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Abstract 24 

Morphological variation in biological structures may be driven by genetic and 25 

environmental factors, such as inter and intraspecific competition for resources. In 26 

seabirds, although the bill is also involved in vocalization, olfaction, sexual selection 27 

and defence, the main drivers of high morphological plasticity in bill size and shape 28 

appear to relate primarily to diet and thus to niche differentiation. Here, we combined 29 

geometric morphometrics and comparisons of linear measurements as a precise tool for 30 

measuring shape variation in anatomical features, to investigate the differences among 31 

species and populations (island groups) in bill shape of three abundant planktivorous 32 

petrels (Antarctic prion Pachyptila desolata, blue petrel Halobaena caerulea and thin-33 

billed prion Pachyptila belcheri). Fieldwork was carried out in South Georgia (54°0′S, 34 

38°3′W), Falkland Islands (51°42′S, 57°51′W), Diego Ramírez Islands (56°31′S, 35 

68°44′W) and Kerguelen Islands (49°20′S, 69°20′E), across 2010-2021. As expected, 36 

the bills of Antarctic prions were more robust and shorter, appropriate for filtering large 37 

amounts of small prey. Blue petrels and thin-billed prions had narrower and longer bills, 38 

effective for catching and tearing large single prey. Also, Antarctic prions and blue 39 

petrels from Kerguelen had longer and narrower bills than conspecifics from other 40 

colonies, which could potentially be explained by geographic variation in diet. In 41 

conclusion, prey availability and diversity appear to be important factors influencing 42 

variation in bill morphology. This study highlights the utility of geometric 43 

morphometrics for investigating bill shape variation in seabirds. Nevertheless, further 44 

studies are needed to better understand selective pressures leading to morphological 45 

displacement of biological structures. 46 

  47 
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Introduction 48 

Morphological variation is known to be shaped by abiotic and biotic conditions, and 49 

their interaction. For instance, genes provide the potential for a particular phenotype, 50 

but environmental factors determine how this potential is expressed through selective 51 

pressures (Grant and Grant 1989; Aldrich and James 1991). In seabirds, selective 52 

pressures can be related to environmental conditions, predation, disease, and 53 

interspecific and intraspecific competition for resources such as food or nest sites 54 

(Buckley and Buckley 1980; Warham 1996). Suitable breeding sites are limited in 55 

number and hence multiple species of seabirds often breed in sympatry (Warham 1996; 56 

Brooke 2004). As seabirds are often very abundant, and foraging ranges subject to the 57 

central-place constraint during breeding (i.e., the need to return to incubate eggs or feed 58 

chicks), interspecific and intraspecific competition around colonies is particularly 59 

intense (Lewis et al. 2001; Phillips et al. 2005; Wakefield et al. 2014). Seabirds have 60 

therefore evolved diverse ecological strategies which allow coexistence, including 61 

segregation of foraging areas, behaviour or diet (Quillfeldt et al. 2013; Navarro et al. 62 

2013; Corman et al. 2016), as well as allochrony to reduce overlap in the periods of 63 

higher demand for prey, including chick-rearing and moulting (Cherel et al. 2016; Jones 64 

et al. 2020). Selective pressures differ between regions and thus morphological variation 65 

might reflect adaption to local conditions in different populations (i.e., breeding at 66 

different island groups) of the same species (Mayr and Diamond 2001; Bull et al. 2004; 67 

Bull 2006).  68 

Common examples of variation among birds in specific morphological traits include 69 

the shape and size of feeding structures such as the bill. This is widely established, for 70 

example, in different species of Darwin’s finches (Coerebinae), in which bill 71 

morphology is associated with interspecific variability in foraging strategies (Boag and 72 
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Grant 1981; Kleindorfer et al. 2006; Foster et al. 2008). Similar patterns occur in 73 

boobies (Sula spp.) in the Pacific, and little penguins (Eudyptula minor) in south 74 

