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Simulation of thermodynamic properties of magnetic transition metals from an efficient
tight-binding model: The case of cobalt and beyond
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Atomic scale simulations at finite temperature are an ideal approach to study the thermodynamic properties
of magnetic transition metals. However, the development of interatomic potentials explicitly taking into account
magnetic variables is a delicate task. In this context, we present a tight-binding model for magnetic transition
metals in the Stoner approximation. This potential is integrated into a Monte Carlo structural relaxations code
where trials of atomic displacements as well as fluctuations of local magnetic moments are performed to
determine the thermodynamic equilibrium state of the considered systems. As an example, the Curie temperature
of cobalt is investigated while showing the important role of atomic relaxations. Furthermore, our model is
generalized to other transition metals highlighting a local magnetic moment distribution that varies with the
gradual filling of the d states. Consequently, the successful validation of the potential for different magnetic
configurations indicates its great transferability and makes it a good choice for atomistic simulations sampling a

large configuration space.

DOI: 10.1103/PhysRevB.105.144101

I. INTRODUCTION

Magnetism plays a key role in many areas of materials
science, especially when transition metals and their alloys are
concerned. In these systems, magnetism can be the driving
force impacting the phase stability and chemical ordering.
Typical examples include the stability of the bcc o phase of
iron [1,2], the phase diagram of Fe-Co [3,4], or the Fe-Cr mix-
ing enthalpy anomaly [5]. However, the direct relationship, if
any, between the atomic-scale origins of these properties and
the contribution of magnetism remains a challenge nowadays
[6,7]. In this particular context, large-scale atomic simulations
are required but they are still limited by the transferability
of interatomic potentials including a magnetic contribution,
which is far from trivial. A main difficulty lies in the establish-
ment of a quantitative theory of finite temperature magnetism,
which is still elusive and therefore represents an issue of both
fundamental and applied importance.

In recent years, different kinds of interatomic potentials
have been developed mainly to deal with the case of iron and
its alloys, which represents a major issue in many steel indus-
try applications [8]. The majority of the existing interatomic
potentials of Fe are based on the embedded atom method
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(EAM) or the Finnis-Sinclair model with a more or less pre-
cise description of the directional bonds [9-15]. Meanwhile,
a better treatment of magnetism can be obtained by coupling
classical empirical potentials and Heisenberg-type models for
spin dynamics [16,17]. Aside from the classical potentials
is the tight-binding (TB) framework that allows an explicit
dealing with the electrons making magnetism a natural conse-
quence of the model. In addition, they have the advantage of
being transparent and simple, while still allowing for a high
degree of transferability to handle magnetic systems [18-22].
Despite their success, these different types of interatomic po-
tentials (i.e., empirical or TB) have so far been applied mostly
to study the stability of bulk phases at 0 K and also to deal with
some specific defects (point defects [21,23,24], dislocations
[7], grain boundaries [6,15],. . .), which are crucial for the use
of magnetic materials in various applications. However, the
case of thermodynamic properties at finite temperature, which
is much more complex, is still elusive [25]. A challenge for
such simulations is to have an energy model able to describe
magnetic phase transformations where atomic relaxations are
included to study relatively large systems.

More precisely, it is difficult to develop a model for tran-
sition metals describing a local electron-electron interaction
that is strong enough to create a localized magnetism fluc-
tuating on a short length scale or to give rise to significant
hybridization of the d states with the surrounding atoms re-
sulting in an itinerant magnetism. In practice, these different
magnetic degrees of freedom can be accurately described

