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ABSTRACT

Lagrangian reconstruction of large-scale peculiar velocity fields can be strongly affected by

observational biases. We develop a thorough analysis of these systematic effects by relying on

specially selected mock catalogues. For the purpose of this paper, we use the Monge–Ampère–

Kantorovitch (MAK) reconstruction method, although any other Lagrangian reconstruction

method should be sensitive to the same problems. We extensively study the uncertainty in

the mass-to-light assignment due to incompleteness (missing luminous mass tracers), and the

poorly determined relation between mass and luminosity. The impact of redshift distortion

corrections is analysed in the context of MAK and we check the importance of edge and

finite-volume effects on the reconstructed velocities. Using three mock catalogues with dif-

ferent average densities, we also study the effect of cosmic variance. In particular, one of

them presents the same global features as found in observational catalogues that extend to 80

h−1 Mpc scales. We give recipes, checked using the aforementioned mock catalogues, to handle

these particular observational effects, after having introduced them into the mock catalogues

so as to quantitatively mimic the most densely sampled currently available galaxy catalogue of

the nearby Universe. Once biases have been taken care of, the typical resulting error in recon-

structed velocities is typically about a quarter of the overall velocity dispersion, and without

significant bias. We finally model our reconstruction errors to propose an improved Bayesian

approach to measure �m in an unbiased way by comparing the reconstructed velocities to the

measured ones in distance space, even though they may be plagued by large errors. We show

that, in the context of observational data, it is possible to build a nearly unbiased estimator of

�m using MAK reconstruction.

Key words: methods: analytical and numerical – galaxies: distances and redshifts – dark

matter – cosmological parameters.

1 I N T RO D U C T I O N

Galaxy redshift catalogues provide us with the radial velocities of

the galaxies,

cz = H0 r + vr, (1)

which are partly due to the global Hubble expansion (H0r with H0 the

present value of the Hubble parameter) and partly due to the line-of-

sight components of the peculiar velocities (vr). Peculiar velocities

are the deviations of galaxy velocities from the uniform Hubble

expansion, due to the non-homogeneous distribution of matter in

the Universe. The peculiar velocities are thus tracers of mass dis-

tribution in the Universe and can have far-reaching implications for

⋆E-mail: lavaux@iap.fr

cosmology. As tracers of dark matter, peculiar velocities can be used

to determine the local and global distribution of dark matter. From

expression (1), it is evident that observations of galaxy redshifts (z)

supplemented by measure of radial distances (r), would yield the

peculiar velocities. However, measuring distances is a non-trivial

exercise. The Tully–Fisher (TF) relation, surface brightness fluctu-

ations, the Faber-Jackson relation for ellipticals (and their siblings,

including the fundamental plane and the Dn − σ methods, the Tip

of the Red Giant Branch, Cepheids and SNIa) are the most usual

methods for obtaining distances. The data gathered are, however,

rather sparse: out of about a million galaxies whose redshifts are

presently known with surveys such as 2dF and Sloan Digital Sky

Survey (SDSS) only a few thousand have measured distances. More-

over, distances for most of these galaxies have too large peculiar

velocity errors (due essentially to errors in distance measure-

ments) to be useful in studying dynamics. For instance, distance
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indicators such as the TF relation suffer from 20 per cent relative

distance errors and thus produce quite noisy measurements at rel-

atively moderate redshifts (i.e. cz � 3000 km s−1). The data also

suffer from selection biases (Strauss & Willick 1995; Tully & Pierce

2000). One way of reducing the error bars on distances is to average

over many distance measurements for galaxies in clusters or groups

and also by combining the results from different distance estimators.

This treatment decreases the error bars on distances to about 8 per

cent relative distance errors (Tully et al. 2007). Even though all these

difficulties can be surmounted, one can finally hope to only have a

sparse sample (as compared to redshift samples) of radial compo-

nents of peculiar velocities. Fortunately, we now have Lagrangian

velocity reconstruction schemes that are based solely on current red-

shift positions of mass tracers. The reconstructed velocities depend

on cosmological parameters. Thus, comparing predictions obtained

through Lagrangian reconstruction algorithms and the measured ve-

locities may give estimations of these parameters.

This brings us to the main point that this paper tries to address:

developing a robust and unbiased method of Lagrangian peculiar

velocity reconstruction using redshift catalogues, in particular when

observational effects distort most of the required data needed for

the reconstruction of the dynamics. The reconstructed velocities are

then compared to the measured ones using an ad hoc algorithm to

yield a measurement of �m, the mean matter density of the Universe.

Throughout the paper, we will try to mimic observational ef-

fects as they appear in the most densely sampled currently available

galaxy catalogue of the nearby universe which has been compiled

by one of the authors (R. B. Tully). This galaxy catalogue is built

from different sources such as ZCAT (Zwicky Catalog; Huchra et al.

1992) and SSRS (Southern Sky Redshift Survey; da Costa et al.

1988). Only galaxies for which cz � 8000 km s−1 have been intro-

duced in the catalogue. This catalogue is named NBG-8k, standing

for NearBy Galaxy catalogue with a depth of 8000 km s−1. Al-

though selection criteria for this catalogue are not well defined, it

will prove to be useful for the study of smaller galaxy catalogues

such as NBG-3k (Tully et al. 2007).

For the purpose of this paper, we use a recently developed

technique, called the Monge–Ampère–Kantorovitch reconstruction

method (hereafter MAK), which is an approximation to the full non-

linear dynamics to trace orbits back in time. This is a Lagrangian

method, such as PIZA (Particle Interchange Zel’dovich Approxima-

tion; Croft & Gaztanaga 1997) or the Least-Action method (Peebles

1989), and not a Eulerian technique such as, e.g., POTENT

(Bertschinger & Dekel 1989). One must note that the results of

this paper are also valid for the other Lagrangian reconstruction

methods as all the effects we are going to analyse are explainable in

terms of gravitational dynamics. The MAK reconstruction has al-

ready been largely discussed when applied on numerical simulations

(Brenier et al. 2003; Mohayaee et al. 2006). It is based on assum-

ing that the dark matter displacement field is convex and potential,

i.e. irrotational. In doing so, we exclude displacement fields which

include multistreaming regions. The main result is that it is then

possible to reconstruct accurately and uniquely the displacement

field of dark matter particles between their original position and

their current position. Practically, to solve the MAK problem, one

must minimize a cost function for the assignment of a dark matter

particle at the present comoving position xi and its initial comoving

position qj:

Sσ =
N

∑

i=1

[xi − qσ (i)]
2. (2)

If the Universe is assumed to be initially homogeneous, which is a

fair hypothesis supported by CMB data (e.g. Wilkinson Microwave

Anisotropy Probe (WMAP) first year in Bennett et al. 2003), 1 then

qj must be distributed on a uniform grid and the solution to the

MAK problem is unique and given by the assignment σ which min-

imizes Sσ . The derived solution is then necessarily irrotational and

derives from a convex potential. To solve this problem, we have

implemented a parallel version of the so-called ‘auction’ algorithm

proposed by Bertsekas (1979).2 Of course, as we are using an ap-

proximation to the dynamics, the solution to the problem will be

only valid above some scale (typically a few h−1 Mpc). Once the so-

lution is found, the immediate output of MAK reconstruction is the

non-linear displacement field ψ(q) = x(q) − q, which can be used

to find the peculiar velocity field v using the first-order Zel’dovich

approximation:

vi = βψi , (3)

where the subscript i indicates the comparison is achieved on the

corresponding field averaged over the object i (i.e. in a Lagrangian

way), and the linear growth factor β ≃ �5/9
m (Bouchet et al. 1995).

This best fit for β is valid as soon as �m + �� = 1, �� being

the present dark energy density. It appears then that a direct com-

parison of ψi against vi should in principle give us β and thus �m.

Though naive measurements (Mohayaee & Tully 2005) and prelimi-

nary studies (Branchini, Eldar & Nusser 2002; Phelps et al. 2006) on

mock redshift catalogues have already been tried, the observational

biases and systematic errors in the velocity–velocity comparison

have never been studied thoroughly.

This paper is organized as follows. In Section 2, we describe

the simulation and the basic mock catalogues that are used in the

rest of this paper. Subsequent mock catalogues integrate more and

more observational features but are still based on the same origi-

nal basic mock catalogues presented in this section. Section 3 gives

a model for the error distribution on MAK velocities and discuss

the first problematic features of the comparison between MAK and

measured velocities. This error distribution helps us in particular

to establish the likelihood analysis in Section 7. We go then to the

first main topic of this paper in Section 4 by studying the systematic

errors introduced by arbitrary mass-to-light assignments in redshift

catalogues. This section includes a study of missing mass correction

(Section 4.1), unknown M/L function (Section 4.2) and incomplete-

ness effects (Section 4.3; technical details are given in Appendix C).

In Section 5, we discuss the problem of redshift distortions and the

way to account for it during the MAK reconstruction. Section 6

is devoted to the handling of finite-volume and edge effects, i.e.

issues related to the zone of avoidance (ZOA) (Section 6.1), the

choice of the Lagrangian volume of the reconstruction (Section 6.2)

and finally the so-called cosmic variance (Section 6.3). The last

section (Section 7) of this paper investigates the effect of distance

measurement errors on the comparison between reconstructed and

1 Brenier et al. (2003) actually show the uniformity is even required to prevent

singularities in the solution of the Euler–Poisson system of equations.
2 We implemented a parallel version for shared-memory supercomputers and

Message Passing Interface (MPI) clusters. On the Magique2 cluster, it needs

50 min on two processors to solve the assignment of 74 000 particles. The

algorithm is already sparse, i.e. it only looks for candidates for assignment

in a limited region of the catalogue. The MPI efficiency is here optimal

using two processors. It must be noted that the time complexity depends

highly on the catalogue that is being reconstructed. For a given catalogue,

the time needed to solve the assignment problem increases as N2.25 with N

the number of particles.
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measured velocities, and proposes a maximum-likelihood estimator

(Section 7.2) to account for them in the measurement of �m. Results

given by this estimator are then discussed in Section 7.3.

2 M O C K C ATA L O G U E S

To study various effects and systematic biases on the MAK recon-

structed velocity field, we generated a number of mock catalogues

extracted from a N-body simulation (Section 2.1). Although many

recipes will be employed later to address various observational bi-

ases, we will always start from the same three3 ‘main’ halo cat-

alogues as described in Section 2.2. The first catalogue aims to

reproduce to some extent the main features of the local universe, in

particular the presence of a large cluster at about 40 h−1 Mpc and

a supercluster at about 70 h−1 Mpc. The second and the third cata-

logues have less salient features but represent locally overdense and

underdense realizations in order to address the problem of cosmic

variance.

2.1 The N-body sample

Our 1283 particles N-body sample (Mohayaee et al. 2006) was

generated with the public version of the N-body code HYDRA

(Couchman, Thomas & Pearce 1995) to simulate collisionless struc-

ture formation in a standard � cold dark matter (�CDM) cosmol-

ogy. The sample covers a comoving volume of 2003 h−3 Mpc3. The

mean matter density is �m = 0.30 and the cosmological constant

�� = 0.70. The Hubble constant is H0 = 65 km s−1 Mpc−1. The

normalization of the density fluctuations in a sphere of radius 8 h−1

Mpc is σ 8 = 0.99. We note that this value of σ 8 is significantly larger

than the value suggested by present WMAP data which set σ 8 =
0.74 (Spergel et al. 2007), but this should not significantly affect

the results presented in this paper. In fact, a lower σ 8 compared to

0.99 would reduce both non-linearities and cosmic variance effects,

hence improving the quality of the measurements.

As the velocity field presents significant fluctuations on a larger

scale than for the density field, one may worry about the small size

of the simulation volume. We have checked, using linear theory,

that the velocity dispersion in 2003 h−3 Mpc3, for our cosmology, is

40 km s−1. This value has to be compared to the typical errors

appearing while doing velocity reconstructions to ensure that cosmic

variance effects are negligible for our purpose.

2.2 The basic mock catalogues

To build mock catalogues, we have selected haloes from the

N-body experiment using a standard Friend-Of-Friend algorithm

with a traditional value of the linking parameter given by l = 0.2

(Efstathiou et al. 1988). Haloes with less than five particles, i.e. with

mass smaller than Mmin = 1.62 × 1012 h−1 M⊙, were discarded.

Fig. 1 shows the good agreement between the measured halo mass

function and the Sheth & Tormen (2002) model for haloes with M

� Mmin. However, about 63 per cent of the mass is not clumped

in these haloes and is distributed in the background field. In real-

istic galaxy samples such as the NBG-8k or the Two Micron All

Sky Survey (2MASS) catalogue, the lower mass cut-off is of the

order of 1011 M⊙, a value much smaller than our Mmin. To mimic

galaxies with mass smaller than Mmin, as will be required in the

following, we just use dark matter particles unassigned to any halo

3 The computationally high cost of the reconstruction considerably limits

the number of possible realizations.
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Figure 1. Sheth & Tormen mass function/diffuse mass. The top panel of

this plot gives the number density of haloes in a mass bin as a function of

the mass. The round points give the measurement of this function in the halo

catalogue whereas the dashed line is obtained using the Sheth & Tormen

(2002) theory. The residuals between the prediction and the measurement

are given in the lower panel (relative differences). Most of the time, the

points are within a few per cent of the theoretical prediction.

as tracers. The catalogue containing all the haloes and all the field

particles will be called FullMock. One could here worry that the

N-body sample that we are using has a too low resolution as the

spatial distribution of small haloes is biased but not the particles of

the background field. We have actually checked that using a 5123

N-body sample with nearly the same cosmology [the simulation is

described in Colombi, Chodorowski & Teyssier (2007)] does not

change any measurements presented in Section 3.