Australia, in which wing and bill size differ between colonies in relation to prey 75 

selection and competition with sympatric species, and with variation in environmental 76 

conditions, respectively (Colombelli-Négrel 2016; Van Oordt et al. 2018). In seabirds, 77 

the bill is of great ecological and biological importance since it provides essential 78 

functions related to food intake, vocalization, sexual selection or defensive and 79 

territorial behaviour (Warham 1996; Nebel 2005; Gémard et al. 2019). Given its 80 

versatile role, the bill is subject to strong selective forces and it shows wide 81 

morphological plasticity and divergence (Schluter 2000; Van Oordt et al. 2018). Many 82 

studies have pointed out the association between bill shape and size, and diet and niche 83 

differentiation (Nebel et al. 2005; Bull 2006; Trallero et al. 2019), presumably driven by 84 

interspecific competition and natural selection (Grémillet et al. 2004; Navarro et al. 85 

2013; Corman et al. 2016). 86 

In spite of sometimes wide geographic separation between colonies, breeding 87 

populations of seabirds often show limited genetic structure (Moum and Árnason 2001; 88 

Wojczulanis-Jakubas et al. 2014). This applies to Antarctic prions (Pachyptila desolata) 89 

and blue petrels (Halobaena caerulea) breeding at South Georgia and Kerguelen 90 

Islands, even though the island groups are far apart and the populations exploit different 91 

trophic niches (Quillfeldt et al. 2017). Therefore, morphological variation among 92 

individuals and populations in the bill might be related to environmental factors such as 93 

relative availability of different prey (Croxall and Prince 1980). Based on previous 94 

studies, the diet of Antarctic prions at South Georgia is composed mainly of small 95 

copepods and Antarctic krill Euphausia superba, followed by the amphipod Themisto 96 

gaudichaudii, small fish and cephalopods (Prince 1980; Croxall et al. 1997; Reid et al. 97 
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1997). At Kerguelen, although crustaceans are also important, Antarctic prion prey 98 

mainly on T. gaudichaudii, and only rarely on Antarctic krill and copepods (Cherel et 99 

al. 2002b). Blue petrels at South Georgia feed mostly on crustaceans and small 100 

myctophids, whereas conspecifics from Kerguelen also catch larger fish such as 101 

Paradiplospinus gracilis and consume substantial numbers of cephalopods (Prince 102 

1980; Cherel et al. 2002a). The targeting of distinct prey could therefore drive 103 

morphological differences between these colonies. Cherel et al. (2002b) suggested that 104 

while other crustaceans can be caught individually, large numbers of small copepods 105 

might be ingested at once by Antarctic prions through filter feeding. Moreover, Prince 106 

(1980) suggested that long and narrow bills in blue petrels could be indicative of surface 107 

dipping, and tearing of large single prey. Accordingly, the bill, as the anatomical 108 

structure most directly related to diet, might be the key to detecting phenotypical 109 

variation within these genetically similar populations.  110 

Geometric morphometric analyses represents a precise tool for measuring shape 111 

variation in anatomical features (Adams et al. 2013), providing insights into 112 

relationships between morphological structures and ecological strategies (Adams 1999; 113 

Zelditch et al. 2004; Farré et al. 2016b), including in seabirds (Foster et al. 2008; 114 

Navarro et al. 2009; Berns and Adams 2010; Trallero et al. 2019). With this approach, it 115 

is possible to accurately compare biological form in statistical terms, while accounting 116 

for the non-shape variation (size, orientation, deformation etc.) (Adams et al. 2004; 117 

Zelditch et al. 2004). In a previous study (Trallero et al. 2019), we quantified 118 

differences among species and sexes in bill morphology of Antarctic prions, blue 119 

petrels, and two species of diving petrels (Pelecanoides spp.) all breeding at South 120 

Georgia, South Atlantic. Here, we extend this by investigating the differences in bill 121 

shape among populations of three abundant planktivorous petrels (Antarctic prion, blue 122 
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petrel and thin-billed prion Pachyptila belcheri) which have circumpolar distributions in 123 

the Southern Ocean. Although diet proportions are similar in terms of prey classes, the 124 

three species differs in terms of the main crustacean species consumed (Prince 1980; 125 

Cherel et al. 2002a,b) which might explain the striking spatial and ecological 126 

segregation among species and populations (Quillfeldt et al. 2013, 2015; Navarro et al. 127 

