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A B S T R A C T

Flows involving immiscible displacement of one fluid by another in a porous media are known to destabilize
and form fluid fingering. When the non-wetting fluid is a highly mobile gas (air) and the wetting fluid is
an in-compressible liquid (water) the classical macroscopic theory is unable to describe the fingered flow. In
Part I of this study we have introduced a model that interprets the mixture of wetting and non-wetting fluids
within the pore space as a single saturating non-uniform pore fluid characterized by a phase field parameter,
which is considered to be the saturation degree of the wetting fluid. In the current study we present a linear
stability analysis of its solutions which describe both imbibition and drainage. The analysis sheds light on
the sensitivity of the flow stability on injection flux, imposed pressure gradient and initial saturation degree.
Two-dimensional numerical simulation results are as well presented which verify the stability analysis and
reveal the rich structure of the fluid fingering realized by this model. While these results are found to be in
qualitative agreement with experimental observations, they also warrant further experimentation to explore
the additional features predicted by the model.
1. Introduction

The classical problem of stability of an interface formed between
two immiscible fluids is known to be further complicated by the pres-
ence of a confining solid substrate, which is a typical scenario in a
two-phase flow within a porous medium. The transition region between
the zones saturated by two different fluids within porous media can be
described as a mixing region where both fluids partially saturate the
pore spaces. This mixing region can be viewed and modeled as a dif-
fused interface bridging the two fully saturated zones. Destabilization
of such a diffused interface and eventual fingering formations have a
fractal structure rather than smooth formations, as in the case of two-
phase Hele-Shaw flow (Saffman and Taylor, 1958). This is in most part
due to an intrinsic property of porous media, which is the existence of
several length scales (Homsy, 1987). Nevertheless, being able to model
such fingering phenomena has its uses in a myriad of applications
ranging from soild hydrology (Glass et al., 1988; Jarvis, 2007; Clothier
et al., 2008) to Carbon dioxide (CO2) sequestration (Lackner, 2003;
Torp and Gale, 2004; Orr, 2004; Ajayi et al., 2019).

Numerous experimental campaigns have been carried out to char-
acterize such flow both in the case of imbibition where the wetting
fluid displaces the non-wetting fluid and vice-versa in the case of
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drainage. While foundations for a systematic characterization of flow
instabilities in porous media were laid in the 80 s with the seminal work
of Lenormand and his colleagues (Lenormand, 1985; Lenormand et al.,
1988; Lenormand, 1990), subsequent works have shed light on these
phenomena in the presence of gravity both in imbibition (Glass et al.,
1989b; Selker et al., 1992; Yao and Hendrickx, 1996; Bauters et al.,
2000; Shiozawa and Fujimaki, 2004) and drainage (Birovljev et al.,
1991; Auradou et al., 1999; Méheust et al., 2002; Løvoll et al., 2005)
among others. However, continuum scale modeling efforts were largely
focused for the case of imbibition especially in the soil hydrology com-
munity. In this context, widely accepted Richards equation (Richards,
1931) was known to suffer from its inability to model fingering insta-
bilities due to its unconditional stability against transverse perturba-
tions (Egorov et al., 2003; Nieber et al., 2005). It has been hypothesized
based on experimental evidence (Bauters et al., 2000; Shiozawa and Fu-
jimaki, 2004; DiCarlo, 2004; DiCarlo et al., 2010) and related numerical
studies (Nieber et al., 2000; Eliassi and Glass, 2001) that fingering type
instabilities during infiltration into initially dry soils is associated with
an overshoot type non-monotonic profile of the water content along
the length of the finger and that this overshoot is the cause rather
than the consequence of the instability. Subsequently various model
vailable online 19 April 2022
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extensions of the Richards equation, Eliassi and Glass (2002, 2003),
DiCarlo et al. (2008), Cueto-Felgueroso and Juanes (2009a) to name a
few, aimed, to an extent, to reproduce such non-monotonic saturation
profiles and consequently the fingering type instabilities. If a model
succeeds in replicating fingering or not is revealed in part through
a stability analysis of its solutions against transverse perturbations.
Such analyses were performed for some of these models (Egorov et al.,
2002, 2003; Nieber et al., 2005; Cueto-Felgueroso and Juanes, 2009b)
revealing their conditionally stable nature.

In the above mentioned works, non-monotonic solution profiles
were achieved either by a priori choice of non-monotonic retention
relations or by the use of fourth-order in space extensions of the
Richards equation. While in the current work we incorporate both
these features, a thermodynamically sound basis for this choice, as
explained in Part I, is justified through the connection to the Cahn–
Hilliard fluid modeling. In Part I we have introduced the proposed
phase field approach based on the framework established in Sciarra
(2016), that views the presence of two fluids as a single non-uniform
fluid saturating the pore space. This is done by a prescription of double-
well type bulk fluid energy in the spirit of Cahn and Hilliard (1958,
1959) in combination with a classical capillary energy accounting for
the retention effect due to the confinement provided by the pore walls.
In this context, it has been shown that a proposed non-convexity of
the flux function enables describing both imbibition and drainage so-
lutions in the presence of higher order diffusion, which, to the authors’
knowledge, has been realized for the first time employing an extended
Richards equation. Non-monotonicities observed in the solutions have
as well been justified with a combination of matched asymptotic anal-
ysis and dynamical systems analysis. The current work is intended as
an extension to the Part I, presenting a linear stability analysis of the
model and revealing its conditionally stable nature. The essence of
linear stability analysis performed is to understand if a small enough
initial perturbation to the base solution grows or decays asymptotically
in time by employing the principles of Lyapunov stability analysis.
We complement this analysis with two-dimensional model simulations
which in part verify the results of the linear stability analysis and also
reveal the non-linear growth in time of the fingers. As well in this
model a non-monotonicity in the infiltration solutions is accompanied
by an ensuing growth of transverse instabilities associated to fingering.
The effects of varying initial water content and magnitude of imposed
pressure gradient have been analyzed. In the case of drainage the effect
of increasing gravitational component (equivalent imposed pressure
gradient) has been revealed to stabilize the invading front as was
observed experimentally (Méheust et al., 2002). Further, a stability
analysis against longitudinal perturbations revealed instability of cer-
tain solutions resulting in ‘‘bubble’’ or ‘‘droplet’’ like trapped regions
behind the invading front, which are the consequences of a coarsening
process associated to a kind of metastable behavior as described for
instance in Bates and Fife (1990), Alikakos et al. (1991). This is
associated to the non-monotonic structure of the fluid bulk energy.

This work is organized as follows: In Section 2 a recall is done to
the essential aspects related to the construction of the proposed model
and excerpts of the one-dimensional results from Part I are presented
briefly. Section 3 and Section 4 are dedicated to detailed linear
stability analysis against transverse and longitudinal perturbations re-
spectively. Results of two-dimensional finite element simulations are
presented in Section 5 that reveal the non-linear evolution of the
both imbibition and drainage solutions. The physical dimensions of
quantities within this work are mentioned whenever relevant alongside
their corresponding symbols and within square brackets, [M(⋅) L(⋅) T(⋅)].

. Summary of the model

In Part I of the current study a phase field approach has been
ntroduced to model fluid–fluid displacements within porous media
ased on the thermodynamic framework constructed in Sciarra (2016).
2

In essence this model is an extension to the classical Richards equa-
tion (Richards, 1931) viewing the presence of two different fluids
within a pore network, as a single non-uniform pore fluid (further
indexed ‘𝑝𝑓 ’) saturating the pore space.

2.1. The non-uniform pore fluid

As usual in Cahn–Hilliard type modeling approach, an order/phase
field parameter, 𝑆𝑟, is furnished to distinguish the two phases and the
saturation degree of the wetting fluid is assumed to play this role.
Local and non-local contributions are postulated to constitute the free
energy of the non-uniform fluid saturating the porous medium (). As
was assumed in the Part I, the solid skeleton is considered to be non-
deformable in the current analysis. The local contribution is assumed
to account for the presence of both the fluid–fluid and solid–fluid
interfaces. Adopting the same notation as in Part I, the overall free
energy density of the non-uniform pore fluid per unit reference volume
of porous medium is written as,

𝛹𝑝𝑓 = 𝜙 𝛹𝐿(𝑆𝑟) + 𝜙 𝑈 (𝑆𝑟) + 𝛹𝑁𝐿(∇(𝜙𝑆𝑟)), (1)

where 𝜙 [–] is the Lagrangian porosity of the porous skeleton. Inline
with the above description the local bulk contribution to the free energy
density, 𝛹𝐿(𝑆𝑟), that is responsible for phase segregation and allows for
coexistence of the immiscible phases (Sciarra, 2016) has the functional
form,

𝛹𝐿(𝑆𝑟) =
𝐶𝛾
𝑅

𝑆2
𝑟
(

1 − 𝑆𝑟
)2 , (2)

where 𝛾 [MT−2] is the surface tension between the two fluids that
compose the non-uniform fluid. 𝑅 [L] is the characteristic radius of
channels intrinsic to the porous skeleton, which according to Leverett
(1941) scales with

√

𝜘∕𝜙0. Here, 𝜘 [L2] is the intrinsic permeability of
the porous skeleton and 𝜙0 its initial porosity. 𝐶 [–] is a dimensionless
parameter signifying the intensity of local contribution to the overall
energy.