Out of FullMock, we have extracted three spherical cuts of radius

40 h−1 Mpc (hereafter denoted by 4k-mockX), where the velocity–

velocity comparisons are conducted, and twice deeper counterparts

(hereafter denoted by 8k-mockX) are used to give better constraints

(Section 6.2) on the reconstruction within the volume of analyses.

Each of these catalogues is centred in a different place in the simu-

lation such that

(i) 4k-mock6 is mildly overdense, with an effective mean matter

density �eff = 0.35, and contains 495 haloes. It is designed in such a

way that large voids and large concentrations of matter (clusters or

superclusters) are present near its boundaries, similarly as found in

real redshift catalogues of our local neighbourhood, such as the UZC

(Upated Zwicky Catalog; Falco et al. 1999), the NBG-3k (Shaya,

Peebles & Tully 1995; Tully et al. 2007) and the NBG-8k. This cata-

logue and its deeper counterpart, 8k-mock6, are particularly suited to

address edge effects on the NBG-3k (which terminates at Hydra and

Centaurus clusters) and the NBG-8k (which stops at the Great Wall),

respectively.

(ii) 4k-mock7 is highly overdense, with �eff = 0.50, and contains

656 haloes. Very little mass has come in and out of this volume:

it behaves somewhat like an isolated universe, with small external

tides.

(iii) 4k-mock12 is underdense, with �eff = 0.19, and contains 213

haloes. It presents as well a low level of density fluctuations along

its boundary.

While there is no ambiguity in setting up a 1283 MAK mesh

when using all the haloes and the background particles (such as

in FullMock), it is less trivial to consider lower resolution meshes

that will be used in some of the subsequent analyses. Indeed, the

number of mesh elements assigned to each tracer is not necessarily

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 1292–1318
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an integer anymore. Appendix A details the general procedure used

to associate elements of the MAK mesh to each tracer.

3 E R RO R S I N M A K V E L O C I T I E S

Before going over observational issues, we address errors intrinsic

to MAK reconstruction. First, there is scatter in the reconstruction

of the displacement field itself which is expected to be rather small

(Mohayaee et al. 2006). Second, there is scatter due to the Zel’dovich

approximation one uses to convert a displacement field into a veloc-

ity field and to deal with redshift distortions. An accurate knowledge

of the distribution of errors on the reconstructed velocities is even-

tually required for the likelihood analysis we want to introduce in

Section 7.2. In this section, we measure such a distribution in real

space while redshift space will be addressed in Section 5. In prin-

ciple, the width of such a distribution is expected to increase when

observational biases are taken into account while its shape should

not change significantly.

We consider, in this section, reconstructions based on the cata-

logue FullMock, for which periodic boundary conditions are applied

to avoid edge effect problems. We also assume that we know the

mass of all of described catalogue objects (haloes and individual

particles). Our subsequent reconstructions have a resolution within

643 and 1283 mesh elements. We will thus present two reconstruc-

tions obtained on two different initial MAK mesh, 1283 and 643,

obtained using the procedure presented in Appendix A. The results

on the reconstructed displacement field are given in Fig. 2. These

plots give the distribution of differences, PDE, between the line of

sight component of the reconstructed displacement field and the

‘exact’ one, given by the simulation.

The dot–dashed and dashed curves correspond to a least-square

fit of the function PDE corresponding to the 1283 reconstruction,

respectively, with a Gaussian fit, and a Lorentzian fit given by

PLor(x) =
1

π B

1

1 + x2

B2

. (4)

Examination of Fig. 2 supports the Lorentzian approximation with

B = 35 km s−1, which reproduces better the long tails of PDE than

the Gaussian.
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Figure 2. Error in reconstructed displacements. This plot displays the prob-

ability distribution of the quantity β(�r,rec − �r,sim) measured in FullMock

(solid curve), where �r,rec and �r,sim are the line-of-sight component of the

reconstructed and simulated displacement fields, respectively, after choos-

ing an observer at the centre of the simulation box. The dashed and dot–

dashed curves give the best fit of a Gaussian and a Lorentzian distribution,

respectively.
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Figure 3. Error in reconstructed velocities. Same as in Fig. 2 but the solid

curve corresponds to the probability distribution of the quantity vr,rec −
vr,sim, wherevr,rec andvr,sim are the line-of-sight reconstructed and simulated

velocities, respectively.

The width, B, of PDE is rather small compared to the line-of-sight

dispersion, 〈β2�2
r 〉1/2 ≃ 292 km s−1, as expected. Naturally, the

function PDE is slightly flatter and larger for the 643 case than for

the 1283 one. However, the far end tails of PDE are the same for

643 and 1283. In this regime, the measurements are not influenced

by the resolution of the grid used to perform the reconstruction but

rather by the inability of MAK to reproduce the internal dynamics

of massive, relaxed objects (Mohayaee et al. 2006).

Fig. 3 is similar to Fig. 2, but considers line of sight reconstructed

velocities versus ‘exact’ ones. Although Zel’dovich approximation

introduces extra noise as shown by a wider width of the distribution,

PDE remains roughly Lorentzian with a small width B = 48 km s−1.

This error variance is grossly 25 per cent higher than the expected

velocity field variance on the simulation volume (Section 2.1). We

are thus not affected by cosmic variance effects that could have been

induced by modes larger than the box size of the simulation.

These results are fully supported by the examination of Fig. 4.

However, the lower panels of this figure show that the joint distri-

bution P(vsim, vrec) presents non-trivial tails above the diagonal line

in the lower left quadrant and below the diagonal line in the upper

right quadrant, respectively. These tails do not disappear even after

smoothing of the velocity field with a 5 h−1 Mpc Gaussian window.

This is due to non-linear features in the dynamics not taken into

account by our MAK+Zel’dovich prescription, which produces a

slightly smoother velocity field than the real one. As a result, upper

left-hand panel of Fig. 4, which corresponds to the reconstruction,

is less contrasted than the upper right one, which corresponds to the

simulation.

These non-linear tails give a propeller shape to P(vsim, vrec) which

is susceptible to inducing a small bias on the final velocity–velocity

comparison. For instance, one can estimate the slope of the lower

left scatter plot of Fig. 4 using the ratio s = σv,rec/σv,sim, where

σ 2
v,rec and σ 2

v,sim are the variances of the reconstructed and simulated

velocity fields, respectively. In this case, the estimated β is biased

to higher values by about 7 per cent. However, visually inspecting

the scatter shows no measurement bias should occur if only the cen-

tral part of the scatter is used for the computation. To achieve this,

we have first applied an adaptive SPH filter on the scatter plot to

produce a Probability Density Function (PDF), which is probed by

the scatter in the points, on a regular mesh grid. We then compute

the 1.5σ isocontour which encloses the region where the integrated

PDF is equal to 68 per cent. This procedure has already been used in

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 1292–1318
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Figure 4. Velocity field reconstruction on FullMock. Top panels: a slice of the line-of-sight component of the simulated velocity field, vr,sim, and the

reconstructed one, vr,rec, after smoothing with a 5 h−1 Mpc Gaussian window. The observer is at the centre of this slice. Bottom panels: scatter plots between

vr,sim and vr,rec for individual haloes (left-hand panel) and after smoothing (right-hand panel).

Colombi et al. (2007) for the gravity–velocity comparison with total

success. Only the points enclosed by the 1.5σ isocontour are used to

compute the new smed,68 coefficient. The β parameter deduced from

smed,68 is now statistically unbiased. Similarly, we define two other

slope estimators smin,68 and smax,68 whose relevance is discussed in

Appendix B. In this paper, until Section 7, we will only discuss

the measurement of �m obtained through the estimation of smed,68.

The �m obtained by this method is identified by a ‘1.5σ ’ to make

a difference with the one obtained through the likelihood analysis

that will be established in Section 7 and which is identified by a ‘L’

in the tables and figures. A test of this method on a simulated scat-

ter distribution, whose shape is built on analysis of reconstruction

errors, is detailed in Appendix D.

4 M A S S - TO - L I G H T A S S I G N M E N T

Most reconstruction methods, including ours, infer the total matter

distribution as a function of the visible matter distribution traced

by galaxies. The fundamental assumption one usually makes is that

the relation between these two distributions is highly deterministic.

In other words, one assigns to each galaxy of a given luminosity L

a dark matter concentration (a halo) of mass M = f (L). However,

there are several issues in this procedure:

(i) Mass-to-light ratio. The choice of a function f(L) considerably

influences the results and is expected to introduce significant bias

on the measured β if performed unwisely. Now, the function f (L)

is coarsely determined (Marinoni & Hudson 2002, hereafter MH;

Tully 2005) from direct measurements in observations. One way to

infer this function is to rely on semi-analytic models of galaxy for-

mation, but this represents a very strong prior on the measurements.

Furthermore, f (L) remains a mean relation around which there can

be some significant scatter. This dispersion can as well introduce

some significant biases.

(ii) Missing tracers/Magnitude limitation. Even if function f (L) is

perfectly known, fainter galaxies are still missing in the catalogues

due to the limitations of observational instruments. For instance,

in magnitude-limited catalogues, the number density of detected

galaxies decreases with distance from the observer. These missing

tracers have unknown positions and correspond to a part of the dark

matter distribution which is totally undefined. This missing mass

has to be taken into account in some way.

In what follows, we will first address the second issue in a very

simple way which assumes that the function f (L) is well known

(namely the masses of dark matter haloes themselves) but there is a

fixed low-mass cut-off. The problem then consists in determining the

unknown part of the dark matter distribution (namely the particles

unassigned to any halo). Clearly, it is correlated with the detected

mass tracers but less clustered. There are two following extreme

ways to locate this missing mass:

(a) associate it with the existing tracers as usually done with the

analysis of real observations,

(b) associate it with a uniform background.

Of course, the real solution is somewhat intermediate between (a)

and (b) as will be shown in Section 4.1.

Then, we turn in Section 4.2 to the issue of the choice of f (L).

In this paper, we prefer to be as free as possible from strong priors

so we deliberately do not use results from semi-analytic models of

galaxy formation. Instead, we use determinations of f (L) from ob-

servational data but, unfortunately, there are large uncertainties in

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 1292–1318
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these measurements. The point here is to quantify, quite heuristically

though, the effect of these uncertainties, random or systematic, on

the measurement of β. Indeed, one is confronted with both a possi-

bility of a wrong approximation of f (L) and most probably a large

scatter around this mean relation.

In sufficiently deep galaxy catalogues, the effect of the missing

tracers is expected to be negligibly close to the observer and, in

general, to increase with the distance from the observer. With ap-

propriate weighting of the data, one can minimize the bias brought

by the procedure used to infer the missing mass distribution far from

the observer. In Section 4.3, we will illustrate this point by consider-

ing the case of a magnitude-limited catalogue where all the missing

mass is associated with the existing tracers [Method (a) above].

4.1 Missing tracers

Fig. 5 shows the expected fraction of the total mass below a fixed

threshold as a function of �m, using the Sheth & Tormen (2002)

model (see also Fig. 1). The solid line corresponds to the mass

cut-off of haloes in FullMock and agrees, as expected, with the

measurement in the simulation for �m = 0.30. Here, 63 per cent

of the mass is outside of the haloes, which represent our ‘galaxies’

with known M/L ratio. The particles not linked to the haloes rep-

resent the missing mass. In Fig. 4, their exact location was used to

perform the reconstruction. The only information available now is

the distribution of ‘visible galaxies’. The missing mass needs to be

redistributed using only these pieces of information. We propose

two extreme ways to do so.

I. All missing mass to background. Prior to the reconstruction, the

missing mass is divided into particles which are randomly put in the

catalogue following a Poissonian distribution. In the example illus-
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Figure 5. Diffuse mass. In this plot, we represent the fraction of the clustered

mass below two mass resolutions for a standard �CDM type cosmology

(h = 0.65, σ 8 = 0.99). We used a power spectrum as proposed by

Bardeen et al. (1986). The curvature of the Universe is kept flat while

�m varies. This fraction is plotted for mass resolutions: 2.5 × 1012 M⊙
(corresponding to the lower mass limit of haloes in our simulation) and

1011 M⊙ (≃109 L⊙,B ). The unclustered fraction in FullMock is given by

the back filled circle. The fraction of mass below both of these limits is still

considerable.

trated by the right-hand panels of Fig. 6, we choose for simplicity

particles of the same mass as those in the simulation.

II. All missing mass in haloes. The missing mass is attributed

to the existing haloes in proportion to their masses, as illustrated

by left-hand panels of Fig. 6. This approach is equivalent, in real

observations, to multiplying the M/L ratio of galaxies or group of

galaxies by a constant α > 1.

Obviously, in Case I, the screening effect due to the background

is exaggerated, hence the reconstructed velocity is less contrasted

and β is overestimated to compensate for this. In Case II, on the

other hand, the potential wells are more contrasted than they should

be, which leads to the opposite effect. At this point, it is extremely

tempting to try to find a simple compromise between Cases I and

II as illustrated by middle panels of Fig. 6 where 60 per cent of the

missing mass was linked to the tracers and the remaining to a uniform

background. With this particular choice of the redistribution, the

match between the reconstructed and the simulated velocity fields

is spectacular. This result is non-trivial given the simplicity of the

handling of this 63 per cent missing mass all the more since the

scatter on the middle lower panel of Fig. 6 is of the same order of

that of the lower left panel of Fig. 4, where all the tracers contribute

optimally.