2013, 2015). Hence, our initial hypothesis was that these differences in foraging 128 

ecology would be reflected in bill-character displacement. While species differences 129 

have been described with traditional methods, geometric morphometric analyses can 130 

reveal subtler contrasts and offers a precise tool to analyse less obvious differences, as 131 

may be found between populations. 132 

 133 

Material and Methods 134 

Study species 135 

The work focused on three monogamous, small-bodied procellariiform species: 136 

Antarctic prion, blue petrel and thin-billed prion. All can feed 100s or 1000s of km from 137 

the colony and spend most of their time at sea (Quillfeldt et al. 2013, 2014). They breed 138 

in burrows or rock crevices in dense colonies and show the typical procellariiform 139 

pattern of single-egg clutch and slow chick development (Warham 1996; Brooke 2004). 140 

Both the Antarctic prion and blue petrel feed mainly on crustaceans, and small fish 141 

(myctophids) (Table 1), but the particular prey species vary, presumably related to 142 

relative availability in the environment (Ainley et al. 1992). Similarly, thin-billed prions 143 

prey mostly on crustaceans (amphipods and krill), myctophid fish and squid (Table 1). 144 

 145 

Study sites 146 
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Fieldwork was conducted in breeding colonies at four sub-Antarctic island groups 147 

>1000 km apart (Fig. 1): Bird Island, South Georgia (54°0′S, 38°3′W), New Island, 148 

Falkland Islands (Malvinas) (51°42′S, 57°51′W), Gonzalo Island, Diego Ramírez 149 

Islands (56°31′S, 68°44′W) and Île Verte, Kerguelen Islands (49°20′S, 69°20′E). 150 

Antarctic krill are particularly abundant around and to the south of South Georgia 151 

(Atkinson et al. 2001). Prey availability for seabirds is high in the waters surrounding 152 

the Falkland Islands, which are characterised by low temperatures, strong winds and 153 

turbulent waters (Armstrong and Forbes 1997). At Diego Ramírez, temperatures are low 154 

and there are strong westerly winds and high annual rainfall (Schlatter & Riveros, 155 

1997). The Kerguelen Islands are also in a region characterized by low temperatures and 156 

high winds, with strong upwellings (Zhou et al. 2014). Estimated breeding populations 157 

in each island group are as follows: Antarctic prion, South Georgia (22 million pairs); 158 

blue petrel, South Georgia (70 000 pairs); Antarctic prion, Kerguelen (2-3 million 159 

pairs); blue petrel, Kerguelen (100-200,000 pairs); thin-billed prion, New Island, 160 

Falkland Islands (Malvinas) (2 million pairs); blue petrel, Diego Ramírez (1.35 million 161 

pairs) (Prince and Croxall 1983; Weimerskirch et al. 1989; Schlatter and Riveros 1997; 162 

Catry et al. 2003; Barbraud and Delord 2006; Lawton et al. 2006). 163 

 164 

Sampling and morphological data acquisition 165 

During the breeding period, a total of 60 Antarctic prions and 29 blue petrels were 166 

sampled at Bird Island (November 2010 – February 2011); 54 Antarctic prions and 37 167 

blue petrels at Île Verte (December 2018 – January 2019), 29 blue petrels at Gonzalo 168 

Island (November 2020 – January 2021) and 27 thin-billed prions at New Island 169 

(February 2019). For each individual, digital pictures were taken of the right profile and 170 

dorsal view of the bill using a compact digital camera in a consistent orientation: the bill 171 
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was supported using a wooden board with a ruler underneath for scale, and the camera 172 

lens was always perpendicular to the bill surface. Any pictures that were not 173 

standardized in this way were excluded from morphological analyses. In addition, three 174 

biometric measurements were taken in the field: maximum bill depth, bill depth at nares 175 

and culmen length as shown in Trallero et al. (2019). All measurements were made 176 

using digital callipers (± 0.1 mm) (Fig. 2).  177 

 178 

Bill shape analysis 179 

Characterization and assessment of variability in bill shape were performed using 180 

geometric morphometric methods (Rohlf and Marcus 1993; Zelditch et al. 2004). A 181 

total of 10 landmarks (fixed homologous points) in dorsal pictures (Tokita et al. 2017; 182 