©2022 American Physical Society
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either by a localized Heisenberg model (rare-earth metals or
transition-metal insulators) or in the framework of the pure d
band Stoner theory [26-29]. Consequently, the development
of a unifying model remains scarce [27-29]. In this context,
a typical challenge is to develop a theory able to produce
accurate Curie temperatures (T¢) for d elements. Back in the
1960s, Friedel et al. had already proposed a simple model
of magnetism for transition metals, which is somewhat in-
termediate between the Heisenberg atomic model and the
Stoner band model [30]. Further theoretical works have been
developed within an ab initio framework based on the dis-
ordered local moment (DLM) approximation as an accurate
representation of a paramagnetic configuration with a random
alloy of spin-up and spin-down atoms [31]. As an example, the
DLM is used to get parameters of a magnetic model and the
temperature dependence properties are determined by Monte
Carlo. Within this approach, the calculated Curie tempera-
tures and paramagnetic susceptibilities were found in good
agreement with experimental data for bec Fe and fee Ni [29].
Recently, an ab initio-based effective interaction model (EIM)
has been developed for the study of magnetism, chemical-
phase stability, and their coupling in bcc Fe-Co structures
[32,33]. The EIMs can be quite efficient to treat thermody-
namic and kinetic properties, but the lattice-vibration effects
are not considered explicitly [34]. Despite such intense efforts
[35], these approaches are not adequate for the development
of interatomic potentials to investigate the structural proper-
ties of magnetic transition metals at finite temperature where
large systems and complete relaxation of the system are
required.

In this work, we present a tight-binding interatomic po-
tential including all relevant physics related to collinear
magnetism in transition metals. The challenge is to develop
a relatively simple model to simulate systems of several hun-
dred or even thousands of atoms at finite temperature. Thus,
it will be possible to study perfectly crystalline materials but
also more complex configurations such as disordered systems
of the bulk, surface, and nanoparticle type (pure, metallic
alloy, or metal carbide type). The main issue is to have per-
fectly defined statistical ensembles of the canonical or grand
canonical type [36] to rigorously characterize the thermody-
namic properties of the systems under study where magnetism
plays a significant role. In the present work, a fourth-moment
approximation to the local density of states developed for
transition-metal carbides [37-39] is extended to take into
account explicit magnetic contribution via the Stoner theory
of itinerant magnetism [40]. This semiempirical approach re-
lies on local (atomic) energy calculations using the recursion
method and is coupled with Monte Carlo (MC) simulations
in order to relax the structures and calculate thermodynamic
properties. The paper is organized as follows. In Sec. II, we
present the tight-binding approximation coupled to the Stoner
model developed to calculate band energies including a mag-
netic contribution. Empirical repulsive terms are then added
to obtain total energies. The Monte Carlo procedure used to
relax the structures is also described. Different validations and
applications of the model to determine the Curie temperature
of Co are developed and discussed in Sec. III. Lastly, Sec. IV
is devoted to the generalization of our tight-binding model to
other magnetic transition metals.

II. TIGHT-BINDING HAMILTONIAN INCLUDING THE
STONER MODEL

A. Tight-binding Hamiltonian with various approximations

There are several magnetic TB models to characterize
transition metals and their alloys that contrast with the Hamil-
tonian approximation level. This mainly concerns the choice
of the basis, which may be orthogonal [41] or not [5] and
includes different orbitals (spd [18] or only d [42,43] for
pure transition metals). As it is a parameterized quantum
description, the evaluation of complex integrals is avoided and
replaced by functionals whose form and parametrization differ
according to the TB model. In case of interatomic potentials,
the total energy (with respect to the energy of the free atoms)
can be written as the sum of an attractive contribution, which
describes the formation of an energy band when atoms are
put together to form a density of states, and of a phenomeno-
logical repulsive term, which empirically accounts for the
ionic and electronic repulsions [44,45]. The magnetic term
is introduced via the Stoner Hamiltonian to remove the de-
generacy between the two spin directions through a potential
that generates a band splitting between up and down spins
[40]. At this stage, there are different approaches to develop
interatomic potentials from the TB Hamiltonian. The most
specific and standard one is basically to perform a complete
diagonalization of the Hamiltonian to get an accurate contri-
bution of the band term. However, the price to pay is usually
quite high in terms of computational time, especially if the
model is implemented in Monte Carlo or molecular dynamic
code to relax structures where many steps are required to
converge. To overcome this difficulty, it is possible to obtain a
simplified model of the band term using the moment method
[46] or recursion method [47,48]. A decomposition of band
energy into binding energies can be derived, which, combined
with the theory of perturbations with respect to the underlying
electronic structure, results in analytical bond-order potentials
(BOPs) [43,45,49]. Being limited to numerical calculations of
the first moments of the local density of states, the calculation
becomes fast and can be integrated into structural relaxation
codes [37]. Within this framework, Ackland et al. [50] have
established a magnetic interatomic potential where the band
term was calculated within the second-moment approximation
of the TB model. Unfortunately, the limited description of
the density of states does not allow us to account for the
subtle relationship that can exist between magnetism and
the structural stability of pure transition metals and their
alloys [51].