Although the choice of the optimal redistribution remains a priori

unknown in a real galaxy catalogue, one can at least infer error bars

from Cases I and II. In that framework, Fig. 6 unfortunately provides

quite a bad constraint on β, 0.36 �β � 0.85. However, in real galaxy

catalogues, such as the NBG-3k or the NBG-8k, the minimum lu-

minosity is of the order of 109 L⊙. This corresponds to a less abrupt

mass cut-off, Mcut ∼ 1011 M⊙, than in Fig. 6, where Mcut = 2.5 ×
1012 M⊙. Therefore, one expects the problem of missing mass to be

less salient in real observations, as illustrated by the dashed curve

of Fig. 5. Furthermore, an appropriate use of mock catalogues can

help at calibrating the redistribution of mass, as performed in middle

panels of Fig. 6.

4.2 Mass-to-light ratio

To test how the choice of mass assignment to galaxies or group of

galaxies affects the results, we consider the three following cases,

as summarized in Fig. 7:

(i) T-C case. A galaxy catalogue is extracted from FullMock

by associating a luminosity L(M) to each dark matter halo or

background particle using Tully’s latest best fit of the group mass–

luminosity relation (Tully 2005, see fig. 8)

L B

L⊙
= 2700

(

M

M⊙

)0.59

e
−6×1011 M⊙/M

, (5)

which gives the luminosity in the B band for groups in the mass range

1011–1015 M⊙. Then, a new mass is given to each tracer assuming

M/L = constant, (6)

as often used in the literature, and MAK reconstruction is performed

on a resampling of this mass distribution.

(ii) T-MH case. A less extreme case than assuming M/L= con-

stant consists in separating the tracers in three broad classes: faint

galaxies, luminous galaxies and group/clusters of galaxies, as per-

formed by MH. To do this, they used a simple mapping between

the Schechter luminosity function and the Press–Schechter mass
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Figure 6. Diffuse mass correction. The top panel gives a slice of the line-of-sight component of the simulated velocity field, after smoothing with a 5 h−1 Mpc

Gaussian window. The observer has been put at the centre of this slice. The second row of panels represents the line-of-sight component of the reconstructed

velocity field, smoothed in the same way, for different corrections of the diffuse mass. The third row of panels gives the scatter distribution of individual

reconstructed velocities of haloes versus simulated ones. The left-hand panels give the result of a reconstruction on a mock catalogue which only contains the

haloes and not the background field but at the same time conserves the total mass of the catalogue by reassigning the missing mass to the haloes. The right-hand

panels give the result for a reconstruction based on a mock catalogue for which the missing diffuse mass is represented by a background field composed of

particles placed randomly in the catalogue. The centre panels give the result of a reconstruction on a mock catalogue which only contains the haloes and a

random background field. The mass that has been initially removed from the mock catalogue (the background ‘galaxies’) is reassigned as follows: 60 per cent

to haloes and 40 per cent to the background.

function that reads as follows:

M/L = 1.15 107

(

L

L⊙

)−0.5

h
M⊙
L⊙

L

L⊙
< 4 × 1010

M/L = 128 h
M⊙
L⊙

4 × 1010 <
L

L⊙
< 4 × 1011

M/L = 3.6 10−4

(

L

L⊙

)0.5

h
M⊙
L⊙

L

L⊙
> 4 × 1011

(7)

as shown in upper panel of Fig. 8. In this framework, we generated

the same catalogue as in T-C case but it was analysed assuming the

M/L function given by equation (7).

(iii) TS-T case. Assuming that we have an unbiased estimator

of the M/L function, there can still be a scatter around this mean

value that can increase the errors and also introduce systematic bias.

We test this by multiplying the mass of each halo of FullMock by

a random number x such that log 10 x is uniformly distributed in

[−1, 1], prior to MAK reconstruction, which is performed on a

resampling of the halo catalogue following the procedure explained

in Appendix A. Note that the mass of background particles remains

unchanged during the process, which corresponds to 63 per cent of

the matter distribution being unaffected by the scattering. However,

applying the scatter to small mass haloes only introduces a local

additional noise which should not have any significant consequences
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Figure 7. M/L assignment. Sketch of the procedures used to test the influ-

ence of a choice of a M/L assignment, as explained in the main text.
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Figure 8. M/L function. The above two plots give the forward and inverse

mass-to-light functions for both Tully (2005) and Marinoni & Hudson (2002)

fits. The top panel gives the M/L as a function of the luminosity L, the bottom

panel gives L/M as a function of the mass M.

on the reconstruction accuracy for which deeper potential wells are

in fact more critical.

We want to highlight the fact that each of these transformations,

actually corresponding to transforming the mass of an object of

FullMock through a M → L → M operation, does not correspond to

an identity. One actually gets a new set of masses attached to each

tracer which is different from the original one. Moreover, the output

mass distribution Pmass,out(M) may be fundamentally different from

the input one Pmass,in(M). Indeed, computing Pmass,out(M) is equiva-

lent to performing a weighted average of Pmass,in(M). This procedure

induces a global reshaping of the distribution. Consequently, the sta-

tistical properties of the corresponding mass density field may be

affected.

More technically, during the procedure used to construct all the

catalogues above, total mass conservation is enforced. Note that the

total mass depends on �mh2, but this normalization does not affect

MAK displacements, which are sensitive to density contrasts only.

Parameters �m and h in fact intervene while performing velocity–

velocity comparison and while converting distances to velocities

(Section 7), respectively.

Results are summarized in Fig. 9 and Table 1.

As expected, random uncertainty on the mass determination does

not introduce any bias, it only increases the scatter in the mea-

surements as illustrated by the lower left panel of Fig. 9. A more

important issue is the global knowledge of the M/L relation. In-

deed, it seems that the slope of this relation greatly influences the

results, as illustrated by the middle and right-hand panels of Fig. 9.

Clearly, if the galaxies follow the Tully formula (5), it is definitely

wrong to assume constant M/L and even the MH fit introduces a

significant bias, although it is well within the observational errors

compared to equation (5). It must be noted that this bias can be

turned into an advantage if one does not want to measure �m but

the M/L relation. Indeed, WMAP experiment (Bennett et al. 2003;

Spergel et al. 2007) coupled with an analysis of the power spec-

trum of large-scale density of galaxies (Tegmark et al. 2006) gives

good constraints on the real �m now. Our method, on the other

hand, is able to measure the discrepancy between the measured β

and the expected growth factor βexpected = �5/9
m (i.e. the bias). This

measurement may give an idea of how wrong is the assumed M/L

relation prior to the reconstruction and may push us to try different

plausible M/L functions. Thus, our method is able to measure the

way that the matter is distributed in the Universe once it is given

its average density �m. On the other hand, if the above bias is well

understood, this method helps at reducing the degeneracy in the

determination of cosmological parameters. Indeed, our posterior

probability on (�m, h) gives a constraint orthogonal (for example,

see the results in Mohayaee & Tully 2005) to the one obtained

from the WMAP experiment and from the galaxy statistics of the

SDSS.

4.3 Magnitude limitation

Magnitude-limited sampling of mass tracers introduces a new type

of problem: flux limitation decreases the mass resolution towards

the outer edges of the catalogue contrary to the homogeneous case

studied in Section 4.1. Usually, the incompleteness is handled by

uniformly boosting the luminosities of galaxies at a given distance

from the observer (Branchini et al. 2002), prior to conversion of

luminosities into masses. This is a fair approach if M/L = constant,

within the limits of the issues discussed in Section 4.1. However,

this method is in general questionable for non-trivial M/L relations

as in equation (5) or if different M/Ls are assigned to galaxies with

different types. In these last two cases, the missing mass correction

should be applied to the mass distribution itself instead of the lumi-

nosity one, to avoid systematic errors on mass assignments, hence

on reconstructed velocities. This unfortunately requires a prior as-

sumption on the value of �m, but only slightly complicates the

analyses.

In the observational data, galaxies are separated into two popu-

lations: groups4 of galaxies (Tully 1987) and field galaxies. These

two populations should be treated separately, keeping in mind that

the groups are the most critical because their gravitational influence

is much larger than individual field galaxies and they have better

peculiar velocity measurements.

The full procedure consisting of creating a magnitude-limited

mock catalogue and recovering the mass distribution is detailed in

Appendix C. Let us recall that, in our mock catalogues, groups

4 Groups are defined here as compact sets of five galaxies or more.
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Figure 9. M/L bias. The top panel gives the expected line-of-sight component vr of the velocity field, smoothed with a 5 h−1 Mpc Gaussian filter, as given

by the simulation in a thin slice of the simulation containing the observer. The middle panels give the reconstructed vr field, with the same smoothing, after

having applied each of the transformations specified in Fig. 7 to FullMock. The lower panels give the scatter between the reconstructed and simulated peculiar

velocities for each of the transformations.

Table 1. M/L bias effect. This table gives the results obtained using different statistical tools. We also measured

�m using six different methods: the label s means we used the slope estimated by using all objects, the label L
is used when �m has been determined using the likelihood analysis and the label 1.5σ is used when the slope

is estimated using only the objects within the 1.5σ isocontour of the PDF between reconstructed velocities and

simulated velocities (method described in Section 3).

Transf. Velocity �m (s) �M �M �M �M �M

s r σ (Lmin) (Lmax) (1.5σ , smed) (1.5σ , smin) (1.5σ , smax)

None 0.88 0.89 0.58 0.38 0.30 0.31 0.30 0.28 0.31

TS-T 0.90 0.78 0.64 0.36 0.26 0.30 0.28 0.24 0.33

T-MH 0.80 0.80 0.60 0.45 0.33 0.38 0.36 0.32 0.40

T-C 0.71 0.78 0.63 0.55 0.40 0.48 0.44 0.37 0.51

of galaxies are simulated dark matter haloes with more than five

particles while background galaxies are identified with dark matter

particles unassigned to any halo. We list here the key steps we used

to correct for incompleteness:

I. The total apparent luminosities of groups of galaxies is ob-

tained assuming a global or a local Schechter luminosity distribu-

tion for the considered groups. The intrinsic luminosity is computed

trivially from the total apparent luminosity and the redshift of the

group.

II. The intrinsic luminosity of the remaining unbound galaxies

(thus field galaxies) is also determined, straightforwardly.

III. Then, masses are estimated by assigning appropriate M/L to

each object of Steps I and II.
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Figure 10. Magnitude limitation. Solid line: NBG-8k predicted luminos-

ity incompleteness at the given distance from the observer. Dashed line:

simulated luminosity incompleteness in 8k-mock6. The incompleteness is

expressed in terms of missing luminosity fraction at the specified distance.

Figure 11. Incompleteness: magnitude limitation. Top panels: a slice of the line-of-sight component of the simulated velocity field in 8k-mock6 and the

reconstructed one, after smoothing with a 5 h−1 Mpc Gaussian window. The displayed slice is chosen to include the observer in (0, 0). The white circle in the

right-hand panel gives the size of the 40 h−1 Mpc sphere embedded in the 80 h−1 Mpc one. Bottom panels: the scatter plots compare the reconstructed and

simulated velocities of objects in the 80 h−1 Mpc region (left-hand panel) and in the 40 h−1 Mpc volume (right-hand panel).

IV. The local missing mass from undetected background galaxies

is inferred from the detected mass distribution. This requires a prior

on �m.

V. This missing mass may either be reassigned locally to detected

field galaxies of II (our choice) or be introduced by the mean of new

randomly positioned tracers, as discussed in Section 4.1.

To examine the effects of systematics in the correction for in-

completeness, we use 8k-mock6 and choose a flux limit such that

the resulting mock catalogue has an incompleteness similar to NBG-

8k, as shown in Fig. 10. Results are summarized in Fig. 11 and in

Table 2.

The reconstructed radial peculiar velocities vr,rec are behaving

extremely well. On average, the comparison between simulated and

reconstructed velocity fields is surprisingly good in a volume of

radius 80 h−1 Mpc, even though the edge misses locally 98 per cent

of the field galaxies which represents 60 per cent of the total mass

in our mock catalogue. It means that, though we keep only 2 per

cent of the field galaxies, they suffice, in addition to the groups, for
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Table 2. Incompleteness: magnitude limitation. Column description is given in the caption of Table 1.

Volume Velocity field �m �m �m �m �m �m

s r σ (s) (Lmin) (Lmax) (1.5σ , smed) (1.5σ , smin) (1.5σ , smax)

8k 0.86 0.77 0.64 0.39 0.26 0.31 0.29 0.25 0.34

4k 0.77 0.75 0.66 0.48 0.37 0.45 0.38 0.30 0.47

a reasonably fair recovery of the large-scale peculiar velocity field.

Note the small bias in the scatter of the lower right panel of Fig. 11,

resulting in a slightly larger �m = 0.38 than the expected value of

0.30, but in good agreement with the effective value of 0.35 expected

in the corresponding volume (see Section 6.3 on cosmic variance

effects). This bias might be the consequence of our treatment of the

missing mass coming from undetected tracers as discussed in detail

in Appendix C (point B).

5 R E D S H I F T D I S TO RT I O N

The input of MAK reconstruction is the position of objects in real

space as needed by equation (2). However, redshift catalogues give

us galaxy positions in redshift space, namely sr = Hd + vr, where

sr is the redshift distance, d is the luminosity distance between the

observer and the object and vr is the line-of-sight peculiar velocity.

To account for redshift distortions, we must correct for two major

effects:

(i) ‘Fingers-of-god’ correspond to an elongation of dense struc-

tures along the line of sight, such as clusters of galaxies, due to

random motions of galaxies within these structures.

(ii) Kaiser effect (Kaiser 1987) is a large-scale effect coming from

the coherent part of the cosmic flows, which, for instance, increase

the overall density contrast.