The capillary energy density typically is an empirical relation fit
to experimental data and in this work we adopt the widely used van
Genutchen form (van Genuchten, 1980),

𝑈 (𝑆𝑟) =∫

1

𝑆𝑟

𝑝𝑐 (𝑆)𝑑𝑆, (3)

𝑝𝑐 (𝑆𝑟) = − 𝜕𝑈
𝜕𝑆𝑟

= 𝜋0
⎛

⎜

⎜

⎝

(𝑆𝑟 − 𝑆𝑟𝑒𝑠
𝑟

1 − 𝑆𝑟𝑒𝑠
𝑟

)− 1
𝑚
− 1

⎞

⎟

⎟

⎠

1−𝑚

, (4)

where, 𝑝𝑐 [ML−1T−2] is the classical capillary pressure and 𝜋0 [ML−1T−2]
is a reference pressure which scales as 𝜌𝑤𝑔𝓁𝑐 . 𝓁𝑐 [L] is the porous media
counterpart of capillary length scale that relates intensity of capillary
forces in the porous medium to that of gravity and 𝑚 [–] is a model
parameter. 𝑆𝑟𝑒𝑠

𝑟 is the residual saturation degree of the wetting fluid.
The non-local energy density is assumed to be quadratic in the

gradient of the fluid content and thus has the form,

𝛹𝑁𝐿(∇(𝜙𝑆𝑟)) =
𝐶𝑘
2

(

(∇(𝜙𝑆𝑟)) ⋅ (∇(𝜙𝑆𝑟))
)

, (5)

where 𝐶𝑘 [MLT−2] is a coefficient that determines the spatial influence
of this non-local energy. 𝐶𝑘 can be reinterpreted as 𝜋𝑘𝓁2, such that a
characteristic interface thickness, 𝓁 [L], is introduced into the equations
and a free parameter, 𝜋𝑘 [ML−1T−2], appears.

Assuming a rigid porous skeleton (𝜙 = 𝜙0 = 𝑐𝑜𝑛𝑠𝑡), as done further,
the variational derivative w.r.t 𝑆𝑟 of overall free energy of the porous
medium gives the chemical potential of the non-uniform pore fluid,

𝜇𝑝𝑓 =
𝜕𝛹𝐿
𝜕𝑆𝑟

+ 𝜕𝑈
𝜕𝑆𝑟

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝜇𝑒(𝑆𝑟)

−∇ ⋅
(

𝜕𝛹𝑁𝐿
𝜕(∇(𝜙𝑆𝑟))

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇𝑁𝐿

, (6)

where the first two terms in the expression on the right hand side can
be identified as originating from the local contribution and so labeled
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as effective chemical potential, 𝜇𝑒(𝑆𝑟) = 𝜇𝐿(𝑆𝑟) − 𝑝𝑐 (𝑆𝑟). Identification
of 𝜇𝑝𝑓 starting from the constitutive prescription of the non-uniform
fluid and porous solid is detailed in Part-I.

2.2. Phase field governing equation

Conservation of fluid mass within a porous medium fully saturated
by the non-uniform pore fluid is written as,
𝜕𝑚𝑓

𝜕𝑡
+ ∇ ⋅ 𝑀 = 0, (7)

in its local form, where 𝑚𝑓 = 𝜌𝑓𝜙 is the non-uniform fluid content
per unit volume of porous medium and 𝑀 is the Lagrangian fluid
mass flow vector relative to the skeleton. For an 𝑆𝑟 ∈ (0, 1), a simple
linear interpolation can be assumed for the apparent density, 𝜌𝑓 , of the
non-uniform fluid (Kim, 2012) starting from the individual densities of
pure phases (𝜌𝑤, 𝜌𝑛𝑤). Invoking the typical assumptions in soil hydrol-
ogy (Hilfer and Steinle, 2014), the non-uniform fluid is assumed to be
composed of in-compressible water (𝜌𝑤 = 𝑐𝑜𝑛𝑠𝑡) and highly rarefied
air, the latter being continuously connected to the atmosphere. This
leads to pressure of air phase being equivalent to reference atmospheric
pressure assumed 0 for convenience. Concurrently, invoking an ideal
gas law for air implies that its density, 𝜌𝑛𝑤, is negligible compared to
that of water (𝜌𝑤 ≫ 𝜌𝑛𝑤 ≈ 0) leading to the following simplification:

𝜌𝑓 = 𝜌𝑤𝑆𝑟 + 𝜌𝑛𝑤(1 − 𝑆𝑟) ≈ 𝜌𝑤𝑆𝑟. (8)

Further, the classical approach to porous media flow that em-
ploys the two-phase Darcy’s model is generalized to the flow of the
non-uniform pore fluid,

𝑀 = 𝜌𝑤
𝜘
𝜂𝑤

𝐾(𝑆𝑟)
(

−∇(𝜇𝑝𝑓 + 𝑃 )
)

= 𝜌𝑤
𝜘
𝜂𝑤

𝐾(𝑆𝑟) (−∇𝜇) , (9)

relating the Lagrangian fluid mass flow, 𝑀 [ML−2T−1], to the spatial
gradient of an augmented chemical potential, 𝜇. The latter is a sum of
the chemical potential of the non-uniform pore fluid, 𝜇𝑝𝑓 , and of an
imposed linear pressure distribution, 𝑃 = −𝜆𝑥, where 𝜆 [ML−2T−2] is a
scalar. This augmented chemical potential accounts for a more general
case incorporating both the effect of an initial background mean flow
and that of gravity forces. In the case when only gravity forces are
considered, the pressure distribution, 𝑃 , is just proportional to 𝜆 = 𝜌𝑤𝑔.
In the above generalized Darcy’s flow relation a phenomenological flux
function, 𝐾(𝑆𝑟), is introduced as a proportionality function and 𝜂𝑤
[ML−1T−1] is the dynamic viscosity of the wetting fluid. The specific
thermodynamic restrictions on 𝐾(𝑆𝑟) can be found in Part I. Eq. (9)
in combination with the conservation law for the fluid mass, Eq. (7),
and the simplification Eq. (8) gives a Cahn–Hilliard like local governing
equation for the phase field parameter, 𝑆𝑟, in the bulk of the domain,

𝜙
𝜕𝑆𝑟
𝜕𝑡

+ 𝜘𝜆
𝜂𝑤

𝜕𝐾(𝑆𝑟)
𝜕𝑥

− 𝜘
𝜂𝑤

∇ ⋅
[

𝐾(𝑆𝑟)
(

∇𝜇𝑝𝑓
)]

= 0, (10)

ssuming a rigid porous skeleton (𝜙 = 𝜙0 = 𝑐𝑜𝑛𝑠𝑡). The quantity 𝜘𝜆∕𝜂𝑤
LT−1] can be identified as the magnitude of a saturated mean velocity,
𝑚, in the porous medium, that is equivalent to the saturated hydraulic
onductivity when the flow is driven by gravity. This multidimensional
artial differential equation (PDE), Eq. (10), encompasses the various
eatures of the non-uniform pore fluid and of its flow within a rigid
ore network as described earlier.

In the Part I a particular dimensionless grouping of parameters
as been proposed by introducing characteristic scaling numbers for
ength, 𝑥ℎ = 𝐿, time, 𝑡ℎ = 𝑥ℎ∕𝑉𝑚 = 𝑥ℎ𝜂𝑤∕𝜘𝜆, and pressure (chemical

potential), 𝑝ℎ = 𝐶𝛾∕𝑅. 𝐿 is a characteristic length of the physical
domain of the problem under consideration. Subsequently the following
dimensionless numbers were introduced:

𝐶𝑎 =
𝑉𝑚𝜂𝑤𝑅2

𝜘𝐶𝛾
, 𝛿𝑅 = 𝑅

𝑥ℎ
,

𝐷𝑈 =
𝜋0𝑅 , 𝐷𝑁𝐿 =

𝐶𝑘𝑅
2
=

𝜋𝑘𝑅
(

𝓁
)2

,
(11)
3

𝐶𝛾 𝐶𝛾𝑥ℎ 𝐶𝛾 𝑥ℎ
whose values depend on those of the material parameters, see Table.(1
& 2) in Part I. Employing these choices, results in the dimensionless
counterpart of Eq. (10),

𝜙
𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

∇ ⋅
(

𝐾(𝑆𝑟)∇𝜇𝑒(𝑆𝑟)
)

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿∇ ⋅
(

𝐾(𝑆𝑟)∇𝛥(𝑆𝑟)
)

= 0,
(12)

here 𝛥(𝑆𝑟) denotes the Laplacian of 𝑆𝑟. It is to be noted that now, time
nd spatial descriptions are to be understood as their dimensionless
ounterparts. Also, with an abuse of notation, 𝜇𝑒, 𝜇 and its different
ontributions (𝜇𝐿, 𝑝𝑐 , 𝜇𝑁𝐿) now represent their dimensionless counter-
arts. Accordingly the dimensionless augmented chemical potential in
q. (9) has the form,

=

𝜇𝐿(𝑆𝑟)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
2𝑆𝑟

(

1 − 3𝑆𝑟 + 2𝑆2
𝑟
)

−

𝑝𝑐 (𝑆𝑟)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐷𝑈

⎛

⎜

⎜

⎝

(𝑆𝑟 − 𝑆𝑟𝑒𝑠
𝑟

1 − 𝑆𝑟𝑒𝑠
𝑟

)− 1
𝑚
− 1

⎞

⎟

⎟

⎠

1−𝑚

− 𝐷𝑁𝐿∇̃ ⋅
(

∇̃(𝜙𝑆𝑟)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝜇𝑁𝐿(𝛥𝑆𝑟)

−
𝐶𝑎
𝛿𝑅

𝑥̃
⏟⏟⏟

𝑃

.

(13)

From this point all the variables are dimensionless unless either men-
tioned otherwise or referred to from earlier sections.