In the following, a magnetic interatomic potential based
on the tight-binding framework is detailed, which provides an
efficient way to calculate the structural properties of magnetic
transition metals at finite temperature. The model based on
the fourth-moment approximation for the band term is the
simplest in terms of moments that still correctly describes
some of the magnetic features.

B. Fourth-moment approximation

There is no need to detail the tight-binding approximation
here. The technical and theoretical aspects concerning our
model in the fourth-moment approximation (FMA) to handle
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transition-metal carbides as well as its transferability are given
in Ref. [37]. In the following section are summarized the
essential points that are relevant to understand the extension of
our model to take into account explicit magnetic contribution
via the Stoner theory.

In case of a nonmagnetic (NM) system containing N atoms,

the total energy of an atom i (E., /nm) s divided into two
contributions, a band structure term (E(, ;) that describes the
formation of an energy band when atoms are put together and
a repulsive term (Eriep) that empirically accounts for ionic and
electronic repulsions:

Etlot/NM = Eliand + Erlep' (1)
The total energy of the system, Ey/nm, then writes:
Etot/NM = Z E[l;)t/NM- (2)

i atoms

The band term is given by the following equation:

€F
Ela = / (E — ) )ni(E)dE, 3)
—00

where er is the Fermi level and e? the atomic energy level.
We use the recursion method to calculate n;(E), the local
electronic density of states (LDOS) on each site i [47]. Only
the first four continued fraction coefficients, (a;, by, az, by)
corresponding to the first four moments of the local density of
states are calculated exactly, which provides already a good
description of the angular contributions to the energy. Then
the continued fraction expansion of the density of states is
analytically integrated and expressed in terms of simple el-
ementary integrals as proposed in Ref. [52]. This approach
has proven to be very effective ensuring a linear scaling of
the CPU time with system size [38]. Since we want to have
a consistent and simple scheme to describe correctly the tran-
sition elements, the fourth-moment approximation is a good
compromise. Taking into account the fifth or sixth moment
would be even better but rather expensive in terms of compu-
tational effort [53,54]. To keep the model as simple and fast
as possible, we neglect the sp electrons that form a broader
nearly-free-electron band. Only the d electrons are taken into
account as long as we are interested in cohesive properties
more than in a detailed description of the electronic structure.
Indeed, the bell-shape behavior of the cohesive energy and of
the elastic moduli is correctly predicted by the TB approx-
imation where sp-d hybridizations are neglected and is the
consequence of a gradual filling of the d states [42]. When in-
terested in more detailed electronic structure properties, sp-d
hybridization should, however, be taken into account as done
in Ref. [55]. Thus, we will work with the |ix) basis where
w is the orbital index (u = dyy, dy;, dzx, dy2_y2, d32_,2). For
sake of simplicity, the basis set is assumed to be orthogonal.
In our d band model, the Slater-Koster parameters for the
hopping integrals ddo, ddm, and ddé are considered to be
in the ratio —2 : 1 : 0 and to decay exponentially with respect
to the distance r as:

ddi(r) = ddhg exp [—q(% - 1)] @)

where A = o, 7, 8. In case of metallic systems, it is common
to impose a condition of local charge neutrality, which can be

achieved by locally varying atomic energy levels. Instead of
following this procedure, a more approximate but much easier
scheme used here is to calculate the total energies based on
a local charge neutrality hypothesis by introducing fictitious
local Fermi levels. The second term in Eq. (1), Eriep, is a
repulsive contribution chosen to have a pairwise Born-Mayer