Fingers-of-god effects can be easily removed by simply collaps-

ing groups or clusters to a single point, as usually performed in the

literature. However, such a procedure is generally carried out in a

rather ad hoc way and is certainly not free of biases.

The Kaiser effect can be accounted for by modifying the cost

function (2) using the Zel’dovich approximation to infer line-of-

sight peculiar velocities as functions of the sought displacement

field (Valentine, Saunders & Taylor 2000; Mohayaee & Tully 2005).

If s(q) is the redshift coordinate of a particle originally at q, then the

total cost (2) of the association σ becomes

Iσ =
N

∑

i=1

[

(

si − qσ (i)

)2 −
β(2 + β)

(1 + β)2

((

si − qσ (i)

)

· si

)2

||si ||2

]

, (8)

where β is the linear growth factor. Once the redshift displacement

ψs = s − q has been computed, the reconstructed radial peculiar

velocity of the object i can be obtained by

vs
r,rec =

β

1 + β

s · ψs

||s||
. (9)

The cost function Iσ leads to the exact result in the case of a

Zel’dovich displacement field without shell crossing after redshift

distortion. However, in general, the second term (accounting for

redshift distortion) of equation (8) becomes of the same order as

the first term (the real space cost term) near the origin. In this

case, the reconstruction becomes ill defined because of the loss

of convexity of functional Iσ . We expect thus the central part of

all catalogues to be, in general, poorly reconstructed. The size of

such a region is roughly determined by the magnitude vobs of the

large-scale flow nearby the observer with respect to the Cosmic

Microwave Background. The velocity vobs determines the relative

contribution of the first term with respect to the second term of equa-

tion (8). In practice, vobs is of the order of a few hundred km s−1

(for instance, the Local Group velocity is 630 km s−1; Erdoğdu et al.

2006) which gives us a region of ‘exclusion’ of radius of about a few

h−1 Mpc.5

Again, MAK reconstruction fails in regions where shell crossings

occur. Projection in redshift space generates such shell crossings

along the line-of-sight. These shell crossings are dramatic because

of their anisotropic nature. In particular, filaments can cross each

other while passing from real to redshift space, implying the recon-

struction will fail in a large region of the catalogue encompassing the

gravitational influence of these filaments. In this area, most of the

reconstructed radial velocities will have the opposite sign compared

to the true velocity. Of course, shell crossings in redshift space can

have more complex consequences but this simple example suggests

that MAK reconstruction should not work as well in redshift space

as in real space.6

Another problem of this method is that one must assume β prior

to the reconstruction. As for Section 4.3, where we had to guess the

undetected mass, we choose a value �m,in, thus an assumed β in, then

we make a redshift reconstruction and measure a �m,out. In practice,

the ‘true’ �m of the catalogue was chosen to be the one for which

�m,in = �m,out, which corresponds to having self-consistent orbits

modelling when doing MAK reconstruction and when one makes a

comparison with measured velocities.

Fig. 12 shows both reconstructed and simulated velocity fields

and the scatter between vs
r,rec and vr,sim. The first impression when

comparing the two top panels of Fig. 12 is that the redshift recon-

struction behaves really well. However, some potentially worrying

localized features are as present:

(i) Some important structures have their velocities badly recon-

structed. Two important examples are the green-yellowish finger

just above the centre of the upper right panel of Fig. 12 and the big

velocity peak at the top of this same panel. In the left-hand panel,

these two structures are not so prominent. The difference can be

understood by studying the impact of the Kaiser effect on the recon-

structed velocity field. Basically, two nearby filaments can merge in

redshift space and give birth to a filament with a higher apparent den-

sity. The reconstruction is not able to separate these two filaments,

which leads to an area with higher reconstructed velocities than the

true ones. Thus, we expect in observational data to meet problems

in the neighbourhood of the Great Wall, which is a supercluster of

filaments compressed by redshift distortion.

(ii) The velocity field in the immediate (5–10 h−1 Mpc) neigh-

bourhood of the mock observer has lost its spatial structure and

5 See e.g. Colombi et al. (2007) for a similar discussion.
6 This is also true for the Least-Action method for which multiple solutions

quickly arise.
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Figure 12. Redshift distortion correction. Top panels: a slice of the smoothed velocity field vr,sim and vr,rec is shown in the left- and right-hand panels,

respectively. The two fields have been smoothed with a 5 h−1 Mpc Gaussian window, with objects put at their real (simulated and reconstructed) comoving

coordinates. Bottom panels: scatter plots between vr and vr,rec for individual mass tracers. The left-hand panel (right-hand panel) was produced using a real

space reconstruction (redshift space reconstruction, respectively). In both cases, only objects within a sphere of 8000 km s−1 are shown.

even presents a spurious peak. This is, most unfortunately, an ex-

pected problem that is linked to the above discussion on the problems

of Iσ near the observer. Indeed, in the neighbourhood of the observer,

Iσ becomes singular and the reconstruction misses, most likely, the

right orbits. Analysing the smoothed velocity field seems to show

that this effect looks in practice much like the one just above: the

reconstructed velocity field may be boosted by the merging of dif-

ferent structures in the neighbourhood of the observer.

(iii) The lower right panel presents two additional off-diagonal

tails compared to lower left panel. As discussed earlier, these tails

are due to shell-crossings occurring along the lines-of-sight when

passing from real to redshift space. These extra shell-crossings result

in some reconstructed velocities acquiring a sign opposite to the true

velocities.

Similarly as in Section 3, we have computed in Fig. 13 the dis-

tribution of differences Ps
VE between vs

r,rec and vs
r,sim for a redshift

reconstruction applied on 8k-mock6 based on a 643 mesh.7 Though

the distribution is of course wider than in Fig. 3, the previously

drawn conclusions are still valid. Ps
VE is better fitted by a Lorentzian

distribution with B = 86 km s−1 than by a Gaussian of width σ =
91 km s−1, particularly in the tails.

To check the effects of redshift distortion on the quality of the

reconstruction, one can compare Table 3 to the first row of Table 1.

As usual, the s parameter is slightly biased below unity due to non-

linear effects discussed in Section 3, which seem, not surprisingly,

to be slightly enhanced by redshift distortions. The appearance of

the off-diagonal tails in the lower right panel of Fig. 12 increases

the level of scattering, hence the correlation coefficient r decreases

and the signal-to-noise ratio increases. Reducing the analysis to

7 The handling of the finiteness of the catalogue volume is handled in Sec-

tion 6.2.
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Table 3. Redshift reconstruction. Column description is given in the caption of Table 1.

s r σ �m (s) �m �m �m �m �m

(Lmin) (Lmax) (1.5σ , smed) (1.5σ , smin) (1.5σ , smax)

0.83 0.46 0.95 0.50 0.22 0.29 0.27 0.22 0.33
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Figure 13. Error distribution of the reconstructed velocity field, redshift

space. Same as in Fig. 3 but the solid curve corresponds to the probability

distribution of the quantity vs
r,rec − vr,sim, where vs

r,rec and vr,sim are the

line-of-sight reconstructed and simulated velocities, respectively.

the region inside 1.5σ isocontour greatly improves the results, as

expected, but still leads to a value of �m slightly biased to lower

values, �m = 0.27.

6 E F F E C T S O F C ATA L O G U E G E O M E T RY

In practice, real galaxy catalogues are not spatially periodic as is our

simulation. They represent a region of finite volume with non-trivial

geometry. In particular, two kinds of problems arise:

(i) Edge effects. Reconstruction of the galaxy trajectories without

any piece of information on what may affect them dynamically from

the outer parts of the catalogue is likely to introduce significant

sources of errors, possibly systematic. We separate here edge effects

into two subclasses: the effects of the obscuration by our galaxy,

which defines a ZOA and the effects of finite depth of the catalogue.

These two effects need a separate treatment detailed in Sections 6.1

and 6.2.

(ii) Cosmic variance. The finite volume of the accessible part of

the Universe might be a potentially unfair realization of the random

process underlying the properties of the large-scale matter distribu-

tion. We must investigate whether our method, including handling

of edge effects, is robust to the recovering of the statistical properties

of the whole Universe from observations of only a fraction of it.

6.1 Zone of avoidance

Dust present in the Milky Way’s galactic plane highly attenuates the

light, thus galaxy catalogues generally do not provide any data in

this direction (approximately the region within |b| < 5◦, where b is

the galactic latitude) of the ZOA. This strong attenuation introduces

a boundary effect, which has the unpleasant feature of being present

at any distance from the observer and may thus severely affect the

measurements. As this area is none the less relatively small, partic-

ularly at low redshift, a simple correction should be able to greatly

remove the boundary effect in the inner region of the catalogue.

Simulating the effect is made easy by putting an observer at the

centre of the simulation volume and by removing all mass tracers

in the neighbourhood of the galactic plane z = 0, i.e. which have

|b| < α. This gives us FullMockZOA.8

Though more advanced ways of filling the ZOA exists (e.g.

Lahav et al. 1994; Fontanot, Monaco & Borgani 2003), this lat-

ter is here sufficiently small to be dealt with by the following simple

algorithm. Since the statistical properties of the galaxies should not

change across the boundaries of the ZOA, the objects in its neigh-

bourhood can be used to fill the zone. We build new mass tracers to

fill the obscured area by applying a locally planar symmetry trans-

formation to the galaxies and groups with −3α < b < − α according

to the ‘plane’ −α. We execute the same operation on objects with

+α < b < + 3α but according to the ‘plane’ +α. In the end, the

masses of the copied haloes in the ZOA are divided by two and we

only take half of the field galaxies. This method has been used pre-

viously to fill the ZOA in NBG-3k (Shaya et al. 1995) and NBG-8k.

This folding procedure has been applied to FullMockZOA, slightly

moving some of the newly created objects to enforce the periodicity

of the simulation box to avoid mixing the effect of the ZOA with

other boundary effects. The results are presented in Fig. 14. As ex-

pected, the ZOA has a clear impact on errors of the reconstructed

velocities.

The typical errors on the reconstructed velocities, represented in

the left-hand panel of this figure, rise substantially in the vicinity of

the obscured area. Fortunately, they remain well below the natural

velocity dispersion of the simulation (dashed line). As we are com-

paring velocity fields filtered with a 5 h−1 Mpc Gaussian window,

we expect the reconstructed velocity field to be nearly error free for

all points nearer than about 60 h−1 Mpc.9 It is also fortunate we have

not introduced an extra bias using the filling algorithm, as shown by

both comparing Table 4 to the first row of Table 1 and looking at the

scatter plot in the right-hand panel of the Fig. 14. We none the less

highlight that the edge effect is not at all localized near the ZOA but

extends quite far away and becomes negligible only for |b| > 20◦.

Table 4 shows that the above extra noise does not have any impact

on the measured �m.

6.2 Lagrangian domain

The inputs to MAK reconstruction are the present coordinates of

the objects, i.e. x in equation (2) or s in equation (8), and the knowl-

edge of the Lagrangian domain, i.e. q in equation (2) or (8). Red-

shift catalogues give the present ‘positions’ of the objects, i.e. s

in equation (8); however we have no observations that would give

us the corresponding Lagrangian domain q. We are thus limited to

make guesses, though in the end, for huge catalogues, the details

of the guess does not matter as gravitational forces are screened on

large scales by the nearly homogeneous distribution of matter in the

universe. Consequently, what happens at the boundaries should not

8 α = 5◦ in our case.
9 This corresponds to taking a 5◦ wide ZOA and computing at what distance

the window is smaller than the ZOA.
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Figure 14. ZOA/velocity field. Left-hand panel: binned average rms error on the smoothed velocity field. As usual, the velocity field window has been smoothed

with a 5 Mpc h−1 Gaussian window. Each point is computed by averaging the square of the deviation of the velocity field along the line-of-sight and for all

line-of-sights belonging to the same sin(b) bin, where b is the ‘galactic’ latitude. The solid line gives the rms error in the presence of a ZOA at b = 0. The

dotted line gives the rms error for a reconstruction on a catalogue without ZOA. The dashed line gives the rms of the smoothed velocity field itself. Right-hand

panel: scatter plots between vr,rec and vr,sim for individual mass tracers.

Table 4. ZOA. Noise and biasing summary. Column description is given in the caption of Table 1.

s r σ �m (s) �m �m �m �m �m

(Lmin) (Lmax) (1.5σ , smed) (1.5σ , smin) (1.5σ , smax)

0.89 0.79 0.61 0.37 0.30 0.35 0.32 0.285 0.36

strongly affect the central part of the catalogue though some guesses

may be better at confining the edge effects on the boundaries. The

naive solution is to assume that the Lagrangian domain is not so dif-

ferent from the volume of the catalogue itself. This assumption only

begins to be a good approximation for volume enclosed in a sphere

for which radius is big enough. For our 80 h−1 Mpc sample, the mass

going in and out of the volume (from initial to present time) already

represents about 16 per cent of the total mass. For a 40 h−1 Mpc

sphere, the mass flow is even greater: it may vary between 30 and

63 per cent of the total mass depending on the 8k-mock catalogue

considered. Though tidal field and cosmic variance effects become

negligible on a 80 h−1 Mpc scale, they still affect the boundaries of

the Lagrangian domain of a given catalogue in a non-trivial way.

As we will show, these problems are further enhanced by redshift

distortion.

To achieve a meaningful comparison, we have run a reconstruc-

tion on 8k-mock6 using the Lagrangian domain given by the simu-

lation; this reconstruction is called TrueDom. Now, we confront the

results of TrueDom for two different reconstruction setups that try

to recover the Lagrangian domain:

(i) NaiveDom reconstruction is obtained by assuming a naive

spherical Lagrangian domain for 8k-mock6. In that case, all the

mass that is presently in the 8k-mock6 catalogue was uniformly in

a sphere of radius 80 h−1 Mpc. Equivalently, it means no significant

mass flow must have gone through the comoving boundaries in the

past.