2.3. One-dimensional traveling wave solutions

In Part I, a one-dimensional analysis of this phase field model has
been done and solutions, 𝑆𝑟(𝑥, 𝑡), of the one-dimensional PDE,

𝜙
𝜕𝑆𝑟
𝜕𝑡

+
𝜕𝐾(𝑆𝑟)
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

𝜕
𝜕𝑥

(

𝐾(𝑆𝑟)𝜇′
𝑒(𝑆𝑟)

𝜕𝑆𝑟
𝜕𝑥

)

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿
𝜕
𝜕𝑥

(

𝐾(𝑆𝑟)
𝜕3𝑆𝑟

𝜕𝑥3

)

= 0,
(14)

have informed on the presence of similarity profiles of traveling wave
(TW) type with a diffused interface with uniform saturation degrees
(𝑆−, 𝑆+) on either side of such interface. In the above (.)′ is introduced
s the derivative with respect to the phase field parameter, 𝑆𝑟. These

self-similar solutions are understood as representative of air–water
displacements within a non-deformable porous network. Owing to its
equivalence to the relative permeability function in classical partial
saturation (Coussy, 2004), the flux function, 𝐾(𝑆𝑟), is assigned an
mpirical form widely used (van Genuchten, 1980; Luckner et al.,
989),

(𝑆𝑟) =
√

𝑆𝑟

[

1 −
(

1 − 𝑆𝑟
𝑎)𝑏

]𝑐
, (15)

where 𝑎, 𝑏 and 𝑐 are real constants obtained through experimental
fitting. It has been numerically shown in Part I that diffused interface
solutions of Eq. (14) which represent both imbibition and drainage
solutions are possible owing to the proposed non-convexity of the flux
function, 𝐾(𝑆𝑟).

These TW-type solutions with a translating diffused interface are
understood as smeared shock solutions of the Riemann problem gov-
erned by Eq. (14) with boundary conditions prescribed by the uniform
saturation degrees on either side of the diffused interface, 𝑆− and 𝑆+.
The speed of translation of these solutions can be approximated by that
of representative sharp shock solutions, using the Rankine–Hugoniot
jump condition,

𝐾(𝑆+) −𝐾(𝑆−) = 𝑐𝜙(𝑆+ − 𝑆−). (16)

Subsequently a transformation of Eq. (14) can be done into the TW-
coordinate, 𝜉 = 𝑥 − 𝑐𝑡, and self-similar solutions, 𝑠(𝜉), of the ordinary
differential equation (ODE),

−𝜙𝑐 𝑑𝑠
𝑑𝜉

+
𝑑𝐾(𝑠)
𝑑𝜉

−
𝛿𝑅
𝐶𝑎

𝑑
𝑑𝜉

(

𝐾(𝑠)𝜇′
𝑒(𝑠)

𝑑𝑠
𝑑𝜉

)

+
𝛿𝑅 𝜙𝐷𝑁𝐿

𝑑
(

𝐾(𝑠) 𝑑3𝑠
)

= 0,
(17)
𝐶𝑎 𝑑𝜉 𝑑𝜉3
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Fig. 1. TW-solutions of Eq. (19) that represent imbibition, (a) for varying 𝑠−, with 𝑠+ = 0.20 and 𝜆 = 𝜌𝑤𝑔, (b) for varying 𝑠+, with 𝑠− = 0.85 and 𝜆 = 𝜌𝑤𝑔. (c) for varying 𝜆, with
𝑠− = 0.85 and 𝑠+ = 0.20. All the solutions are shown in a restricted range of 𝜉 for clarity.
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n an infinite domain can be sought after with appropriate boundary
onditions at 𝜉 → ±∞,
|

|

|

|(𝜉=+∞)
= 𝑠+ , 𝑑𝑠

𝑑𝜉
|

|

|

|(𝜉=+∞)
= 0,

|

|

|

|(𝜉=−∞)
= 𝑠− , 𝑑𝑠

𝑑𝜉
|

|

|

|(𝜉=−∞)
= 0.

(18)

ntegrating Eq. (17) once w.r.t 𝜉, using the boundary conditions at
→ +∞ and assuming higher derivatives of the solution vanish as
→ +∞ yields in a canonical form:

𝑑3𝑠
𝑑𝜉3

=
𝐶𝑎

𝛿𝑅𝜙𝐷𝑁𝐿𝐾(𝑠)

(

𝜙𝑐(𝑠 − 𝑠+) −𝐾(𝑠) +𝐾(𝑠+)

+
𝛿𝑅
𝐶𝑎

𝐾(𝑠)𝜇′
𝑒(𝑠)

𝑑𝑠
𝑑𝜉

)

.

(19)

In Part I, TW-solutions satisfying Eq. (18) and (19) that represent
oth imbibition and drainage have been resolved numerically over a
omain of finite length, 𝐿0 = 100m, that is sufficiently large in com-
arison to both the length scale of the air–water interface, 𝓁 = 0.2m,
nd that of the second order diffusion, such that we get a satisfactory
pproximation of an unbounded domain.

In the case of imbibition, solutions of the PDE Eq. (14) have in-
ormed that their self-similar region extends from the left boundary
ondition, 𝑆−, to the right boundary condition, 𝑆+. Consequently, TW-
olutions of (19) were resolved for various values of 𝑠− and 𝑠+ in
q. (18) for 𝑠− > 𝑠+, using a second order accurate central difference
cheme to approximate the derivatives involved. Fig. 1 shows these
olutions for varying values of 𝑠−, 𝑠+ and 𝜆. As such, in the physical

problem 𝑆− is related to the dimensionless injection velocity 𝑉𝑓 by the
relation,

𝑉𝑓 = −
𝛿𝑅
𝐶𝑎

𝐾(𝑆−)∇𝑃 = 𝐾(𝑆−)𝑒𝑥, (20)

where 𝑒𝑥 is an unit vector in the positive 𝑥-direction. Note that 𝑃 is now
he dimensionless counterpart of the linear pressure distribution intro-
uced earlier. So, the left boundary condition, 𝑠−, used to resolve the
W-solutions can be related to the magnitude of dimensionless injection
elocity, 𝐾(𝑆−), in the physical problem and from Fig. 1(a) non-
onotonicities can be observed only for a certain intermediate range

f injection velocities. This observation is found to be qualitatively
nline with quasi one-dimensional infiltration experiments (DiCarlo,
004) into initially dry porous media. These non-monotonicities in the
olutions encompass oscillations and overshoot/ undershoot.

All the imbibition solutions were understood as representative of
lassical ‘compressive’ in the sense of shock solutions of the hyper-
olic limit of Eq. (14). These imbibition solutions for varying initial
aturation degree of the domain and imposed pressure gradient are
hown in Fig. 1(b) and Fig. 1(c) respectively. Drainage solutions
f the PDE Eq. (14) on the other hand revealed that for a given set
f boundary conditions, (𝑆−, 𝑆+), only part of the solution is a self-
imilar diffused interface representing a TW-solution and in addition
o this the solution is composed of expanding regions. Fig. 2 shows
hese TW-solutions resolved for various values of 𝜆. Two qualitatively
4

Fig. 2. TW-solutions of Eq. (19) representing drainage for 𝜆 =
0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, 150𝜌𝑤𝑔, 1500𝜌𝑤𝑔. Solutions are shown in a restricted range of

for clarity.

ifferent type solutions have been observed. For lower range of 𝜆,
the diffused interfaces were representative of non-classical ‘expansion’
shock solutions of the hyperbolic limit of Eq. (14). Whereas for higher
range of 𝜆 the diffused interfaces were representative of non-classical
under-compressive’ shocks.

. Stability against transverse perturbations

Saffman and Taylor (1958), have studied the stability of an hori-
ontal sharp interface separating two viscous fluids within a Hele-Shaw
ell, driven by an imposed pressure gradient and under the influence
f gravity. It has been shown that wave like disturbances of arbitrary
avelengths can grow in time and eventually destabilize the interface

f the motion of the interface is towards the more viscous fluid and if
he velocity is sufficiently large. Further the effect of surface tension
as been suggested, referring to the work of Chuoke et al. (1959), to
e acting to limit the range of wavelengths of the disturbances to which
he interface is unstable. A study of stability of the diffused interface
ormed within the non-uniform pore fluid, that is modeled using the
q. (12), is warranted, given the analogous nature of porous media flow
ith respect to Hele-Shaw flow. With this intention the base solutions,

esolved as traveling waves are understood as plane wave solutions
hat are independent of the direction orthogonal to their propagation.
rbitrary wave like perturbations are then superposed to these base
olutions and the growth in time of the former is understood as early
ime fingering phenomenon.

.1. Perturbed problem

The base solutions in the physical domain are represented as 𝑆0(𝑥, 𝑡)
nd they propagate along the 𝑥-direction. Exploiting the method of
symptotic expansions, the physical solution itself is assumed to be a
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perturbed one, 𝑆(𝑥, 𝑦, 𝑡), that is composed of the base solution 𝑆0(𝑥, 𝑡)
at the leading order and superposed disturbances, resulting in a regular
series expansion,

𝑆(𝑥, 𝑦, 𝑡) = 𝑆0(𝑥, 𝑡) + 𝜖𝑆1(𝑥, 𝑦, 𝑡) + 𝜖2𝑆2(𝑥, 𝑦, 𝑡)… , (21)

where 𝜖 represents the magnitude of the disturbance. As usually done
in asymptotic expansions, we underline that convergence problems for
solutions when 𝜖 → 0 will not be covered in this analysis, following
among others (Auriault et al., 2010). On this subject, the reader may
wish to refer for instance to Hornung (1996).

