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ABSTRACT

A likelihood-based method for measuring weak gravitational lensing shear in deep galaxy sur-
veys is described and applied to the Canada—France—Hawaii Telescope (CFHT) Lensing Survey
(CFHTLenS). CFHTLenS comprises 154 deg? of multi-colour optical data from the CFHT
Legacy Survey, with lensing measurements being made in the 7/ band to a depth i}, < 24.7,
for galaxies with signal-to-noise ratio vsy = 10. The method is based on the lensfit algorithm
described in earlier papers, but here we describe a full analysis pipeline that takes into account
the properties of real surveys. The method creates pixel-based models of the varying point
spread function (PSF) in individual image exposures. It fits PSF-convolved two-component
(disc plus bulge) models to measure the ellipticity of each galaxy, with Bayesian marginaliza-
tion over model nuisance parameters of galaxy position, size, brightness and bulge fraction.
The method allows optimal joint measurement of multiple, dithered image exposures, taking
into account imaging distortion and the alignment of the multiple measurements. We discuss
the effects of noise bias on the likelihood distribution of galaxy ellipticity. Two sets of image
simulations that mirror the observed properties of CFHTLenS have been created to establish
the method’s accuracy and to derive an empirical correction for the effects of noise bias.

Key words: gravitational lensing: weak —methods: data analysis—methods: statistical —
cosmology: observations.
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1 INTRODUCTION

Weak gravitational lensing allows measurement of the matter con-
tent of the Universe, which, when used in combination with other
probes, should enable tests of dark energy models of the Universe
and tests of general relativity on cosmological scales. However,
despite the detection of weak lensing around galaxy clusters more
than 20 years ago (e.g Tyson, Wenk & Valdes 1990) and the detec-
tion of cosmological large-scale lensing (‘cosmic shear’) more than
10 years ago (Bacon, Refregier & Ellis 2000; van Waerbeke et al.
2000; Wittman et al. 2000), it has proved difficult to make mea-
surements that are free from systematic error at the level required to
measure cosmological parameters accurately. To date, imaging data
obtained from the Hubble Space Telescope (HST) have been the
most successful in this respect, but have yielded accurate cosmo-
logical results only relatively recently (e.g. Schrabback et al. 2010).
Extension of these studies to large sky areas is currently only feasi-
ble from the ground, but then the weak lensing measurements need
to be made using images of faint galaxies that are only marginally
resolved and for which the lensing signal needs to be disentangled
from the effects of an image point spread function (PSF) which
varies both with position within an image and between images.

Fig. 1 shows the sizes of disc galaxies in the ‘Groth Strip’, as mea-
sured by Simard et al. (2002) using data from the ST Wide Field
Planetary Camera 2 (WFPC2). These data are used in Appendix B to
obtain an estimate of the Bayesian prior distribution of galaxy size
used in this paper; however it is useful to show the distribution here
to illustrate the level of difficulty imposed by ground-based mea-
surements. The figure shows the fitted values of semi-major axis
disc exponential scalelength obtained for galaxies which had fitted
bulge-to-total flux ratios (B/T) less than 0.5.! We have measured
the median values of that scalelength in bins of i-band (WFPC2
filter F814) apparent magnitude, excluding values r; < 0.02 arcsec,
and these are shown as large filled circles in Fig. 1. In this paper,
we describe how we have made weak lensing measurements us-
ing ground-based data from the Canada—France—Hawaii Telescope
(CFHT) MegaCam camera (Boulade et al. 2003) obtained for the
CFHT Legacy Survey (CFHTLS) and analysed as the CFHT Lens-
ing Survey (CFHTLenS): Fig. 1 also shows the MegaCam typical
pixel size of 0.187 arcsec and a typical CFHTLS PSF half-width
half-maximum (HWHM) of 0.35 arcsec. It can be seen that at the
faintest magnitudes (CFHTLenS analysed galaxies to i\ < 24.7)
the median semi-major axis exponential scalelength of galaxies is
comparable to the pixel size, and that very few galaxies have scale-
lengths that are larger than the PSF HWHM. Given that the faint
galaxies are also noisy, with the faintest galaxies having signal-to-
noise ratio as low as 7, it is clear that highly accurate methods need
to be adopted for measuring the systematic distortions of galaxies
at the level of a few per cent in ellipticity that are expected from
weak lensing.

We describe in this paper a Bayesian model-fitting method aimed
at measuring the shapes of faint galaxies in optical galaxy surveys.
Current weak lensing surveys such as CFHTLenS comprise about
107 galaxies, so one design aim of the algorithms is that they should
be fast. However, as survey sizes increase, the requirements on
acceptable levels of non-cosmological systematics signals become

"' A population of objects that were fitted by Simard et al. (2002) with
scalelengths less than 0.02 arcsec have been excluded: these very small
scalelengths are not correlated with apparent magnitude and are likely fits
to stars or are otherwise spurious measurements, as noted by Simard et al.
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Figure 1. Fitted disc semi-major axis scalelength, plotted as a function of -
band magnitude, for galaxies identified as being disc-dominated, from the fits
of Simard et al. (2002) to HST WFPC2 data. The large filled circles indicate
the median size measured in bins of apparent magnitude. The horizontal
lines indicate the CFHT MegaCam pixel size of 0.187 arcsec (lower line)
and a typical CFHTLenS PSF HWHM of 0.35 arcsec (upper line).

more stringent, meaning that the new generation of measurement
algorithms must be simultaneously faster and more accurate than
previous methods. The principles that were adopted for measur-
ing galaxy ellipticity are described by Miller et al. (2007, here-
after Paper I), and implemented in the ‘lensfit’ algorithm. Tests on
simulated images of a previous implementation of the basic shear-
measurement algorithm are described by Kitching et al. (2008, Pa-
per II).

This paper describes a number of significant improvements to the
algorithm which proved necessary for working on data from a real
survey, rather than simplified simulations.

(1) PSF modelling took account of spatial variation of the PSF
and possible discontinuities between CCDs in the mosaic camera
(MegaCam, Boulade et al. 2003, in the case of CFHTLenS).

(i) Galaxy measurement used multiple, dithered exposures, op-
timally combined in the measurement process, taking account
of pointing and camera distortion variations and varying image
quality.

(iii) Camera distortion was measured directly from images and
corrected in the measurement process.

(iv) Fitted galaxy models allowed joint fitting of bulge and disc
components.

(v) Full Bayesian marginalization over nuisance parameters was
carried out.

(vi) Additional measures were used to account for bad and satu-
rated pixels and columns, cosmic rays, image ghosts, blended stars
and galaxies and recognition of morphologically complex galaxies.

Information on these various improvements is described below.
Section 2 describes CFHTLenS; Sections 3—6 provide details of the
method and the shear measurement pipeline; Section 7 provides an
overview of tests for systematic errors, which are described in more
detail by Heymans et al. (2012), and Section 8 describes extensive
image simulations that have been used to test the method and to
calibrate the effects of noise bias. Appendices A and B provide
additional details of the models and priors used in the method, and
a mathematical illustration of the effect of noise bias is given in
Appendix C.
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2 THE CANADA-FRANCE-HAWAII
TELESCOPE LENSING SURVEY

The data used in this paper are from the CFHT Wide Legacy Survey,’
analysed by the CFHTLenS team.? The CFHTLS Wide consisted of
171 pointings covering a sky area of 154 deg? in five bands, u*g'r'i'z,
with the MegaCam camera (Boulade et al. 2003), which has a field of
view of approximately 1 deg”. The pointings were distributed over
four separate patches on the sky, and each patch was contiguous,
covering an area of 63.8, 22.6, 44.2 and 23.3 deg?, respectively
for the W1, W2, W3 and W4 patches. Each pointing comprised
typically seven /’-band exposures, often with many of those taken
during the same night. In some fields, one or two exposures were
judged to be of too poor quality, based on the seeing or apparent
degree of PSF variation, reducing the number of usable exposures
to 5 or 6. In some other fields, two entire sets of exposures were
obtained if there was concern about the quality of the first set, but
in a number of cases all 14 exposures were subsequently judged to
be usable and were included in the CFHTLenS analysis. Exposures
were dithered by up to 90 arcsec in declination and 24 arcsec in
right ascension in patches W1, W3 and W4, and by up to 400 arcsec
in W2.

The CFHTLenS analysis of the data was designed and optimized
for weak lensing science, both photometry and shape measurements.
The photometric analysis of the survey is described by Hildebrandt
et al. (2012) and Erben et al. (2012). Galaxy shapes have been
measured on the /' band which reaches a 5o point source lim-
iting magnitude of i, ; ~ 25.5. A magnitude limit of i/,, < 24.7
was imposed for shape measurement, noting that photometric red-
shift accuracy also is poor at fainter magnitudes than this limit
(Hildebrandt et al. 2012). Exposures obtained prior to 2007 June
were obtained with the i'-band filter MP9701. After 2007 October
an i’-band filter with a slighter different spectral response, MP9702,
was used.

All fields had a full-width half-maximum (FWHM) seeing con-
dition which was required to be better than 0.8 arcsec. Unlike pre-
vious lensing analyses, galaxy shape measurement was performed
on the individual exposures, photometrically calibrated with Elixir
(Magnier & Cuillandre 2004). The CFHTLenS data were then pro-
cessed with the THELI pipeline (see Erben et al. 2005). The specific
algorithms and procedures were described by Erben et al. (2009).
In that work, the astrometric and photometric calibration was made
independently in each 1 deg? MegaPrime pointing. The most impor-
tant refinement to the calibration for CFHTLenS was a simultaneous
treatment of all data from a CFHTLenS patch. This typically led to
an improvement of a factor of 2-3 in astrometric and photometric
accuracy compared with the earlier analysis. Further details of the
construction of the survey are given by Heymans et al. (2012) and
Erben et al. (2012).

3 THE SHEAR MEASUREMENT METHOD

3.1 Principles

Key points to emphasize about the approach of Bayesian model
fitting are as follows.

(1) It enables a rigorous statistical framework to be established
for the measurement, resulting in optimally weighted use of the

2 www.cfht.hawaii.edu/Science/CFHTLS
3 www.cfhtlens.org

available data, regardless of variations in signal-to-noise ratio or
PSE.

(ii) Quantities other than ellipticity that form part of the prob-
lem may be marginalized over and, provided an accurate prior
is available, those uninteresting quantities may be eliminated
from the problem without bias. The prime example is that of
the unknown galaxy position: all other methods published to
date require a fixed centroid position for a galaxy, and cen-
troid errors introduce spurious ellipticity, with the possibility
of bias (e.g. Bernstein & Jarvis 2002). In model fitting we
can treat the unknown galaxy position as a free parameter and
marginalize.

(iii) The weak lensing signal is carried by the faintest galaxies;
often the integrated signal-to-noise ratio may be as low as 10. A
model-fitting approach adds extra information to the problem, such
as prior knowledge of possible surface brightness distributions. In
principle, this leads to more precise measurements than a method
that does not use such information, thereby allowing measurements
to lower signal-to-noise ratio.

(iv) The models must be unbiased, however, in the sense that
they should span the range of surface brightness profiles of real
galaxies, and the priors adopted for the parameters of those models
should be an accurate reflection of the true distribution. If these
conditions are not satisfied, the model fitting may be systematically
biased (Bernstein 2010; Voigt & Bridle 2010).

(v) A full Bayesian approach should be able to correct for the
effects of noise bias, and hence avoid the need for any independent
calibration. We shall see in Section 3.5 that we have not yet achieved
that goal.

Point (iv) is worth considering in more detail. Bernstein (2010)
has argued that model basis functions need to be truncated to some
finite set to avoid the fitting results being dominated by noise, and
that truncation leads to bias (see also Ngan et al. 2009). Thus, even
when specific physical models are not assumed, the use of any so-
called ‘model-independent’ basis set also results in biased results,
unless the truncated basis set employed is capable of accurately
modelling the full observed range of surface brightness profiles. In
methods that use simple statistical measures of the data, such as
moments (e.g. Kaiser, Squires & Broadhurst 1995, hereafter KSB,
or Melchior et al. 2011) it is necessary to use weighted moments
because of image noise, and the use of a finite set of weighted mo-
ments can lead to a bias similar to the use of truncated basis sets.
Thus, all methods that aim to measure galaxy shapes from noisy,
PSF-convolved data have the risk of producing biased results, and
choosing a so-called ‘model-independent” method does not allevi-
ate this concern (see also Melchior & Viola 2012). The approach
adopted here is that if the model basis sets are a close match to
the true galaxy surface brightness distributions, and in particular if
the PSF-convolved model distributions span the range of true PSF-
convolved distributions, then it should be possible to avoid model
truncation bias. By choosing model surface brightness distributions
that match the bulge and disc components of galaxies at low red-
shift, we are making a choice of a basis set that should minimize
bias. That does leave open the question of whether such models
can span the range of galaxy surface brightness distributions at high
redshift, given the expected morphological evolution of the galaxy
population, but whether or not the fitting of composite disc and
bulge models to galaxies at high redshift results in bias has not yet
been established. This concern should be explored in future work,
especially given the ever-increasing accuracy required for future
surveys.
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The models fitted in CFHTLenS comprised two-component bulge
plus disc galaxies (Appendix A). There were seven free parameters:
galaxy ellipticity, e, e,; galaxy position x, y; galaxy size r; galaxy
flux; and bulge fraction. Ultimately we are interested only in the
ellipticity, so the other parameters were regarded as nuisance pa-
rameters and marginalized over. Bayesian marginalization was used,
adopting prior distributions for each parameter, which are described
in Appendix B. With the given priors, each parameter was marginal-
ized over either analytically, if possible, or otherwise numerically.
The bulge fraction marginalization was analytic, galaxy flux and size
were numerically marginalized over by sampling multiple values,
fitting a function and integrating. Galaxy position was numerically
marginalized over using the Fourier method described in Paper I:
the process of model fitting is equivalent to cross-correlation of the
model with the data, and marginalization over unknown position
is equivalent to integrating under the peak of the cross-correlation
function. Thus the likelihood surface was obtained as a function
of only the apparent galaxy two-component ellipticity. Finally, that
likelihood surface was converted to weighted estimates of ellipticity
for use in shear measurement (Section 3.5). The following sections
give more detail of the galaxy models and of the calculation of the
likelihood function and its marginalization.

