulated lines of sight on the parameter constraints. We
calculate the covariance of 〈M2

ap〉 from 110 instead of 184 lines of
sight (Section 3.3.4). Using the corresponding Anderson–Hartlap
factor α, we find identical results as before and conclude that the
number of simulations is easily sufficient for this work.

6.2.5 Non-Gaussian covariance fitting formulae

We replace the non-Gaussian covariance of ξ+ calculated from the
Clone with the fitting formulae from S07 and Sato et al. (2011,
hereafter S11), respectively. These works provide prescriptions of
the non-Gaussian covariance by rescaling the Gaussian cosmic-
variance term by fitting to N-body simulations. Since no recipe for
ξ− is given, we use the Gaussian covariance for ξ− and for the
cross-covariance between ξ+ and ξ−. We find for σ 8(�m/0.27)α

the results 0.79+0.03
−0.04 for the S07 case, and 0.78+0.03

−0.04 for S11, re-
covering the mean value with slightly larger error bars. This shows
that our results are not sensitive to the choice of the non-Gaussian
covariance.

6.2.6 Cosmology-independent covariance

We compare the two cases of cosmology-dependent covariance
(Section 3.3.2), and a constant covariance, fixed to the fiducial
model. Contrary to Jee et al. (2012), we find only small differences
in the cosmological results. The main effect is a slight increase in the
error bars for the constant covariance (see Table 2). In particular,
around the region of the fiducial model, the results are basically
the same, and therefore, the joint constraints with other probes are
virtually unaffected by the choice of the covariance.

7 D I S C U S S I O N A N D C O N C L U S I O N

In this paper we present measurements of various second-order
shear correlations from weak gravitational lensing by CFHTLenS.
Using a single-redshift bin, 0.2 < zp < 1.3, we obtain cosmologi-
cal constraints on the matter density, �m, and the power-spectrum
amplitude, σ 8. Adding WMAP7, BOSS and R09 data, we obtain
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parameter constraints for flat and curved �CDM and dark-energy
models, and calculate the Bayesian evidence to compare the prob-
ability for each model given the data.

7.1 Second-order shear functions

Along with the 2PCFs ξ+ and ξ−, which are the fundamental shear
observables, we consider various derived second-order functions,
which are able to separate the shear correlation into its E and B
mode. The resulting B mode is consistent with zero on all scales. The
excess in the E- and B-mode signal that was seen in the CFHTLS-
T0003 data (F08) between 50 and 130 arcmin is no longer present.
This excess was most likely due to systematics in the earlier data,
and the removal of this feature has to be seen as a success of the
CFHTLenS analysis. In particular, hints for deviations from General
Relativity using the F08 data (Zhao et al. 2010) are not confirmed
with CFHTLenS (Simpson et al. 2013).

7.2 Cosmological parameters

The parameter combination which 2D weak lensing can constrain
best is σ8�

α
m with α ∼ 0.6. CFHTLenS alone, with the 2PCFs,

constrains the combination σ 8(�m/0.27)0.6 to 0.787 ± 0.032. To
facilitate a comparison with F08, we write our constraints as
σ 8(�m/0.25)α = 0.82 ± 0.03 (2PCFs), 0.84+0.03

−0.04 (top-hat shear
rms) and 0.83 ± 0.06 (aperture-mass dispersion). The exponent α

is around 0.6 in all three cases. F08 obtained results with uncertain-
ties between 0.042 and 0.049, although only smoothed second-order
quantities were used. The function closest to the 2PCFs is ξE, for
which F08 found σ 8(�m/0.25)0.46 = 0.784 ± 0.049, corresponding
to an uncertainty of 6.2 per cent, compared to 4 per cent in this work.
This increase in precision of 50 per cent is consistent with the naive
expectation of CFHTLenS to yield smaller error bars by a factor of
the square root of the area between CFHTLenS and T0003, which
is

√
129/57 = 1.4.

Our uncertainty for the top-hat shear rms is about the same as in
F08, whereas the aperture-mass dispersion is slightly more poorly
constrained in this work. Tighter constraints of 5.5 per cent were
found by F08 from 〈M2

ap〉, which was used for their combined
CFHTLS-T0003 + WMAP3 results. The fact that the increase in
precision for those smoothed quantities is smaller than expected is
most due to the limited parameter range of F08, who used tight
priors on the Hubble parameter, h ∈ [0.6; 0.8] and fixed �b and ns.
In particular the narrow range of h resulted in tighter constraints on
�m and σ 8 in F08.