This form of the perturbed solution is inserted back into Eq. (12)
which is further linearized by ignoring quadratic and higher-order
terms in 𝜖. This leads to two problems, one of the leading order,
𝑂(1), and another perturbed problem of order 𝑂(𝜖), obtained assuming
the dimensionless numbers appearing in Eq. (12) to be of order 𝑂(1)
and separately collecting terms independent of 𝜖 and terms linearly
dependent on it. The leading order term obviously just involves the
base solution 𝑆0(𝑥, 𝑡) = 𝑠(𝑥 − 𝑐𝑡) and therefore coincides with Eq. (17),
conversely the perturbed problem,

𝜙
𝜕𝑆1
𝜕𝑡

+
𝜕(𝐾 ′

0𝑆1)
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

𝛥
(

𝐾0𝜇
′
𝑒0𝑆1

)

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿∇ ⋅
(

𝐾0∇𝛥𝑆1 +𝐾 ′
0∇𝛥𝑆0𝑆1

)

= 0,
(22)

governs the evolution of a generic disturbance up to order 𝑂(𝜖). In the
above and what follows, functions sub-scripted (.)0 are to be understood
as evaluated with the base solution. Noting that the base solution
𝑆0(𝑥, 𝑡) is uniform along 𝑦-direction and subsequently employing 𝜉 =
𝑥 − 𝑐𝑡 yields the 𝑂(𝜖) perturbed problem governing 𝑠1(𝜉, 𝑦, 𝑡) in the
TW-coordinate,

𝜙
𝜕𝑠1
𝜕𝑡

− 𝜙𝑐
𝜕𝑠1
𝜕𝜉

+
𝜕(𝐾 ′

0𝑠1)
𝜕𝜉

−
𝛿𝑅
𝐶𝑎

{

𝑠1
𝑑2

𝑑𝜉2
(

𝐾0𝜇
′
𝑒0

)

+ 2
𝜕𝑠1
𝜕𝜉

𝑑
𝑑𝜉

(

𝐾0𝜇
′
𝑒0

)

+𝐾0𝜇
′
𝑒0

(

𝜕2𝑠1
𝜕𝜉2

+
𝜕2𝑠1
𝜕𝑦2

) }

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿

{

𝑠1
𝑑
𝑑𝜉

(

𝐾 ′
0
𝑑3𝑠0
𝑑𝜉3

)

+
𝜕𝑠1
𝜕𝜉

(

𝐾 ′
0
𝑑3𝑠0
𝑑𝜉3

)

+
𝑑𝐾0
𝑑𝜉

(

𝜕3𝑠1
𝜕𝜉3

+
𝜕3𝑠1
𝜕𝜉𝜕𝑦2

)

+𝐾0

(

𝜕4𝑠1
𝜕𝜉4

+
2𝜕4𝑠1
𝜕𝜉2𝜕𝑦2

+
𝜕4𝑠1
𝜕𝑦4

)}

= 0.

(23)

ow since any generic disturbance can be resolved into its Fourier
odes, modal stability analysis amounts to knowing the growth in time

f individual Fourier modes composing the disturbance. If any one of
hese modes is found to be growing in time, the flow as a whole is to
e understood as unstable since any physical disturbance would contain
ll of these modes. Following this approach a spatially periodic form is
ssumed for 𝑠1:

1(𝜉, 𝑦, 𝑡) = 𝑒𝑖𝑘𝑦+𝜎𝑡 𝑠̂(𝜉), (24)

here 𝑘 is characteristic wave number of the disturbance in 𝑦-direction,
is the exponential growth factor in time and 𝑠̂(𝜉) is the ampli-

tude of the wave-like disturbance allowing variation in direction of
propagation, 𝜉. Introducing Eq. (24) in Eq. (23) yields:

𝐴𝑑4𝑠̂ + 𝐵 𝑑3𝑠̂ + 𝐶 𝑑2𝑠̂ +𝐷𝑑𝑠̂ + 𝐸𝑠̂ − 𝜎𝑠̂ = 0, (25)
5

𝑑𝜉4 𝑑𝜉3 𝑑𝜉2 𝑑𝜉
a linear homogeneous ODE with spatially varying coefficients identified
as,

𝐴 = −
𝛿𝑅
𝐶𝑎

𝐷𝑁𝐿𝐾0, 𝐵 = −
𝛿𝑅
𝐶𝑎

𝐷𝑁𝐿
𝑑𝐾0
𝑑𝜉

,

𝐶 = − 1
𝜙
𝛿𝑅
𝐶𝑎

{

−𝐾0𝜇
′
𝑒0 − 2𝜙𝐷𝑁𝐿𝑘

2𝐾0
}

,

𝐷 = − 1
𝜙

{

𝐾 ′
0 − 𝜙𝑐 − 2

𝛿𝑅
𝐶𝑎

𝑑
𝑑𝜉

(

𝐾0𝜇
′
𝑒0

)

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿

(

𝐾 ′
0
𝑑3𝑠0
𝑑𝜉3

− 𝑘2
𝑑𝐾0
𝑑𝜉

) }

,

𝐸 = − 1
𝜙

{

−
𝛿𝑅
𝐶𝑎

(

𝑑
𝑑𝜉

(

𝐾0𝜇
′
𝑒0

)

− 𝑘2𝐾0𝜇
′
𝑒0

)

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿

(

𝑑
𝑑𝜉

(

𝐾 ′
0
𝑑3𝑠0
𝑑𝜉3

)

+ 𝑘4𝐾0

)

+
𝑑𝐾 ′

0
𝑑𝜉

}

.

(26)

These coefficients are dependent on the base solution, 𝑠0, its derivatives
w.r.t 𝜉 and the wave number of the disturbance, 𝑘. Since the base
solution satisfies boundary conditions 𝑠− and 𝑠+ while approaching
niformly the boundaries 𝜉 → −∞ and 𝜉 → +∞ respectively, 𝑠̂ needs
o vanish uniformly at those boundaries such that the 𝑂(𝜖) perturbed
olution is admissible. This results in the following boundary conditions
hat any 𝑠̂ governed by Eq. (25) needs to satisfy,

𝑠
|

|

|

|(𝜉=+∞)
= 0 , 𝑑𝑠̂

𝑑𝜉
|

|

|

|(𝜉=+∞)
= 0,

𝑠
|

|

|

|(𝜉=−∞)
= 0 , 𝑑𝑠̂

𝑑𝜉
|

|

|

|(𝜉=−∞)
= 0.

(27)

.2. Discretization and Asymptotic growth/decay

In the current section for each base solution, the pair 𝑠̂ and 𝜎 are
etermined numerically varying the value of 𝑘. We approximate using
second order accurate central difference scheme the derivatives in

q. (25) and (27). The physical domain is the same as that is used
o resolve the base solutions, with 𝐿0 = 100 m and corresponding
imensionless domain 𝜉 ∈ (−0.5, 0.5). Subsequently the discretized
roblem for 𝑠̂ and 𝜎 can be posed as an eigen value problem,

A − 𝜎I)𝑠̂ = 0, (28)

here A is a sparse matrix encompassing the coefficients at respective
inite difference (FD) nodes and I is an identity matrix of the same

Fig. 3. Dispersion curves of imbibition solutions for 𝜆 = 𝜌𝑤𝑔, with boundary conditions
𝑠+ = 0.20, a range of 𝑠− ∈ [0.36, 0.96]. Respective 𝑠− values are labeled on each curve.
eaks that represent maximal positive growth rate are shown as filled dots on the
urves, with their respective wave number, 𝑘𝑓 , labeled. Arrows trace the path followed
y 𝑘𝑓 for decreasing 𝑠−.
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Fig. 4. Plots indicating the correlation between the injection velocity and the non-monotonicities in the base solutions and their associated instability behavior. (a) Wavelength
associated to the fastest growing wave number, 𝜆𝑘(𝑘𝑓 ), and the corresponding growth rate, 𝜎𝑠(𝑘𝑓 ), as functions of the magnitude of dimensionless injection velocity, 𝐾(𝑠−). (b)
Maximum value attained at the tip of the imbibition front in the base solutions, 𝑠𝑚𝑎𝑥 and the intensity of the non-monotonicity represented by (𝑠𝑚𝑎𝑥 − 𝑠−), as functions of 𝐾(𝑠−).
Fig. 5. (a) Eigen functions, 𝑠̂, for 𝑘 = 140, 𝜆 = 𝜌𝑤𝑔, with boundary conditions 𝑠+ = 0.20, 𝑠− = 0.41, 0.50, 0.65, 0.85. The corresponding base solutions, 𝑠0, shown with triangle markers,
re also plotted here for reference, (b) close-up view showing the structure of eigen functions in the vicinity of their peaks.
b
t
s
t
c

ize. Since for a non-trivial 𝑠̂, |A − 𝜎I| = 0, the solution set for 𝜎 is
iven by the spectrum of A, represented 𝜎A. Following modal stability
nalysis, if sup{ℜ(𝜎A)} > 0, then the corresponding perturbation grows
xponentially in time according to Eq. (24). Whereas if sup{ℜ(𝜎A)} < 0,
hen all the perturbations, 𝑠̂, decay exponentially with time. In order
o numerically approximate this critical eigen value, 𝜎𝑠 = sup{ℜ(𝜎A)},
or a given wave number, 𝑘, a Krylov–Schur algorithm available in
ATLAB (Stewart, 2002) has been employed. This relation between 𝑘

and 𝜎𝑠(𝑘) is plotted as a dispersion curve for each base solution, 𝑠0.
Fig. 3 shows the dispersion relation for base solutions which rep-

esent imbibition for various values of 𝑠−, 𝑠+ = 0.20 and 𝜆 = 𝜌𝑤𝑔.
he wave number of the fastest growing perturbation, 𝑘𝑓 , is the one
ssociated to the peak of the dispersion curve. For a large value of
− = 0.96, representing large injection velocity according to Eq. (20),
𝑠(𝑘) is found to be negative for all values 𝑘 analyzed. This indicates
n exponential decay of the arbitrary perturbations applied to those
ase solutions and thus a stable imbibition front which is the associated
lane wave. As 𝑠− is reduced the base solutions start to involve non-
onotonicities and the growth rate 𝜎𝑠(𝑘) is found to be positive for a

range of 𝑘. This indicates that perturbations within those ranges can
6

potentially grow in time, triggering fingering type instabilities. As 𝑠− is
reduced further, 𝑠− ⩽ 0.36, the dispersion curves again indicate expo-
nential stability of the base solutions. This is in qualitative agreement
with the experimental observations by Shiozawa and Fujimaki (2004),
DiCarlo (2004) and the related hypothesis that overshoot profiles of
saturation result in an unstable wetting front in gravity driven infiltra-
tion (Nieber et al., 2000; Eliassi and Glass, 2001; Egorov et al., 2003;
DiCarlo, 2013).