3.2 Galaxy models

Adopting the same conventions as in Paper I, observed galaxy el-
lipticity e is related to the intrinsic galaxy ellipticity e® by
e+ g

e = ————

1+ g*e*
(Schramm & Kayser 1995; Seitz & Schneider 1997), where e and
g are represented as complex variables, g, g* are the reduced shear
and its complex conjugate, respectively, and e is defined in terms

of the major and minor axes and orientation a, b, 6, respectively, as
e = (a — b)/(a + b) exp(2i). In this formalism, we expect

(e)=g @)

for an unbiased sample with g < 1, where (e*) = 0. Note that this re-
sult differs from the other commonly used formalism which instead
uses ellipticity, or polarization, defined as e = (a®> — b?)/(a® +
b?)exp(2i6), and which requires measurement of the distribution
of galaxy ellipticities in order to calibrate the response to lensing
shear (e.g. Bernstein & Jarvis 2002).

The model-fitting approach to shear measurement of Paper I
was adopted, but extended to include multiple galaxy components,
which we assumed to comprise a disc and bulge component. In
reality, galaxies may have more complex morphologies than are de-
scribable by this simple phenomenological model. In non-Bayesian
methods, models of greater complexity than required by the data
lead to ‘overfitting’ and its associated biases (e.g Bernstein 2010). In
principle, a Bayesian method could include additional components
and model parameters, provided that prior probability distributions
are available, so that parameters not of interest to the shear mea-
surement may be marginalized over. In practice, we wish to avoid
using models of greater complexity than are required by the data,
particularly as more complex models increase the computational
time required to make the measurements. In CFHTLenS, early ex-
periments with the systematic tests described in Section 7 and by
Heymans et al. (2012) indicated that significant improvements could
be obtained by extending the single-component model of Paper I to
a simple two-component galaxy model in which only one additional
free parameter was allowed.

ey
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The generation of the galaxy models is described in Appendix A.
We assumed that a galaxy survey may contain two fundamental
galaxy types. A fraction fz were bulge-dominated galaxies with
a single morphological component, which was assumed to be de-
scribed by a de Vaucouleurs profile (Sérsic index 4). A fraction
(1 — fp) were disc galaxies which comprised both a bulge compo-
nent and a disc component. The disc component was assumed to be
a pure exponential, Sérsic index 1, with the bulge component again
having Sérsic index 4. The model components were truncated in
surface brightness at a major axis radius of 4.5 exponential scale-
lengths (disc component) or 4.5 half-light radii (bulge component),
which was both computationally convenient and also in general
agreement with observations of disc galaxies (e.g. van der Kruit &
Searle 1982).

To avoid prohibitive computational cost by introducing another
model parameter, which would not be analytically marginalizable,
the half-light radius of the bulge was set equal to the exponential
scalelength of the disc for the composite disc-dominated galaxies
(i.e. the bulge half-light radius was 0.6 times the value of the disc
half-light radius). In reality, galaxies display a wide range in their
ratios of the sizes of these components, although that distribution
itself depends on the assumed surface brightness profiles adopted
(Graham & Worley 2008). The adopted ratio of bulge half-light
radius to exponential scalelength is towards the upper end of the
range encountered in the literature. As the CFHTLenS galaxies are
generally only marginally resolved, smaller bulges would have half-
light radii significantly smaller than the pixel scale, and the final
PSF-convolved models were largely insensitive to the choice of
this ratio, although we did find that significantly smaller values of
bulge half-light radius led to larger PSF—galaxy cross-correlations
(see Section 7) for the smallest fitted galaxies, and were therefore
disfavoured.

Given the low signal-to-noise ratio and the small number of pix-
els associated with the faintest galaxies in the CFHTLenS data, a
more complex set of galaxy models, with more free parameters,
was not justified. We might ask, however, whether the particular
models chosen are the ‘best’, in the sense of being the least bi-
ased, or whether some other choice might be better. To answer
such a question, we need to have a good understanding of the
actual population of galaxies being measured. Recently, attempts
have been made to create realistic simulations of the galaxy pop-
ulation based on high-resolution HST observations (Mandelbaum
et al. 2012), and these form the basis of the GREAT3 challenge
simulations.* In the current paper, we take the view that the bulge-
plus-disc parametrization is known to fit well to the local galaxy
population, and therefore the surface brightness distributions of
such models are already a necessary ingredient of any success-
ful models. Even though high-redshift galaxies tend to have more
complex morphologies than local galaxies, the effects of convo-
lution with the PSF may render such differences unimportant in
ground-based data of CFHTLenS quality, where the high-redshift
galaxies are only marginally resolved. We discuss in Section 8.3
the possible amplitude of biases that might arise from inappropri-
ate model choice. The requirements for larger, future surveys, with
correspondingly tighter requirements on the acceptable level of sys-
tematic biases, will need to be established through more extensive
simulations.

4 great3challenge.info
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3.3 The likelihood function and marginalization
over nuisance parameters

We define the likelihood £ and the x2 goodness-of-fit statistic as

i —SBgi—S(1—B)f;1?

O;

where y; is the image data value of pixel i, o; is the statistical un-
certainty of that data value, f; is the disc component model value
for that pixel, convolved with the PSF, g; is the bulge component
model amplitude, convolved with the PSF, B is the bulge fraction
defined as the ratio of the flux in the bulge component to the to-
tal flux (often written as B/T) and S is the total galaxy flux. The
pixel noise is assumed to be stationary and uncorrelated, which is
appropriate for shot noise in CCD detectors in the sky-noise limit.
Bright galaxies may make a significant contribution to photon shot
noise, but the resulting non-stationary noise would then invalidate
the lensfit Fourier-space approach which is described in Paper I and
used below. Hence this algorithm is appropriate for model fitting to
faint galaxies in the sky-limited regime. The method can easily be
generalized to the case where the noise is stationary but correlated
between pixels, but we do not consider that generalization here.
The prior distribution of bulge fraction B for the disc galaxy
population was assumed to be a truncated Gaussian distribution,

P(B) = Pyexp [~ (B — Bo)*/ (205)] 0<B <1, “)

where Py was a normalizing factor and By and o' were parameters
of the prior distribution. The Gaussian form of the prior was a
convenient choice to allow easy marginalization over B, given the
quadratic dependence of logL on B. We adopted By =0, o = 0.1,
fz = 0.1 as a reasonable representation of the distribution of bulge
fraction found at low and high redshift (e.g. Schade et al. 1996;
Simard et al. 2002). We marginalized over the Gaussian part of the
prior by collecting terms in equation (3) and multiplying by the
prior, writing the log of the posterior probability density for the disc
population, log Pg;sc, as

—2log Pyse = . y*/o? +2B%0% +2Br,

+ 823 f*/o* =283 fy/o* + Bijog ()
where
20° = §7[Y [ /o’ + 3 g% /o? =23 fg/o?] +1/a3,
ro=S(X fy/o* =3 gy/o?)
+ 87 (X fg/o* =3 f*/0”) — Bo/og,

and where the summations are understood to be over the pixels i.
We marginalized over B to obtain the log of the marginalized disc
posterior probability density as
2
o

— 2log Py = S? 2/jo? - 28 RS
0g P > e D et =g

+ 2log6 — 2log {erf (9 + 2%) —erf (2%” )
(6

neglecting any normalization terms that do not depend on a galaxy’s
model parameters.

The bulge-fraction-marginalized total probability P = (1 —
Jf8)Pdisc + fPpuge then needed to be marginalized over both flux
and position. To marginalize over galaxy position at a given model
galaxy flux, we followed an improved version of the method de-
scribed in Paper 1. For stationary noise, the terms Y f%/o? and

>"g?/o? are invariant under shifts of the model position, and fol-
lowing Paper I, the terms > fy/0? and > gy/o? may be regarded
as the spatial cross-correlation of each model component with the
data, so we may write

he(x)=> fy/o?, hy(x) =3 gy/o?, @)

where the cross-correlations /; or i, depend on the vector position
shift x of the model. As pointed out in Paper I, to marginalize over x
we need to adopt a prior P(x): a priori, the position of the galaxy is
unknown, and is equally likely to exist at any position on the sky, so
we adopt a uniform prior. Any other choice would lead to a bias in the
position of the galaxy, and hence a bias in the measured ellipticity,
arising from the correlation between fitted ellipticity and position.
However, as discussed in Paper I, £ —constant as |x| — oo and
the marginalized likelihood would not be finite. This problem arises
because, no matter how large a pixel value, it always has a finite
chance of being due to random noise, with the true galaxy being
positioned elsewhere. At large position offsets, x — oo, Ay, hy, —
0 and the posterior probability density tends towards a ‘pedestal’
value Py = (1 — fp)Po, dgisc + f5Po, buige, Where

i
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2log |ert (6 4+ 10 ¢( 0
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Thus we need to identify a maximum bound for the position offset
over which to marginalize.

As argued in Paper I, galaxies generally have smooth centrally
concentrated surface brightness distributions which are convolved
with centrally concentrated PSFs in an observed image (the assump-
tion of a smooth convolved galaxy profile is a good approximation
for galaxies that are not well resolved). The model is also smooth,
centrally concentrated and convolved with the same PSFE. As in
the derivation of the central limit theorem, such a cross-correlation
should be well represented by a two-dimensional Gaussian distri-
bution, and hence we approximated log P as being a 2D Gaussian
added to the pedestal value log Py. To marginalize over the galaxy’s
position, we adopted a more exact integration of this form than
assumed in Paper I, and integrated out to some maximum position
uncertainty, rpy,. To establish the value of ry,x, we considered that
the only information that we have about the galaxy is on the images
being analysed: the galaxy probably was initially detected, and its
position measured, with some uncertainty, from the same data being
used to measure the shape. We are seeking to use the data in this
region of the image to measure the shape of a galaxy that exists
at this location, not of any arbitrary galaxy anywhere else in the
image: although the likelihood is non-zero at large position offsets,
such a galaxy would not correspond to the one which had been de-
tected. Accordingly we set ry.x to be the position beyond which the
detection of this galaxy becomes statistically insignificant, which
we define to be given by Alog P = P(rmax) — Po < Axfm/Z and
where we chose A x2; = 6, corresponding to the 95 per cent confi-
dence region for the location of the galaxy. The integral is given by
an exponential integral which was evaluated numerically using the
GNU Scientific Library (Galassi et al. 2009), rather than using the
approximation of Paper L.

In Paper I, the flux marginalization was carried out analytically
by noting the Gaussian dependence of P on S. For the CFHTLenS

+2log6
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analysis, it was decided to adopt a prior distribution for S which was
given by a power law in S: P(S) o< S™ where o = 2 was chosen
to match the flatter-than-Euclidean slope of the faint i-band galaxy
number counts (e.g. Gabasch et al. 2008). The resulting posterior
probability distribution cannot then be analytically marginalized
over S, so this was achieved numerically, by evaluating P at a set
of points close to the expected maximum likelihood, fitting a cubic
spline function to the variation of log P with S and numerically
integrating the spline-fitted values of P.

After these marginalization steps, the marginalized likelihood
had been reduced to being a function of ellipticity and galaxy scale-
length alone. The final step was to adopt a prior for the scalelength
distribution (described in Appendix B) and to numerically marginal-
ize over this parameter. As for the flux marginalization, log P was
measured for a set of values of scalelength r, a cubic spline fitted
to those values, and P was numerically integrated with respect to r.
The set of r values measured included a point source, r = 0, and it
was ensured that the set of log P values to be fitted varied smoothly
towards » = 0. To distinguish between stars and galaxies, objects
were classified using an F-ratio test of the ratio of the chi-squared
values of the best-fitting galaxy (r > 0) and the best-fitting star (r =
0) models, taking into account the differing numbers of degrees of
freedom of these two fits. A star classification was adopted if the
probability of the F-ratio exceeded a magnitude-dependent limit
that was matched to visual classification of objects.’ Of the objects
that were fitted, typically 95 per cent were classified as galaxies, as
expected at faint magnitudes.

3.4 Sampling the likelihood surface

In order to obtain unbiased estimates of shear, and to measure the
statistical uncertainty in ellipticity for each galaxy, we need to not
only find the model ellipticity whose marginalized probability is a
maximum, but also we need to sample around the maximum to mea-
sure the likelihood surface, at least in regions where the probability
is not insignificant. The ellipticity surface is two-dimensional, and
bounded by the requirement |e| < 1, so it is relatively straightfor-
ward to sample the surface appropriately.

However, galaxies of low signal-to-noise ratio or small size are
expected to have broad likelihood surfaces, whereas high signal-to-
noise ratio galaxies should have sharp, well-defined surfaces. Thus
the sampling needed depends on the properties of each galaxy. The
algorithm adopted here was an adaptive grid sampling, in which
ellipticity measurements were first made on a coarse grid of ellip-
ticity, at intervals of 0.16 in ellipticity. At each sampled value, a
full marginalization over the other parameters was made. Then, the
algorithm counted the number of sampled points above a thresh-
old of 5 per cent of the maximum posterior probability, and if that
number was below a minimum value of 30 points, the sampling in
ellipticity was reduced by a factor of 2, and the region around the
maximum, only, sampled at the higher resolution, until either 30
points had been measured above the threshold, or until a resolution
of 0.02 in ellipticity was reached (for the faint galaxies that dom-
inate the weak lensing signal this limiting resolution in ellipticity

5> A Bayesian procedure that took account of the relative probabilities of
stars and galaxies as a function of magnitude could avoid needing to specify
the value of the F-ratio statistic; however given the very small numbers of
stars expected in the faint galaxy, weak lensing, regime, i = 23, this was
not deemed to be an important improvement in this survey.
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was adequate, and is much smaller than the ‘shape noise’ caused by
the broad distribution of intrinsic ellipticity).