Schrabback et al. (2010) obtained σ 8(�m/0.3)0.6 = 0.68 ± 0.11
from a 2D weak-lensing analysis of the Cosmological Evolution
Survey15 data. The relatively large error bars are dominated by
cosmic variance from the very small survey area of 1.64 deg2,
despite the great depth of the survey. A 3D lensing analysis with
a large number of redshift bins (five narrow bins up to z = 4 and
one broad bin with mean redshift of 1.5) decreases the error bar
by 20 per cent, σ 8(�m/0.3)0.5 = 0.79 ± 0.09. This uncertainty is
still larger by a factor of 3 than our CFHTLenS 2D constraints,
σ 8(�m/0.3)0.6 = 0.74 ± 0.03.

On 168 deg2 of SDSS16 data in the Stripe 82 equatorial region,
out to a median redshift of 0.52, Huff et al. (2011) recently ob-
tained σ8(�m/0.264)0.67 = 0.65+0.12

−0.15 using a combination of COSE-

15 http://cosmos.astro.caltech.edu
16 Sloan Digital Sky Survey; www.sdss.org

BIs with (ϑmin, ϑmax) = (1.3, 97.5) arcmin and an additional data
point of ξ+(38 arcmin). With CFHTLenS we get σ 8(�m/0.264)0.6 =
0.80 ± 0.03 for the 2PCFs and 0.80+0.04

−0.06 for COSEBIs with ϑmax =
100 arcmin.

Recent results from a 2D analysis of the Deep Lens Survey17

(DLS) yielded the very tight constraints �m = 0.26 ± 0.05 and
σ 8 = 0.87 ± 0.07 (Jee et al. 2012). Compared to CFHTLenS, DLS
has a greater depth with mean redshift of 1.1 and 17 galaxies per
arcmin2, but on the other hand covers with 20 deg2 a smaller area.
The parameter space sampled by DLS is similar to F08, with a
tight prior on the Hubble constant and fixed baryon density �b and
spectral index ns.

For all models of dark energy and curvature considered
here, the agreement of σ 8 and �m from CFHTLenS with
WMAP7 is very good. This remains true when BOSS data
on the BAO peak are added. However, we find values of w0

for CFHTLenS+WMAP+BOSS which are significantly smaller
than −1, both for flat and for curved wCDM models. The rea-
son for this is the near-degeneracy of the dark-energy parameter
with the Hubble constant. The latter takes the rather low value of
around 0.65 ± 0.1, which results in a high value of w0. Adding the
R09 result increases h and thus also increases w0, yielding values
which are consistent with �CDM.

For the flat �CDM model, adding CFHTLenS to WMAP7
strongly helps reducing error bars on �m and σ 8. The improve-
ment is larger than in the case where BOSS+R09 is joined with
WMAP7, in particular for σ 8. The curved �CDM case sees a slightly
different dependence on �K between WMAP7+CFHTLenS and
WMAP7+BOSS+R09, resulting in tight constraints when all four
probes are combined. Both cases are emphasized in Fig. 13. In the
wCDM case, both CFHTLenS and BOSS cannot improve signifi-
cantly the dark-energy constraint with respect to WMAP7. Only the
addition of R09, thereby lifting the w0–h degeneracy, decreases the
error on the dark-energy parameter.

Our results are in very good agreement with the measurement
presented in Hudson & Turnbull (2012), who find �m = 0.259 ±
0.045 and σ 8 = 0.748 ± 0.035 for a flat �CDM model. This method
uses low- and high-z peculiar velocity data only and is therefore
complementary and independent of our results.

Recent constraints by Mantz et al. (2010) from the X-ray
Röntgensatellit (ROSAT) All-Sky Survey using the cluster mass
function for a flat wCDM universe are �m = 0.23 ± 0.04, σ 8 =
0.82 ± 0.05 and w0 = −1.01 ± 0.20, in agreement with the results
presented here. Their relatively low �m is consistent with our result
of �m = 0.29 ± 0.02. When adding CMB (WMAP5), SNIa, BAO
and the cluster gas fraction to the cluster mass function, Mantz et al.
(2010) get �m = 0.27 ± 0.02. From the optical SDSS maxBCG
cluster catalogue, Rozo et al. (2010) obtain for a flat �CDM model
σ 8(�m/0.25)0.41 = 0.83 ± 0.03. In combination with WMAP5, they
get �m = 0.265 ± 0.016 and σ 8 = 0.807 ± 0.020, which is again
consistent with this work.