Trallero et al. 2019) and 11 landmarks and 3 semilandmarks (mobile non-homologous 183 

points) in profile pictures (Navarro et al. 2009; Militão et al. 2014; Trallero et al. 2019) 184 

were used to define the overall shape of bill and nares (Fig. 2, Table 2). Landmarks and 185 

semilandmarks coordinates were digitized and transformed into geometric data using 186 

the tpsDig2 v.2.31 (Rohlf 2017), creating a metric map for each individual. A 187 

Generalized Procrustes Analysis (GPA) was then applied, using tpsRelw v.1.70 (Rohlf 188 

2019). GPA compares all the landmark configurations removing distortions not related 189 

to shape, translating all configurations to a common centroid position, scaling them to 190 

the unit centroid size and rotating them to minimise the distances between 191 

corresponding landmarks (Adams et al. 2004; Zelditch et al. 2004). Next, a consensus 192 

configuration was obtained by averaging the spatial coordinates of all landmarks using a 193 

thin-plate spline procedure. The comparison of each configuration with this consensus 194 

form allows the shape deformation variables (relative warps, RWs) to be extracted for 195 

each individual. Each RW represents a specific set of morphological characteristics, and 196 
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their comparison allows the potential variation in shape of analysed objects to be 197 

visualised (Rohlf and Marcus 1993; Zelditch et al. 2004). Thus, the values of RWs were 198 

plotted spatially (generating a morphospace) to compare individuals according to 199 

morphological features and axis orientation. Only the first two RWs were used to create 200 

morphospaces as they represented a sufficiently high percentage of total morphological 201 

variance (Table 3), for the profile (60.27%) and dorsal (72.07%) perspectives, 202 

respectively (Farré et al. 2016a; Trallero et al. 2019). The morphospaces were built 203 

using PAST v.3.26 (Paleontological Statistics software package, Hammer et al. 2001). 204 

 205 

Statistical analysis 206 

Bill size (maximum bill depth, bill depth at nares and culmen length) and shape 207 

(using the RW1 and RW2 values of the profile and dorsal views) were compared among 208 

species and populations using Kruskal-Wallis and Mann-Whitney U tests, with species 209 

and island group as fixed factors. Sex was not included as a factor because it was 210 

unknown for the samples from some sites. Moreover, the study species are considered 211 

to be sexually monomorphic (Warham 1990), the differences between sexes in bill size 212 

and shape of Antarctic prions and blue petrels are very slight (Trallero et al. 2019), there 213 

are no significant sex differences in foraging strategies (Quillfeldt et al. 2008; Phillips et 214 

al. 2011; Cherel et al. 2014), and we had no reason to expect biased sex ratios during 215 

sampling. Data were tested for normality (Shapiro-Wilk test) and homogeneity of 216 

variances (Levene’s test). These analyses were performed using R 3.5.0 (R Core Team 217 

2018). 218 

 219 

Results 220 

Interspecific differences in bill morphology 221 
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There were significant differences in bill size (all measurements) and shape of both 222 

profile and dorsal views among the three species (Tables 4 and 5). This included clear 223 

interspecific differences in profile shape (Fig. 3). Species segregated along the 224 

horizontal axis (RW1, representing 39.12% of the total morphological variability) 225 

separating individuals by shape of nares, length of culminicorn and size of maxillary 226 

unguis (Fig. 3): specimens with more triangular nares, longer culminicorn and smaller 227 

maxillary  and mandibular unguis showed positive values (Antarctic prions); specimens 228 

with more rectangular nares, shorter culminicorn and proportionally bigger maxillary 229 

and mandibular unguis (blue petrels) showed negative values; and thin-billed prions 230 

showed intermediate (near to zero) values. The vertical axis (RW2, 21.15% of the total 231 

morphological variation) differentiated individuals by bill depth, and shape of maxillary 232 

unguis (Fig. 3): most of the blue petrels and Antarctic prions had deeper bill and sharper 233 

maxillary unguis, with higher values and located towards the positive extreme, and 234 

those with less deep bills and more rounded maxillary unguis showed lower values in 235 

the negative extreme (thin-billed prions). 236 

Differences in bill shape among species were also observed in the dorsal perspective 237 