In a later improvement, two passes were made through the ellip-
ticity surface, the first to find only the maximum using the adaptive
sampling algorithm, and the second to map out the surrounding
region. This algorithm was found to be more efficient (in that the
fraction of sampled points that were retained above the threshold
was higher) but was not implemented in time for the CFHTLenS
analysis reported here. Monte Carlo Markov Chain (MCMC) meth-
ods could also be used, but given the low dimensionality and finite
bounds of the parameter space, are unlikely to be significantly more
efficient than this adaptive sampling algorithm.

3.5 Shear estimation and noise bias

Papers I and 1II discussed at length the advantages of Bayesian
estimation, but also noted that a bias would arise in shear estimates
if the likelihood distribution for each galaxy were multiplied by an
ellipticity prior before the estimation process. The existence of that
bias demonstrates that a Bayesian method of measuring the ellip-
ticity of an individual galaxy is not in itself a complete method for
measuring shear in a sample of galaxies. A solution proposed at that
time was to calculate the ‘sensitivity’, which measured the biasing
effect on a shear estimator of applying an ellipticity prior. In Paper I,
the sensitivity was defined as s = 9(e,)/0g,, a calibration of how
the mean ellipticity of a sample (e, ), for ellipticity component c,
responds to a cosmological reduced shear g, in that component.
Cross-terms were ignored. Analogous approaches to the sensitivity,
albeit not in this Bayesian context, have been discussed by Bernstein
& Jarvis (2002) and Kaiser (2000).

An immediate difficulty with this approach is that the sensitivity
should be a rank 2 tensor, but in fact even if only the diagonal terms
are considered, the sensitivity is not isotropic, and application of
sensitivity as a correction can lead to an orientation bias in the
measured shear. As the sensitivity is calculated from the measured
likelihood surface, and as those surfaces are biased (Appendix C),
poor results were obtained in CFHTLenS when this approach was
used.

An improved alternative, used for CFHTLenS, is a likelihood-
based estimator of ellipticity, in which all nuisance parameters were
marginalized over using a fully Bayesian approach as previously
described, but where the ellipticity estimate is based solely on the
likelihood distribution rather than a posterior probability distribu-
tion. It was argued in Paper I that such an estimator should be an
unbiased estimator of shear, even though the statistical distribution
of galaxy ellipticities is broadened by the measurement noise: i.e.
the likelihood estimator has no correction for noise, but should re-
spond linearly to a cosmological shear, when averaged over many
galaxies (when ellipticity is defined as in Section 3.2). However, the
non-linearity of the transformation from a pixel basis to ellipticity
does result in a ‘noise bias’ in shear estimates (Melchior & Viola
2012; Refregier et al. 2012) which is discussed below.

We should also consider which estimator to use for the ellipticity
value of each galaxy. If we consider the (simplified) shear measure-
ment process of averaging galaxy ellipticities, where each galaxy
has its own PDF of ellipticity, the PDF of the mean is given by the
convolution of the individual PDFs, suitably rescaled. According to
the central limit theorem, the PDF of the mean should be Gaussian,
with expectation value given by the mean of the individual galaxy
PDF means. Thus to make a fully probabilistic estimator of shear,
we should use the mean ellipticity as our estimate for each galaxy,
not the maximum likelihood estimate. Unfortunately, such an
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Figure 2. An example of the distribution of lensing weights for 10 000 measured galaxies in one typical CFHTLenS field, WIm2m3. Galaxies were measured
on seven exposures to a limiting magnitude i/ < 24.7. Weights are shown as a function of (left) apparent magnitude i, (centre) fitted semi-major axis disc

scalelength r and (right) signal-to-noise ratio vsn.

estimator is biased, as discussed in Appendix C. For the case where
the galaxy size is known precisely, the maximum likelihood ellip-
ticity should be unbiased and may be a better estimator to use, but
this is not true if the galaxy’s size is a free parameter: there is an
inevitable degeneracy in the fits, between size and ellipticity, which
causes a further bias in the likelihood surfaces (see also Melchior
& Viola 2012; Refregier et al. 2012). Unlike the case of a pure like-
lihood estimator, Bayesian marginalization over the size parameter
mitigates this effect, because small galaxy sizes are downweighted
by the size prior, but it does not eliminate it. A fully Bayesian es-
timate of ellipticity should control the noise bias, but currently we
do not have a satisfactory method of correcting for the bias on the
shear introduced by the application of an ellipticity prior discussed
at the start of this subsection.

To partially address the problem of not being able to use a
Bayesian estimate for the ellipticity, we downweighted likelihood
values at ellipticities where the Bayesian posterior probability was
low. We formed a posterior probability surface by multiplying by
the ellipticity prior, and rejected any posterior probability values
less than some threshold. The threshold was set to 1 per cent of the
maximum posterior probability. Applying our prior knowledge of
the ellipticity distribution in this way allowed consistent rejection of
the ‘small, highly elliptical’ tail on the likelihood surface described
above. The galaxy’s ellipticity was then estimated from the mean
of the likelihood distribution of the ellipticity samples that were
above the posterior threshold. This somewhat ad hoc approach is
not a substitute for a fully Bayesian approach, but it did reduce the
residual systematic signals discussed in Section 7. We still expect
bias in the estimator at low signal-to-noise ratio, although the lowest
signal-to-noise ratio galaxies also had low weights in the analysis.
An empirical correction for the noise bias was derived from the
simulations described in Section 8. One might hope that, in future,
a better ellipticity estimator could be constructed from the likeli-
hood or Bayesian posterior probability surfaces which is immune
to noise bias and which leads to an unbiased estimate of shear. To
date, we have not achieved such an estimator, but have found an
approach that yields satisfactory results for CFHTLenS.

3.6 Galaxy weighting

Faint galaxies have more noisy ellipticity measures than bright
galaxies, or, equivalently, have broader likelihood surfaces. Given
that the full likelihood surfaces for the galaxies’ ellipticities are not
used in making cosmological shear estimates, each galaxy should
be weighted according to the width of its likelihood surface in the

cosmological analysis. We calculated an inverse-variance weight,
defined as

2,2 !
g e,
w e “max 02
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where o7 is the 1D variance in ellipticity of the likelihood surface,
apzop is the 1D variance of the distribution of ellipticity of the galaxy
population and ey, is the maximum allowed ellipticity, assumed
here to be the maximum disc ellipticity as in equation (B2). In the
limit where e, — 00, this definition of the weight tends towards a
conventional form, w — (o2 + apzop)*'. A finite value of ep,y was
included to ensure that a galaxy with a likelihood surface which is
uniform for e < e,x, and which therefore conveys no information
about the galaxy shape, has zero weight. For a Gaussian likelihood
surface and prior (and in the limit e;,,x — 00), w has the same value
as the sensitivity (Section 3.5), except for its normalization (Paper I,
Section 2.5). The expressions differ in the (actual) case of non-
Gaussian probability surfaces, but w has the advantage that it is not
by definition anisotropic. In the limit of low-noise measurements,
the weight becomes dominated by the ‘shape noise’ of the galaxy
population, as expected for weak-lensing studies (Bernstein & Jarvis
2002). Fig. 2 shows an example of the distribution of weights in one
of the CFHTLenS fields, as a function of /'-band magnitude, fitted
galaxy major-axis scalelength, and signal-to-noise ratio, vsy. The
weight falls off sharply for vgy < 20. The maximum value of the
weight is determined by the value of o,,, = 0.255, obtained from
the ellipticity prior described in Appendix B.

However, although the weight is designed to be isotropic, it is
possible for there to exist a form of ‘orientation bias’ similar to the
selection bias discussed by Kaiser (2000) and Bernstein & Jarvis
(2002). In the case of the selection bias, we are concerned about
galaxies being omitted from the sample if they are cross-aligned
with the PSF. However, even for detected galaxies, the weight also
may be larger for galaxies that are aligned with the PSF than for
those that are cross-aligned, because the likelihood surface may be
more sharply peaked. We did not make any attempt to correct explic-
itly for this effect, but it may manifest itself as a correlation between
weighted galaxy shapes and the PSF, as shown in Section 8.4.

3.7 The treatment of large, blended or complex galaxies

The galaxy models were fitted to each galaxy in subregions ex-
tracted around each galaxy (‘postage stamps’) of size 48 pixels
(approximately 9 arcsec), this choice being a compromise between
having a large enough region to correctly model the galaxies but
small enough that the compute time for operations such as the fast
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Fourier transform was not prohibitively slow. If each galaxy had n
useful exposures, then n postage stamps were created and models
jointly fitted, allowing for astrometric offsets and camera distortion
as described in Sections 4 and 6. Inevitably, some galaxies had sizes
too large to be fitted in this size of postage stamp; such galaxies
were excluded from the analysis.

In some cases, two or more neighbouring galaxies appeared
within the same postage stamp. The algorithm can only fit one
galaxy at a time, so the solution adopted was to first see whether
it was possible to mask out one galaxy (set its pixel values equal
to the background) without disturbing the isophotes of the galaxy
being fitted. To this end, a co-added image postage stamp was cre-
ated, averaging all the exposures available for that galaxy, shifted
so the relative positions agreed to the nearest pixel, which was
then smoothed by a Gaussian of FWHM equal to that of the lo-
cal PSE. Isophotes were created for each smoothed galaxy: if a
separate galaxy or other object was identified with non-touching
isophotes, at a level of twice the smoothed pixel noise, that other
galaxy was masked out and the fitting would proceed. Such close
pairs of galaxies are thus included in the output catalogues from
CFHTLenS. We note, however, that low-level light leaking below
the two-sigma isophote could still contaminate the measurement,
and thus we expect the ellipticity measurements of galaxies in close
pairs, whose isophotes may be contaminated by their neighbour, to
be artificially correlated.

Within each postage stamp, it may be that some pixels should
be masked because of image defects. The THELI pipeline provided
images of pixel masks to be applied. If such masked pixels occurred
within the two-sigma isophote of a galaxy on one individual expo-
sure, that exposure was not used in the joint analysis. If such pixels
occurred outside the two-sigma isophote, the pixel values were set
equal to the background and that masked exposure was used in the
joint fitting.

Other galaxies may be sufficiently close that their smoothed
isophotes overlapped, and there may also be individual galaxies
with complex morphology, not well described by a simple bulge-
plus-disc model. These galaxies were identified using a deblending
algorithm, testing for the presence of significant independent max-
ima in the smoothed surface brightness distribution.® Any such
complex or blended galaxies that were found were excluded from
the analysis. A further criterion was imposed, that the intensity-
weighted centroid of a galaxy, measured from the pixels within the
smoothed 20 isophote, should lie within 4 pixels of the nominal
target position: this criterion guarded against any blended galaxies
that had been identified as blends in the original input catalogue
but that had not been identified by the other tests described in this
section. Some examples of images of galaxies excluded by these
criteria are shown in Fig. 3, which shows examples of the stacked,
smoothed images used for testing for object complexity. Visual in-
spection indicated that the great majority of galaxies excluded in
this way had isophotes that overlapped with neighbouring galaxies.

© The algorithm was similar to that of Beard, MacGillivray & Thanisch
(1990). Maxima in the smoothed surface brightness distribution associated
with the target galaxy were identified, and regions ‘grown’ around those
maxima by successively lowering a threshold isophote level from that max-
imum level. Pixels above the threshold were either identified with the corre-
sponding maximum of any identified pixels that they touched, or otherwise
were defined to be a new, secondary, maximum. Regions with fewer than
8 pixels were amalgamated into any touching neighbours. If multiple regions
remained after this process, within the limiting 20 isophote, the galaxy was
flagged as ‘complex’.

Bayesian galaxy shape measurement 2865
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Figure 3. Examples of four galaxies excluded from measurement by the
criteria described in Section 3.7, in field WImOml. Each panel shows a
co-added image 48 pixels (approximately 9 arcsec) square, centred on each
target galaxy, and the inverted grey-scale is linear up to some maximum
value which varies between images.

The fraction of galaxies that were excluded in this way varied
somewhat between fields, as the criteria were affected by the size of
the PSF. Typically, 20 per cent of galaxies were excluded. Although
this fraction seems high, such a loss of galaxy numbers does not sig-
nificantly degrade the signal-to-noise ratio of the final cosmological
analysis, but it does help ensure that galaxies whose measurements
would be poor because of their size, or because they would be
poorly modelled, have been excluded. These exclusion criteria are
likely to introduce small-scale selection effects into the galaxy dis-
tribution (e.g. neighbouring galaxies would have been classed as
being blended with greater or lesser probability depending on how
they were aligned with respect to the PSF) and so lensing signals
on arcsec scales, <5 arcsec, should be excluded from analyses of
this survey, even though nominal measurements are reported in the
output catalogues. We note that the exclusion of some fraction of
close pairs of galaxies may introduce a bias at a level of a few per
cent into cosmological parameters (Hartlap et al. 2011): we do not
currently have any way to estimate the size of this bias in an actual
survey such as CFHTLenS, without a detailed model of the true
distribution of galaxy pairs and of the effect of the measurement
process on those pairs.