Also, indicated in Fig. 3 is the path followed by the wave number
of the fastest growing perturbation, 𝑘𝑓 , as 𝑠− is reduced. The interpre-
tation of this path is made clear in Fig. 4, with the understanding
that the wave length associated to the fastest growing perturbation,
𝜆(𝑘𝑓 ) = 2𝜋∕𝑘𝑓 , is representative of the spacing between the early
time fingers. And the intensity of the non-monotonicity is reflected by
(𝑠𝑚𝑎𝑥−𝑠−), where 𝑠𝑚𝑎𝑥 is the peak value of the saturation degree attained
y the imbibition front. For intermediate range of injection velocities
he intensity of overshoot in the base solutions is larger and the corre-
ponding finger spacing is smaller, whereas the growth rate is larger. As
he injection velocity either increases moving towards fully saturated
onditions or decreases lower than the intermediate range, the intensity
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Fig. 6. Dispersion curves of imbibition solutions for 𝜆 = 𝜌𝑤𝑔, with boundary conditions
𝑠− = 0.85, a range of 𝑠+ ∈ [0.16, 0.60]. Peaks that represent maximal positive growth
rate are shown as filled dots on the curves, with their respective wave number, 𝑘𝑓 ,
labeled. Arrows trace the path followed by 𝑘𝑓 for increasing 𝑠+.

Fig. 7. Plot indicating the correlation between initial saturation degree, 𝑠+, in the
mbibition solutions and their associated instability behavior. Wavelength associated to
he fastest growing wave number, 𝜆𝑘(𝑘𝑓 ) is plotted as a function of 𝑠+ ∈ [0.16, 0.60].

f overshoot reduces, the corresponding finger spacing increases and
he growth rate decreases indicating a transition to the stable regime.
his strongly indicates a correlation between the injection flux and the
haracteristics of the associated fingering instabilities as observed in
xperiments (Glass et al., 1989b; Yao and Hendrickx, 1996). A similar
bservation has been done in Cueto-Felgueroso and Juanes (2009a).

Also, it is interesting to compare the structure of the perturbation
ith maximum growth rate for a given wave number. Fig. 5 shows this
ormalized eigen function, 𝑠̂, determined by solving Eq. (28) with 𝑘 =
40 and the associated base solutions, 𝑠0, superposed. For all values of
− the eigen function reaches a maximum within the diffused interface
etween 𝑠− and 𝑠+ of the base solution. However, there exists a relative
ifference in the peak values and the spread along 𝜉 of these peaks
mong these eigen functions. As 𝑠− reduces the peak value reduces and
he spread along 𝜉 increases. This indicates a shift towards weaker and
ore spread-out perturbations. It can be inferred from this observation

hat for base solutions that consist a stronger non-monotonicity (lower
−), a relatively weaker perturbation is sufficient to render the flow
nstable and vice versa.

Fig. 6 shows the dispersion relation for base solutions representing
mbibition for various values of 𝑠+, 𝑠− = 0.85 and 𝜆 = 𝜌𝑤𝑔 and the
ath followed by the wave number of the fastest growing perturbation,
, as 𝑠 is increased. For high values of 𝑠 the base solution seems
7

𝑓 + + a
to be stable. The intermediate range of 𝑠+ shows unstable behavior
and as 𝑠+ is reduced further the tendency seems to be towards stable
behavior. However, it is to be noted that the lowest value of 𝑠+ in this
work is restricted by the residual saturation degree 𝑆𝑟𝑒𝑠

𝑟 = 0.1567. This
behavior is also plotted in Fig. 7 showing the relation between the
qualitative indicator of finger spacing, 𝜆𝑘(𝑘𝑓 ), and 𝑠+. A qualitatively
similar observation was made in point-source infiltration experiments
by Bauters et al. (2000), where water was injected into initially moist
sand packs, albeit within a lower range of initial water content. It was
observed that the ensuing finger sizes decreased slightly with increasing
initial water content starting from a completely dry condition and after
a certain value, the finger sizes increased exponentially.

For 𝑘 = 140 the normalized eigen function, 𝑠̂, is more spread-
out along 𝜉 and has a lower maximum value of the peak when 𝑠+ is
increased, see Fig. 8. This indicates that for larger 𝑠+ while a weaker
and more diffused perturbation can invoke instability in the flow, it
grows relatively slower in accordance with Fig. 6.

Fig. 9 shows the dispersion relation for base solutions in Fig. 1(c)
that represent imbibition for varying values of 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔
and with fixed boundary conditions 𝑠+ = 0.20 and 𝑠− = 0.85. For
he range of 𝜆 studied it is clear that base solutions with a relatively
arrower spread along 𝜉 (larger 𝜆) when leaving the equilibrium state,
𝑠−, 0, 0) have a wider range of 𝑘 for which the perturbations are unsta-
le and also larger values of 𝑘𝑓 and associated peaks, corresponding to
relatively faster growing perturbations.

Fig. 10 shows the normalized eigen functions, 𝑠̂, for 𝑘 = 140
long with the corresponding base solutions. It can be inferred that for
arger values of 𝜆 (accordingly larger 𝐶𝑎) the eigen function has a peak
alue which is higher and relative spread along 𝜉 which is narrower
epresenting a stronger perturbation that is needed to generate an
nstable flow and according to the dispersion relation, Fig. 9, this
erturbation would grow relatively faster.

To summarize the case of imbibition, linear stability analysis of
he infiltrating front provides results consistent with experimental evi-
ence. Moreover, it tells us that for a given imposed pressure gradient,
tronger the perturbation needed to destabilize the front, faster would
e its growth and consequently faster would be the destabilized finger.
nd this condition is achieved when the non-monotonicity of the base
olution is less pronounced.

For the drainage case, Fig. 11 shows the dispersion relation for
ase solutions in Fig. 2 with varying 𝜆. As mentioned earlier the
rainage base solutions represent two qualitatively different type of
W-solutions. Those solutions representative of non-classical ‘under-
ompressive’ shocks, which were observed in the higher range of 𝜆,
re found to be stable towards transverse perturbations. Whereas,
he solutions representative of non-classical ‘expansion’ shocks, at the
ower range of 𝜆, are found to be unstable within a particular range
f wave numbers, 𝑘, in spite of those base solutions being monotonic.

Among the latter, for the range of 𝜆 studied, as 𝜆 is increased the range
of unstable wave numbers increased along with the wave number of
the fastest growing perturbation, 𝑘𝑓 . From Fig. 12 for 𝑘 = 150, it can
be observed that for higher values of 𝜆 the eigen function has a lower
peak and a wider spread along 𝜉 representing a weaker perturbation
hat renders the flow unstable. It can be noted that this tendency is
ontrary to what was observed in the imbibition case.

While the subsequent growth of an initial disturbance is governed
y non-linearities inherent to the model, in the context of linearized
nalysis it can be expected that the wave number of the ensuing
ingering instability at late times would be close to that of the fastest
rowing perturbation, 𝑘𝑓 . Also the upper bound of the range of unstable
ave numbers serves as a critical wave number beyond which any
erturbations decay. In this sense, linear stability analysis serves as tool
o identify the minimum size of the transverse dimension of a porous
edium domain in order to be able to invoke and observe fingering
henomenon. Taking cue from the above results, two-dimensional PDE
imulations in Section 5 were initialized within appropriately sized
omains and with an imposed transverse perturbation superposing a
ew random wave numbers in the neighborhood of 𝑘𝑓 in order to

ccelerate the onset of instabilities.
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a

Fig. 8. (a) Eigen functions, 𝑠̂, for 𝑘 = 140, 𝜆 = 𝜌𝑤𝑔, with boundary conditions 𝑠− = 0.85, 𝑠+ = 0.16, 0.20, 0.30, 0.40. The corresponding base solutions, 𝑠0, shown with triangle markers,
re also plotted here for reference, (b) close-up view showing the structure of eigen functions in the vicinity of their peaks.
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Fig. 9. Dispersion curves of imbibition solutions for 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, with
boundary conditions 𝑠− = 0.85, 𝑠+ = 0.20. Peaks that represent maximal positive growth
rate are shown as filled dots on the curves, with their respective wave number, 𝑘𝑓 ,
labeled.