(Fig. 4), although less so than in the profile view. The horizontal axis (RW1) explained 238 

a high proportion of the total morphological variability (45.52%), grouping individuals 239 

by width and length of bill, length of nares and length of maxillary unguis (Fig. 4): birds 240 

with wider and shorter bills, shorter nares and shorter maxillary unguis tended to the 241 

positive extreme (Antarctic prions), and those with narrower and longer bills, longer 242 

nares and longer maxillary unguis to the negative extreme (blue petrels and thin-billed 243 

prions). The vertical axis (RW2, 26.55% of the total morphological variability) 244 

differentiated specimens by width of bill basis, shape of culminicorn and size of 245 

maxillary unguis (Fig. 4): birds with wider bill basis, longer and narrower culminicorn 246 
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and smaller maxillary unguis were positioned towards the positive extreme (most 247 

Antarctic prions) and those with narrower bill basis, shorter and wider culminicorn and 248 

bigger maxillary unguis had more negative RW2 values (mostly blue petrels). Thin-249 

billed prions showed intermediate (near to zero) values. 250 

Differences in bill morphology between populations 251 

There were significant differences in bill size and in both profile and dorsal-view bill 252 

shape between populations of Antarctic prions and blue petrels at different island 253 

groups (Tables 4 and 5). Antarctic prions and blue petrels from South Georgia had a 254 

bigger maximum bill depth than those breeding at Kerguelen (Tables 4 and 5), and blue 255 

petrels from Diego Ramírez had bigger maximum bill depth than those from South 256 

Georgia and Kerguelen (Tables 4 and 5). Antarctic prions from South Georgia had 257 

longer culmens than at Kerguelen, and blue petrels at Diego Ramírez had shorter 258 

culmens than at South Georgia and Kerguelen (Tables 4 and 5). In profile view, there 259 

were differences among populations of the sympatric species (blue petrel and Antarctic 260 

prion) (Fig. 3). Between-population morphological variation was significant in both 261 

axes (Tables 4 and 5). Antarctic prions from Kerguelen had more rectangular nares, 262 

shorter culminicorn and a bigger maxillary and mandibular unguis than at South 263 

Georgia (lower RW1 values, Fig. 3). Blue petrels from Kerguelen (higher RW1 values) 264 

had slightly more triangular nares, longer culminicorn and smaller maxillary and 265 

mandibular unguis than at South Georgia and Diego Ramírez (Fig. 3). Also, both 266 

Antarctic prions and blue petrels from South Georgia had deeper bills and sharper 267 

maxillary unguis (higher RW2 values) than birds from other conspecific populations 268 

(Fig. 3). 269 

Dorsal shape variability between populations was more apparent for Antarctic prions 270 

than blue petrels. Most birds from South Georgia and Diego Ramírez (blue petrel only) 271 
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had wider and shorter bills, as well as shorter nares and maxillary unguis, than 272 

conspecifics at Kerguelen (higher RW1 values, Fig. 4). Most Antarctic prions and blue 273 

petrels from Kerguelen had wider bills at the base, longer and narrower culminicorn and 274 

smaller maxillary unguis (higher RW2 values, Fig. 4) than conspecifics at Diego 275 

Ramírez (blue petrels) and South Georgia. 276 

Discussion 277 

Using geometric morphometrics, we found significant differences among species 278 

and populations (island groups) in bill morphology of three planktivorous petrels. 279 

Specifically, Antarctic prions have more robust and shorter bills with shorter nares, 280 

while both blue petrels and thin-billed prions have slenderer and elongated bills, with 281 

longer nares. The Antarctic prions from Kerguelen have longer and narrower bills, and 282 

longer nares, than conspecifics from South Georgia. Overall, blue petrels from South 283 

Georgia and Diego Ramírez Islands had wider and shorter bills, with shorter nares, than 284 

conspecifics from Kerguelen Islands. 285 

As the main function of the bill in seabirds is for foraging, niche differentiation 286 

could presumably be the main driver of the interspecific and between-population 287 

segregation in bill shape found in the present study. Antarctic prions have smaller but 288 

more robust bills than blue petrels and thin-billed prions. Antarctic prions feed mainly 289 

on crustaceans, including small copepods (see diet review in Table 1) and use a 290 

hydroplaning, surface-filtration technique to capture very large numbers of these 291 

abundant but small prey (Croxall and Prince 1980; Harper 1987; Warham 1990).  These 292 

strategies consist of sitting on the water, or swimming with the head below the surface 293 

and filtering seawater through the palatal lamellae (a specialized adaptation for filter-294 

feeding on small copepods) that line the interior edge of the upper mandible (Prince 295 