4 OPTIMAL COMBINATION OF MULTIPLE
IMAGES

The algorithm presented in Papers I and II, and also the simula-
tions of the GREAT08 (Bridle et al. 2010) and GREAT10 (Kitching
et al. 2012) challenges, assume that each galaxy is measured on a
single image. However, actual galaxy surveys use combinations of
multiple exposures in the same waveband, or even across different
filters. The reasons for having multiple exposures in the same filter
are: (i) to increase the dynamic range of the observations; (ii) to
prevent an excessive build-up of cosmic ray artefacts on any one
image; (iii) to allow dithering of observations, filling in gaps where
CCD boundaries or CCD artefacts prevent useful data being ob-
tained and mitigating the effects of the finite pixel sampling. Thus
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any shear measurement method should make optimal use of such
multiple images. In CFHTLenS typically seven dithered exposures
were obtained in each field (Section 2).

Itis common practice for multiple images to be averaged together
to make a single image on which shear measurement is performed.
This is problematic for high-precision galaxy shape measurement,
for several reasons.

(1) In order to make the averaged image, the individual images
need to be first interpolated on to a common pixel grid. The inter-
polation causes distortion of the PSF, but because of the slightly
differing local plate scale between exposures, the interpolation ker-
nel varies across the image on scales typically less than arcmin,
leading to patterns analogous to Moiré fringes and introducing arti-
ficial PSF variations on arcmin scales. These are difficult to calibrate
from star measurements owing to the finite density of stars in typi-
cal observations. Knowing the interpolating kernel, the effect of the
interpolation could in principle be corrected for at the location of
each galaxy, but this is not a straightforward process.

(i1) The interpolation introduces correlation between pixels into
the noise, which is also problematic to correctly allow for in shear
measurement methods. That noise correlation also varies on arcmin
scales.

(iii) Usually the PSF differs between each observation, so that
averaging does not represent an optimal combination of images.

(iv) The co-addition of PSFs of differing shapes and orientations
may lead to a complex stacked PSF which might be more problem-
atic to measure and model, depending on the method adopted.

A likelihood-based method provides a straightforward way of over-
coming all four issues. The galaxies on each individual image can
be fitted by models that have been convolved with the correct PSF
for that image, and the likelihoods simply multiplied to obtain the
final combined likelihood. Images of poor quality, perhaps with a
worse PSF, have a broader distribution of likelihood values than
those of better quality, and hence the combined likelihood repre-
sents an optimal combination of information. Because models are
fitted to each individual image, there is no need for interpolation,
avoiding the first two problems listed above. Tests of the lensfit algo-
rithm on stacked images, not taking into account the above effects,
produced significantly worse results, with large cross-correlation
signals between galaxies and the PSF, than were obtained from the
joint analysis of individual exposures presented here.

In this method, the likelihoods are calculated on each image
as a function of all the model parameters, including the unknown
position of a galaxy. Optimum results are obtained by assuming
that the galaxy’s position should be the same, in celestial coor-
dinates, on each image — provided the relative registration of the
images is known, the positions on each exposure should be the same
and should not be treated as independent model parameters. This
approach requires highly accurate knowledge of the relative astro-
metric registration of the images; however, otherwise an artificial
shear would be introduced which would be highly correlated be-
tween neighbouring galaxies. A similar problem arises when aver-
aging images into a single stacked image: astrometric errors degrade
the PSE. However, in that case, at least the PSF then is measured
from the stacked image, so the degraded PSF is, in principle, still
correctly measured (unless astrometric errors vary on small length-
scales across the image). In the case of the likelihood-based method,
we do not have this luxury, because the PSFs are measured on indi-
vidual frames. Thus, it is essential to have an accurate measurement
of the relative image registrations. Those registration shifts can then
be applied to each of the models fitted to the individual images. This

process must be accurate to significantly less than one pixel, since
astrometric errors are correlated over large scales across an image,
and if uncorrected, would introduce an apparent shear.

The way these relative astrometric registrations were measured
for CFHTLenS was, for each image, to cross-correlate the local
PSF model with each star, thus measuring, from the maximum of
the cross-correlation, the apparent location of each star with respect
to its nominal celestial coordinate with maximum precision. A low-
order polynomial function was then fitted to those registration shifts
across each CCD, and the shift function applied to the positions of
the PSF-convolved galaxy models when fitting each exposure of
each galaxy. The shifts applied were always sub-pixel, and usually
were less than one-tenth of a pixel. A further sub-pixel correction
was applied to allow for the fact that an individual galaxy’s postage
stamp was extracted from each exposure based on the nominal
celestial coordinate (using the same coordinate transformation as
for the stars used to create the PSF model), but was centred at an
integer pixel value (i.e. no interpolation of data was done when
extracting each postage stamp).

Similarly to the issue of celestial position of a galaxy, optimum
joint analysis of multiple exposures should also assume that a galaxy
has an invariant, but unknown, true flux, and that the relative mea-
sured flux on each exposure is related to the true flux through
a known calibration relation. As the photometric calibration was
carried out over many bright stars, we assumed the uncertainty
in the photometric calibration was negligible compared with the
photometric uncertainty associated with each image of an individ-
ual galaxy. Thus a galaxy’s flux was treated as a single unknown
parameter to be marginalized over, using exposures that had the
photometric calibration applied to them.

In principle, the same methodology could include exposures ob-
tained in other filters, provided the filters are sufficiently close in
wavelength that the same model provides a good description of each
galaxy’s structure at all the observed wavelengths. In that case, the
galaxy’s flux and bulge fraction values in each filter should be
added as additional free parameters to be marginalized over. In
CFHTLenS, only the deep, good-seeing i#'-band exposures were
used.

5 POINT SPREAD FUNCTION ESTIMATION

As in other lensing methods, we measured the PSF from images of
stars on the same exposures as the galaxies being measured. The
PSF was represented as a set of pixels at the same resolution as
the data, and in the model-generation process, galaxy models were
convolved with that PSF model. The PSF varied over the field of
view: in MegaCam it varies both over the full optical field and also
between the individual CCDs that comprise the full camera, and
discontinuities in PSF are detectable between CCDs.

To generate a pixel representation of the PSF, an initial cata-
logue of candidate stars was selected from a stacked image of all
exposures. Stars were selected using a conventional cut in the ap-
parent size—magnitude plane, identifying by eye the locus of stars
in the size-magnitude plane and selecting a box around that locus.
The selection was further refined by applying a three-waveband gri
selection. First, a stellar locus was defined in colour space by mea-
suring the colour-space density of the input catalogue and rejecting
any object which lies in a low-density region. Images of a subset
of the resulting catalogues were inspected by eye and were found
to comprise clean samples of stars (note that this procedure was
relevant only for the generation of bright star catalogues for PSF
creation and was not used for the classification of faint objects in
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the lensing measurement). More details of the generation of the PSF
star catalogues are given by Heymans et al. (2012).

A pixelized PSF model was then created for each exposure by
first centring each star according to a measurement of its centroid,
then fitting each recentred pixel value as a two-dimensional polyno-
mial function of position in the telescope field of view (the centring
process is discussed below). For the interpolation in CFHTLenS,
a third-order polynomial was found to produce good results on
a random subset of the survey, with no improvement found us-
ing fourth-order, where the test used was to measure the residual
cross-correlation between the PSF model and galaxy ellipticities
(Section 7). To allow for the discontinuities in the PSF across
the boundaries between CCDs, some coefficients of the polyno-
mial could be allowed to vary between CCDs, with the remain-
ing coefficients being fixed across the field of view. Good results
were found allowing the constant and linear terms to vary in this
way.

The polynomial fits were constrained by the images of the stars in
the input catalogue, where only stars with integrated signal-to-noise
ratio larger than 20 were used, and where each star was weighted
by the function wy = vy yur/(Vix sar + 50%), Where vy, siar Was the
star’s integrated signal-to-noise ratio on that exposure and where
the extra term in the denominator prevents any one very bright star
from dominating the polynomial fit. Any star whose central pixel
was more than 50 per cent of the full-well limit for the CCD was not
used, and any star which had either pixels that were flagged as not
usable or pixels that appeared to be part of another object within a
radius of eight pixels of the star centroid were also excluded. Pixels
were deemed not usable either if they appeared to have been affected
by a cosmic ray impact, if they were identified as being defective
in a ‘bad pixel’ mask, or if they appeared to be affected by charge
transfer from saturated stars, in the THELI pipeline (Section 2). Any
individual CCD images that had fewer than 40 usable stars were
not included in the analysis, as it was found that smaller numbers
of stars could produce PSF models that were not robust to a test of
varying the stars selected.

Star centroids were measured iteratively by cross-correlating with
the PSF model and finding the centroid location. Star images were
then interpolated so as to be centred on the pixel grid, using sinc-
function interpolation, and thus assuming the PSF to be a Fourier
band-limited function (i.e. assuming there are no modes above the
Nyquist limit of the data). As this assumption is unlikely to be valid,
this is one of the main areas to be addressed in future improvements
of the algorithm (see Section 9).

The top panels of Fig. 4 show an example of the PSF pixel
model created in one of the CFHTLenS exposures, sampled at three
locations across the MegaCam field (two of the corners and near the
centre). For comparison, the centre panels of the figure also show
the mean difference between the model and the stars, averaged
over all the stars on each CCD (80, 71 and 105 stars in each of
the three CCDs shown). The lower panels show the rms variation
in the model, measured by creating 64 bootstrap resamplings of
the input star catalogue, recalculating the entire PSF model for
each resampling, and measuring the rms variation in those mean
residuals between the bootstrap-generated models and the stars from
the original catalogue. The PSF model was fitted globally to all 36
MegaCam CCDs simultaneously, and the values shown have been
evaluated by averaging over all stars on one CCD. The images have
been normalized so that the sum of values in the PSF is unity. Within
the central region of the PSF the typical rms is ~3 x 10~*. This test
shows the reproducibility of the PSF model generation on the scale
of each CCD, 6.3 x 14.3 arcmin?.
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Figure 4. Example PSF models derived in a typical CFHTLenS exposure:
1D 720093 in field W1p3m0. The upper panels show the model PSF sampled
at three locations across the MegaCam field, with a linear grey-scale varying
from O to 0.05, where the values are relative to the total flux in the PSF. Each
panel is 32 pixels (approximately 6 arcsec) square. The centre panels show
the mean residuals, averaged over all the stars selected on that CCD, between
the PSF model and the star images, with a linear grey-scale varying over the
range 5 x 10™*. No residuals are larger than 7 x 10~* anywhere in these
panels. The lower panels show the rms variation in the model, measured as
described in the text, with a linear grey-scale over the range 0 (black) to 5 x
10~* (white), with maximum rms 5.6 x 10~*. The PSFs and the residuals
are shown: (left) at the centre of the CCD in the highest right ascension,
lowest declination part of the MegaCam field; (centre) at the centre of the
CCD immediately below the centre of the MegaCam field; (right) at the
centre of the CCD in the lowest right ascension, highest declination part of
the MegaCam field.

Fig. 5 shows an example of the PSF variation across one of the
CFHTLenS fields. The quantities plotted are the PSF ellipticity
(orientation and amplitude) and the fraction of light in the central
pixel. These quantities have been averaged over seven exposures.
As well as a large-scale radial distortion, jumps in PSF are visible at
CCD boundaries, especially the horizontal boundaries where there
are two larger gaps between detectors, and where those boundaries
appear ill-defined on the figure because of dithering of the seven
exposures.

6 DISTORTION CORRECTION

Wide-field cameras introduce distortion into the field-of-view which
can mimic the cosmological shear signal, and this therefore needs to
be corrected for. Because field distortion may vary with telescope
position and temperature, and because exposures are dithered, it
should ideally be mapped and corrected on each individual expo-
sure. The distortion information is implicitly available in the astro-
metric calibration of the survey: provided the astrometric solution
has good absolute accuracy, the distortion can be measured simply
by measuring the relationship between pixel and celestial coordi-
nates as a function of position across the field. The centroid positions
of stars, on which the astrometric solution is based, can gener-
ally be measured to subpixel accuracy, whereas the scalelengths of
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Figure 5. The variation of measured PSF over one of the CFHTLenS fields with a highly variable PSF, W1mlp2. The plot has been made by combining
information from seven exposures, which are somewhat offset with respect to each other. PSF ellipticities have been simply averaged. Left: stick plot showing
the variation of measured PSF ellipticity across the field. The maximum stick length on the plot corresponds to ellipticity of 0.13. Centre: grey-scale showing
the ellipticity amplitude, with black having an ellipticity of 0.16. Right: grey-scale showing the fraction of the light in the central pixel of the PSF, with black

indicating a fraction 0.1.

distortion variations are typically arcmin or greater, so that the typ-
ical accuracy in distortion correction by this method is shear error
of the order of 1073 or better.

Having measured the distortion on an image, this information
was incorporated into the galaxy models by calculating the local
linearized distortion transformation and applying that as an affine
transformation to the models being fitted to each galaxy on each
individual exposure. In other words, the effect of distortion was
corrected by including it in the forward modelling of each galaxy
on each exposure, rather than by trying to remove it from the data.
Because the PSF models had not had distortion removed from them
(the stars were not distortion-corrected on input to the models), the
distortion was applied to the galaxy models prior to PSF convolu-
tion to ensure that the distortion and convolution corrections to the
models correctly mirrored these effects in the data. In practice, the
models were fitted in Fourier space, so the affine transformation
was also applied in Fourier space, using a simple matrix opera-
tion to convert the affine transformation between real and Fourier
space (Bracewell et al. 1993). The affine transformation allowed for
scale, rotation and shear distortion, and ensured that the ellipticities
of all galaxies were measured with respect to the celestial coordi-
nate system, and not any arbitrary pixel grid (i.e. galaxy position
angle was defined with respect to the local north—south, east-west
axes at each galaxy). When calculating shear correlation functions
or power spectra from these data on large scales, it may be neces-
sary to correct for the translation of the celestial coordinate system
around the celestial sphere (i.e. there needs to be a ‘course angle’
correction to the differences in position angles of pairs of galaxies
separated on large angular scales, when not working on the celestial
equator; see also Kilbinger et al. 2012).