(ii) PaddedDom reconstruction is obtained by padding homoge-

neously the 8k-mock6 catalogue. The padding is chosen such that

the final MAK mesh that will be reconstructed is an inhomogeneous

cube (as in the right-hand panel of the second row of Figs 15 and

16). The cube must be sufficiently big to absorb density fluctuations

present at the boundary of the catalogue (typically a 20 h−1 Mpc

buffer zone is needed). With real data, we are bound to assume that

the catalogue is totally representative of the whole universe, i.e. its

effective mean matter density is equal to �m.

Fig. 15 shows the result of a TrueDom, NaiveDom and Padded-

Dom reconstruction applied to 8k-mock6 in the absence of redshift

distortion. Fig. 16 gives the same reconstructions when applied to

a redshift catalogue. Table 5 summarizes the value of the moments

of P(vr,sim, vr,rec) for different cases. We will now first confront

the results of real space reconstructions, and second redshift space

reconstructions.

TrueDom reconstruction does not yield any significant bias at

80 h−1 Mpc. However, at 40 h−1 Mpc, cosmic variance effects in-

troduce a notable systematic error in the direction of higher �m that

will be discussed in Section 5.3. Compared to TrueDom, NaiveDom

gives good overall results though the central blue region of TrueDom

turns to dark blue in NaiveDom, which would suggest the velocity

field is biased. This analysis is confirmed by looking at the bottom

scatter plot. The �m measurement (Table 5) is underestimated by

about 26 per cent even in the central region of the catalogue which

is normally less affected by boundary effects. PaddedDom, on the

other hand, does not yield such a sharp discrepancy in the middle of

8k-mock6, namely in the 4k-mock6 region. Both the bottom scatter

plot and the �m measurement confirm that the reconstructed ve-

locities are nearly bias-free in the central region. As expected, the

velocities in the neighbourhood of the boundaries are completely

wrong for the two methods.

Now, the catalogues are cut in redshift space. Redshift distortion

biases the velocity distribution of objects on the catalogue bound-

ary: the catalogue receives more infalling objects than outfalling

ones. In some cases, one may even find objects seemingly artifi-

cially separated from the main volume of the catalogue (they look

‘disconnected’). In those cases, the hypothesis of convexity is defi-

nitely lost for those objects. This problem will enhance boundary

problems. The case of TrueDom reconstruction has been discussed

in Section 5. As previously, the peculiar velocities in NaiveDom and
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Figure 15. Lagrangian domain/without redshift distortions. This figure summarizes the results obtained on reconstructions that have limited information on

the Lagrangian domain. The left-hand column illustrates the TrueDom reconstruction, the middle column the NaiveDom one and the right-hand column the

PaddedDom one. For space occupation reasons, the original velocity field given by the simulation is not remembered but can be found in Fig. 11. The top row

illustrates the three schemes for handling boundary effects on the density field: in the left-hand column, one retains information of large-scale tidal fields, in the

middle column one cuts the catalogue spherically and does a reconstruction on it, in the right-hand column one pads the spherically cut catalogue with particles

homogeneously distributed on a grid. The second row gives the reconstructed velocity field in each case, smoothed with a 5 h−1 Mpc Gaussian window as

usual. The colour coding is the same as for the other figures, i.e. dark blue is −1000 km s−1 and white is +1000 km s−1. The third row compares the individual

(not smoothed) reconstructed and simulated velocities of objects in the 8k-mock6 catalogue. The fourth row does the same comparison but objects lying only

in the 4000 km s−1 region of the 8k-mock6 catalogue.
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Figure 16. Lagrangian domain/with redshift distortions. Same as Fig. 15, but for mock catalogues including redshift distortion.
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Table 5. Lagrangian volume. Residual error after the correction. Description for some columns is given in the caption of Table 1. ‘Radius’ gives the spatial

size of the sphere on which the velocity–velocity comparison is conducted. ‘Reconstruction type’ indicates the type of Lagrangian domain reconstruction and

whether it is mixed with redshift distortion effect. Details on the meaning of each name are given in Section 6.2.

Reconstruction type Radius (h−1 Mpc) Velocities �m �m �m �m �m �m

s r σ (s) (Lmin) (Lmax) (1.5σ , smed) (1.5σ , smin) (1.5σ , smax)

TrueDom/Real space 80 0.91 0.77 0.66 0.35 0.28 0.31 0.27 0.233 0.32

40 0.80 0.76 0.65 0.45 0.28 0.38 0.35 0.28 0.43

NaiveDom/Real space 80 0.87 0.52 0.92 0.38 0.20 0.28 0.42 0.20 0.87

40 1.11 0.77 0.73 0.25 0.20 0.24 0.244 0.19 0.31

PaddedDom/Real space 80 0.73 0.65 0.77 0.53 0.36 0.48 0.45 0.27 0.75

40 0.91 0.77 0.64 0.35 0.28 0.34 0.32 0.26 0.38

NaiveDom/Redshift space 40 1.49 0.51 1.31 0.11 0.15 0.26 0.20 0.12 0.37

PaddedDom/Redshift space 40 0.93 0.53 0.94 0.36 0.18 0.34 0.38 0.20 0.79

in PaddedDom are largely uncorrelated in the full 8k-mock6 volume

(Fig. 16). However, peculiar velocities reconstructed by NaiveDom

are more strongly overestimated than by using PaddedDom’s, as

shown in Table 5. For NaiveDom, the scatter is plagued by a hori-

zontal alignment in Fig. 16, mid-lower panels, which is a signature

of a strong edge effect. This spurious alignment was already present,

though much less apparent, in the real space case. On the other hand,

PaddedDom does not present this feature but only a large scatter.

We have verified that objects belonging the horizontal alignment are

essentially near the 80 h−1 Mpc boundary, contrarily to velocities

reconstructed using PaddedDom which are more or less uniformly

distributed and essentially uncorrelated to simulated velocities.10

This means that PaddedDom is at least better at screening edge

effects than NaiveDom in the sense the errors are more evenly dis-

tributed and less systematic. Though impressively low in the last

two rows of Table 5, the correlation coefficient r is actually spoiled

by the long tails of the PDF shown in the scatter plots in Fig. 16.

Concerning �m, NaiveDom seems less robust to produce an unbi-

ased estimation than PaddedDom. Indeed, looking at Table 5, one

may note that the interval delimited by smed, smin and smax nearly

does not contain �m = 0.30 for NaiveDom/Real space/40 h−1 Mpc,

and does not contain it at all for NaiveDom/Redshift space. On the

contrary, �m = 0.30 is always selected by the three s parameters

using PaddedDom reconstruction. In the rest of this paper, whenever

it is needed, we will thus use the PaddedDom reconstruction.

6.3 Cosmic variance

We generally assume that galaxy catalogues give a fair represen-

tation of the whole universe, but of course we have no guarantee

that this assumption is correct. Thus, the result of a MAK recon-

struction may be affected by inhomogeneities above the catalogue

scale. For instance, our galaxy may reside in a particularly extreme

region (overdense or underdense), which would produce unusual

10 This behaviour is expected from an algorithmic point of view. The objects

nearby the boundary cannot acquire any displacement using MAK because

of the ‘pressure’/competition of objects inside the sphere. This problem is

further enhanced in redshift space because generally these objects come

from outside the sphere and are selected because their infall velocity is high.

In NaiveDom, they cannot escape from the assumed spherical Lagrangian

domain which thus leads to zeroing their velocity. On the other hand, Padded-

Dom is much less strict on the boundary, which leaves the freedom for MAK

reconstruction to have a non-zero velocity even for objects on the boundary

of the catalogue.

peculiar velocities. This effect, known as cosmic variance, can be

investigated by our three original basic mock catalogues: 4k-mock6,

4k-mock7 and 4k-mock12 (Section 1). The cosmic variance effect

is here further enhanced by the finiteness of the sampled volume.

The volume is sufficiently small here to have a non-zero average

line-of-sight velocity. On a 40 h−1 Mpc scale, this effect can sub-

stantially modify the �m measurement (put �m,mes in this section)

by cutting the P(vs
rec, vsim) distribution at an inadequate place.

The results of the reconstruction on these three mock catalogues

are given in Fig. 17. In Table 6, we give, for each mock catalogue, the

best achievable result (thus highlighting purely the effect of choos-

ing this mock catalogue) and the results one would obtain through

observation of this piece of the universe. Unknown Lagrangian do-

main, redshift distortion and incompleteness effects are added to the

considered mock catalogue. The problems of mass-to-light assign-

ment and the ZOA are left apart for the sake of clarity. Their imprint

on the velocities should most likely remain the same as we have

shown in the corresponding previous sections, i.e. biasing for the

first and increase of the scatter for the second. Only the cases with

the forementioned observational effects are represented in Fig. 17.

Visual inspection of lower scatter plots in Fig. 17 shows that vol-

ume finiteness is likely making the �m,mes measurement sensitive

to the ‘local’ �m (�eff in the table). This assertion is supported by

the estimation of s and �m for TrueDom reconstructions given in

Table 6. Moreover, experiments conducted with the spherical col-

lapse model show that �m,mes is indeed a weighted average between

�eff and �m.

More specifically, reconstructed velocities in 4k-mock7 (includ-

ing observational effects) are apparently giving the �m of the simu-

lation but they present a large scatter rendering the slope estimation

dubious. Indeed, doing the same reconstruction but without obser-

vational effects gives a measured �m,mes = 0.40, which is the exact

average between the simulation �m,simu = 0.30 and �eff = 0.50.11

The aforementioned scatter is expected for this mock catalogue:

the velocity field is badly reconstructed near the observer in that

case (middle panels) because the local cosmic flow is higher than

usual (∼1000 km s−1) and the non-linearities are stronger. Thus,

the convexity of the problem is lost on an extended region around

the observer when the reconstruction is conducted in redshift space

(see Section 5). A particularly salient misreconstruction is given

by the outflowing ‘bubble’ at the centre which disappears in the

reconstructed velocity field. The size of the affected region is about

20 h−1 Mpc around the observer in 4k-mock7 and thus limits the

11 Spherical collapse rather predicts �m,mes = 0.35 for the same setup.
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Figure 17. Cosmic variance. This figure gives a visual comparison of the three mock catalogues used to study cosmic variance effects. Top panels: adaptively

smoothed density fields of the considered mock catalogues. In each case, we have represented the central thin slice that contains the observer. Second row:

simulated velocity field, after smoothing with a 5 h−1 Mpc Gaussian window. The white circle gives the limit of the 40 h−1 Mpc volume. Third row: same as

second row, but for the reconstructed velocity field. Fourth row: comparison between reconstructed and simulated peculiar velocities.

number of objects having both good reconstructed and observable

peculiar velocities.

In an opposite way, velocities in 4k-mock12 are reconstructed with

a better correlation, as shown by Table 6, but �m measurement is

strongly weighted toward �eff. These two ‘features’ are largely due

to the huge central void. First, MAK reconstruction and Zel’dovich

approximation are known to work better in low-density regions and

being centred on a void results in inhibiting blueshift distortion

as galaxies are principally going away from the observer, render-

ing the reconstruction problem convex in equation (8). Second, the
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Table 6. Cosmic variance. Summary of measurements conducted on the three mock catalogues. The reconstruction is conducted either on the basic catalogue

without any observational effect besides cosmic variance (labelled Original) or on the same catalogue but affected by redshift distortion, incompleteness and

for which the Lagrangian domain is determined using PaddedDom (reconstruction labelled Full). The description of the other columns is given in Table 1.

Catalogue Reconstruction Velocity field �m (s) �m �m �m �m �m

type s r σ (Lmin) (Lmax) (1.5σ ,smed) (1.5σ ,smin) (1.5σ ,smax)

4k-mock6 (�eff = 0.35) Original 0.80 0.76 0.65 0.313 0.28 0.38 0.35 0.28 0.43

Full 0.94 0.50 0.96 0.35 0.13 0.31 0.31 0.16 0.70

4k-mock7 (�eff = 0.5) Original 0.70 0.67 0.76 0.57 0.39 0.47 0.40 0.33 0.48

Full 0.88 0.11 1.33 0.43 0.41 1.62 0.30 0.09 1.29

4k-mock12 (�eff = 0.19) Original 1.12 0.81 0.66 0.24 0.235 0.27 0.24 0.22 0.26

Full 1.08 0.58 1.11 0.24 0.29 0.62 0.15 0.08 0.31

low-density region largely affects the statistical velocity distribu-

tion, which in this case leads to a measured �m,mes weighted more

strongly towards the �eff of 4k-mock12.12 This leads us to a �m,mes

that is nearer �m,simu in 4k-mock12 than the mean matter density of

the whole simulation. The volume finiteness also produces an ap-

parent offset between reconstructed velocities and measured ones.

This is expected as doing a statistical analysis on a finite-volume

catalogue must introduce a selection bias effect. We have indeed

checked that the point set {(vr,i, ψ s
r,i)}, obtained through a MAK

reconstruction applied on 4k-mock12, is a subset of the correspond-

ing set built from a reconstruction on 8k-mock12. Looking at our

‘standard’ 4k-mock6, one can note that the simulated velocity dis-

tribution is generally more symmetric according to the null velocity

than for the two other mock catalogues, with no visual bias while

comparing reconstructed velocity to simulated velocity. This sup-

ports the initial assertion linking �m,mes to (�m,simu, �eff) and the

asymmetric distribution of velocities. Potentially, one could recover

the true �m of the Universe (or here the simulation) from the mea-

sured velocities of any catalogues by predicting how the velocity

distribution asymmetry is linked to local density contrast. However,

the simplest, and more robust solution, would still be to extend the

depth of current catalogues to reach a volume where velocities are

normally distributed.