7.3 Model comparison

Using the Bayesian evidence, we computed the posterior odds
for various cosmological models. Starting from the basic �CDM
model, we tested extensions of this model which included curvature
�K and the dark-energy equation-of-state parameter w. We find no
evidence against the standard flat �CDM model.

17 http://dls.physics.ucdavis.edu
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Figure 13. Marginalized posterior density contours (68.3 per cent, 95.5 per
cent, 99.7 per cent) for WMAP7 (green), WMAP7+CFHTLenS (magenta),
WMAP7+BOSS+R09 (orange) and WMAP7+CFHTLenS+BOSS+R09
(black). The model is flat �CDM (upper panel) and curved �CDM (lower
panel), respectively.

The constraints for the larger models with free curvature are
consistent with �K = 0. It is therefore not surprising that those
more general models are not favoured over models with fixed flat
geometry. The larger parameter space from the additional degree
of freedom implies a lower predictive capability of those extended
models. A good model should not only predict (a priori) the correct
parameter range where the result is to be found (a posteriori), but
also make a specific and accurate prediction; in other words, it
should have a narrow prior range compared to the posterior. A lack
of predictive capability is penalized by the Bayesian evidence.

In contrast to the two non-flat models (curved �CDM and curved
wCDM), the flat wCDM universe is indistinguishable from a flat
model with cosmological constant. This can be understood by
looking at the respective additional parameter constraints beyond
�CDM, that is, �de for the curved and w0 for wCDM. Compared to

the corresponding prior, the allowed posterior range for �de is a lot
smaller than the one for w0 since the latter parameter is less tightly
constrained. Therefore, the curved models are less predictive, cor-
responding to a lower evidence. Both the very tight constraints on
�K, with error of about 0.005, and the moderate Bayesian evidence
in favour of a flat model strengthen the emerging picture that we
live indeed in a Universe with zero curvature.
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Prunet S., Robert C. P., 2009, Phys. Rev. D, 80, 023507

Zhao G., Giannantonio T., Pogosian L., Silvestri A., Bacon D. J., Koyama
K., Nichol R. C., Song Y., 2010, Phys. Rev. D, 81, 103510

APPEN D IX A : FILTER FUNCTIONS

We give expressions of the filter functions F+, F−, needed to
calculate the derived second-order shear observables from the
shear correlation functions (equation 6). See Table 1 for the re-
lation between F± and the following functions and the integration
ranges.

A1 Aperture-mass dispersion

The filter functions for the aperture-mass dispersion, defined in
Schneider et al. (2002a), are for x < 2

T+(x) = 6(2 − 15x2)

5

[
1 − 2

π
arcsin(x/2)

]
+ x

√
4 − x2

100π

× (
120 + 2320x2 − 754x4 + 132x6 − 9x8

)
;

T−(x) = 192

35π
x3

(
1 − x2

4

)7/2

. (A1)

The functions have finite support, and are set to zero for x > 2.
The Fourier-space filter function for the aperture-mass dispersion
(equation 7) is

Û (�) = Ûθ (�) = 24J4(θ�)

(θ�)2
. (A2)

A2 Top-hat shear rms

For the top-hat shear rms, the real-space filter functions are

S+(x) = 1

π

[
4 arccos(x/2) − x

√
4 − x2

]
H(2 − x) ;

S−(x) = 1

πx4

×
[
x
√

4 − x2(6 − x2) − 8(3 − x2) arcsin(x/2)
]
, (A3)

where H is the Heaviside step function. Thus, S+ has support [0; 2]
whereas S− has infinite support. The Fourier transform of S+ is

Û (�) = Ûθ (�) = 2J1(θ�)

(θ�)2
. (A4)

A3 Optimized ring statistic

To obtain an E-/B-mode decomposition of the 2PCF on a finite
angular range [ϑmin; ϑmax] via the sum in equation (6), two integral
conditions for the filter function F+ need to be fulfilled (Schneider
& Kilbinger 2007):∫ ϑmax

ϑmin

dϑ ϑF+(ϑ) =
∫ ϑmax

ϑmin

dϑ ϑ3F+(ϑ) = 0. (A5)

The function F− can be obtained by an integral over F+, which
follows from the relation equation (7), see Schneider et al.
(2002a). Apart from these conditions, the functions F± can be
freely chosen.