1980; Warham 1990). We hypothesise that a wide and deep bill is particularly adapted 296 
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to this feeding strategy because it allows filtering of a greater volume of water, thus 297 

maximizing the number of small copepods that can be ingested at one time. Blue petrels 298 

and thin-billed prions, on the other hand, have narrower and longer bills that lack palatal 299 

lamellae. Although they also feed mostly on crustaceans, copepods are rare or absent, 300 

and they consume a higher percentage of small fish and squid; this applies particularly 301 

to thin-billed prions during incubation (Quillfeldt et al. 2010), compared with Antarctic 302 

prions (Table 1). The foraging strategy of blue petrels mainly involves dipping while in 303 

flight and selection of single, large prey items (Croxall and Prince 1980; Prince 1980). 304 

Their long and narrow bills are more well adapted for quick movements and catching, 305 

and may thus allow them to seize and tear quicker, more slippery and larger prey (fish 306 

or squid) that cannot be ingested whole (Harper 1987; Warham 1990). 307 

The morphological segregation of bill morphology observed between populations 308 

from Kerguelen and South Georgia might be also related to prey selection. At South 309 

Georgia, Antarctic prions consume on large numbers of small copepods, along with 310 

Antarctic krill (Table 1), and the short but deeper bills are potentially better adapted for 311 

filter-feeding (Croxall and Prince 1980; Prince 1980; Warham 1990; Cherel et al. 312 

2002b). In contrast, the diet of Antarctic prions at Kerguelen is mainly composed of 313 

hyperiid amphipods, primarily T. gaudichaudii, which are larger than copepods and are 314 

caught mostly in pelagic waters (Table 1). This would explain why the bills of Antarctic 315 

prions at Kerguelen are longer and narrower, thus more adapted for the capture of single 316 

prey items. Blue petrels from South Georgia feed mainly on Antarctic krill and small 317 

myctophids (length range: ≈35-55 mm, Cherel et al. 2002a; Table 1). At Kerguelen, 318 

besides crustaceans and myctophids, the diet of blue petrels also includes a high 319 

percentage of larger prey such as squid, and fish P. gracilis (mean length: ≈283 mm, 320 

Cherel et al. 2002a) (Table 1). Hence, the long and narrow bills of blue petrels at this 321 
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site are also consistent with the requirement to seize and tear larger individual prey 322 

items. Although there are no published studies of the diet of blue petrels at Diego 323 

Ramírez, stomachs of adults contained lots of crustaceans (Euphausiids and 324 

Amphipods), followed by remains of small fish and cephalopod beaks (Suazo, unpubl. 325 

data). Therefore, we predict according to the similarity in bill morphology that their diet 326 

is more similar to conspecifics from South Georgia, rather than Kerguelen. 327 

In conclusion, our results reveal key interspecific and geographic differences in bill 328 

shape and size of four small petrels, which seem likely to reflect variation in prey 329 

selection and foraging style. Our study also highlights the usefulness of geometric 330 

morphometric methods for investigating the bill morphology of seabirds. Further studies 331 

linking bill shape and foraging strategies are needed to better identify the main 332 

ecological drivers that lead to morphological displacement of biological structures in 333 

seabirds. 334 
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Figures 544 

Fig. 1 Location of the different breeding colonies of Antarctic prions, thin-billed prions and 545 

blue petrels sampled in this study  546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

Fig. 2 (a) Bill morphology and measurements: 1 = superior unguicorn-maxillary unguis, 2 = 556 

inferior unguicorn-mandibular unguis, 3 = ramicorn, 4 = latericorn, 5 = nares, 6 = culminicorn 557 

and 7 = tomia-cutting edges. Landmarks (red dots) and semilandmarks (green dots) used to 558 
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describe the shape of (b) the profile, and (c) the dorsal view of the bill. All pictures are of a blue 559 

petrel 560 

Fig. 3 (a) Morphospace of the shape of the right profile of the bills of Antarctic prions (AP) 561 

from South Georgia and Kerguelen Islands, blue petrels (BP) from South Georgia, Kerguelen 562 

and Diego Ramírez Islands, and thin-billed prions (TBP) from Falkland Islands. (b) 563 