From a prediction point of view, comparing visually the veloc-

ity fields inside the white circles shows that, if we know �m, we

reconstruct plausible velocity fields for the three mock catalogues.

Outside the white circles, the reconstructed velocity field is nearly

completely uncorrelated compared to the simulated one as we have

discussed in the previous section. It must be noted that the veloc-

ity field goes smoothly to zero (green colour) on the edge of all

mock catalogues: this is an expected side effect of the homoge-

neous padding which tends to smooth out any fluctuation on the

edge (velocity and density field).

7 V E L O C I T Y M E A S U R E M E N T E R RO R S

7.1 The need for a likelihood analysis?

All the effects already described in this paper are present in a red-

shift catalogue. Though we expect most of the observational biases

should be independent, some of them may correlate and give worse

systematic errors. We present in Fig. 18 the progressive deterio-

ration of the velocity–velocity comparison for 4k-mock6 based on

12 The spherical collapse model would predict a measured �m,mes = 0.26

and this is in good agreement with the value measured when no observational

effects are injected in the mock catalogue.

a reconstruction conducted on 8k-mock6. The effects are piled up

from left- to right-hand side. The �m measurements for the 1.5σ

method are indicated below each panel. The obvious conclusion is

that the measurements are progressively affected but that no extra

correlated error seems to happen when mixing the effects. Another

fortunate event is that bias seems to counterbalance themselves to

give in the end a nearly unbiased result (last but one panel). Going

from TrueDom/Real to Redshift tends to decrease �m as has been

seen previously. On the contrary, injecting incompleteness pushes

the measurement to higher �m as we have noted in Section 4.3. The

1.5σ method seems to give the right �m value in all cases, which

means that we should be able to use it on galaxy catalogues provided

we have sufficient precision on velocity measurements. However,

looking at the last panel (bottom right) of Fig. 18 shows that in-

jecting random velocity measurement errors (here we introduced

an optimistic error of 8 per cent of the distance to the object, cor-

responding to an error on distance modula of σµ = 0.17), renders

slope estimation much more difficult. In that case, the measured �m

is severely biased. This is expected as the 1.5σ method relies mostly

on the central part of the scatter, which in turn is the one that is the

most affected by random errors. This leads to a circularization of

the 1.5σ isocontour and thus a completely wrong estimation of the

slope. On the other hand, looking at the global structure of the scat-

ter shows that the right-hand slope is still hidden in the data, but one

should then take into account the tails of the distribution. This last

test shows the limit of a direct velocity–velocity comparison in real

cases. It might be possible to recover the original distribution of the

scatter by deconvolving from the noise. However, it seems to be a

difficult operation and we prefer to first try a maximum-likelihood

approach. Its main advantage would be to work using distances, thus

rendering the error in measurements more tractable.

7.2 Maximum-likelihood analysis

Observations of galaxies first give us access to their distances and

not their peculiar velocities. A method based on distances to make

a comparison between a model and observations is potentially less

sensitive to distance measurement errors. Indeed, by comparing di-

rectly distances, one has a small relative error on each measurement

instead of a huge one when peculiar velocities are considered. Below,

we discuss galaxy selection bias and zero-point calibration errors

in distance measurements while keeping the notation of Strauss &

Willick (1995).

Presentation of the Bayesian chain. For the TF relation, one makes

an estimate of the absolute magnitude of a galaxy as a function of

its linewidth: the slope between the two quantities can be biased

because the sample is limited in magnitude (Strauss & Willick 1995).
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Figure 18. This figure gives the evolution of the scatter distribution and of the measurement of �m using it while more and more observational effects are

added to 8k-mock6 catalogue. All measurements of �m are given between brackets and are sorted as follows. For measurements obtained through the likelihood

analysis, labelled by L, the first number corresponds to Lmin and the second to Lmax. For measurements obtained using the 1.5σ method, the first number

corresponds to smin, then smed and finally smax. The last (lower right) panel uses the full likelihood function of equation (31). All others use a restricted likelihood

analysis with σ 0/e = 0, which is nearly equivalent to using equation (30) for each (vr,i, ψ r;i) pair. The 1.5σ isocontour has been plotted with a thick dashed

line in the last panel.

This effect which is known as selection bias is purely statistical and if

not correctly taken into account can lead to large systematic errors.

Using these absolute magnitudes, occasionally combined to form

groups of galaxies, and the apparent magnitudes of the same group,

one builds the distance modulus

µ(r ) = m(r ) − M = 5 log10

(

r

10 pc

)

(10)

with r the distance of the considered object (group of galaxies or

galaxy). In addition to the forementioned statistical bias, peculiar ve-

locity obtained from redshift positions through a Lagrangian recon-

struction, here MAK, is sometimes very noisy, as shown in Fig. 18.

Another more subtle effect is introduced by the Gaussian distribu-

tion of our velocity sample that we are going to analyse. We need to

take care of this ‘selection bias’ to avoid being spoiled by eventual

large reconstruction errors present for objects with a high velocity.

Thus, we need a Bayesian approach to account for all these statistical

effects.

In principle, the likelihood function gives a probability for the

data, i.e. here redshift positions Z = {zi }, with i running from 1 to

N, and distance moduli M = {µi }, assuming some model described

by the vector parameter p. Additionally, we assume that we have

an estimation of measurement errors on M through the set S. The

exact description of S will be given in the next paragraph. Typically,

errors on redshift measurements are of the order of 50–60 km s−1.

This means that we can consider them as negligible if we consider

objects farther than Rz = 6–10 h−1 Mpc. The volume enclosed by

the sphere of radius Rz is, in any case, also poorly reconstructed

because of the singularity introduced by redshift distortions near

the observer (Section 5). In the following analysis, we will consider

redshift measurements as negligible by avoiding the objects located

at less than 10 h−1 Mpc from the observer, thus we have13

P(M,Z|p,S) ∝ P(M|Z, p,S) = L(p). (11)

The end of this section is devoted to computing the right-hand part

of this equation. To achieve this, we will decompose the probability

13 Though it is in theory possible to avoid this hypothesis, it is in practice

highly difficult for computational reason as one would need to run several

MAK reconstructions to evaluate the extra integral that would be needed in

equation (11).
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Figure 19. Maximum-likelihood analysis. This sketch illustrates the Bayesian chain used to establish the likelihood function. The input data are located on

the left-hand side and the output posterior distribution P(β, H) on the right-hand side.

into small pieces:

P(M|Z,S, p) =
∫ ∫

Mr,V,D

∫

P(D)P(M|Mr,S, D, p)

×P(Mr|V,Z, p)P(V|Z, p) dMrdVdD (12)

withMr = {µ1,r , . . . , µN ,r } representing the ‘true’ distance moduli,

with µi,R ∈ [−∞, +∞] and V = {v1, . . . , vn} the ‘true’ object

peculiar velocities. P(M|Mr,S, p) is the probability of measuring

the set of distance moduli M given that the real set of distance

moduli is Mr and the expected error on the measurement is given

by S. P(Mr|V, p) is the probability of obtaining the set of distance

moduli Mr given the reconstructed velocities V . P(V|Z, p) is the

probability the velocities are well reconstructed from the redshift

data Z. The probability P(D) is going to be introduced in the last

paragraph to account for uncertainty in the calibration of the Tully-

Fisher relation. All those probabilities are computed assuming the

model parameters p. We will establish the likelihood function L(p)

in three steps.

(i) First, the error distributions linked to observations are consid-

ered to get an unbiased distance estimator for groups. This analysis

yields the probability P(µi|µ, σµ,i, p).

(ii) Second, the errors on reconstructed velocities are considered

to compute P(v|Z, p).

(iix) Last, the two analyses are merged as given above to produce

the likelihood function which gives the posterior distribution of β

and the Hubble constant H.

A picture of the above Bayesian chain is given in Fig. 19.

Distance modulus error distribution. To establish the likelihood

function comparing the measured distance to the reconstructed ve-

locity field, we assume the distance catalogues are obtained using

the inverse TF relation (Shaya et al. 1995),

η0(M) = −e(M + D), (13)

where M is the absolute magnitude of the considered galaxy,η0(M) is

its predicted linewidth, e is the slope and D is the zero-point calibra-

tion (the latter two are assumed to be known exactly). It is known that

inverse TF relation is less sensitive to the selection bias as compared

to forward TF relation (Strauss & Willick 1995). Observational data

show that the differences between the predicted linewidth η0(M) and

the measured linewidth η for an object of absolute magnitude M are

Gaussian distributed14 (Tully & Pierce 2000; Pizagno et al. 2007).

14 In fact, in writing equation (14), two effects are mixed: the error on the

Thus, the probability of measuring the linewidth η, given that the ob-

ject has an absolute magnitude M, and assuming that the TF relation

η0(M) is known, is

P(η|M, e, D) =
1

√
2πση(M)

e
− (η−η0(M))

2

σ2
η (M) (14)

withσ η(M) the linewidth estimation error for the absolute magnitude

M. Distance catalogues are composed of estimated distance moduli

µe from the inverse TF relation. These estimated distance moduli

are built from the statistics on a single group. Therefore, the joint

probability of having a galaxy in a group with both a linewidth η

and an absolute magnitude M, assuming the TF relation η0(M), is

P(η, M |e, D) = F(M)P(η|M, e, D), (15)

where F(M) is the normalized absolute luminosity function of the

group.15

The estimator for the distance modulus is given by

µe = m − Me(η) = M + µ0(r ) + D′ +
η

e′ , (16)

where D′ and e′ are the estimated inverse TF parameters of equa-

tion (13) and µ0(r ) = 5 log( r

10pc
) the true distance modulus of the

considered group. The conditional probability that the estimated

distance modulus for the group is µ, assuming that the estimated

Tully-Fisher parameters are e′ and D′ and that the real parameters

for this group are e and D, can be written as

P(µ|µ0(r ), e, e′, D, D′) = 〈δD (µ − µe)〉group

=
〈

δD

(

µ − µ0(r ) + M + D′ +
η

e′

)〉

group

=
∫

M

e′ F(M)
√

2πση(M)
e

− (e′ (µ0(r )−µ)+e′ D′−eD+(e′−e)M)2

2σ2
η (M) dM . (17)

While working with the inverse TF relation, one can assume that

the slope e′ is completely determined and e′ = e. Since the observed

σ η(M) varies little with M, it is chosen to be equal to a constant σ 0.

measurement of line width, which may reach 10 per cent because of the un-

certainty in galaxy inclination correction, and the intrinsic modelling errors

of the TF relation itself.
15 Note that the selection function is assumed to be independent of η and

is hence absorbed in F(M).F(M) corresponds to (M) S(M, η) in Strauss &

Willick (1995) notation (e.g. equation 188).

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 1292–1318



Observational biases in Lagrangian reconstructions 1313

The previous probability reduces to

P(µ|µ0(r ), e, D, D′, σ0) =
e

√
2πσ0

e
−e2 (µ−µ0(r )+D′−D)2

2σ2
0 . (18)

Though the slope e′ is well determined, the zero-point calibration

D may still be affected by non-negligible errors. 16 The set describ-

ing errors on distance moduli is thus S = {σ0,1/e, . . . , σ0,N /e} =
{σµ,1, . . . , σµ,N }. The error on this calibration will affect the dis-

tances globally. As a first approximation we model the error on the

zero-point by a Gaussian centred on D with a standard deviation of

σd.

Linking distance modulus to velocity. The second probability

function in equation (12) is P(Mr|V,Z, p), which is actually a

distribution linking the velocities and redshifts to distance modulus.

This principally corresponds to a change of variable and we give

directly the expression of it, which is inspired by equation (1):

P(Mr|V,Z, p)

=
N

∏

i=1

H10µr,i /5δD(zi − vi − 10 pc × H10µr,i /5). (19)

Reconstructed velocity distribution. We are now going to establish

the expression of P(v|Z, p) with the vector of parameters of our

chosen model p = (H, β, Bv , σv , γ ∗, e) – σ v and γ ∗ are going to be

introduced in the next immediate paragraphs. One may decompose

P(v|Z, p) that way

P(v|Z, p) =
∫

P

P(v|P, p)P(P|Z, p) dP, (20)

with P = {ψr,i } the reconstructed displacements. As MAK recon-

struction is deterministic once β has been assumed (Section 4), the

second probability distribution is simply given in our case by

P(P|Z, p) =
n

∏

i=1

δD(ψr,i − ψi (Z, β)) (21)

with ψ i representing the MAK reconstructed displacement of the

ith object, being a function of all redshift coordinates and β. Thus,

studying P(V|Z, p) reduces to examine P(V|P(p0), p′), with p′ =
(H, β ′, Bv , σv , γ ∗), p0 = (H, β0, Bv , σv , γ ∗), β0 being the assumed

growth factor to compute the set P(p0) using the redshift recon-

struction. P(V|Z, p) and P(V|P(p0), p′) equalize only if p = p′ =
p0. Thus, one needs a several redshift reconstructions to build the

probability function P(V|Z, p). Working with the intermediary set

P is easier than with Z, we thus put the reduced likelihood function:

L′
β0

(p′) =
∫

Mr,V

∫

P(M|Mr,S)P(Mr|V,Z, p)P(V|P(p0), p′) dMrdV

(22)

and we are going to establish the expression of the elementary prob-

ability function P(vr |ψ r, p) which will yield

P(V|P(p0), p) =
N

∏

i=1

P(vr,i |ψr,i , p) (23)

assuming statistical independence of all {vr,i, ψ r,i} duets, and that

P(p0) is obtained using a redshift reconstruction for which β = β0.