4. Stability against longitudinal perturbations

As can be observed from the structure of the base solutions of the
TW-problem, there exist regions of uniform saturation degree ahead
and behind the front. The solution within these regions is subject to
instability in the presence of longitudinal perturbations such as the
oscillatory non-monotonicities observed in base solutions in the vicinity
of the front, see Fig. 1. Such instability triggers the formation of banks
of fluid perpendicular to the direction of motion of the front, which
further destabilize transversely to form bubbles behind the front. Also,
when a front destabilizes due to transverse perturbations, as analyzed
in Section 3, their ensuing growth forms fingers, see Section 5. Along
the length of those fingers, there is also a region behind their tips
within which the saturation degree is uniform. The solution within
this region can as well destabilize due to longitudinal perturbations
resulting in breakup of those fingers into droplets. This is akin to
the now well-studied Plateau–Rayleigh instability that explains jets
of liquid destabilizing and forming coalesced droplets (Eggers and
Villermaux, 2008). In order to analyze the onset of such instabilities
in the current context, we consider a longitudinally perturbed solution,
8

t

𝑆(𝑥, 𝑡), of Eq. (14), in the vicinity of a constant and uniform base
solution, 𝑆0, and expand it in a regular series,

𝑆(𝑥, 𝑡) = 𝑆0 + 𝜖𝑆1(𝑥, 𝑡) + 𝜖2𝑆2(𝑥, 𝑡)… , (29)

about the base solution, with 𝜖 now being the magnitude of longitudinal
perturbation. We follow again the approach employed in Section 3.1,
by introducing such perturbed solution into Eq. (12), and assuming that
the perturbation is small compared to the base solution. This leads to
an 𝑂(𝜖) perturbed equation,

𝜙
𝜕𝑆1
𝜕𝑡

+𝐾 ′
0
𝜕𝑆1
𝜕𝑥

−
𝛿𝑅
𝐶𝑎

𝐾0𝜇
′
𝑒0
𝜕2𝑆1
𝜕𝑥

+
𝛿𝑅
𝐶𝑎

𝜙𝐷𝑁𝐿𝐾0
𝜕4𝑆1

𝜕𝑥4
= 0, (30)

that governs 𝑆1(𝑥, 𝑡). Here as well, functions sub-scripted (.)0 are to be
nderstood as evaluated with the base solution. In order to analyze if
longitudinally harmonic perturbation would grow/decay asymptoti-

ally in time, the following form is assumed for the 𝑂(𝜖) perturbation,

1(𝑥, 𝑡) = 𝑒𝑖𝑘𝑥+𝜎𝑡, (31)

here 𝑘 is characteristic wave number of the disturbance in 𝑥-direction
nd 𝜎 is its exponential growth factor in time. Introducing Eq. (31) into
q. (30) results in an expression for the growth factor in terms of the
ase solution and the wave number,

(𝑆0, 𝑘) =
1
𝜙

{

−
𝛿𝑅
𝐶𝑎

𝐾0

(

𝜇′
𝑒0𝑘

2 + 𝜙𝐷𝑁𝐿𝑘
4
)

− 𝑖𝑘𝐾 ′
0

}

. (32)

Similar to what was noted in the Section 3 for transverse per-
turbations, any longitudinal perturbation resulting in ℜ(𝜎) > 0 is to
e understood as growing exponentially in time leading to instability
bout the uniform base solution. Fig. 13, shows the graph of the
elation Eq. (32) in the space of (𝑆0, 𝑘,ℜ(𝜎)). For certain values of 𝑆0

there exist a range of wave numbers 𝑘 for which ℜ(𝜎) > 0. This region
f instability, shaded gray in Fig. 13(b), is given by the relation,
′
𝑒0 < −𝜙𝐷𝑁𝐿𝑘

2, (33)

etween the slope of the effective chemical potential evaluated at 𝑆0
nd the square of the wave number. Fig. 13(c) shows the dispersion
elations in the space of (𝑘,ℜ(𝜎)) for uniform saturation values, 𝑆0,
bserved as left boundary conditions, 𝑠−, in the base solutions corre-
ponding to imbibition in Fig. 1. For 𝑆0 = 0.70, 0.75 there is a range of 𝑘
or which ℜ(𝜎) > 0. While the respective base solutions for both these
ases exhibit oscillations when leaving the uniform equilibrium state
𝑠−, 0, 0), it will be shown further using two dimensional simulations
n Section 5 that only the oscillations in the case 𝑠− = 0.70 are within

he range of 𝑘 that trigger the instabilities behind the front.
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Fig. 10. (a) Eigen functions, 𝑠̂, for 𝑘 = 140, 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, with boundary conditions 𝑠− = 0.85, 𝑠+ = 0.20. The corresponding base solutions, 𝑠0, shown with triangle
markers, are also plotted here for reference, (b) close-up view showing the structure of eigen functions in the vicinity of their peaks.
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Fig. 11. Dispersion curves of drainage solutions for 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, 150𝜌𝑤𝑔.
eaks that represent maximal positive growth rate are shown as filled dots on the
urves, with their respective wave number, 𝑘𝑓 , labeled.

. Two-dimensional simulations

In this section we use numerical simulations as a means to examine
he non-linear growth of perturbations to a base solution in a two-
imensional spatial setting. To do this the two-dimensional domain is
nitiated with a field of 𝑆𝑟(𝑥, 𝑦) involving a smooth jump along the
-direction and extending homogeneously in the 𝑦-direction, that repre-
ents a transition from one fluid phase to another. To this field, pertur-
ations dependent on 𝑦-direction are superposed, that are sinusoidal in
ature involving a few randomized wave lengths. This perturbed initial
ondition is representative of physically realistic conditions where
he air–water interface in a porous medium is not independent of 𝑦-

direction owing to intrinsic heterogeneities. However, it is to be noted
that these imposed perturbations are only spatial in nature and does
not involve perturbations in the value of 𝑆𝑟 itself.

.1. Numerical method and discretization

We choose as the primary unknowns, the Saturation degree (𝑆𝑟) and
the regularized effective chemical potential with known spatially linear
9

pressure contribution (𝜇). Then the coupled system of equations formed
by Eqs. (12) and (13) is resolved. We acknowledge at this point that
since our focus is to analyze the general structure of the solutions and
to verify the linear stability analysis, we have adopted a simple numer-
ical discretization. If one intends to resolve the interface with higher
accuracy and lower computational cost, then the implementation can
be extended to more sophisticated techniques of the likes of adaptive
refinement (Martin et al., 2005; Boyer et al., 2009).

Spatial discretization is done employing a standard Galerkin formu-
lation and linear Lagrange finite elements. Time discretization is done
using the implicit Euler scheme of first order. The discrete solutions at
𝑛th time step, (𝑆𝑛

𝑟 , 𝜇
𝑛), are obtained by searching in a suitable subspace

of 𝐻1(𝛺), a Hilbert space, of admissible functions defined over the
iscretized domain 𝛺, for those functions that solve the non-linear
oupled variational system,

∫𝛺
𝑞

(

𝜙
(

𝑆𝑛
𝑟 − 𝑆𝑛−1

𝑟
)

𝛥𝑡

)

𝑑𝛺 + ∫𝛺
𝛿𝑅
𝐶𝑎

𝐾(𝑆𝑛
𝑟 )

(

∇𝑞 ⋅ ∇𝜇𝑛) 𝑑𝛺

−∫𝛺𝑁𝜇

𝑞
(

𝛿𝑅
𝐶𝑎

𝐾(𝑆𝑛
𝑟 )∇𝜇

𝑛
)

⋅ 𝑛 𝑑𝛺𝑁𝜇 = 0,

𝛺
𝑆
(

𝜇𝑛 − 𝜇𝑒(𝑆𝑛
𝑟 ) +

𝐶𝑎
𝛿𝑅

𝑥
)

𝑑𝛺 − ∫𝛺
𝜙𝐷𝑁𝐿

(

∇𝑆 ⋅ ∇𝑆𝑛
𝑟

)

𝑑𝛺

+∫𝛺𝑁𝑠

𝑆
(

𝜙𝐷𝑁𝐿∇𝑆𝑛
𝑟
)

⋅ 𝑛 𝑑𝛺𝑁𝑠 = 0,

(34)

for any test functions, 𝑆 and 𝑞, belonging to 𝐻1(𝛺) and vanishing on
he part of the boundary where respectively 𝑆𝑟 and 𝜇 are specified. 𝑛
s the outward unit normal vector to the boundary where it is referred
o. 𝛺𝑁𝜇 is that part of the boundary where normal derivative of 𝜇 is
pecified, which translates to imposing at that part of the boundary an
njection or extraction velocity of the fluid with a natural form,

𝑓
|

|

|

|𝛺𝑁𝑠

= −
𝛿𝑅
𝐶𝑎

𝐾(𝑆𝑟)∇𝜇. (35)

𝛺𝑁𝑠 is that part of the boundary where normal derivative of 𝑆𝑟 is
specified. The material properties and model parameters used in the
current study can be found in Table.(1) of Part I, which are in the range
typical of silica sands saturated with air–water mixture.

Mesh convergence behavior has been tested, once chosen initial
and boundary conditions corresponding to an imbibition problem and
a drainage problem, which are elaborated in Sections 5.2 and 5.3,
to validate the numerical solution. In particular successively refined
discretization steps have been considered. The results of this analysis
are reported in Appendix.
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Fig. 12. (a) Eigen functions, 𝑠̂, of the drainage solutions for 𝑘 = 150, 𝜆 = 0.5𝜌𝑤𝑔, 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔. The corresponding base solutions, 𝑠0, shown with triangle markers, are also plotted
here for reference, (b) close-up view showing the structure of eigen functions in the vicinity of their peaks.
Fig. 13. (a) The relation Eq. (32) plotted in the space of (𝑆0 , 𝑘,ℜ(𝜎)). Only the unstable region, ℜ(𝜎) > 0, is shown. (b) Contour plot of the same relation projected on the plane
(𝑆0 , 𝑘). The unstable region satisfying Eq. (33) is shaded gray. (c) Dispersion curves plotted for uniform base solutions 𝑆0 = 0.96, 0.85, 0.80, 0.75, 0.70.
5.2. Imbibition fronts

The computational domain used for imbibition simulations is a
rectangle, such that 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 0.3], whose physical dimen-
sions correspond to a length of 𝐿 = 20 m and a height of 𝐻 = 6m.
Displacement of air by water representing imbibition can be understood
as a solution which transitions from a higher degree of saturation to
a lower one and moves in the direction of the lower saturation. In
order to realize this, the domain is initialized with a solution 𝑆𝑟(𝑡 = 0)
involving a smooth jump along the 𝑥-direction, between the saturation

Fig. 14. Schematic of the imbibition simulations showing boundary conditions im-
posed. The arrow indicates the direction of motion of the interface. The form of natural
boundary condition 𝑉𝑓 (𝑥 = 0, 𝑦) is given in Eq. (36).
10
degree representing the infiltrating water, 𝑆−, and that of an initial
saturation degree of an almost dry domain, 𝑆0

𝑟 , such that 𝑆− > 𝑆0
𝑟 .