7 TESTS FOR SYSTEMATIC ERRORS

We postpone detailed analyses for systematic biases to a companion
paper (Heymans et al. 2012); however in this section we discuss
the chief effects which may bias the shear measurement results
and illustrate the tests that we have carried out, showing specific
examples from individual CFHTLenS fields.

There are a number of possible effects which could lead to the
creation of systematic biases in the measured shear.

(1) Inaccurate PSF modelling.

(i1) Use of galaxy models and prior distributions for the model
parameters that are not representative of the true population.

(iii) Bias in the shear estimator (such as that described in Ap-
pendix C).

(iv) Inaccurate relative astrometry.

PSF modelling errors could be investigated by comparing the mod-
els with the stars used to generate the models (i.e. a quantitative
assessment such as shown in Fig. 4): however, it is difficult to
assess how large a deviation between model and reality can be
tolerated, what is really needed is an assessment on the effect of
the final measured galaxy shear. Such an analysis has been pre-
sented by Paulin-Henriksson et al. (2008) and Paulin-Henriksson,
Refregier & Amara (2009), giving a good qualitative picture of the
effects expected from PSF modelling errors. It is difficult to make
a quantitative prediction of the effect on shear without repeating
the analysis with realistic galaxy sizes and shapes, PSF surface
brightness distributions that match the CFHTLenS PSFs and likely
PSF modelling errors. However, the results of Paulin-Henriksson
et al. (2008) show that we expect modelling errors to result in sig-
nificant cross-correlation between the PSF model and the galaxy
ellipticities, and furthermore that the cross-correlation is expected
to be a strong function of galaxy size. The use of incorrect galaxy
models or prior distributions is likewise expected to produce size-
dependent PSF—galaxy cross-correlation. Bias in the shear estimator
is expected to produce PSF—galaxy cross-correlation with a strong
signal-to-noise ratio dependence (Fig. C2).

To test for these effects, we first measured, in each individual
CFHTLenS field, the cross-correlation between galaxy ellipticity
and the mean ellipticity of the PSF model, measured at the location
of each galaxy, with PSF ellipticity averaged over the exposures
used. The cross-correlation is shown for three typical fields, as a
function of signal-to-noise ratio vgy and fitted galaxy size, in Fig. 6.
Statistical uncertainties were calculated by randomly dividing the
observed samples into 10 subsamples, and measuring the variance
in the statistic between the subsamples. The reported error is then
/10 smaller than the subsample rms. However, on scales of 1°, there
is a significant additional term that arises from the random cross-
correlation of the cosmic shear signal with the PSF. In Heymans
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Figure 6. Examples of cross-correlation between PSF model ellipticity and galaxy ellipticity in three CFHTLenS fields, from left to right, WIm2p1, W1p3mO0
and W1p2m3. Upper panels show the cross-correlation as a function of signal-to-noise ratio vsn, lower panels as a function of fitted galaxy major-axis

scalelength rq. Vertical bars indicate 68 per cent confidence intervals.

et al. (2012) this term is explicitly estimated using shear derived
from the dark matter simulations of Harnois-Deraps, Vafaei & van
Waerbeke (2012). In this paper, this additional term is ignored. It
manifests itself as an uncertainty, which is highly correlated be-
tween the plotted points, to be added in quadrature to the statistical
uncertainties shown in Fig. 6.

The test presented may not be sensitive to all conceivable forms
of PSF modelling error. For example, the PSF model may be too
small in some regions, leading to positive PSF—galaxy correlation,
but too large in others, leading to negative PSF—galaxy correlation.
Averaging over the field may lead to no net detection of an effect.
However, we are not able to analyse the fields in smaller subsamples,
as the statistical and cosmic shear uncertainties become large.

The results from the full-field analyses are generally encouraging,
with no obvious dependence of a cross-correlation signal on either
signal-to-noise ratio or fitted galaxy size. The possible exception to
this statement is at the lowest fitted galaxy scalelengths, less than
0.7 pixels, where often a positive cross-correlation is observed. This
is very likely due to reaching the limits of the sampled models that
were generated as described in Appendix A. It should not be sur-
prising that systematic effects may be seen for galaxies with major
axis scalelengths smaller than one pixel in size, and considerably
less than the PSF size. Fortunately, the number of such galaxies is
relatively small, and they all have small weights (Fig. 2).

If there are residual errors in the relative astrometry, this would
result in systematic shear patterns being induced with scalelengths
of variation determined by the scalelength of the astrometric er-
rors (probably many arcminutes). The resulting systematic sig-
nal would likely not be correlated with any other measurable
quantity. We tested for this in a subset of CFHTLenS fields by
switching off the relative astrometry correction described in Sec-
tion 4, remeasuring those fields and generating shear-shear cor-
relation functions. Only small differences, much smaller than
the statistical uncertainties in the correlation function, were ob-
served, indicating that for CFHTLenS the absolute astrometric ac-

curacy already is adequate for shear measurement from individual
exposures.

An in-depth analysis of the survey for systematic errors is pre-
sented by Heymans et al. (2012).

8 CFHTLENS IMAGE SIMULATIONS

The lensfit shape measurement algorithm has previously undergone
a series of verification tests using simulated sheared images that
test a range of different observing conditions, galaxy and PSF types
(Paper II). These tests have used both sets of simulations from the
Shear TEsting Programme (STEP; Heymans et al. 2006; Massey
et al. 2007), demonstrating sub-per-cent level accuracy. The phi-
losophy of lensfit, to analyse data from individual exposures rather
than a co-added image, requires a suite of specialized image sim-
ulations that mimic this main feature of the CFHTLenS analysis.
We describe in this section how these simulations compare to previ-
ous image analysis challenges and the subsequent verification and
calibration analysis.

As well as confirming that the algorithms described above do
work on multiple exposures, the simulations also allow us to mea-
sure the calibration term that is required to correct for noise bias,
as discussed in Section 3.5, in Appendix C and by Refregier et al.
(2012) and Melchior & Viola (2012). Kacprzak et al. (2012) also
describe the use of simulations for calibration of noise bias.

8.1 GREAT CFHTLenS image simulations

Our philosophy followed the strategy of the GREAT challenges’
(Bridle et al. 2010; Kitching et al. 2012) to design the simplest
simulation that nonetheless addresses the specific question: how
accurate is lensfit when analysing realistic galaxy distributions,

7 www.greatchallenges.info
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measured with multiple, low-signal-to-noise ratio exposures? We
therefore chose a constant PSF across the field of view, and we
postpone discussion of our tests on the robustness of the measure-
ments to a spatially varying PSF in the actual data to the companion
paper (Heymans et al. 2012). In the simulations, we did, however,
vary the PSF between the multiple exposures simulated for each
field, based on the variation between exposures that we see in the
CFHTLenS data.

We simulated the full CFHTLenS area with each simulated 1 deg®
field consisting of seven dithered exposures, with a linear dithering
pattern that was matched to the average linear dither pattern in the
survey, ignoring higher order astrometric corrections. Galaxies and
stars were positioned within the field with the same distribution as in
the real data and with matching magnitude and signal-to-noise ratio.
We then created a population of disc-plus-bulge galaxies such that
the distributions of galaxy brightness, size, intrinsic ellipticity and
bulge fraction matched the distributions described in Section 3.2
and Appendix B. As in those models, the disc and bulge ellipticities
were set equal. The unlensed orientation of each galaxy was random
and each galaxy was assigned a cosmological shear based on its
original position and redshift in the CFHTLenS data, as simulated
by our N-body lensing simulation of CFHTLenS (Harnois-Deraps
et al. 2012). In order to potentially allow reduction of the impact
of noise from the intrinsic galaxy ellipticity, we followed Massey
et al. (2007) by creating two image simulations for each field, with
the intrinsic ellipticities rotated by 90° between the two images,
although in practice we found that such shape noise mitigation
was itself problematic and was therefore not used, as discussed in
Section 8.4. Camera distortions were not included in the simulations
but the lensfit pipeline still applied a correction as it would on real
data.

The model prior distributions differed significantly from the
distributions assumed in previous image challenges, as shown in
Fig. 7. We simulated the galaxy population as comprising two
types: 90 per cent of galaxies were disc-dominated, and the remain-
der were bulge-dominated. No irregular galaxies were included.
The upper panel compares the intrinsic ellipticity distributions in
our custom CFHTLenS simulations to those simulated in the first
STEP challenge and both GREAT challenges. It can be seen that
the distributions of ellipticity for the disc-dominated population dif-
fer significantly. The bulge-dominated galaxy population ellipticity
distribution was more similar to the ellipticity distribution assumed
in previous challenges, although the fraction of bulge-dominated
galaxies in the STEP simulations was negligible. The lower panel
of Fig. 7 shows the size distribution for both populations, which
varied with galaxy magnitude in our custom simulations. This can
be compared to the somewhat larger size distribution for the first
STEP challenge, scaled according to the relative pixel sizes in STEP
and CFHTLenS, and the set of three discrete galaxy-to-PSF size ra-
tios simulated in the GREATOS challenge, which for the average
CFHTLenS PSF corresponds to galaxy scalelengths of r = [0.2,
0.3, 0.6] arcsec. Comparing these distributions indicates how chal-
lenging our custom simulations were compared to previous image
simulations, owing to the more realistic, broad ellipticity distribu-
tions and high fraction of small galaxies. We therefore would expect
neither lensfit nor other methods to perform as well on these custom
simulations as in previous challenges.

The image simulations were produced using a modified version of
the GREAT challenges image simulation software package detailed
in appendix A.3 of Bridle et al. (2010). Aside from the differences in
galaxy populations described above, our simulations also differed
from the GREAT08 and GREAT10 simulations by allowing for

-
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Figure 7. Upper panel: the intrinsic ellipticity distribution for disc-
dominated galaxies in the STEP (dotted curve), GREAT (long-dashed) and
CFHTLenS (short dashed) simulations and for bulge-dominated galaxies
in the CFHTLenS simulations (solid curve). Lower panel: the magnitude-
dependent galaxy size distribution, where ris the major-axis half-light radius
for the bulge component and the major-axis exponential scalelength for the
disc component. The CFTHLenS simulated distributions are shown at mag-
nitudes i/ = 22 (short dashed curve), i’ = 23 (long dashed) and i/ = 24
(solid). The distribution of the first STEP challenge is also shown (dotted
curve).

overlapping object isophotes, by having each exposure containing
both galaxy and stellar objects and by simulating dithered data. We
also modified the definition of galaxy size to be the size of the
semi-major axis of a galaxy’s isophotes, instead of the geometric
mean of the semi-major and semi-minor axes. This redefinition is
consistent with the convention used for measurements of data (e.g.
Simard et al. 2002) and avoids introducing an incorrect correlation
between size and ellipticity (see also Appendix A). The definition
of signal-to-noise ratio was chosen such that it was defined within a
circular aperture of radius of 0.935 arcsec (5 pixels) for all galaxies.
Using a matched aperture flux, as measured by SEXTRACTOR on the
data, then allowed us to directly replicate the signal-to-noise ratio
distributions within each CFHTLenS exposure.

The choice of simulated PSF model was motivated by the data.
To each of the 36 MegaCam CCDs in each CFHTLS exposure, we
fitted an elliptical-isophote Moffat (1969) profile to the images of
stellar objects. A circular light profile at distance r from the centre
of a star was given by

27 —AMoffat
1t (i) ] ©)
rS

where [, is the peak flux, and the scale radius r; and the shape
parameter Syiora Were related to the FWHM of the PSF as

FWHM = 2r, /21 1. (10)

We created a series of circular model PSFs on a pixel grid for a
range of scale radii r; and shape parameters Syjo, and applied a
linear transformation of the co-ordinates to shear the model PSF
to have elliptical isophotes. We then calculated the best-fitting PSF

I(r) =1
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Figure 8. The distribution of PSF parameters measured from the
CFHTLenS data and replicated in the CFHTLenS simulations. The up-
per panels show the PSF ellipticity. The lower panels show the PSF FWHM
in arcsec (left) and the shape parameter SBmoffar (right).

ellipticity and the Moftfat profile parameters Byof and o for each
CCD chip. For each simulated exposure we adopted a PSF model
for the full field of view by selecting a CCD PSF at random. This
was to ensure that we fully represented the range of PSF models at
all locations in the images, rather than taking the often more circular
average over the full field of view. We then grouped the PSF model
exposures into fields following the grouping of exposures in the
real data. The distribution of PSF parameters measured from the
CFHTLenS data, and replicated in the simulations, is shown in
Fig. 8.

8.2 SkyMaker CFHTLenS image simulations

When constructing calibration corrections, it is of crucial impor-
tance to verify the base image simulations used to ensure the cal-
ibration is not dependent on the simulation software used. To this
end we created a second suite of 140 MegaCam image simulations
generated using SkyMaker® (Bertin 2009). The SkyMaker PSFs
were not Moffat profiles, but instead had radial surface brightness
profiles that took into account the telescope optics, atmospheric
seeing and scattering into wings of the PSF, although those adopted
here had circular symmetry. Unlike the GREAT simulations, only a
single exposure was simulated, for reasons of computational time,
and the signal-to-noise ratio distribution of galaxies on those single
exposures was matched to that of the CFHTLenS galaxies on the
co-added data. The signal-to-noise ratios were generally smaller
than in the SkyMaker simulations tested in the first STEP challenge
(Heymans et al. 2006). Furthermore, the size and ellipticity distri-
butions were chosen to match those in the custom CFHTLenS sim-
ulations described above, unlike the SkyMaker simulations tested
in Heymans et al. (2006), which follow the dotted curves in Fig. 7.