For the optimized ring statistics, the filter functions corresponding
to RE,B are linear combinations of Chebyshev polynomials of the
second kind,

T+(ϑ) = T̃+

(
x = 2ϑ − ϑmax − ϑmin

ϑmax − ϑmin

)

=
N−1∑
n=0

anUn(x); (A6)

Un(x) = sin[(n + 1) arccos x]

sin(arccos x)
. (A7)

The coefficients an can be chosen freely, under the condition that
RE,B are pure E- and B-mode components, respectively. We take
the an from Fu & Kilbinger (2010), which minimized the �m-σ 8

1σ -area using the CFHTLS-T0003 survey setting, and for fixed η =
ϑmin/ϑmax = 1/50. For a fixed η, RE,B depends on only one angular
scale θ , which we take to be ϑmax.

A4 COSEBIs

The COSEBIs filter functions we use here are polynomials in the
logarithm of the angular scale θ ,

T
log
+,n(ϑ) = t

log
+,n

[
z = ln

(
ϑ

ϑmin

)]

= Nn

n+1∑
j=0

cnj z
j = Nn

n+1∏
j=1

(z − rnj ). (A8)

The polynomials t
log
+,n(z) have been constructed in Schneider et al.

(2010) using equation (A5) as an orthonormal and complete set of
functions. The coefficients cnj are fixed by integral conditions that
assure the E-/B-mode decomposition of the 2PCF on a finite angular
integral. They are given by a linear system of equations, which is
given in Schneider et al. (2010). To solve this system, a very high
numerical accuracy is needed. We use the MATHEMATICA program
given in Schneider et al. (2010) to obtain the coefficients for a given
ϑmin and ϑmax, and store the zeros rni, for which a lower accuracy is
sufficient. The function F− is then calculated using equations (38)
and (39) from Schneider et al. (2010).

Both for COSEBIs and for FK10, no closed expressions for the
Hankel transforms of T± have been found (yet); neither for the
Fourier-space counterparts, apart form the linear COSEBIs (Asgari
et al. 2012). To obtain the theoretical predictions for these functions,
we first calculate ξ± via equation (4), and use equation (6) to obtain
the COSEBIs prediction.

To calculate the numerical integration over the correlation func-
tion (equation 6) with high enough precision, we split up the interval
[0; zmax] into 10 pieces, and perform a Romberg-integration on each
piece with relative precision of 10−6. The resulting numerical B
mode is smaller than 10−15 for modes n ≤ 10, which is about three
orders of magnitudes smaller than the predicted E mode.

A P P E N D I X B : C F H T L E N S SE C O N D - O R D E R
W E A K - L E N S I N G DATA

The measured 2PCFs as shown in Fig. 6. We list the data
points and the total error in Table B1. The full covariance
is available on request or via the web page http://cfhtlens.org.
The derived second-order E- and B-mode functions are listed in
Tables B2 to B5.
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Table B1. The CFHTLenS 2PCFs ξ+ and ξ−, for different angular scales ϑ

(see Section 3.2). The values of σ indicate the error from the total covariance
diagonal (Section 3.3.1). The covariance is the one at the fiducial Clone
cosmology.

ϑ (arcmin) ξ+(ϑ) σ [(ξ+(ϑ)] ξ−(ϑ) σ [(ξ−(ϑ)]