Descriptions of the meaning of the relative warps (RW1 and RW2), corresponding to the 564 

horizontal and vertical axes of profile morphospace (red/orange and blue/green indicate higher 565 

and lower shape variation, respectively)   566 
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 567 

Fig. 4 (a) Morphospace of the shape of the dorsal view of the bills of Antarctic prions (AP) 568 

from South Georgia and Kerguelen Islands, blue petrels (BP) from South Georgia, Kerguelen 569 

and Diego Ramírez Islands, and thin-billed prions (TBP) from Falkland Islands. (b) 570 

Descriptions of the meaning of the relative warps (RW1 and RW2), corresponding to the 571 

horizontal and vertical axes of dorsal morphospace (red/orange and blue/green indicate higher 572 

and lower shape variation, respectively) 573 
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Tables 574 

Table 1. Review of the diet of Antarctic prions and blue petrels breeding in South Georgia and the Kerguelen Islands, and thin-billed prions breeding in the Falkland Islands. 575 

There are no published studies of the diet of blue petrels at the Diego Ramírez Islands. 576 

Species Colony Type of prey 
Average frequency of 

occurrence (%) 
Prey preferences References 

Antarctic prion 

South Georgia 

Cephalopod 11.1  
Prince (1980); Croxall et 

al. (1997); Reid, Croxall 

& Edwards (1997) 

Fish 28.2 Myctophidae 

Crustacean 96.8 
Euphausia superba, Amphipoda (Themisto 

gaudichaudii), Copepoda 

Kerguelen 

Islands 

Cephalopod 15.4 Oegopsida sp. 

Cherel et al. (2002a) Fish 31.7 Myctophidae 

Crustacean 100 Amphipoda (T. gaudichaudii) 

Blue petrel 

South Georgia 

Cephalopod 6.4  

Prince (1980) Fish 83.3 Myctophidae 

Crustacean 97.4 E. superba 

Kerguelen 

Islands 

Cephalopod 14.3 Oegopsida sp. 

Cherel et al. (2002b) Fish 81.0 Myctophidae, Paradiplospinus gracilis 

Crustacean 100 Amphipoda (T. gaudichaudii), Thysanoessa sp. 

Thin-billed prion 
Falkland 

Islands 

Cephalopod 55.9 Squid (Gonatus antarcticus) 

Quillfeldt et al. (2010) Fish 12.5  

Crustacean 68.6 Euphausiids, Amphipoda (T. gaudichaudii) 

 577 
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Table 2. Description of the landmarks and semilandmarks used to define the shape of the profile and 578 

dorsal views of the bills of Antarctic prions, thin-billed prions and blue petrels (following Trallero et al., 579 

2019). 580 

Profile Dorsal 

Landmark Description Landmark Description 

1 
Upper jaw, most distal tip of 

maxilla (maxillary unguis) 
1 

Upper jaw, most distal tip of maxilla 

(maxillary unguis) 

2 

Lower jaw, most distal tip of the 

mandibular zone (mandibular 

unguis) 

2 
Articulation between the upper and 

lower ramicorn (right side) 

3 

Anterior tip of the inferior 

ramicorn at the conjuncture with 

the inferior unguicorn 

3 
The most distal tip of the latericorn 

(right side) 

4 
Posterior tip of the lower 

ramicorn 
4 

Lower and posterior border of the 

nare, at the junction with the posterior 

point of the latericorn joint (right 
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 581 

 582 

 583 

side) 

5 Posterior tip of the latericorn 5 Upper and posterior border of the nare 

6 

Lower and posterior border of 

the nares, at the junction with the 

posterior point of the latericorn 

joint 

6 
Point of maximum curvature at the 

rostral end of the right nare 

7 
Upper and posterior border of the 

nares 
7 

Point of maximum curvature at the 

rostral end of the left nare 

8 

Point of maximum curvature of 

the superior and anterior border 

of the nare 

8 

Lower and posterior border of the 

nare, at the junction with the posterior 

point of the latericorn joint (left side) 

9 
Lower and anterior border, in the 

joint with the latericorn 
9 

The most distal tip of the latericorn 

(left side) 

10 

Articulation between the upper 

anterior border of the 

culminicorn and the posterior 

superior border of the maxillary 

zone 

10 
Articulation between the upper and 

lower ramicorn (left side) 

14 
Articulation between the upper 

and lower ramicorn  
 

Semilandmark 
  

 

11, 12, 13 
Curvature of the maxillary nail, 

between landmarks 1 and 10  
 

Table 3. Percentage explained for the first five relative warps (RW) in both dorsal and profile 

perspectives. 

