Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2023

Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC

Eduardo J. de Mericia
  • Fonction : Auteur
Larissa Santos
  • Fonction : Auteur
Carlos Alexandre Wuensche
  • Fonction : Auteur
Vincenzo Liccardo
  • Fonction : Auteur
Camila P. Novaes
  • Fonction : Auteur
Mathieu Remazeilles
  • Fonction : Auteur
Filipe Abdalla
  • Fonction : Auteur
Chang Feng
  • Fonction : Auteur
Luciano Barosi
  • Fonction : Auteur
Amilcar Queiroz
  • Fonction : Auteur
Thyrso Villela
  • Fonction : Auteur
Bin Wang
  • Fonction : Auteur
  • PersonId : 758908
  • IdRef : 195514718
Jiajun Zhang
  • Fonction : Auteur
Andre A. Costa
  • Fonction : Auteur
Elisa G.M. Ferreira
  • Fonction : Auteur
Ricardo G. Landim
  • Fonction : Auteur
Alessandro Marins
  • Fonction : Auteur
Marcelo V. Dos Santos
  • Fonction : Auteur

Résumé

To recover the 21 cm hydrogen line, it is essential to separate the cosmological signal from the much stronger foreground contributions at radio frequencies. The BINGO radio telescope is designed to measure the 21 cm line and detect BAOs using the intensity mapping technique. This work analyses the performance of the GNILC method, combined with a power spectrum debiasing procedure. The method was applied to a simulated BINGO mission, building upon previous work from the collaboration. It compares two different synchrotron emission models and different instrumental configurations, in addition to the combination with ancillary data to optimize both the foreground removal and recovery of the 21 cm signal across the full BINGO frequency band, as well as to determine an optimal number of frequency bands for the signal recovery. We have produced foreground emissions maps using the Planck Sky Model, the cosmological Hi emission maps are generated using the FLASK package and thermal noise maps are created according to the instrumental setup. We apply the GNILC method to the simulated sky maps to separate the Hi plus thermal noise contribution and, through a debiasing procedure, recover an estimate of the noiseless 21 cm power spectrum. We found a near optimal reconstruction of the Hi signal using a 80 bins configuration, which resulted in a power spectrum reconstruction average error over all frequencies of 3%. Furthermore, our tests showed that GNILC is robust against different synchrotron emission models. Finally, adding an extra channel with CBASS foregrounds information, we reduced the estimation error of the 21 cm signal. The optimisation of our previous work, producing a configuration with an optimal number of channels for binning the data, impacts greatly the decisions regarding BINGO hardware configuration before commissioning.

Dates et versions

hal-03655368 , version 1 (29-04-2022)

Identifiants

Citer

Eduardo J. de Mericia, Larissa Santos, Carlos Alexandre Wuensche, Vincenzo Liccardo, Camila P. Novaes, et al.. Testing synchrotron models and frequency resolution in BINGO 21 cm simulated maps using GNILC. Astronomy and Astrophysics - A&A, 2023, 671, pp.A58. ⟨10.1051/0004-6361/202243804⟩. ⟨hal-03655368⟩
39 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More