form here:
. rii
E,=A Zexp [—p(r—oj - )] %)
JF#

In our TB model based on a fourth-moment approximation,
magnetism is introduced via the Stoner model [40] by in-
cluding the presence of local exchange fields within the band
energy of Eq. (3). We place ourselves in the case of collinear
magnetism that imposes the differentiation of two spin popu-
lations: spin up (1) and spin down ({,). The spin moment m;
in (p units is given by:

m; = N; t —=N; |, (6)

where N; 1 and N; | are, respectively, the number of elec-
trons in majority and minority spin bands of an atom i. The
exchange potential is modeled by an effective magnetic field
of the form: Im;/2 where I is the Stoner exchange integral.
This allows us to define local magnetic on-site levels:

e =+ %m (7)
The minus (plus) sign is chosen if the spin o is parallel
(antiparallel) to the direction of the local magnetic field. From
Eq. (7), it is obvious that these levels must be determined
self-consistently, since the TB Hamiltonian now depends on
the local magnetic moments. A straightforward procedure is to
start from an initial guess for m;, and once the corresponding
Hamiltonian is diagonalized, two density of states (for up and
down states) are obtained leading to an improved estimation.
This latter is used as new input and the process is iterated
until convergence. In practice, self-consistent magnetic mo-
ments were found using the Broyden mixing scheme [56].
After summing over the whole electron population with the
consideration of the double counting of states, the result is a
contribution of this exchange potential to the total energy of
an atom i:

Eliot = Eliand + Eriep + Eeixc (8)
. 1 2
Eéxc = _Zmi ’ ©))

where E! _ is the exchange energy [21,23,45].

C. Monte Carlo simulations

This atomic interaction model is then implemented in
a Monte Carlo (MC) code, based on the Metropolis algo-
rithm [57], using the canonical ensemble [36]. This procedure
makes it possible to relax the structures at finite temperatures
according to a Boltzmann-type probability distribution. In the
canonical ensemble, standard MC trials correspond to random
displacements. A MC macrostep corresponds to N propo-
sitions of random atomic displacements, N being the total
number of atoms of the system. In principle, the determination
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FIG. 1. Total energy (in red) and magnetic moment (in black) as
a function of the number of MC steps at 800 K starting from a fcc
random spin configuration.

of all local magnetic moments for each trial configuration is
based on a brute force method, which consists in performing
two self-consistent calculations to extract at the end a very
small energy difference. However, at finite temperature we
allow for fluctuations of the magnetic moment. This renders
the self-consistent determination of magnetic moments not
suitable. To overcome this difficulty, the maximum amplitude
of the trials is adjusted during the run in order to have a rejec-
tion rate around 50%, ensuring an optimal use of the computer
resources to sample the configurational space of the system
[36]. In the present case, a MC trial corresponds to randomly
choosing an atom and its displacement as well as its local
magnetic moment with an amplitude of 0.05+/7 (¢ — 0.5) and
0.4InT (& —0.5) respectively. T is the temperature in eV
units and & is a random number between 0 and 1. The choice
of the different functions is fully arbitrary to have a depen-
dence on T that minimises the trials and avoids the system
being trapped in a local minimum. For each run, we check the
convergence of the total energy and the average magnetic mo-
ment, defined as m = 1/N va m; (see Fig. 1). Starting from
a fully random magnetic state, the system converges rapidly
to a ferromagnetic state corresponding to m = 1.87 up. We
may notice that depending on the MC moves, the symmetrical
value (—1.87 up) is also possible since these two magnetic
states are degenerate. We performed 103 MC macrosteps for
equilibration then the average quantities are calculated over
10° macrosteps. Since the total energy is taken as a sum
of local terms, this avoids recalculating the total energy and
the magnetic contribution of the whole system at each step
of the Monte Carlo process making efficient the implemen-
tation of our TB model. Consequently, the local energy is
only recalculated at each MC trial for atoms impacted by the
displacement of an atom i. This approach is then perfectly
adapted to deal with large systems and to reproduce the main
energy properties of magnetic transition metals.