0.9 1.411 × 10−4 2.686 × 10−5 1.610 × 10−5 2.621 × 10−5

1.2 6.619 × 10−5 1.586 × 10−5 −1.209 × 10−5 1.491 × 10−5

1.6 7.438 × 10−5 1.223 × 10−5 −7.580 × 10−6 1.123 × 10−5

2.2 4.162 × 10−5 9.507 × 10−6 2.600 × 10−5 8.486 × 10−6

2.9 5.298 × 10−5 7.438 × 10−6 1.067 × 10−5 6.426 × 10−6

3.9 2.923 × 10−5 5.864 × 10−6 1.738 × 10−5 4.892 × 10−6

5.2 2.287 × 10−5 4.669 × 10−6 4.607 × 10−6 3.755 × 10−6

7.0 1.583 × 10−5 3.745 × 10−6 1.306 × 10−5 2.892 × 10−6

9.4 1.351 × 10−5 3.045 × 10−6 7.760 × 10−6 2.255 × 10−6

12.5 8.737 × 10−6 2.494 × 10−6 9.643 × 10−6 1.770 × 10−6

16.8 7.487 × 10−6 2.088 × 10−6 4.652 × 10−6 1.402 × 10−6

22.4 5.536 × 10−6 1.791 × 10−6 5.241 × 10−6 1.126 × 10−6

30.0 4.656 × 10−6 1.605 × 10−6 2.959 × 10−6 8.791 × 10−7

40.2 2.072 × 10−6 1.457 × 10−6 2.901 × 10−6 7.040 × 10−7

53.7 2.104 × 10−6 1.310 × 10−6 1.332 × 10−6 6.072 × 10−7

71.7 9.524 × 10−8 1.153 × 10−6 7.075 × 10−7 5.260 × 10−7

95.5 2.149 × 10−7 9.903 × 10−7 2.048 × 10−6 4.496 × 10−7

125.3 2.660 × 10−7 8.990 × 10−7 1.240 × 10−6 4.552 × 10−7

160.3 5.207 × 10−7 8.782 × 10−7 6.247 × 10−7 4.994 × 10−7

211.7 4.607 × 10−7 9.043 × 10−7 −4.670 × 10−7 5.690 × 10−7

296.5 7.331 × 10−8 9.729 × 10−7 7.811 × 10−7 6.959 × 10−7

Table B2. The CFHTLenS aperture-mass dispersion. The E mode, 〈M2
ap〉,

and B mode 〈M×〉, are given for different angular smoothing scales θ (see
Section 3.5). The values of σ indicate the error from the scaled Clone
covariance diagonal (Section 3.3.4). Note that for cosmological results, we
do not use scales below 5 arcmin.

θ 〈M2
ap〉(θ ) σ [〈M2

ap〉(θ )] 〈M2×〉(θ ) σ [〈M2×〉(θ )]
(arcmin)