 

 RW1 RW2 RW3 RW4 RW5 

Dorsal      

Percentage (%) 45.52 26.55 9.24 6.75 2.96 

Cumulative percentage (%) 45.52 72.07 81.31 88.07 91.02 

Profile      

Percentage (%) 39.12 21.15 10.73 6.46 4.11 

Cumulative percentage (%) 39.12 60.27 71.00 77.46 81.57 
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Table 4. Comparison of bill size and shape variation measurements between Antarctic prions, thin-billed prions and blue petrels breeding at different island groups. Values 584 

are mean ± standard deviation (sample size). Values with the same subscript indicate no significant difference between species (letters) or colonies (numbers) based on Mann-585 

Whitney tests. 586 

 587 

 Antarctic prion Blue petrel Thin-billed prion 

 Kerguelen Islands South Georgia Kerguelen Islands South Georgia Diego Ramírez Islands Falkland Islands 

Maximum bill depth 8.44 ± 0.39 (20)A1 12.42 ± 1.04 (53)A2 9.45 ± 0.40 (14)B3 10.12 ± 0.64 (27)B4 10.93 ± 0.46 (29)B5 7.41 ± 0.35 (17)C6 

Bill depth at nares  9.13 ± 0.90 (53)A1  7.51 ± 0.47 (28)B2 7.39 ± 0.47 (29)B2  

Culmen length 26.91 ± 1.01 (20)A1 28.19 ± 1.16 (53)A2 26.08 ± 1.06 (14)B3 26.32 ± 1.10 (28)B1,3 25.21 ± 0.99 (29)B4 25.10 ± 0.97 (17)C4 

Dorsal       

RW1 -0.01 ± 0.02 (54)A1 0.08 ± 0.02 (55)A2 -0.06 ± 0.03 (37)B3 -0.02 ± 0.03 (29)B4
 

-0.01 ± 0.02 (29)B1,4 -0.03 ± 0.02 (23)B4
 

RW2 0.04 ± 0.02 (54)A1 0.01 ± 0.02 (55)A2 -0.01 ± 0.03 (37)B3
 

-0.03 ± 0.02 (29)B4 -0.06 ± 0.02 (29)B5 0.003 ± 0.016 (23) C2,3
 

Profile       

RW1 0.04 ± 0.01 (54)A1 0.05 ± 0.02 (60)A2 -0.04 ± 0.01 (35)B3 -0.06 ± 0.02 (29)B4
 

-0.06 ± 0.02 (29)B4
 

-0.01 ± 0.01 (27)C5 

RW2 -0.02 ± 0.02 (54)A1 0.03 ± 0.02 (60)A2 0.01 ± 0.02 (35)B3
 

0.04 ± 0.02 (29)B4 -0.001 ± 0.024 (29)B3
 

-0.06 ± 0.02 (27)C5 
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Table 5. Summary of the Kruskal-Wallis tests examining variation in bill size and morphology (dorsal 

and profile) between Antarctic prions, thin-billed prions and blue petrels breeding at different island 

groups. 

 Species Colony Species*colony 

 H p H p H p 

Maximum bill depth 58.2 <0.001 103.8 <0.001 138.0 <0.001 

Bill depth at nares 70.2 <0.001 26.2 <0.001 96.4 <0.001 

Culmen length 79.4 <0.001 68.0 <0.001 96.4 <0.001 

Dorsal-RW1 93.8 <0.001 70.7 <0.001 160.2 <0.001 

Dorsal-RW2 101.0 <0.001 92.2 <0.001 152.4 <0.001 

Profile-RW1 189.3 <0.001 56.2 <0.001 195.9 <0.001 

Profile-RW2 70.7 <0.001 139.4 <0.001 157.3 <0.001 

 