D. Fitting procedure

The problem of finding a good parameter set for a TB
interatomic model corresponds to an optimization problem,
where one tries to reproduce a database by adjusting the model
parameters: ddo, q, ry, A, p, I, the number of electrons N; and
an inner 7/ and outer cut-off radius °. The latter are involved

in the cutoff function that is applied to the hopping integrals
and the repulsive energy:

1 if r< ré
Ffou(r) = %[l + cos (7‘[ :__r;)] it ri<r<ro.
0 it r>r

With a TB model, the parameters have a physical mean-
ing limiting the ranges over which they can be optimized,
reducing significantly the search space. The reference data are
obtained by performing ab initio calculations using the Vienna
ab initio Simulation Package (VASP) code [58] based on the
density functional theory (DFT). More precisely, DFT cal-
culations (spin polarized within the collinear approximation)
were carried out using plane-wave basis sets and projector
augmented wave (PAW) potentials. The GGA-PBE functional
was used [59]. The criterion of 10~® eV was employed in elec-
tronic self-consistent loops. The plane-wave energy cutoff of
400 eV was chosen to have a good convergence of energetic,
magnetic, and structural properties. The Methfessel-Paxton
smearing function with a width of 0.1 eV was used. The
Brillouin zones were sampled by the Monkhorst-Pack method
[60] with a kK mesh of 16 x 16 x 16. The reference data are
the cohesive energies, magnetic moments, lattice constants,
and elastic constants of nonmagnetic and magnetic calcu-
lations for fcc and bcee crystals. In general, TB parameters
are adjusted to the target quantities (e.g., lattice parameter,
cohesive energy, elastic constants,. . .). Here we have chosen
to well reproduce the good trends via a set of data such as the
stress-strain, strain-energy, and strain-magnetization curves,
making the approach more relevant than isolated values. The
objective function that we optimize is the root mean-square
difference between the DFT results and the data obtained with
a particular trial parameter set for the TB model. With nine pa-
rameters the parameter space is still too large for a systematic
exploration. For instance, sampling all combinations, while
trying ten values per parameter, 10° evaluations of the refer-
ence data would be required. We therefore resort to parallel
tempering Monte Carlo simulations [61] for this global opti-
mization problem. Making efficient use of parallel computers,
the idea of this approach is that the high-temperature ther-
mostats explore large regions of the parameter space, while
those at lower temperature explore in detail local optima. The
exchanges allow us to escape bad local optima when better
ones are discovered at a higher temperature. We use optimiza-
tion runs with 10° MC cycles with 12 thermostats each with a
50% temperature difference with the neighboring thermostat.
Exchanges are attempted every 50 steps. The values of the
maximally attempted change of the parameters is adjusted
in each thermostat during the optimization such that about
half of the MC moves are accepted. The best parameter set
obtained by these runs was further locally optimized by the
Nelder-Mead algorithm [62] and scrutinized manually.

III. STRUCTURAL PROPERTIES OF CO
A. Ground state at 0 K

Experimentally, the hexagonal compact (hcp) structure is
the most stable configuration for Co at low temperature with a
hcp-fec transition occurring at 680 K [63]. As seen in Fig. 2,
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FIG. 2. Total energy (a) NM and (b) FM calculations and (c) total
magnetic moment as a function of atomic volume for hcp (green),
fce (in black), and bee (in red) at O K. Dashed lines represent DFT
calculations and full lines TB calculations.

DFT calculations at 0 K show that the hcp structure is indeed
more stable with an fcc structure close in energy (a difference
~0.05 eV can be reported). However, it should be noted
that using our fourth-moment approximation, the difference
between the hcp and fcc phases cannot be reproduced for
simple topological reasons. Actually, FMA calculations imply
to take into account the first and second neighbors, which are
the same for both structures [54,64,65]. To improve our TB
model, calculations from the fifth moment are therefore nec-
essary but would give rise to much longer calculation times. In
the present work, we seek to investigate the Curie temperature
(~1400 K) far from the hcp-fcc transition at 680 K. As a
result, we focus our investigation on the fcc phase as well as
the bee one for comparison as we will see later.