At 𝑡 = 0, the region of the domain initialized with 𝑆− is restricted
to a thin layer at the infiltrating surface, (𝑥 = 0, 𝑦) that is perturbed
transversely in the 𝑦-direction with a few randomized wave lengths
within the vicinity of the fastest growing wavelength, 𝜆𝑘(𝑘𝑓 ), given by
the linear stability analysis with boundary conditions 𝑠− = 𝑆−, 𝑠+ = 𝑆0

𝑟 .
The initial condition for 𝜇 is such that 𝜇(𝑡 = 0) = 𝜇𝑝𝑓 (𝑆𝑟(𝑡 = 0))+𝑃 . For
all 𝑡 > 0, the normal derivative of 𝑆𝑟 is set to vanish at all the boundary
surfaces. At the left boundary surface, (𝑥 = 0, 𝑦), an injection velocity,

𝑉𝑓
|

|

|

|(𝑥=0,𝑦)
= −

𝛿𝑅
𝐶𝑎

𝐾(𝑆−)∇𝑃 , (36)

is imposed. This has an effect of inducing imbibition with an uniform
saturation degree of 𝑆− while the normal derivative of 𝜇𝑝𝑓 vanishes.
The boundary at the right, (𝑥 = 1, 𝑦), is drained with a Dirichlet
boundary condition on 𝜇 such that

𝜇
|

|

|

|(𝑥=1,𝑦)
= 𝜇𝑒(𝑆0

𝑟 ) + 𝑃 (𝑥 = 1, 𝑦). (37)

The top, (𝑥, 𝑦 = 0.3), and the bottom, (𝑥, 𝑦 = 0), boundaries are
impermeable. See schematic Fig. 14 for a summary of these boundary
conditions.
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Fig. 15. (a) Evolution of initial perturbation to an imbibition front for 𝑆− = 0.75, 𝑆0
𝑟 = 0.20 on a domain (𝑥, 𝑦) ∈ ([0, 1], [0, 0.3]), with time step size 𝛥𝑡 = 2.0E-04, 𝓁 = 0.2m

and characteristic element size 𝛥𝑥 = 2.5E-03. Sequence shown is for increasing time step, 𝑡𝑠𝑡𝑒𝑝. The non-linear evolution involves formation of fingering like instability akin to

observations in infiltration experiments. (b) Solution plotted along the length of the central finger in solid lines, 𝑆𝑟(𝑥, 𝑦 = 0.15), and within the gap between the fingers in dashed

line, 𝑆𝑟(𝑥, 𝑦 = 0.23), at 𝑡𝑠𝑡𝑒𝑝 = 6000.

Fig. 16. Dimensionless quantities corresponding to the imbibition front shown in
Fig. 15 at 𝑡𝑠𝑡𝑒𝑝 = 6000. (a) regularized effective chemical potential, 𝜇𝑝𝑓 , (b) effective
chemical potential, 𝜇𝑒 and (d) non-local potential, 𝜇𝑁𝐿. (c) These quantities plotted
along the length of the central finger in the vicinity of its tip, (𝑥 ∈ [0.795, 0.84], 𝑦 = 0.15).
The non-monotonicities in 𝑆𝑟 and 𝜇𝑝𝑓 are not apparent due to this restricted spatial
view.

Fig. 15 shows such a perturbed initial condition for the case of
𝑆− = 0.75, 𝑆0

𝑟 = 0.20 and its evolution for 𝑡 > 0 under the above
boundary conditions and 𝜆 = 𝜌𝑤𝑔. The perturbations grow in time
forming fingers within the domain that are similar to observations in
infiltration experiments into initially dry sand (Glass et al., 1989b;
Selker et al., 1992). This model indicates that these ensuing fingers
are more saturated than the region behind. Also, the advancing tips
of the fingers are of higher saturation than the region within the finger
itself. These observations are inline with the experimental saturation
profiles of fingers detected using light transmission by Glass et al.
(1989a). The saturation profile within the space between the fingers,
see Fig. 15(b), is significantly different from that within the finger itself
and is also closer to that of the one-dimensional base solution. These
intricate comparisons of the saturation profiles are yet to be realized
using meticulously designed experiments.

The solution of 𝜇𝑝𝑓 along with its constituent local and non-local
components is shown in Fig. 16 at 𝑡𝑠𝑡𝑒𝑝 = 6000, along with a compar-
ative plot within the vicinity of the tip of the central finger. It is clear
that while the effective chemical potential, 𝜇𝑒, is non-monotonic owing
to the non-convex local fluid energy, the non-local chemical potential,
𝜇𝑁𝐿, compensates by following the convexity of 𝑆𝑟, in accordance
with Eq. (6). Along the sides of the fingers, the fringe region, the
solution indicates regions of higher 𝜇𝑒. This is a consequence of higher
saturation degree within this fringe region compared to that of the
initially dry region, 𝑆0

𝑟 , see Fig. 15(a). This fringe region as well
coincides with the passage of the distinctive swell of the finger tip at
an earlier time step.
11
The linear stability analysis in Section 3 indicates that as the
injection velocity, 𝑉𝑓 , is increased from the intermediate range, the
spacing between the fingers increases and their growth rate decreases,
effectively suppressing the fingering phenomenon. This is verified in
the two-dimensional problem, see Fig. 17, where as 𝑆− in Eq. (36)
is varied within the range [0.70, 0.96], the same trend is observed. For
the largest injection velocity, 𝑆− = 0.96, the initial perturbations are
completely suppressed and the imbibition front infiltrates the domain
homogeneously.

For 𝑆− = 0.70 the region behind the infiltrating front which is
expected to have an uniform saturation degree of 0.70 is perturbed
longitudinally due to the oscillations as seen in the one-dimensional
solution, see Fig. 1. These oscillations are longitudinal in nature, as
elaborated in Section 4, and grow in time while interacting non-
linearly with the infiltrating front. The result of this kind of instability
and the non-linear interactions is the formation of bubble like trapped
regions of lower saturation, see last row of Fig. 17.

5.3. Drainage fronts

The computational domain used for drainage simulations is a rect-
angle, such that 𝑥 ∈ [0, 1] and 𝑦 ∈ [0, 0.15], whose physical dimensions
correspond to a length of 𝐿 = 20m and a height of 𝐻 = 3m. Drainage
of water by air is understood as the contrary of imbibition, which is
a transition from lower saturation degree to higher, moving in the
direction of the higher saturation. So the initial condition, 𝑆𝑟(𝑡 = 0), is
chosen similar to that of imbibition, with a smooth jump along the 𝑥-
direction in the saturation degree from 𝑆− to 𝑆0

𝑟 such that 𝑆− < 𝑆0
𝑟 . The

initially saturated region of the domain is assumed to be close to full
saturation, 𝑆0

𝑟 = 0.99. The region that is relatively dry, 𝑆𝑟(𝑥, 𝑦) = 𝑆−, is
restricted to a thin layer at the left boundary, (𝑥 = 0, 𝑦). Similar to
imbibition, this initial condition is perturbed with randomly chosen
wave lengths within the vicinity of the fastest growing wave length
indicated by the linear stability analysis. The initial condition for 𝜇 is
such that 𝜇(𝑡 = 0) = 𝜇𝑝𝑓 (𝑆𝑟(𝑡 = 0)) + 𝑃 .

Owing to the phase field parameter, 𝑆𝑟, of the current model being
representative of the saturation degree of the wetting fluid, an injection
flux of the form Eq. (35) at the boundary would not be appropriate
to induce drainage. Instead the imposed linear pressure, 𝑃 , is allowed
to drive the drainage front across the domain by choosing appropriate
boundary conditions. See schematic Fig. 18. For all 𝑡 > 0, at the left
boundary surface, (𝑥 = 0, 𝑦), Dirichlet boundary conditions are setup
with 𝑆𝑟(𝑥 = 0, 𝑦) = 𝑆− and

𝜇
|

|

|

= 𝜇𝑒(𝑆−) + 𝑃 (𝑥 = 0, 𝑦). (38)

|(𝑥=0,𝑦)
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Fig. 17. Evolution of initial perturbation to imbibition fronts for injection velocities corresponding to Eq. (36) for 𝑆− ∈ [0.70, 0.96] (to be read row-wise), 𝑆0
𝑟 = 0.20 on a domain

(𝑥, 𝑦) ∈ ([0, 1], [0, 0.3]), for increasing time step, 𝑡𝑠𝑡𝑒𝑝.
Fig. 18. Schematic of the drainage simulations showing boundary conditions imposed.
The arrow indicates the direction of motion of the interface.

The boundary at the right, (𝑥 = 1, 𝑦), is drained with a Dirichlet
boundary condition on 𝜇, Eq. (37), and the normal derivative of 𝑆𝑟
is set to vanish, similar to the imbibition case. These set of boundary
conditions have an effect of inducing extraction of water at the right
boundary that is consistent with the imposed pressure gradient, while
the normal derivative of 𝜇𝑝𝑓 vanishes. The top, (𝑥, 𝑦 = 0.15), and
the bottom, (𝑥, 𝑦 = 0), boundaries are impermeable and the normal
derivative of 𝑆𝑟 is as well set to vanish.

Fig. 19 shows the evolution of 𝑆𝑟(𝑥, 𝑦) for 𝑡 > 0 of a perturbed
initial condition, for the case of 𝑆− = 0.20, under the above boundary
conditions and for 𝜆 = 1.5𝜌𝑤𝑔. The solution along the length of the
domain is consistent with one-dimensional PDE solutions in Part I, with
a self-similar traveling wave part connecting a lower saturation degree,
𝑆𝑏, to a higher, 𝑆𝑎, which represents a non-classical ‘expansion’ shock
and this is connected on either side up to the boundary by expanding
parts of the solution. However, the traveling wave part of the solution
along the length of the finger has a different lower value compared to
that of within the gap between the fingers, see Fig. 19(b) 𝑡𝑠𝑡𝑒𝑝 = 250, the
latter being consistent with the one-dimensional base solution for the
imposed boundary conditions in the current problem, see Fig. 2. In fact,
a one-dimensional traveling wave connecting 𝑆𝑏 to 𝑆𝑎 that correspond
to the solution along the length of the finger would have a higher speed,
approximated by Eq. (16), compared to that of within the gap between
the fingers, which explains the higher speed of the advancing tip of the
finger compared to its base.