8 www.astromatic.net
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The galaxy and star positions were chosen at random and cir-
cular PSFs with an FWHM of 0.7 arcsec were used. A cosmic
shear signal from a redshift plane at z = 1 was assumed in the
simulation.

8.3 Model bias

The primary aim of the simulations was to measure the bias caused
by noise (Appendix C), and for this aim the simulated galaxies
should match the real population as closely as possible. The strat-
egy of matching the simulations to the models and priors used in
the lensfit measurements is reasonable, as these distributions have
been derived from observations and are therefore a good represen-
tation of the galaxy population. The tests presented here do not test
for the effect of deviations of the true population from the model
assumptions, but they do test the efficacy of the method taking
into account the implementation of the statistical algorithm in Sec-
tion 3.3, including the effects of convolution with appropriate PSFs,
the effects of finite signal-to-noise ratio and noise bias, the combi-
nation of multiple dithered images and the effect of masks applied
to the data.

The difficulty of attempting also to test for the effect of devi-
ations of the true population from the assumed population is that
we have little prospect of obtaining an independent assessment of
how different the real Universe might be from our assumptions,
even at the level of knowing the distributions of surface brightness
of individual galaxies in the local Universe (Graham & Worley
2008). Notwithstanding that difficulty, this question has been con-
sidered by other authors. Voigt & Bridle (2010) considered the
multiplicative biases that might arise from fitting multiple Gaussian
components to exponential or de Vaucouleurs surface brightness
distributions, convolved with a PSF. It was found that fitting a
single Gaussian to an exponential distribution caused a multiplica-
tive bias of 3 per cent and an additive bias of ~0.001, but that
these biases fell to 0.3 per cent and <10~* when two Gaussian
components were adopted. Larger biases were found when fitting
Gaussians to a pure de Vaucouleurs profile (3—6 per cent and 0.001,
respectively, when fitting two Gaussians), but this is not surpris-
ing given the significant difference in surface brightness profile
between Gaussian and de Vaucouleurs distributions. We note that
pure de Vaucouleurs-profile galaxies are expected to be a small
fraction of the true population. Multiplicative biases of 2—5 per cent
were found when fitting two Gaussians to composite galaxy pro-
files comprising exponential plus de Vaucouleurs components: in
this case we expect our fitting of exponential plus de Vaucouleurs
models to work well and therefore to lead to significantly smaller
biases.

Voigt & Bridle (2010) argue that these biases arise because a
Gaussian profile is too flat to reproduce well the central regions of
realistic galaxy profiles. In this paper, we fit two components, expo-
nential plus de Vaucouleurs, to the real population of galaxies, and
these should be far better representations of the true surface bright-
ness distributions than multiple Gaussians, with sufficient flexibility
to model well a wide range of Sersic indices. We therefore ex-
pect model bias to be significantly smaller than found by Voigt &
Bridle (2010) when fitting Gaussians, and to be subdominant com-
pared with noise bias, as evaluated in the following sections, in the
CFHTLenS analysis.

Future surveys covering larger sky areas will have more strin-
gent requirements on the acceptable level of systematics than
CFHTLenS, and it is likely that the question of model bias will
need to be revisited for those surveys.
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8.4 Analysis and calibration

We processed both sets of image simulations with lensfit using the
known galaxy and star positions as an input catalogue. Fig. 9 shows
the measured galaxy size, signal-to-noise ratio, bulge fraction and
ellipticity distributions from both sets of image simulations and
the CFHTLenS data. In all cases the distributions incorporate the
weights assigned by lensfit (equation 8). The simulated signal-to-
noise ratio distribution shown in the upper left-hand panel was con-
structed to match the CFHTLenS depth. We found reasonable agree-
ment between the ellipticity distribution measured in the data and
simulations, although in the weighted distributions of CFHTLenS
there is an excess of galaxies at |e| ~ 0.45. We do not expect perfect
agreement between the measured distributions and priors, because
only the summed posterior distribution is expected to match the
prior distribution (Paper I), whereas Fig. 9 shows the values ob-
tained from the expectation values of the probability distribution
(after marginalizing over the other parameters). The excess is only
present in the weighted distribution, and not in the unweighted dis-
tribution, which implies that, on average, galaxies with non-zero,
middling ellipticities have more sharply defined likelihood surfaces
than their peers at lower or higher ellipticity. This effect is not fully
understood, but it is probably linked to the issue of noise bias that
is discussed in Appendix C. In comparison to the data, in the sim-
ulations there are also lower fractions of small galaxies for which
an ellipticity was determined. As these small galaxies do exist in
the simulation (see Fig. 7) this might indicate a mismatch between
the PSF in the data and simulations, such that small galaxies were
harder to measure in the simulations than in the real data. Either
pixelization and noise from the data led us to overestimate the PSF
size which was then used in the simulation, or the Moffat profile
used in the GREAT simulations and the SkyMaker PSF were poor
models of the MegaCam PSF. There are, however, sufficient num-
bers of small galaxies to calculate a calibration as described below,
and as these small galaxies were assigned the lowest weights by
application of equation (8), it should not be problematic that their
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Figure 9. Comparison of the weighted distributions of measured signal-
to-noise ratio (upper left), galaxy size (upper right), ellipticity distributions
(lower left) and bulge fraction (lower right) from the custom GREAT image
simulations (crosses), custom SkyMaker image simulations (circles) and the
CFHTLenS data (solid).

calibration was based on relatively fewer galaxies than for other
sizes in the data.

We follow Heymans et al. (2006) in modelling our shape mea-
surement as a linear combination of a multiplicative error m and an
additive error ¢ such that

e = (1 4+ m)e™ + ¢ + Ae 11

where e°® is the observed complex ellipticity as measured by lensfit,

Ae is the noise on the measure and e is the sheared intrinsic el-
lipticity defined as in equation (1) and for simplicity we treat m as
an orientation-independent scalar. At this point we are faced with
several alternatives to determine m and ¢. Comparing ¢° directly
with €™¢ would lead to a strong noise bias in the measurement
of m and ¢, as the observed ellipticity is bounded with || < 1
such that (Ae) is non-zero for a galaxy with non-zero ellipticity.
Comparing e°® directly with shear ¥ would also lead to an intrinsic
ellipticity noise bias, as for a finite number of galaxies {€"™°) may
be non-zero. This is particularly relevant when galaxies are binned
in order to look for size- and signal-to-noise-ratio-dependent cali-
brations, increasing the random shot noise in each bin. Massey et al.
(2007) developed a method to circumvent this issue by including
rotated pairs of galaxies in the simulations such that (e™) = 0 by
construction, where ™ is the intrinsic ellipticity prior to application
of any lensing shear. We generated such galaxy pairs in the custom
GREAT simulations, but found that, when galaxies within a pair
were assigned different weights, which at the low signal-to-noise
ratio regime was typical, (we'™) was significantly non-zero. Thus
we did not use this method of shape-noise cancellation. Instead,
our preferred analysis method was to first bin galaxies by size r
and signal-to-noise ratio vgy, such that there were equal numbers
of objects in each bin, and then to subdivide those bins by the input
cosmic shear of each galaxy. Each galaxy was entered into two bins
of shear, treating each component as being an independent mea-
sure of shear for the purposes of deriving the calibration correction.
Then, a calibration was derived by minimizing x? given by
2

1 X
X' = Z — (7 = [ 4 mlus, 7™ = clvsx. ) (12)

where for each bin i

obs int
7o — 2jw; (eaj - ea./‘) (13)
> Wi
and where for galaxy j in bin i, e,; is either the e; or e, component
of the ellipticity, with ¢ = 1, 2 being set by the component of the
input cosmic shear for that galaxy in that bin.

The erroro, on 7°% was estimated through a bootstrap error anal-
ysis within each bini. o, was found to be uncorrelated between bins.
The summation over both ellipticity components in equation (13)
was motivated by an initial component-dependent minimization,
which showed negligible differences in the calibration measured
for each ellipticity component.

This analysis method ensured that we were unbiased to measure-
ment or intrinsic ellipticity noise, but it does disguise biases intro-
duced by the weights. In Fig. 10 we use the GREAT CFHTLenS
simulations to show the weighted average true intrinsic ellipticity
(we™) as a function of the PSF ellipticity e* for four sets of galax-
ies binned by galaxy size and signal-to-noise ratio. For each galaxy
sample we find a preferential weighting of galaxies oriented in the
same direction as the PSF. This weight bias is independent of which
ellipticity component we choose and affects bright large galaxies
to a similar extent to small, faint galaxies. It is an undesirable
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Figure 10. The weighted average true intrinsic ellipticity (we™) as a func-
tion of the PSF ellipticity ¢* for four sets of GREAT-simulated galaxies
binned by galaxy size and signal-to-noise ratio. Small galaxies with major-
axis scalelengths r < 0.3 arcsec are shown in the upper panels; large galaxies
with r > 0.3 arcsec are shown in the lower panels. The left-hand panels
show the faint sample with vgn < 20; the brighter sample with vgn > 20
are shown on the right-hand panels. Each bin contains roughly the same
number of galaxies.

outcome of the weighting scheme, which correctly identifies that it
is easier to measure the shapes of galaxies oriented with respect to
the PSF in contrast to galaxies oriented perpendicular to the PSF,
and may be viewed as a form of the orientation bias discussed by
Bernstein & Jarvis (2002, Section 3.6). We investigated isotropiza-
tion schemes to remove the PSF-related weight bias by assigning
galaxies an averaged weight based on its size relative to the PSF size
and the signal-to-noise ratio of the galaxy. We found, however, that
the isotropization reduced the effectiveness of the weights, which
also decrease the noise bias in the shear measurement (Appendix C),
and resulted in an even stronger weight bias in the opposite sense.
We therefore concluded that weight bias, which impacts shape mea-
surement at the 1073 level, is an undesirable feature of applying
inverse—variance weighting, but is a small effect for the study of
CFHTLenS. In Heymans et al. (2012) we describe a method to
identify and remove fields which show any significant correlation
with the PSF, which can arise both from this weight bias and from
the general effect of noise bias.

Fig. 11 shows some example results of the measured multiplica-
tive error m(vgy, r) in the GREAT simulations as a function of vgy
for four size bins selected to be the smallest, and the three discrete
galaxy sizes simulated in GREATO8. The solid curve is a fit to the
full data set, which comprises 20 bins in each of vgy and size, given
by

B

—C _exp(—arvsy) (14)
log;o(vsn)

m(vsn, 1) =
with « = 0.057 and 8 = —0.37, for r measured in pixels. We
find that for all galaxies with » > 0.5 arcsec, or vgy > 35, m is
consistent with zero on average, but that the calibration correction
increases for smaller and lower signal-to-noise ratio galaxies, as ex-
pected for noise bias (Appendix C). The lensfit weighting scheme
already downweights these noisy galaxies, such that even though
the calibration correction can be significant, these galaxies contain
very little weight in our scientific analyses. This can be seen in the
left-hand panel of Fig. 12, which shows the multiplicative calibra-
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Figure 11. Example results of the measured multiplicative error m(vsn, )
in the GREAT simulations as a function of signal-to-noise ratio for four size
bins selected to be the smallest scalelength (0.1 arcsec, upper left), and the
three discrete galaxy sizes equivalent to those simulated in GREATO08 (0.2,
0.3, 0.6 arcsec). The solid curve is the best-fitting functional form to the full
data set which comprises 20 bins in both signal-to-noise ratio and size. The
lower two panels show m(vsn, ) as a function of r for two bins of vgN.
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Figure 12. Left: the multiplicative calibration m for each signal-to-noise
ratio and size bin as a function of the average lensfit weight (w) of the
simulated galaxies in the bin. Results are shown from the GREAT (crosses)
and the SkyMaker (open circles) simulations. Right: the mean applied mul-
tiplicative calibration (m) for CFHTLenS galaxies binned by photometric
redshift z,. Vertical bars indicate the rms of the distribution of m values
within each bin.

tion for each bin of signal-to-noise ratio and size as a function of
the average weight of the galaxies in the bin, for both the GREAT
and SkyMaker simulations. It can be seen that the net effect is
very similar in the two sets of simulations, although the SkyMaker
simulations display a slightly larger bias than the GREAT simu-
lations for galaxies with low signal-to-noise ratio and thus lower

220z Isnbny 60 Uo Jasn O LS| - SUND A9 9778001/8582/7/6Z 7/9101HE/SEeluL/wod dno-dlwapede//:sdyy wody papeojumod



2874 L. Miller et al.

lensfit weight. As the GREAT simulations have anisotropic PSFs
that closely match the CFHTLenS PSFs, and as they incorporate
the effect of having seven multiple exposures, whereas the Sky-
Maker simulations are single exposures in each field, we use the
results from the GREAT simulations to calibrate the CFHTLenS
shear measurements. The differences between the results from the
simulations only become apparent for galaxies which are signifi-
cantly downweighted in CFHTLenS, and overall it is encouraging
to note the close match between the two sets of simulations. The
right-hand panel of Fig. 12 shows how the mean applied calibration
correction (m) varies with the photometric redshift of the galaxies
in CFHTLenS, showing primarily the larger correction that needs to
be applied at redshifts z, 2 0.8 owing to the decreasing signal-to-
noise ratios and sizes of galaxies at higher redshifts. We note also
the larger correction deduced for galaxies at low redshifts, z, < 0.3,
which probably arises from contamination of the low-redshift popu-
lation by galaxies with higher spectroscopic redshifts (see Heymans
et al. 2012, for further discussion).

We find no evidence for a significant additive error ¢ term in the
lensfit analysis of the simulations, indicating that the multiplicative
error arising from noise bias is the dominant term to be corrected.