Following our fitting procedure, the final parameter set
corresponding to both structures for nonmagnetic (NM) and

TABLE I. Co parameters for the magnetic TB-FMA model, ob-
tained by fitting to DFT reference data. ddo, A, and [ are in eV, ry,
ri,and r are in A,

ddo q ro A p 1 Ny r re

139 250 221 0246 124 138 813 26 34

ferromagnetic (FM) states can be found in Table I. The relative
stability of these various phases, as well as the influence of
magnetism on the system can be determined from the energy
versus atomic volume curves plotted in Fig. 2. For calculations
at 0 K, m is computed self-consistently while the MC proce-
dure defined previously will be privileged for the simulations
at finite temperature. As illustrated in Table II, our model pre-
dicts a fcc ground state for nonmagnetic states in agreement
with DFT calculations. Regarding the magnetic calculations,
it can be observed in Fig. 2 that the hcp and fcc phases are
almost degenerated with our model TB-FMA as expected for
the reasons mentioned above. More precisely, our TB model
tends to stabilize the magnetic structure as in DFT with lat-
tice parameters and cohesive energies always larger than in
the nonmagnetic phase [51]. It is worth mentioning that our
model reproduces well experimental elastic constants of the
fcc structure. Regarding the magnetic moment, as expected,
it increases when the lattice is expanded and vanishes when
it is reduced [66,67]. Meanwhile, the bcc magnetic moment
appears for smaller atomic volume. Moreover, the value of the
magnetic moment equal to 1.87 up is completely determined
in our TB formalism by N; the total number of electrons in
our model (m = 10 — N;) [7] for a strong ferromagnet with
a full majority spin band, as was the case for elementary Co.
Besides the cohesive properties, the exchange interaction J is
a good descriptor to have an idea of the Curie temperature
trend in the different structures. Indeed, J is defined as the
energy difference between a configuration with all spins up
(or down) and a configuration where one spin is flipped. The
value of J is larger for the bcc structure (286 meV) than for
the fcc one (178 meV) suggesting that the bec system should
have a T¢ larger than the fcc one.

Once all parameters have been fitted and validated at 0 K,
the difficulty in the derivation of a complete interatomic
potential is to confirm its robustness at finite temperature
to check its transferability. In the following, we go further
by studying the Curie temperature of fcc and bec systems
performing off-lattice MC simulations where all degrees of
freedom are considered. More precisely, each physical ingre-
dient will be integrated step-by-step to determine its impact on
the T¢ calculation, i.e., longitudinal spin fluctuations (LSF),
lattice vibrations (LV), and lattice expansion (LE).

B. Finite temperature

1. Magnetization of bce and fcc Co based on Ising-type
simulations

First, the Curie temperature is investigated on a rigid lattice
where the MC trial consists in flipping the magnetic moment
(m = £1.87 up). In these Ising-type simulations, we consid-
ered a fcc/bece system of 256/250 atoms, which is sufficiently
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TABLE II. DFT and TB-FMA calculations of the lattice parameters, cohesive energies and elastic constants for nonmagnetic and
ferromagnetic bee and fce systems at 0 K. Experimental data are only available for fcc FM phases. For the FCC phase, the value of the
experimental lattice parameter was obtained at 700K. DFT calculations of bcc and fcc systems are extracted from Ref. [66].