16 The latest calibration is given in Tully et al. (2007).

L′
may be written in a factorized way:

L′
β0

(p′) =
N

∏

i=1

∫∫

µr,vr

P(µi |µr, σ0,i/e)P(µr|vr, zi , p)P(vr|ψr,i , p) dµrdvr.

(24)

The computation of L′
is clearly helped using this factorized form.

We may now concentrate on the third probability function of the

above equation.

As has been established in Section 2, the distribution of errors on

the reconstructed velocity field is the Lorentzian

PDE(eψv) ∝
1

1 +
(

eψv

Bv

)2
, (25)

where Bv = 86 km s−1 (redshift reconstruction), with eψv the dis-

tance between the reconstructed velocity β� r and the true velocity

vr. This formulation is different from saying that the reconstructed

velocity is affected by error when compared to the true velocity,

and permits some errors in the MAK reconstructed displacement

field. As has been seen in Section 6.3, the reconstructed velocities

may also contain an extra offset that needs to be removed while

measuring β. The error distance eψv is thus

e�v = α∗vr − β∗�r + γ∗ (26)

with

α2
∗ + β2

∗ = 1 and β = β∗/α∗ (27)

and γ ∗ to account for a potential spurious offset in reconstructed

velocities. From linear theory (Peebles 1980), we know that the

line-of-sight component of the velocity field must be distributed

like a Gaussian function. We now assume that the absolute prob-

ability for an object to have a velocity v is given by a Gaussian

distribution:

Pvel(v|p) =
1

√
2πσv

e
− v2

2σ2
v . (28)

It must be noted that it is likely that the observational data do not

encompass a sufficiently large volume so that measured velocities

follow this law. Moreover, this prior is of some importance when

we have to deal with highly scattered data. The shortcomings of

such an approach will be discussed in the next section. One can

recover the standard uniform prior on velocities by taking the limit

σv → +∞ in the next equations. Assuming eψ,v , as a random

variable, is independent of vr and these two quantities are themselves

statistically independent from β and γ ∗, we may now write the joint

probability of reconstructing ψ r, having a true velocity vr:

P(vr, ψr, β, γ∗|Bv, σv)

= β∗ PDE(e�v|Bv, σv)

× P(β, γ∗|Bv, σv)P(vr|Bv, σv)P(ψr|Bv, σv)

= β∗C(Bv, σv)P(β, γ∗|Bv, σv)
P(ψr|Bv, σv) e

−
v2
r

2σ2
v

1 +
(

β∗ψr−α∗vr+γ∗
Bv

)2
, (29)

where C is a function eventually depending on Bv and σ v . The condi-

tional probability that the true velocity is vr given the reconstructed
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displacement ψ r is now exactly

P(vr|ψr, p)

=
e
−

v2
r

2σ2
v

[

1 +
(

β∗ψr−α∗vr+γ∗
Bv

)2
]−1

∫ +∞
v=−∞ e

− v2

2σ2
v

[

1 +
(

β∗ψr−α∗v+γ∗
Bv

)2
]−1

dv

. (30)

The denominator of the right-hand part of this equation must be

computed numerically. 17 It can be shown that, in the limit σv → +
∞, P(vr |ψ r, β∗, γ ∗) reverts to a pure Lorentzian form.

Merging the probability distributions. We may now establish the

‘elementary’ conditional probability for an object i to get a mea-

sured distance µi given that its reconstructed displacement is ψ r,i,

its redshift is zi, the error on the linewidth measurement is σ 0,i and

the model parameters are p′ in the notation of this section:

P(µi |ψr,i (p0), zi , σ0,i , D′, p′)

=
∫ ∫

v,µr

P(µi |µr, σ0,i , D′, p′)P(µr|v, zi , p′)

× P(v|ψr,i (p0), p′) dµr dv

∝
eH

σ0,i

∫

µr

10µr/5e
− e2

2σ2
0,i

(µr−µi +D−D′)2

× P
[

v = (zi − 10 pc × H10µr/5)|ψr,i (p0), p′
]

dµr, (31)

with p′ = (H, β ′, Bv , σv , γ ∗), ψ r,i (p0) being computed assuming

the parameters p0. Looking closely at this probability, one may note

that changing D → D′ = D + � is equivalent to changing H →
H′ = H exp(�/5). Thus, the uncertainty in the zero-point calibration

translates only in an uncertainty on H and not on the parameters of

the model.

We may now write the full formal expression of L′
(p), as already

sketched in equation (22). As specified in the discussion we take

P(D′) to be a Gaussian distribution centred on D and with a standard

deviation σ D. Now, we may replace and get

L′
β0

(p′) ∝
∫ ∞

D′=−∞
e

− (D−D′ )2

2σ2
D

∏

i

P(µi |ψr,i (p0), zi , σ0,i , e, p′) dD, (32)

with i running on objects of the catalogue. Assuming a uniform prior

on β, H and γ ∗ and taking care of the relation between L′
β and L as

mentioned above, the Bayes theorem permits us to write

P(H , β, γ∗|M,S,Z, e, D′, Bv, σv) ∝ L(p) = L′
β (p). (33)

We now have access to the posterior distribution of (H, β, γ ∗).

7.3 Results

The results of measuring �m using the maximum-likelihood esti-

mator are presented in the tables using the label L.

Except in the case where we consider observational errors, we use

a simplified version of L by taking σ 0,i = 0. While it would have

been natural to find the maximum of the likelihood for all parameters

(including Bv, σ v, γ ∗), we quickly noted that it was leading to un-

acceptably biased measurements and to an unnecessary increase of

the parameter space. Moreover, the results quite strongly depend on

σ v and γ ∗, especially when the reconstruction noise becomes high

17 This function is known as a Voigt profile.

as in redshift reconstructions (see Appendix D). We thus propose

to discuss the values obtained by setting γ ∗ = 0, Bv = 90 km s−1

and choosing two values for σ v. First, we use linear theory to predict

the average velocity dispersion of haloes in the universe, this leads

to take σv = 326 km s−1 (the �m measured that way is labelled

Lmax). Second, σv = +∞ is used to check the influence of recov-

ering a uniform prior on the velocity distribution (labelled Lmin,

respectively).

By looking at all tables of this paper, we noted that the difference

between the two measured �m is mostly following the interval de-

fined by smin and smax. We were expecting such a behaviour (σ v is

more or less controlling the statistical bias of the likelihood func-

tion) but not that it would so clearly follow the other method. The

more the scatter is important, the more the measurement becomes

imprecise as expected. It must, however, be noted that on average the

measure Lmax suffers less systematic bias than Lmin. This behaviour

is supported by the tests conducted in Appendix D.

The seemingly well-estimated �m in the lower right-hand panel

of Fig. 18 has been computed using the full likelihood analysis.

Actually, compared to the 1.5σ method for which the measured

slope is undefined, Lmin and Lmax are basically the same as when

no observational errors are introduced.

The correction based on a Gaussian velocity distribution assump-

tion cannot be entirely trusted for 4k-mock7 and 4k-mock12. As one

may note in Fig. 17, the velocity distribution is highly non-Gaussian

in these cases. This renders incorrect our distribution modelling

in Section 7.2. Looking at Table 6, we note that though the mea-

surements on ‘Original’ reconstruction is not strongly affected, we

cannot say the same thing using data obtained from ‘Full’ recon-

struction. In the first case, the noise is sufficiently low so that the

prior does not have much importance whereas in the second case the

wrong modelling of the velocity distribution leads to a strong error

on the measured �m. Fortunately, the scatter distribution presents

different types of properties that led to compatible measurements

in Table 6 between the maximum likelihood (σv = +∞ to remove

the Gaussian prior) and the 1.5σ method. For 4k-mock7 and 4k-

mock12, the slope estimate is helped by probing velocities with

high magnitudes, leading to less possibility of systematic error on

the slope.

One is thus led to use a sufficiently deep distance catalogue to

ensure the velocity distribution is more or less Gaussian to be able

to apply the correction to the likelihood analysis. In this case, one

may rely on the value given by Lmax. If, on the contrary, the velocity

distribution is highly non-Gaussian, one must use Lmin. If possible,

a visual inspection of the velocity–velocity scatter plot must be

conducted to give a check on the amount of statistical biasing.

8 C O N C L U S I O N

The MAK method has been applied with success to reconstruct the

velocity field and the density field of simulations (Mohayaee et al.

2006), providing an interesting tool to apply to galaxy catalogues

in order to recover the dynamics of our local universe. This method

presents the interesting advantage of finding the exact solution of

an approximated dynamical problem written in Lagrangian coordi-

nates. The Lagrangian description presents two major advantages.

First, it gives a real estimation of peculiar velocities for each galaxies

or groups of galaxies, as opposed to a field description which would

give an average value at a given spatial position (which is also pos-

sible to build using the Lagrangian description). Second, it permits

us to use the Zel’dovich approximation, which gives better peculiar

velocity prediction than linear Eulerian theory applied to the same
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dark matter density field. It means that we expect this method to

give better results and more spatially resolved than, e.g. the PO-

TENT method (Bertschinger & Dekel 1989) or velocity field re-

construction through spherical harmonics (Regos & Szalay 1989).

Now, most previous analyses of Lagrangian peculiar velocity recon-

struction have been run mostly on particle catalogues coming from

simulations. However, galaxy catalogues are not as simple, and the

main problems are as follows.

(i) Catalogues mostly provide redshift positions of galaxies and

for a few objects their physical distances from us.

(ii) The luminosity is the only known ‘dynamical’ quantity for

most objects in catalogues and so we need to extrapolate the M/L

relation for known objects to the ones that we do not know.

(iii) Incompleteness effects have to be taken into account: either

because of magnitude limitation or due to extinction of objects by

the galactic plane.

(iv) The MAK reconstruction also needs the Lagrangian domain

of the galaxy catalogue.

All these biases and unknown quantities render the reconstruc-

tion problem much more difficult than in simulations. We propose

here both to test the feasibility of such a reconstruction on galaxy

catalogues and the methods to overcome the problems that we have

just mentioned. We have tried to address the following problems:

(i) Reducing the introduced systematic errors due to unknown

bias between mass and luminosity tracers. The dark mass can be

either put uniformly into the catalogue or put in the detected haloes

(Section 4.1). It appears that there exists an optimum way to dis-

tribute the mass, as can be seen in Fig. 6, which gives unbiased and

noiseless reconstructed velocities, even though the exact location of

63 per cent of the mass in the universe remains unknown. In addi-

tion to the previous, global, problem, the relative mass distribution

between objects in the catalogue is also uncertain as we do not know

their true M/L. The induced systematic errors have been studied in

Section 4.2 and we show that the naive approach corresponding to

using M/L = constant inevitably gives a large bias on reconstructed

velocities. Even a reasonable guess, for instance, the one proposed

by MH, is still significantly biased. This suggests some more work

must be done on the M/L relation, particularly on the high-mass

end. However, on the positive side, large random errors on M/L doe

not yield any systematic effect and only increase the scatter in the

velocity–velocity comparison.

(ii) We proposed a slightly improved way to correct for incom-

pleteness effects in galaxy catalogues and its effect on reconstruc-

tion. Though it has given good results, we do not expect this method

to be completely bias-free as it presents the same deficiencies as the

previous item. However, by enforcing the correction on the mass

distribution, we managed to preserve the dynamics in the observa-

tional data in a better way than would be the case if we had enforced

it on the luminosity distribution.

(iii) We investigated the eventual systematic errors in redshift

reconstructions as proposed previously by Mohayaee & Tully (2005)

and which corresponds to the inverse redshift operator studied by

Valentine et al. (2000). It appears that, though the bias is small, �m

tends to be always underestimated.

(iv) Two solutions to overcome the Lagrangian volume uncer-

tainty for the case of finite-volume catalogues have been investi-

gated. The reconstruction method which gives better result seems

to be PaddedDom. The other alternative, NaiveDom, appears to bias

the reconstructed velocities, especially in the case of a redshift re-

construction.

(v) The efficiency of the correction for the ZOA as proposed by

Shaya et al. (1995) has been checked (Section 4.1). It appears that

the correction is bias-free and only introduces a small, but notable,

additional noise for objects in the direction of the ZOA.

(vi) We checked that the resulting errors of each effect are uncor-

related so they only pile up without producing a strong additional

bias. It is fortunate that some observational effects produce com-

plementary biases: incompleteness effect tends to overestimate �m

whereas redshift distortion underestimates �m. The resulting bias

is thus not so important.

(vii) We finally tried two estimators to measure �m from both

reconstructed displacement and distance measurement (Section 7):

the 1.5σ and the maximum-likelihood estimator. However, the first

one is not able to work with noisy measured velocities, and the

second one is badly affected by large distribution tails in redshift

reconstruction. Adding a prior on the distribution of velocities in

the catalogue helps to reduce the bias at the cost of having a good

measurement of the width of this distribution. A good estimate of

�m is thus rendered more problematic though we have shown that

it should be feasible in principle.

We intend to continue this work in the following directions.

(i) This method can be applied to make a measurement of �m in

NBG-8k/NBG-3k catalogues and in the upcoming 6dFGS redshift

and distance catalogues.

(ii) A better comparison to the acoustic peaks of the CMB can

potentially be obtained using the reconstructed displacement field

(Eisenstein et al. 2006).

(iii) We can apply MAK reconstruction on SDSS and 2MASS

catalogues to obtain the initial Lagrangian positions and velocities

of objects in our local universe. This would render the possibility of

a re-simulation of our local universe for the first time and check the

MAK prediction and correction schemes on real observations.