8.5 Simulated cosmic shear tomography

To test the application of such a calibration, we estimated the
calibration-corrected two-point shear correlation function (other pa-
pers will describe the correction to estimators such as the three-point
function and others). We first calculated the uncalibrated two-point
function,

Swiw; [6(x)e (x;) £ €(x;)e(x;)]
2 wiw; ’

where the weighted sum is taken over galaxy pairs with |x; — x;| =
6. The two-point correction term was then estimated as

§:(0) = 15)

2 wiw;[1+msn,i, r)1ll + m(vsn,j, 7))]
> wiw;

for the same galaxy pairs, thus taking into account potential astro-

physical correlations between galaxy size, brightness and clustering

scales. The calibration corrected two-point function was then given
by

I+ K(@®) = (16)

£+(6)

cal _
0= 1+K®)

a7
The alternative of applying the calibration correction directly to in-
dividual galaxies could result in instability in the rare events where
1 + m(vsn, i, 1) — 0. In addition, using this method automati-
cally removes any unwanted correlation between the calibration
correction and intrinsic ellipticity which could arise from the mea-
sured galaxy signal-to-noise ratio or size being weakly correlated
with shape, which is a possible outcome of any shape measure-
ment method. We show a comparison of the measured and input
two-point correlation functions in Fig. 13, for the raw uncalibrated
data and the calibrated data. The error bars are representative of the
signal-to-noise ratio expected for a CFHTLenS-like survey and the
data points are strongly correlated. To investigate the impact of the
calibration as a function of redshift we show the signal for three to-
mographic configurations; a full sample with 0.1 < z < 1.3 similar
to the sample used in Kilbinger et al. (2012) and two tomographic
bins with 0.5 < z < 0.85 and 0.85 < z < 1.3, similar to the two to-
mographic bins used in Benjamin et al. (2013). Note that a very low
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Figure 13. Comparison of the measured to input two-point correlation func-
tion for the raw uncalibrated data (circles) and the calibrated data (triangles)
from the GREAT CFHTLenS simulations. The error bars are representative
of the signal-to-noise ratio expected for a CFHTLenS-like survey. To inves-
tigate the impact of the calibration as a function of redshift we show the
signal for three tomographic configurations: 0.1 < z < 1.3 (upper panel),
0.5 < z < 0.85 (middle panel) and 0.85 < z < 1.3 (lower panel).
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Figure 14. Confidence regions of the multiplicative calibration correction
parameters in equation (14) used to infer systematic error contribution to
the calibration corrected two-point function é;“l ).

redshift bin with 0.1 < z < 0.5 has statistical error bars that encom-
pass the full figure. Fig. 13 shows that for a CFHTLenS-like survey
the correction is well within the statistical errors. We do see that
the calibration correction is more significant for the higher redshift
sample, as expected given that the average size and signal-to-noise
ratio decreases with redshift.

We determined the systematic error contribution to the
calibration-corrected two-point function Efl(e) as follows. First,
we took the likelihood distribution of the multiplicative calibration
correction parameters in equation (14), as constrained by a fit of
the calibration correction to the simulated data. This likelihood dis-
tribution is shown in Fig. 14 with the 68 per cent, 90 per cent and
95 per cent confidence intervals. We randomly sampled this distri-
bution such that we had a sample of N = 100 («, B) values that fully
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represented the probability of the fit (i.e. 68 per cent of the pairs lay
within the 1o contour). We then calculated the two-point correc-
tion term Ky(6) for each of the N resampled values and determined
the variance of the calibration-corrected two-point function g;‘a‘(e)
between the N differing corrections. This method allows us to iso-
late a systematic error covariance matrix for the two-point shear
correlation function, allowing marginalization over the uncertainty
on the calibration correction. Kilbinger et al. (2012) show that this
has a negligible effect on cosmological parameter estimates from
the two-point shear correlation function. The concept can be easily
modified to cover any number of the weak lensing statistics that
will be used to analyse CFHTLenS.

9 CONCLUSIONS AND FURTHER
DEVELOPMENTS

We have presented the method of shear measurement developed
for CFHTLenS, based on the earlier lensfit algorithm of Paper I
and Paper II. The method fits PSF-convolved galaxy models to
multiple galaxy images to estimate galaxy lensing shear. Significant
enhancements have been made to the basic algorithm in order to
create a method that can be applied to the survey as follows.

(i) Creation of pixel models of the PSF on individual exposures,
allowing for spatial and temporal variation of the PSF and for dis-
continuities between detectors in the imaging camera.

(ii) Use of two-component models, disc plus bulge, with a prior
distribution for bulge fraction estimated from published work.

(iii) Measurement of likelihood from multiple dithered expo-
sures, optimally combining information when the PSF differs be-
tween exposures, and automatically allowing any one galaxy to have
differing numbers of useful exposures, where that number may vary
because of the effect of detector and field boundaries coupled with
the dither pattern. The multiple exposures are neither interpolated
nor co-added, avoiding systematic effects that are otherwise intro-
duced by those processes.

(iv) Measurement of camera distortion from astrometric mea-
surements, and correction of fitted models to optimally remove the
effects of distortion from the shear measurement, rather than cor-
rection of the data using interpolation (i.e. interpolation of data is
avoided).

(v) Use of realistic priors on galaxy size, ellipticity and bulge
fraction, based on published HST and other data.

(vi) Improved algorithms for Bayesian marginalization over
galaxy position, size, flux and bulge fraction.

(vii) Modification of the shear estimator from a posterior proba-
bility estimator to a likelihood estimator to avoid anisotropy and bias
caused by implementation of the sensitivity correction described by
Paper I, but at the cost of needing to calibrate the effect of noise
bias on the estimator.

We regard the issue of making measurements from non-
interpolated individual exposures as being particularly important. If
images are interpolated and co-added, the resulting non-stationary
convolution kernel that has been introduced can have a severely
detrimental effect on lensing shear measurement. In principle, the
varying convolving kernel could be evaluated at each galaxy loca-
tion and a correction applied to the PSF, but working from indi-
vidual exposures avoids that complexity. Furthermore, the resulting
co-added PSF is likely to have even more complexity than the PSF
on individual exposures, and in general would be expected to lead
to co-added PSFs with ‘twisted’ isophotes (ellipticity and centroid
varying as a function of distance from the peak of the PSF), which
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would cause problems for many published methods of shear mea-
surement. As multiple exposures are usually dithered, and as the
PSF may be discontinuous between detectors (as in MegaCam) and
as there are gaps between detectors, any co-added PSF inevitably
has discontinuous variations across the blurred regions between de-
tectors in the dithered images. The ‘gap’ regions are not generally
sufficiently large to allow independent measurement of the PSF
from stars in those regions, so either such regions would need to
be excised, or the PSF would need to be measured on individual
exposures and the local PSF reconstructed appropriately. Excision
of such problematic regions would lead to significant reduction in
area for surveys with a large dither pattern. These problems are all
avoided with the joint-fitting approach described here.

We have tested the method using two, independent, extensive
simulations of CFHTLenS based on the GREAT and SkyMaker
image simulation codes, but with galaxy parameters more closely
matched to those found in the faint galaxy populations than have
been assumed in previous lensing challenges. The faint galaxy pop-
ulation has galaxies of smaller size and a broader range of ellipticity
than has been assumed in the STEP and GREAT challenges, which
leads to a degradation in performance compared with what would
have been naively expected from those simulations. When creating
image simulations to test shear measurement methods, it is impor-
tant to include real observational problems such as those described
in this paper, and also to ensure that the simulated galaxy population
mimics closely the observed distribution. With the current genera-
tion of surveys, we have only been able to match the coarse features
of the population, namely size and ellipticity, and even there uncer-
tainties remain over issues such as the redshift distribution of galaxy
properties. Future, large-area surveys which aim to achieve signifi-
cantly lower systematic uncertainties than in CFHTLenS should be
concerned about our current lack of knowledge in this area.

Finally, the issue of noise bias has been discussed by a number of
recent authors, and with current estimators we do need to calibrate
the noise bias from realistic simulations. One hope for the future
is that a properly formulated Bayesian estimator may be able to
rigorously correct for noise bias without the need for calibration
simulations.
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APPENDIX A: GALAXY MODELS

Galaxy models were created for CFHTLenS according to two basic
types, bulge- or disc-dominated, as described in Section 3.2. Thus
two surface brightness profiles were assumed, for each of the bulge
and disc components of galaxies. For computational speed, these
were two-dimensional distributions with radial surface brightness
dependencies having Sérsic index equal to either 1 or 4, which
were given elliptical isophotes by a 2D shear transformation. The
transformation was defined so that the semi-major axis of a model
component was invariant (unlike, for example, the GREATO8 or
GREAT10 simulations; Bridle et al. 2010, Kitching et al. 2012).
The rationale for this choice was that the ellipticity of disc galaxies
is determined primarily by the inclination angle of the disc to the line
of sight, in which case the semi-major axis is the best estimate of an
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inclination-independent intrinsic size of the galaxy. When defining
a prior based on the distribution of intrinsic size of galaxies, that
prior should be applied to the distribution of semi-major axes.

Exponential and de Vaucouleurs surface brightness distributions
are sharply peaked towards their centres, so if the surface brightness
distributions are generated on a coarse pixel grid, the central pixel
may become incorrectly dominant. The problem is worse for the
de Vaucouleurs profile, p(r) oc exp( — 7.67(r/ry)"/*): the central
pixel is a factor of 2143 brighter than pixels at r = r,. A partial so-
lution to the problem is to generate surface brightness distributions
on a finer-resolution grid; however for moderate oversampling fac-
tors (a factor of 11 oversampling was adopted for CFHTLenS), even
that is not good enough. For CFHTLenS this problem was overcome
by applying an integral constraint, requiring the sum of the model
pixel values to equal the expected integral under the de Vaucouleurs
profile, adjusting the central pixel value so that this condition was
met. An alternative approach would be to use the ‘photon-shooting’
Monte Carlo method employed in the GREAT simulations.

Model components were convolved with the local PSF pixel-
basis model at the location of each galaxy being fitted. Because
both the galaxy model and the PSF contain Fourier modes above
the Nyquist sampling limit of the observed image, we should seek to
generate models at high resolution, convolve with a similarly high-
resolution PSF, and only after that convolution, downsample to the
observed sampling (noting that the downsampling should depend
on the galaxy’s precise location). However, as the PSF had to be es-
timated from the stars on each exposure, it was not straightforward
to generate reliable models with high-frequency modes correctly
represented. In principle, such high-frequency information may be
recoverable from the data because stars are observed at a variety of
positions with respect to the pixel grid; however the PSF also varies
between stars, and each star is itself a noisy measure of the down-
sampled PSF, so it was decided not to attempt to reconstruct over-
sampled PSF pixel-basis models. In effect, the PSF models adopted
had their high-frequency modes aliased into the range of observed
frequencies. In an attempt to make an approximate correction for
that effect, an approximate PSF model was created, assuming circu-
lar isophotes, which comprised a Moffat profile fitted to the PSF near
the centre of the field of view. The high-resolution galaxy models
were first convolved by the Moffat model, before being downsam-
pled. This downsampled galaxy model was then convolved with
the actual PSF pixel-basis model for each galaxy, but with a mul-
tiplicative Fourier-space correction applied to remove the effect of
the Moffat model. In the limit of band-limited data, an exact con-
volution by the true PSF model would have been achieved by this
process. For the actual data, which may contain higher-frequency
modes, some level of correction for those modes was obtained by
this approximate method, but clearly a future improvement would
be to reconstruct a high-resolution PSF pixel-basis model from the
data and deal with the high-frequency modes more rigorously.

It is worth noting that, because the observed stars have been con-
volved with the detector’s pixel response function (usually assumed
to be a top-hat function), the PSF model employed already included
the effect of the mean pixel response. No further averaging across
pixels was done.

A further problem with generating surface brightness distribu-
tions from sheared 2D distributions is that disc galaxies change their
surface brightness profiles with inclination angle: edge-on galaxies
have a surface brightness distribution along their minor axes which
are best described as a sech? function (van der Kruit & Searle 1981).
This is thought to be partly a result of the distribution of stars per-
pendicular to the disc and partly a result of obscuration associated
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with the disc (Graham & Worley 2008). In order to attempt to ad-
dress this, in one set of tests, the 2D disc models were replaced
by a 3D model in which the model surface brightness had a sech?
distribution perpendicular to the plane. Obscuration was assumed to
be distributed the same as the stars (probably an oversimplification
of the true obscuration), and the projected 2D distribution was ob-
tained by integrating through the 3D distribution. The obscuration
was set to match the fits reported by Graham & Worley (2008).
However, when the tests for systematics, described in Section 7,
were made, there appeared to be no significant improvement in the
results. Inspection of typical PSF-convolved 3D models showed that
they were indistinguishable from 2D models (once allowance for
the apparent increase in observed scalelength had been made; see
Graham & Worley 2008) and it was concluded that the extra com-
putational expense of the 3D models was not justified. The likely
reason for the lack of distinction between 2D and 3D models is that,
in the CFHTLenS data, most galaxies are only marginally resolved,
and the semi-minor axis in particular is much smaller than the size
of the PSF. This test did, however, provide some reassurance that the
results would not be sensitive to this aspect of the galaxy models.

The 2D models of disc-dominated galaxies that were used here
had the ellipticity and orientation of the bulge component set equal
to that of the disc. The 3D models that were also tested had realistic
ellipticity gradients, caused by the bulge component being less flat-
tened than the disc. The lack of sensitivity to the 2D or 3D galaxy
structure arises because in the CFHTLenS data most galaxies are
only marginally resolved, and hence the bulge ellipticity has little
influence on the overall measurement, which is dominated by the
more extended disc component. In future surveys with better resolu-
tion, such as the Euclid’ mission, ellipticity gradients must be taken
account of (Bernstein 2010) and more complex galaxy models will
likely be needed.