0.9 4.640 × 10−6 3.997 × 10−6 5.970 × 10−6 3.962 × 10−6

1.1 2.615 × 10−6 3.266 × 10−6 5.444 × 10−6 3.202 × 10−6

1.4 4.631 × 10−6 2.709 × 10−6 2.436 × 10−6 2.541 × 10−6

1.7 6.978 × 10−6 2.178 × 10−6 3.884 × 10−7 2.065 × 10−6

2.2 7.939 × 10−6 1.794 × 10−6 1.274 × 10−7 1.718 × 10−6

2.7 7.842 × 10−6 1.460 × 10−6 −8.143 × 10−7 1.424 × 10−6

3.5 6.946 × 10−6 1.191 × 10−6 −4.514 × 10−7 1.147 × 10−6

4.4 6.747 × 10−6 9.810 × 10−7 2.530 × 10−8 8.793 × 10−7

5.5 6.861 × 10−6 8.139 × 10−7 2.168 × 10−7 7.060 × 10−7

6.9 6.023 × 10−6 6.835 × 10−7 3.835 × 10−7 5.902 × 10−7

8.7 5.409 × 10−6 5.809 × 10−7 2.212 × 10−7 4.846 × 10−7

11.0 4.793 × 10−6 5.157 × 10−7 8.553 × 10−8 3.813 × 10−7

13.9 3.851 × 10−6 4.448 × 10−7 1.480 × 10−7 3.138 × 10−7

17.5 3.187 × 10−6 3.809 × 10−7 1.037 × 10−7 2.439 × 10−7

22.0 2.612 × 10−6 3.350 × 10−7 5.001 × 10−8 1.950 × 10−7

27.7 2.113 × 10−6 3.015 × 10−7 −9.627 × 10−8 1.619 × 10−7

35.0 1.718 × 10−6 2.656 × 10−7 −7.630 × 10−10 1.374 × 10−7

44.1 1.269 × 10−6 2.410 × 10−7 1.976 × 10−7 1.160 × 10−7

55.5 1.002 × 10−6 2.279 × 10−7 1.783 × 10−7 1.040 × 10−7

70.0 9.834 × 10−7 2.109 × 10−7 1.116 × 10−7 9.397 × 10−8

88.2 9.004 × 10−7 1.920 × 10−7 8.229 × 10−8 9.364 × 10−8

111.1 7.437 × 10−7 1.985 × 10−7 8.539 × 10−8 1.028 × 10−7

140.0 4.320 × 10−7 2.181 × 10−7 1.412 × 10−7 1.540 × 10−7

Table B3. The CFHTLenS optimized ring statistic. The E mode, RE, and
B mode, RB, are given for different angular smoothing scales θ (see Section
3.5). The values of σ indicate the error from the scaled Clone covariance
diagonal (Section 3.3.4).

θ RE σ [RE] RB σ [RE]
(arcmin)

8.7 2.405 × 10−6 2.768 × 10−7 2.457 × 10−8 1.555 × 10−7

11.1 2.012 × 10−6 2.281 × 10−7 7.390 × 10−9 1.222 × 10−7

14.2 1.919 × 10−6 1.994 × 10−7 3.053 × 10−8 9.983 × 10−8

18.2 1.662 × 10−6 1.678 × 10−7 1.144 × 10−8 7.849 × 10−8

23.3 1.449 × 10−6 1.455 × 10−7 3.317 × 10−8 6.319 × 10−8

29.9 1.174 × 10−6 1.259 × 10−7 4.464 × 10−8 4.946 × 10−8

38.2 9.886 × 10−7 1.070 × 10−7 2.264 × 10−8 4.004 × 10−8

49.0 7.827 × 10−7 9.446 × 10−8 1.451 × 10−9 3.092 × 10−8

62.7 6.077 × 10−7 8.263 × 10−8 3.772 × 10−8 2.559 × 10−8

80.3 4.535 × 10−7 7.421 × 10−8 3.821 × 10−8 2.175 × 10−8

102.8 3.844 × 10−7 6.813 × 10−8 4.051 × 10−8 1.840 × 10−8

131.6 3.154 × 10−7 6.107 × 10−8 4.130 × 10−8 1.663 × 10−8

168.6 2.728 × 10−7 5.770 × 10−8 2.486 × 10−8 1.701 × 10−8

215.8 1.906 × 10−7 5.751 × 10−8 3.809 × 10−8 2.142 × 10−8

276.4 1.338 × 10−7 8.237 × 10−8 3.853 × 10−8 6.264 × 10−8

Table B4. The COSEBIs for ϑmin = 10 arcsec and ϑmax = 100 arcmin. The
E mode, En, and B mode Bn are given for the first five modes n (see Section
3.5). The values of σ indicate the error from the scaled Clone covariance
diagonal (Section 3.3.4).

n En σ [En] Bn σ [Bn]

1 2.151 × 10−10 2.748 × 10−11 1.242 × 10−11 1.166 × 10−11

2 2.288 × 10−10 4.814 × 10−11 1.706 × 10−11 2.195 × 10−11

3 1.573 × 10−10 6.157 × 10−11 1.689 × 10−11 3.129 × 10−11

4 1.368 × 10−10 6.765 × 10−11 −8.415 × 10−12 3.779 × 10−11

5 1.557 × 10−10 6.736 × 10−11 −3.866 × 10−11 3.971 × 10−11

Table B5. The COSEBIs for ϑmin = 10 arcsec and ϑmax = 250 arcmin (see
Table B4 for details).

n En σ [En] Bn σ [Bn]

1 4.841 × 10−10 1.469 × 10−10 9.532 × 10−11 1.156 × 10−10

2 3.568 × 10−10 3.318 × 10−10 1.729 × 10−10 2.839 × 10−10

3 −7.270 × 10−11 5.712 × 10−10 2.531 × 10−10 5.085 × 10−10

4 −5.526 × 10−10 8.092 × 10−10 2.990 × 10−10 7.240 × 10−10

5 −1.062 × 10−9 9.913 × 10−10 3.302 × 10−10 8.724 × 10−10

This paper has been typeset from a TEX/LATEX file prepared by the author.
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