As the solution evolves, formation and detachment of droplet like
structures occurs between the fingers. This is due to the growth of lon-
gitudinal perturbations to the part of the solution, 𝑆𝑟(𝑥, 𝑦 = 0.0775) =
𝑆𝑏 ≈ 0.45, between the diffused interface and the expanding region on
the left. As noted in Part I, the origin of longitudinal oscillations in this
region is related to the nature of the equilibrium state associated to 𝑆𝑏
of the dynamical system formed by the ODE (19). These oscillations
tend to grow because 𝑆𝑏 ≈ 0.45 is clearly within the unstable region
of uniform base solutions dictated by Eq. (33), see Section 4. This
is not true for the solution along the length of the finger because the
corresponding 𝑆𝑏 ≈ 0.35.

Similar to the imbibition case the effective chemical potential, 𝜇𝑒,
is non-monotonic and the non-local chemical potential, 𝜇𝑁𝐿, follows
the convexity of 𝑆𝑟, taking positive values just behind the diffused
interface, see Fig. 20.

In order to verify the prediction of the linear stability analysis done
in Section 3, we present here the evolution of the solution 𝑆 for
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𝑟

different values of the gradient of imposed pressure distribution, 𝜆.
Inline with the prediction as 𝜆 is decreased from 1.5𝜌𝑤𝑔, the finger
spacing is reduced resulting in thicker fingers and these thicker fingers
grow slower, see Fig. 21. However, if 𝜆 is increased drastically the
arbitrary initial perturbations to the diffused drainage front decay in
time, see Fig. 22. It is to be noted that for 𝜆 = 150𝜌𝑤𝑔 the diffused front
connects between 𝑆𝑟 ≈ 0.8 and the initial saturation degree of 𝑆𝑟 = 0.99,
see Fig. 2, which is indicative of non-classical ‘under-compressive’
shock. The decay of initial perturbation is revealed by the reduction,
as the solution evolves, of the spatial gap at the diffused interface due
to the imposed perturbation at 𝑡𝑠𝑡𝑒𝑝 = 0. The expanding rarefaction part
of the solution behind the diffused front does not seem to follow the
same rate of decay resulting in persistence of the initial disturbance at
the left end of this part of the solution.

6. Conclusions

In this Part II of the study we have presented a systematic linear
stability analysis of the solutions of the Phase field model introduced
in Part I by studying the growth/decay of imposed initial perturba-
tions. The solutions analyzed were both of imbibition and drainage.
Transverse stability analysis of the imbibition solutions has indicated
that they are sensitive to imposed infiltration flux as observed in the
experiments. There seems to be an intermediate range of infiltration
fluxes within which appropriately sized perturbations would grow in
time forming fluid fingers. As the flux was either decreased or increased

the fingers tended to become thicker and eventually stabilized
below or above certain flux values. This behavior of the imbibition
solutions seems to be related to the overshoot type non-monotonicity as
hypothesized in earlier studies. One-dimensional analysis of the current
model done in Part I has indicated that this overshoot exists only
for certain boundary conditions suggesting that the ensuing instability
might be a consequence of the overshoot rather than the cause. We have
also studied the effect of initial saturation degree of the domain being
infiltrated and that of imposed pressure gradient across the domain.
As observed in experiments increasing initial water content tended to
stabilize the infiltration front. Increasing the imposed pressure gradient,
within the range studied, rendered the infiltration front more suscepti-
ble to destabilization. On the other hand for the drainage front a larger
range of imposed pressure gradient was studied. And the drainage front
seemed to stabilize at very high pressure gradients.

An analytical result was also presented for the stability of one-
dimensional uniform base solutions against longitudinal perturbations
in the direction of propagation of the front. This result indicated on
the possibility of destabilization of the solutions within a particular
range of uniform values of the base solutions which could result in
the formation of trapped regions of dissimilar saturation in higher
dimensions. This was shown to be a consequence of the negative slope
of the chemical potential in a certain range of saturation degrees, which
in turn has its origins in the double-well structure of the bulk fluid
energy employed in this model.
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Fig. 19. (a) Evolution of initial perturbation to a drainage front for 𝑆− = 0.20, 𝑆0
𝑟 = 0.99 on a domain (𝑥, 𝑦) ∈ ([0, 1], [0, 0.15]), with 𝛥𝑡 = 5.5E-04, 𝓁 = 0.2m and 𝛥𝑥 = 2.5E-03.

Sequence shown is for increasing time step, 𝑡 . (b) Solution plotted along the length of the second finger from top in solid lines, 𝑆 (𝑥, 𝑦 = 0.1), and within the gap between the
𝑠𝑡𝑒𝑝 𝑟
fingers in dashed line, 𝑆𝑟(𝑥, 𝑦 = 0.0775), at 𝑡𝑠𝑡𝑒𝑝 = 250, 2000.
Fig. 20. Dimensionless quantities corresponding to the drainage front shown in Fig. 19
at 𝑡𝑠𝑡𝑒𝑝 = 2000. (a) regularized effective chemical potential, 𝜇𝑝𝑓 , (b) effective chemical
potential, 𝜇𝑒 and (c) non-local potential, 𝜇𝑁𝐿. (d) These quantities plotted along the
length of the second finger from top in the vicinity of its tip, (𝑥 ∈ [0.57, 0.615], 𝑦 = 0.1).

Fig. 21. Evolution of initial perturbation to drainage fronts for gradient of imposed
pressure distribution 𝜆 = 𝜌𝑤𝑔, 1.5𝜌𝑤𝑔, 𝑆0

𝑟 = 0.20 on a domain (𝑥, 𝑦) ∈ ([0, 1], [0, 0.15]), at
𝑡𝑠𝑡𝑒𝑝 = 2000.
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Two-dimensional numerical results were as well presented which
were based on a finite element implementation. These results verify
those of the linear stability analysis with respect to finger sizes observed
and stabilization of the front when expected. The rich structure of the
solutions is attributed to the various energy contributions that encom-
pass the non-uniform fluid potential. While the results were inline with
the existing experimental observations, the model predicts additional
features that maybe observed during air–water displacements. Detailed
experiments are warranted both in imbibition and drainage in order to
investigate these predictions.

It is to be noted that our current study only concerns air–water dis-
placements within non-deformable porous network. Most natural exten-
sion would be to model the porous network as deformable with possible
mechanical failure which could be understood either as localization
of solid strain or as localized degradation resulting in re-modeling
of the pore structure. This will be the focus of our further research.
Resulting coupling between the solid and fluid flow localizations is also
of interest.
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Appendix. Convergence properties of the two-dimensional solu-
tions

In order to validate the robustness of the numerical scheme adopted
to solve the two-dimensional problems presented in Sections 5.2 and
5.3 a mesh convergence analysis has been conducted for two test cases
relative to an imbibition and a drainage problem. As expected reducing
the element size implies a decrease of the 2-norm of the difference
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Fig. 22. (a) Evolution of initial perturbation to a drainage front for 𝑆− = 0.20, 𝑆0
𝑟 = 0.99 on a domain (𝑥, 𝑦) ∈ ([0, 1], [0, 0.15]), with 𝛥𝑡 = 5.5E-04, 𝓁 = 0.2m and 𝛥𝑥 = 2.5E-03.

Sequence shown is for increasing time step, 𝑡𝑠𝑡𝑒𝑝. (b) Solution, 𝑆𝑟(𝑥, 𝑦 = 0.1) and 𝑆𝑟(𝑥, 𝑦 = 0.0775), plotted along the length of the domain in solid lines and dashed lines respectively.
The spatial gap between these two solutions represents the initial perturbation at 𝑡𝑠𝑡𝑒𝑝 = 0 and its evolution for all 𝑡𝑠𝑡𝑒𝑝 > 0.

Fig. A.23. Mesh convergence for two-dimensional simulations in Section 5 with characteristic sizes of the finite elements 𝛥𝑥 = 1.25E-03, 2.5E−03, 5E-03, 7.5E−03. ‖𝛥(⋅)‖2
represents the 2-norm of the difference between solutions computed with successive mesh refinements. (a) Convergence and (b) Spatial evolution of 𝑆𝑟 (decreasing order of 𝛥𝑥)
of imbibition simulations with 𝑆0

𝑟 = 0.20, 𝑆− = 0.75, 𝜆 = 𝜌𝑤𝑔, 𝛥𝑥∕𝛥𝑡 = 12.5 at 𝑡 = 0.5 (corresponding to 𝑡𝑠𝑡𝑒𝑝 = 2500 in Fig. 15). (c) Convergence and (d) Spatial evolution of 𝑆𝑟
(decreasing order of 𝛥𝑥) of drainage simulations with 𝑆0

𝑟 = 0.99, 𝑆𝑑
𝑟 = 0.20, 𝜆 = 1.5𝜌𝑤𝑔, 𝛥𝑥∕𝛥𝑡 = 4.5 at 𝑡 = 0.5 (corresponding to 𝑡𝑠𝑡𝑒𝑝 = 2500 in Fig. 19).
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between solutions, both for the saturation degree and the generalized
chemical potential, computed with successive mesh refinements, see
Fig. A.23. Data relative to the test cases are reported in the caption of
the figure. In both cases, the number of fingers that emerge and their
relative spatial evolution are not affected due to mesh refinement.
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