APPENDIX B: PRIOR DISTRIBUTIONS

B1 Galaxy scalelength

The disc and bulge scalelength priors are derived from the fits to
HST WFPC2 observations of galaxies in the Groth strip by Simard
et al. (2002), shown in Fig. 1 for the disc-dominated galaxies. The
relation between the log of the median major-axis scalelength, r, and
i-band magnitude appears linear. A least-squares fit to the median
values in the range 18.5 < igj4 < 25.5 yields

log, [rq/arcsec] = —1.145 — 0.269(ig14 — 23). (B1)

In applying this relation to CFHTLenS we assumed igj4 = icpur-
Those measurements do not strongly constrain the functional form
of the scalelength prior: we adopted a prior of the form

p(r) o< rexp(—(r/a)®)

where the value of @ was adjusted to match the magnitude-dependent
median of the Simard et al. fits. The value of « was also not strongly
constrained by those data, so we adopted a value in the middle of a
range that appears to give a good representation of the distribution,
o = 4/3. With this choice of «, a = r;/0.833. One concern about
the use of the WFPC2 data might be that large, low-surface bright-
ness galaxies may have been missed owing to the limited surface
brightness sensitivity of the observations. While we cannot exclude
the possibility that some galaxies may be missed, we note that the
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Figure B1. The observed distributions of axis ratio (upper) and ellipticity
(lower) for disc galaxies with My < —19 in SDSS, compared with the model
function adopted for the CFHTLenS ellipticity prior (solid curves).

WEFPC?2 data extend to significantly fainter galaxy magnitudes than
CFHTLenS (Fig. 1) which mitigates against the possible loss of
low surface brightness galaxies at the CFHTLenS depth. The use
of the median galaxy size also guards against the loss of low sur-
face brightness galaxies. HST observations are currently the only
way of reliably probing the size distribution of galaxies on scales
~0.1 arcsec.

The distribution of bulge scalelengths (or equivalent half-light
radii) is more problematic. In principle, we need to consider the disc-
and bulge-dominated populations separately. The sizes of bulges as-
sumed in the models for the disc-dominated galaxies have been dis-
cussed in Section 3.2. The distribution of sizes of bulge-dominated
galaxies might, in principle, be obtainable from the Simard et al.
(2002) analysis; however these galaxies are a minority of the pop-
ulation, and given the degeneracies that exist between scalelength,
ellipticity and surface brightness profile, in noisy data, it is difficult
to obtain a robust estimate of the size distribution with present data.
In the local Universe, half-light radii of the most luminous early-
type galaxies are about 50 per cent larger than those of late-type
galaxies, but at the galaxy luminosities appropriate for CFHTLenS,
M ~ —19, they are about a factor of 2 smaller (Shen et al. 2003).
The distribution of early-type scalelengths is not well-known, but
we note that the details of the early-type prior are not too impor-
tant as they only account for about 10 per cent of the galaxies. We

therefore assign the same distributions to the half-light radius of the
bulge-dominated population as to the exponential scalelength of the
disc-dominated population, so that the half-light radii of early-type
galaxies are 0.6 times the half-light radii of late-type galaxies, con-
sistent with Shen et al. (2003). Future work should seek to refine
our knowledge of these distributions, particularly beyond the local
Universe.

B2 Galaxy ellipticity

Fits to faint galaxies do not strongly constrain the distributions
of galaxy ellipticity, so we make the assumption that faint galax-
ies have the same distribution of disc ellipticity as low-redshift
galaxies of the same luminosity in the Sloan Digital Sky Survey
(SDSS): disc ellipticities are determined largely by the disc’s incli-
nation, thickness and optical depth at the waveband of observation,
the latter being luminosity dependent (Unterborn & Ryden 2008).
Accordingly, we fit the ellipticity distribution of 66 762 SDSS disc-
dominated galaxies selected from DR7 (Abazajian et al. 2009) to
have g-band absolute magnitude M, < —19, to correspond in lumi-
nosity and waveband to galaxies selected at /' < 24.5 in CFHTLenS,
for which the median redshift is estimated as z >~ 0.66 (Hildebrandt
et al. 2012). The functional form adopted was

Ae (1 — exp [(mal])
(1 +e)e2 +ed)'?

where e = |e| and where the maximum ellipticity cutoff ey, =
0.804, obtained from fitting to the distribution, arises primarily
because of the finite thickness of galaxy discs. The circularity pa-
rameter ey = 0.0256, also obtained from fitting, reflects the intrinsic
non-circular symmetry of face-on disc galaxies: even face-on galax-
ies only rarely appear to have circular isophotes. The fitted value
for the dispersion was a = 0.2539. The normalization parameter
A was determined numerically. The distributions of axis ratio and
ellipticity for disc galaxies are shown in Fig. B1.

In principle, the ellipticity distribution should be a function of
galaxy luminosity. However, the prior distribution only has any
significant effect for the lowest signal-to-noise ratio galaxies: high
signal-to-noise ratio galaxies have well-defined likelihood values
and the posterior probability distribution is largely unaffected by
the prior. Accordingly we chose a galaxy luminosity appropriate for
the faintest galaxies in CFHTLenS selected at the median redshift,
and fixed that prior distribution to be the same for all galaxies.

A prior for the ellipticity distribution of bulge-dominated galax-
ies is not readily obtained. In the absence of better information,
we adopted a fit to the ellipticity distribution of bulge-dominated
galaxies in Simard et al. (2002) of the form

p(e) = € < €max (B2)

ple) o eexp [—be — ce’] (B3)

where the best-fitting values were b = 2.368, ¢ = 6.691 and where
the normalization was determined numerically.

B3 Galaxy bulge fraction

Likewise, the bulge fraction is not well-constrained by current
data, and even in the nearby universe the bulge fractions deduced
for bright galaxies are dependent on the models used to fit them
(Graham & Worley 2008). A reasonable distribution to assume,
and which is also consistent with fits to faint galaxy samples such
as Schade et al. (1996), is that there are two populations. Bulge-
dominated galaxies were fit by purely de Vaucouleurs profiles, and
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account for around 10 per cent of the galaxy population. Disc-
dominated galaxies were assumed to make up the remainder, and
we assumed the bulge fraction f = B/T to have a truncated normal
distribution in f with its maximum at f = 0 and with & = 0.1, trun-
cated so that 0 < f < 1. The bulge fraction was marginalized over as
described in the main text. The bulge fraction prior was independent
of other parameters.

B4 Prior iteration

In Paper II we proposed an iterative scheme to improve the accu-
racy of the prior probability distributions using the observed sample
of galaxies. In the STEP simulations the procedure worked well.
However, when applied to the CFHTLenS data, the iterations did
not readily converge. It appeared that the main cause of this prob-
lem was that in CFHTLenS, unlike STEP, the galaxies are only
marginally resolved, so that there are strong degeneracies between
size, ellipticity and surface brightness profile. Given that the data are
also noisy, it is not surprising that the iterations tended to converge
to arbitrary solutions.

Fortunately for CFHTLenS, the available HST and SDSS data
were sufficient to achieve adequate estimates of prior distributions.
In future surveys such as Euclid, it may be necessary to use the
survey itself to define the prior distributions. However, in that survey,
galaxies are expected to be rather well resolved, and it is likely that
iterative improvement of the prior would be effective.

APPENDIX C: BIAS IN THE MEAN
LIKELTHOOD ESTIMATOR

Here we discuss the expected bias in the mean ellipticity measured
for galaxies for a simplified example of a galaxy with a Gaussian
surface brightness profile convolved with a Gaussian PSF. Because
of the unrealistic Gaussian surface brightness profiles, the results
calculated cannot be transferred to the actual CFHTLenS analysis:
however, the Gaussian model provides a useful illustration of the
origin of bias in the mean ellipticity estimate. This work was done
independently of that of Refregier et al. (2012) and Melchior & Viola
(2012) but reaches similar conclusions. The work described here
investigates particularly the bias on the mean likelihood estimator
of ellipticity, rather than the maximum likelihood estimator, and
discusses also the correlation with the PSF that is induced by the
presence of noise. Rather than calculate bias in the Gaussian model
using a Fisher matrix approach, we explicitly calculate the shape of
the likelihood surface for some simple examples.

An elliptical object may be viewed as a sheared version of an
isotropic object, and we define the isotropic coordinates x; of pixel
i in terms of the observed coordinates x; as x; = Ax;, where

1-— (4] —e)
A= ( ) (€1
—en 14 e

and where ¢; and e, are the two components of ellipticity.

We define a Gaussian surface brightness profile as f(x;) =
exp [—1x7C 'x;] where the pixel surface brightness covariance
matrix is given by

52 14+ 2e + &2 2e,
(1—e?) 2e; 1 —2e; +¢2

where s is a size parameter and e = |e| = \/e} + €3.
If a Gaussian galaxy with pixel surface brightness covariance
matrix Cg is convolved with a Gaussian PSF with covariance matrix
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Cp then the resulting surface brightness distribution is Gaussian
with covariance matrix Cg + Cp.

If we fit a model surface brightness distribution, f” to some
pixelated data f, the log(likelihood) of the fit may be written as

m _2
logchM (C3)

20 X,
where the sum is over pixels i, the background noise has rms o
and is assumed stationary, the model galaxy’s amplitude has been
marginalized over and an arbitrary additive constant has been ne-
glected (Paper I).

If the data correspond to some Gaussian galaxy convolved with a
Gaussian PSF, with independent, stationary Gaussian noise added to
each pixel, we may write f; = Nexp[—%xir (CG + Cp)_'x,-] + n;
for pixel i, where NV is a normalizing constant and n; is a Gaussian
random variate representing the pixel noise. Neglecting the bias
caused by the term n;, the galaxy’s profile-weighted signal-to-noise
ratio is given by vsy = (3; f?)!/?/o which allows us to define the
normalization constant as

O VSN

N=——— (4

7172|Cg + Cpl /4"

Hence the log(likelihood) of the data given some model galaxy
with covariance matrix Cy, convolved with the PSF, may be written
as

2
[Z (Ne’%x;T(CGH:P)*lxi 4 ni) e*%xiT(CMJrCP)’lxi}

202 Z efxf(c.wcp)*lx,

log L =

(C5)
and so the expectation value of the log(likelihood) for this particular
model M is

—1
27N2|((Ce+Co) !+ (Cu+Co) ') |
O'2|C|v| + Cpl]/2

M2
niJ;
+ <[Z / }2 > (Co)
o> M

where fM = e~ 3* C+Ce)'xi and (S, fM) = 0. We may use the
identity (A~' + B~' = A(A + B) !B in the first term. The second
term has a value of unity, since ([> fMn;]*) =02 fM[2, and
ignoring this irrelevant additive constant, we obtain

27N?|Cg + Cp||Cm + Cp|'/?

02|Cg +2Cp + Cu|

(log£) =

(log £) =

12
Ce + cp) ‘CM +Cp|'/?

2
2v5y

|Ce +2Cp + Cul

203 [(Co + Co) "2 € + Coy 1|17

I(Cc +Cp) ' +(Cm+Cp)'I. (C7)

We can repeat this calculation for a set of models M, each with
a different ellipticity or size, and hence build up the expected like-
lihood surface as a function of model ellipticity. Fig. C1 shows
contours of (log, £) for an example where the galaxy ellipticity
was e, = {0.3, 0} and the PSF ellipticity was epsp = {0, 0.3}, with
size o = 3 pixels for both galaxy and PSE. The choice of PSF ellip-
ticity is extreme, much larger than the PSF ellipticity in CFHTLenS,
to better illustrate the bias. Although the location of the maximum
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Figure C1. Contours of log, £ for the example Gaussian model and PSF
described in the text. The cross at e; = 0.3, e2 = 0 denotes the ellipticity
of both the test galaxy and the maximum likelihood. The cross at e; = 0,
e = 0.3 denotes the ellipticity of the PSE. Contours are plotted at intervals
of 0.5 in log, £ below the maximum, for a galaxy with signal-to-noise ratio
vsn = 20. The contour interval scales as U%N.

is unbiased, the likelihood distribution has a substantial asymmet-
ric distortion, both towards e = 0 and towards the PSF ellipticity,
which results in the mean ellipticity being biased. In these illus-
trations, the size of the model galaxy has been held fixed (i.e. the
galaxy size is assumed to be known). If this assumption is re-
laxed, and the galaxy size is also treated as a free parameter, the
likelihood surface changes shape, with a bias in both the mean
and the maximum likelihood, and an excess of likelihood at ex-
treme ellipticity can be produced (see also Melchior & Viola 2012;
Refregier et al. 2012). We note that the application of a Bayesian
prior would suppress that excess likelihood, but we do not consider
that eftect here.

The upper panel of Fig. C2 shows the shear bias, plotted as
1 4 m, expected in this simple model, for fixed galaxy size, for a
simplified case where a population of randomly oriented Gaussian
galaxies, all with intrinsic ellipticity e, = 0.25 and constant shear
g = {0.05, 0}, have been measured with a Gaussian PSF, the same
size as the galaxy, with epsp = {0, 0.1}. The lower panel shows the
expected cross-correlation between the galaxy and PSF. It can be
seen that both measures show significant departures from zero bias
at low signal-to-noise ratio, vsy < 20. In this model, even larger
biases are seen for Gaussian galaxies that are smaller than the PSE.
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Figure C2. Upper panel: the expected shear bias, 1 4 m, arising from the
bias in the mean ellipticity for the Gaussian model described in the text, as a
function of signal-to-noise ratio vsn. Lower panel: the expected PSF—galaxy
cross-correlation signal, £psp—galaxy. in the absence of shear, as a function of
VSN.

In CFHTLenS, many galaxies are smaller than the PSF; however
the significant difference in surface brightness profiles of both the
galaxies and the PSF means that these results cannot be transferred
quantitatively to the actual data. Our approach, described in Sec-
tion 8, was instead to measure the effects from realistic simulations
designed to match the data.
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