(iv) We want also to improve the reconstruction itself and propose

a new algorithm to include further gravitational effect during orbit

reconstructions. This will never give us the internal structure of

objects but potentially will give better reconstructed velocities while

keeping the power of the MAK reconstruction.
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A P P E N D I X A : C O N S T RU C T I O N O F A M A K

M E S H

MAK reconstructions require a sampling of the matter distribution

with ‘particles’ of equal mass corresponding to nodes of a homoge-

neous mesh. When considering the simulation, one uses a full pe-

riodic cubic mesh. However, in real galaxy catalogues, the relevant

Lagrangian volume is a non-periodic compact subset inscribed in a

larger rectangular mesh. In that case, the assignment is performed

only for ‘particles’ belonging to this initial volume. Note that the

determination of this initial volume is by itself a great challenge and

a poor guess can have dramatic consequences.

Given a number of ‘galaxies’, or tracers, for which the individual

masses Mi are known and a choice of the mass resolution of the MAK

grid, mR, the problem is now to determine how many ‘particles’ have

to be assigned to tracer i. This number should be ni = Mi/mR which

is rarely an integer. To address this issue, we construct an integer

function ñi such that the quantity

χ 2 ≡
∑

i

(

ñi mR − Mi

Mi

)2

(A1)

is minimized given the constrain

∑

i

ñi = NMAK, (A2)

where N is the total number of nodes on the MAK grid, such that

NMAK × mR is as close as possible to the total mass,
∑

Mi . The

minimization of χ 2 is performed iteratively until convergence. Note

that the solution of such a minimization is, in general, not unique due

to the possible permutations between objects of the same mass. Due

to this degeneracy, it is needed to shuffle randomly the tracers prior

to the minimization in order to avoid possible systematic effects.

Note finally that one must make sure that there is at least a few

particles per tracer, ni � α with α > 1. This brings constraints on

mR and therefore on the size of the MAK mesh. Unfortunately, it is

not always possible to have α > 1 due to the prohibitive CPU cost

it would imply for the MAK reconstruction in the present paper.

To address this problem, we separate the catalogue into groups of

galaxies and field galaxies. For the groups, the χ2 minimization is

performed, as explained above, with a possible loss of the lightest

ones since ni can still be smaller than unity. For the field galaxies, we

use a simpler procedure as follows. Given the mass Mi of a galaxy i,

a MAK tracer is randomly assigned to it with occurrence probability

Mi/mR.

A P P E N D I X B : TO O L S F O R E R RO R A NA LY S I S

To check the accuracy of the reconstructions, we compute the mo-

ment of the joint probability distribution of the reconstructed veloc-

ities vrec,i of object i and the simulated velocities of those objects

vsim,i. We write 〈A〉 the average of the quantity A

〈A〉 =
1

N

N
∑

i=1

Ai . (B1)

We define three second moments (after substraction of the aver-

age):

σ 2
r = 〈v2

rec〉, σ 2
s = 〈v2

sim〉, σr,s = 〈vrecvsim〉. (B2)

From these moments, we can build the correlation coefficient:

r =
σr,s

σrσs

(B3)

and the ratio between the width of the reconstructed field PDF (den-

sity or velocity) and the width of simulated – mock – field PDF

s =
σr

σs

. (B4)

For these two quantities, the optimum value is 1. Alternatively, two

other ‘slope’ estimator of the reconstructed velocities versus the

simulated ones can be built from the above momenta

smin =
σr,s

σ 2
s

= sr and smax =
σ 2

r

σr,s

= s/r . (B5)

These two slopes are interesting when one makes an estimation of

�m through s and needs an evaluation of the uncertainty. The two

extra slopes determined using this way should, ideally, be equal to

s but due to the lack of perfect correlation (r < 1), they are actually

different from it in realistic cases. In fact, we have smin < smed <

smax.

Please note that we can define the relative dispersion

σ 2 =
〈(vrec − vsim)2〉

σ 2
s

= 1 + s2 − 2sr , (B6)

which is a measure of the noise-to-signal ratio: high σ corresponds

to low signal. Ideally, one wants σ = 0.

A P P E N D I X C : S I M U L AT I N G

M AG N I T U D E - L I M I T E D C ATA L O G U E S

Having only a halo catalogue, we must generate a ‘galaxy cata-

logue’ including incompleteness effects. The main difficulty in that

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 383, 1292–1318
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construction is that the distribution of galaxies in the universe is a

non-trivial, non-linear functional of the total matter density field. For

instance, bright galaxies tend to concentrate in massive structures

(Zandivarez, Martı́nez & Merchán 2006). It means that, though most

of the field galaxies are missed, the major groups can still be easily

seen due to the bright galaxies they contain. Thus, the galaxy distri-

bution should mostly trace large haloes at large distances, potentially

introducing a bias in the reconstructed peculiar velocities if incom-

pleteness corrections are performed unwisely. In what follows, we

generate mock galaxy catalogues like NBG-8k/3k. To take prop-

erly into account the effects discussed above, we separate groups

of galaxies from field galaxies. Groups are populated with galaxies

following the universal Schechter form for simplicity, but with a

different normalization to account for their non-trivial M/L.

Statistically, NBG-8k/3k catalogues are composed of galaxies

measured in the B band and distributed according to the Schechter

form

n(L) dL ≃ n0 L−1e−L/L∗ dL, (C1)

with L∗ ≃ 5.7 × 1010 L⊙ and n0 ≃ 0.03 h3 Mpc−3. Moreover, the

NBG-8k catalogue is complete above 3 × 109 − 4 × 109 L⊙ inside a

sphere of radius dcomp = 12 h−1 Mpc. As the mean ‘galaxy’ (particle)

density in the simulation is nsim = 0.26 h3 Mpc−3 and about ncat =
0.08 h3 Mpc−3 ≃ 0.30 nsim in NBG-8k, we must dilute the simulation

to get a mock catalogue similar to NBG-8k. The luminosity LG of

a detected galaxy at a distance d from the observer must satisfy the

constraint

LG > 4πlcutd
2 (C2)

with lcut the minimum flux detectable by the observer. The fraction

of galaxies detected at the distance d in the galaxy mock catalogue

is thus

ffield(d) =











0.30 if d < dcomp
∫ ∞

4πlcutd2
n(L) dL

∫ ∞

Lmin

n(L) dL
otherwise

(C3)

with lcut the minimum flux detectable by the observer. The fraction is

saturated at 0.30 to follow the dilution constraint expressed above.

We enforce the continuity of ffield(d) by choosing Lmin such that

f field(dcomp) = 0.30.

The mock galaxy and group of galaxies catalogue is now built:

I. We take a halo A from FullMock and assume it is a group of

galaxies. We thus deduce the intrinsic luminosity LA from the mass

MA of this object using equation (5).

II. The observed luminosity L′
A of A is computed assuming that

its galaxy population follows (C1) but with a different normalization

to achieve the intrinsic luminosity LA. If dA is the distance between

the observer and the halo A, then the galaxies detected in this halo

verify (C2) for d = dA. The total observable luminosity for A is thus

L ′
A = L A fL (dA) (C4)

with, assuming Lmin ≪ L∗,

fL (d) =











∼ 1 d < dcomp
∫ ∞

4πd2lcut
Ln(L) dL

∫ ∞

Lmin

Ln(L) dL
≃ e

− 4πd2lcut
L∗ d � dcomp.

(C5)

III. If L′
A < 4πd2

Alcut then A is removed from the catalogue, oth-

erwise it is kept.

IV. This gives us the group component of our magnitude-limited

catalogue.

V. The case of the ‘field galaxies’ is treated separately. Galax-

ies are identified with dark matter particles and their luminosity is

assigned following (C1). More specifically, we choose a shell Sd

put at a distance d from the observer. The probability of keeping a

‘galaxy’ G in Sd is given by (C3). Inside the shell Sd, the selected

‘galaxies’ share now a luminosity

L f(d) =
∫ ∞

4πd2
G

lcut

Ln(L) dL (C6)

which is distributed evenly among them. Strictly speaking, such a

repartition should be performed randomly according to (C1). That

would add a small additional noise on the reconstructed velocities.

This noise should be of insignificant consequence as supported by

the discussion of the TS-T case in Section 4.2.

We have now a realistic mock catalogue and we try to account

for its incompleteness as we would for NBG-8k:

A. The missing luminosity in groups is corrected. In order to do

this, we compute, in a thin shell Sd at some distance d, the ratio

between the expected total luminosity and the observed luminosity

b(d) =
∫ ∞

0
Ln(L) dL

∫ ∞
4πd2lcut

Ln(L) dL
= e4πd2lcut/L∗ . (C7)

The intrinsic luminosity LA of a group A in Sd is recovered with

L A = Lobs,Ab(d). (C8)

The mass MA of A can then be obtained using the non-linear relation

(5).

B. The remaining missing mass in Sd can be written as

Mmissed,d = ϒb(d)
(

Lfield,obs,d + Lgroup,obs,d

)

−Mfield,obs,d − Mgroup,obs,d , (C9)

with ϒ = 93
M⊙
L⊙

the average M/L,18 Lgroup,obs,d the observed lumi-

nosity of groups, Mgroup,obs,d the masses of groups obtained after the

above correction and Lfield,obs,d the luminosity of field galaxies. The

quantity Mmissed,d comes from both missing galaxies and missing

group of galaxies. If Mmissed,d > 0 and without any further informa-

tion, the missing mass may either be assigned evenly to field galaxies

of Sd (our choice, as usually performed in the literature), or dis-

tributed uniformly in Sd using new random tracers. If Mmissed,d � 0,

the mass distribution in Sd is untouched.

This procedure is certainly not free from biases. For instance, the

contrasts between shells are partly smoothed out, as illustrated by

Fig. C1. This is equivalent to reducing the overall magnitude of

fluctuations in the density field. As a result, a small bias towards

larger �m might occur, as in the lower right-hand panel of Fig. 6. On

the opposite, if the missing mass is assigned to detected background

galaxies, the estimated �m is expected to underestimate the true

value as discussed in Section 4.1.

C. Note that the mass of the ‘field galaxies’ is not the mass of

a single particle anymore. Procedure explained in Appendix A is

facilitated as follows, for the sake of algorithmic simplicity. With

v ∈ (0; 1], a uniform random variable, a galaxy G of mass mG is

splitted into nG subcomponents of mass mparticle such that

nG =

{

rG if

(

mG

mparticle
− rG

)

< v

rG + 1 otherwise

, (C10)

18 Note that a prior assumption on the value of �m is obviously needed to

estimate ϒ .
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Figure C1. Magnitude limitation/filling missing mass. This plot gives the

measured amount of mass in a thin shell at different distances from the ob-

server. The solid line gives the original mass distribution in the simulation,

the dot–dashed line the mass distribution after mimicking incompleteness

and the dashed line the recovered mass distribution after correction for in-

completeness as described in Appendix C.

with rG = ⌊ mG

mparticle
⌋, ⌊x⌋ being the integer part of x. Each of the

subcomponent is now considered as a ‘field galaxy’ in the procedure

explained in Appendix A.

A P P E N D I X D : S TAT I S T I C A L B I A S I N T H E

S L O P E E S T I M AT I O N

The two methods that we used for slope estimation are known to be

biased. A more precise treatment of this bias is beyond the scope

of this paper. However, we propose here to check the order of mag-

nitude of the systematic effect of the statistical analysis itself. To

achieve this, we produced a set of randomly generated ‘velocities’ v

and their ‘reconstructed velocities’ vr counterpart. The probability

for a point (v, vr) to have a velocity v is given by

Pv(v) =
1

√
2πσv

e−v2/(2σ 2
v ), (D1)

with σv = 300 km s−1 typically. The probability for it to have a

reconstructed velocity vR is given by the same probability law. We

now compute the error e betweenvR andv, which must be distributed

according to the Lorentzian form

PDE(e) =
1

π B

1

1 +
(

e

B

)2
, (D2)

with B = 86 km s−1. The error e is related to v and vr by

e = α∗v − β∗vr. (D3)
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Figure D1. Statistical bias. Scatter plot of 10 000 randomly generated points

following the approximated probability laws found between reconstructed

velocities and simulated velocities.

For the rest of the Appendix, we take α∗ = β∗ = 1/
√

2. The

probability of keeping a point (v, vR) with an error e is given by

integrating PDE(e′) between −e and +e,

Pkeep(e) =
2

π
tan−1

(

e

B

)

. (D4)

We represented in Fig. D1 a scatter plot of 10 000 points generated

using this procedure. As one can see, it does look like a real scatter

plot of a redshift reconstruction.

Conducting a 1.5σ analysis on this set of points, we find a slope

β∗/α∗ = 1.0 ± 0.20. In our case, this would give �m = 0.30 ±
0.10. Estimating the slope using the maximum-likelihood approach

gives, with σv = +∞, β∗/α∗ = 0.81 ± 0.01 (�m = 0.20 ± 0.02)

and with σv = 300 km s−1, β∗/α∗ = 1.074 ± 0.012 (�m = 0.34 ±
0.02). Putting B = 40 km s−1, both for generated data and likelihood

function, as for real space reconstructions, reduces the error and

gives �m = 0.31 ± 0.02, thus highlighting the importance of the

reconstruction noise for a good estimation of �m.

Consequently, though one must rely on the likelihood analysis,

it may be strongly biased by the structure of reconstruction errors

mixed with the non-uniform distribution of observables. We tried to

make a good approximate model of the errors, though it seems to

quite depend on the value of σ v. Whenever possible, of course, one

must crosscheck the result of the likelihood by a visual inspection

of the scatter plot.
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