NM NM FM FM FM
DFT TB-FMA expt. DFT TB-FMA
BCC a(A) 2.76 2.68 - 2.81 2.71
Econ (€V/at.) -3.97 —4.24 - —4.30 —4.36
FCC a(A) 3.45 3.38 3.54 [68] 3.52 3.45
E.on (€V/at.) —4.20 —4.30 —4.39 [68] (hcp) —4.40 —4.40
Ci1, C12, Cas (GPa) 407, 180, 208 389, 235, 142 225, 160, 92 [69] 290, 170, 145 273, 175, 109

large for the convergence of the energy and the magnetiza-
tion. We performed heating/cooling (increasing/decreasing
temperatures) MC simulations which means the simulation
at the next temperature starts from the last converged config-
uration of the previous temperature. No difference between
the increasing and decreasing temperatures was observed, so
that only the increasing temperature is shown in Fig. 3. As
expected, the Curie temperature for the bcc phase is larger
than for the fcc one. However, the calculated Ty are very
high compared to the experimental values (7 = 1388 K for
fce [32]).

2. Impact of longitudinal spin fluctuations, lattice
vibrations and thermal expansion

Previous conclusions are not surprising because magnetic
moment fluctuations, lattice vibrations, and lattice expansion
are not considered. We now investigate the impact of magnetic
moment fluctuations on the Curie temperature. As before, a
fcc/bee system containing 256,/250 atoms on a rigid lattice is
considered. In contrast to the previous case, the local magnetic
moment is no longer constrained to two values but is free to
fluctuate randomly in a continuous manner. The equilibrium is
consequently longer to reach since both total energy and mag-
netic moment require more MC steps to converge. The results
for the fcc and bece phases are presented in Fig. 4. Compared
to the Ising-type simulation, we can clearly notice a signifi-
cant effect of the magnetic fluctuations since 7¢ is drastically
reduced by about 3500 K. Indeed, the magnetic moment de-
creases slowly before the Curie temperature equal to 1150 K

<m> ()

4600 4800 5000 5200 5400 5600
T (K)

FIG. 3. Total magnetic moment average of fcc (in black) and bec
(in red) systems as a function of temperature on Ising-type lattice.

and 1350 K for fcc and bec systems, respectively, followed by
an abrupt drop to zero typical of a first-order transition. It can
be noted that a second-order transition is observed within an
Ising model where large boxes of simulations are considered
(several thousand atoms). This is not the case in the present
work, which is focused to boxes containing several hundred
atoms and therefore cannot reproduce a second-order phase
transition [70]. Nevertheless, these deviations do not prevent
us from investigations of physical properties of magnetic tran-
sition metals at finite temperatures. Improving the accuracy
would imply increasing the size of the systems, which would
make the calculations very time consuming and would be not
adequate to highlight the generalities of our model.
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FIG. 4. Total magnetic moment average of (a) fcc and (b) bcc
system as a function of temperature with different approximations:
only longitudinal spin fluctuations (dashed line with cross), longitu-
dinal spin fluctuations + lattice vibrations (dotted line with square),
and longitudinal spin fluctuations + lattice vibrations + lattice ex-
pansion (full line with circle).
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Interestingly, the impact of magnetic moment fluctuations
is therefore crucial but insufficient to reproduce the experi-
mental T value (~1400 K for the fcc phase). To go beyond,
lattice vibrations (atomic relaxations) as well as magnetic
fluctuations are taken into account to highlight the role of
phonons and magnon-phonon coupling on the 7. As seen
in Fig. 4 (dotted lines), the Curie temperature is slightly
reduced (~ 100 K) to reach 1050 K and 1250 K for fcc
and bcc systems, respectively. It may seem surprising or
even disappointing that improving the model by adding the
magnon-phonon coupling further deteriorates the prediction
of the Curie temperature. However, this tendency is in good
agreement with a recent first-principles thermodynamic ap-
proach developed for investigating the effect of phonons on
magnetism for bcc Fe [71]. In this elegant work, the au-
thors point out that the phonon softening due to magnetic
disordering leads to the stabilization of paramagnetic states
resulting in a decrease of T¢ by nearly 560 K. Although this
so-called feedback effect is not as strong in our case (here
cobalt), it tends to prove the robustness of our model, which
in a natural and simple way is able to reproduce the rather
complex physics discussed in Ref. [71]. Lastly, off-lattice MC
simulations are performed including lattice expansion as well
as magnetic moment fluctuations and atomic relaxations. As
seen in Fig. 4, no results are reported for the bee phase. During
the simulation, the lack of constraints on the simulation box
makes possible the phase transformation to the most stable
structure, the fcc one. Consequently, this result shows the
efficiency of our interatomic potential to characterize the ther-
modynamic properties of magnetic systems. Regarding the
fcc phase, the lattice contribution to T¢ is significant with an
increase of about 300 K. As a result, our TB model predicts
a Curie temperature around 1350 K, which is in good agree-
ment with the experimental value. Therefore considering all
degrees of freedom (magnetic, atomic, and box relaxations),
our TB model reproduces successfully the experimental Curie
temperature emphasizing its remarkable ability to describe
magnetic transition metals at finite temperature. As discussed
above, the impact of the lattice relaxation is far from being
negligible. To get an insight into this contribution, the linear
thermal expansion of the fcc lattice (Aa(T'))/a in FM and NM
states is analyzed and calculated as follows:

(Aa(T)) _ RKT))—tKﬂa)7 (10)

a a(Tref )

where Ti = 0 K. In case of NM and FM calculations, Fig. 5
illustrates the temperature dependence of the linear thermal
expansion coefficient over a wide temperature range. As ob-
served, the expansion is rather small with a lattice parameter
~3.57 A at 700 K in agreement with the experimental value
of 3.54 A [68,72]. Meanwhile, a linear variation is observed
for the FM states up to 7c where a contraction of the lat-
tice parameter (~1%) is found. This particular behavior is
therefore a direct fingerprint of magnetism. According to our
DFT and TB calculations at 0 K, the lattice parameters of
the FM phases are always larger than in the nonmagnetic
ones (see Table II). It is therefore tempting to think that the
contraction observed at the Curie point is directly correlated
to this difference in lattice parameters between both states.
However, it is important to specify that after T¢, the system
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FIG. 5. Average linear thermal expansion coefficient for fcc Co
as a function of temperature (FM and NM states). The blue vertical
line indicates the T¢.

tends towards a paramagnetic regime, which is regarded as a
collection of disordered local moments. In this particular case,
the random orientation of the spins results in the cancellation
of the total magnetic moment. Meanwhile, the NM state is
characterized by the vanishing of all local moments. This
explains the different values obtained in the two calculations
above T¢ in Fig. 5. To go deeper in this analysis, we consider
the distribution of the local magnetic moments in the param-
agnetic and ferromagnetic regimes. They are shown in Fig. 6
for temperatures close to the phase transition: 50 K above and

12000

9000 (=S

atom

6000 —

3000 —

[
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FIG. 6. Local magnetic moment distribution of 500 configura-
tions of the fcc system below 7¢ at 1300 K (top) and above T at
1400 K (bottom) calculated by TB-FMA. One magnetic configura-
tion of each temperature is represented with a color code scale from
-3 175:3 to3 MB.
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E

FIG. 7. Total energy as a function of the total magnetic moment
for the fcc phase calculated by TB-FMA. The lattice parameter is
kept constant and equal to its value at 0 K.

below the calculated Curie temperature. At 1300 K, a Gaus-
sian distribution centered around the value of the ground-state
magnetic moment (m = 1.87 up), is observed with a disper-
sion due to thermal fluctuations, the typical signature of a
ferromagnetic state. Above the Curie temperature, at 1400 K,
the magnetic moment distribution is wider and its amplitude
is lower, as expected in PM state. To understand this behavior,
it is useful to calculate the total energy [as defined in Eq. (8)]
as a function of m; [29] at 0 K. The results are presented in
Fig. 7. The minimum found at m = —1.87 up is in agreement
with the value obtained in our MC simulations. Moreover,
at T # 0, we expect fluctuations of m values around the
minimum proportional to 7 of Gaussian type as observed
in Fig. 7. As a result, the deeper the well is, the more we
expect a stable moment with the temperature. We notice that
the symmetrical distribution (centered around m = —1.87 up)
may appear, depending on the MC moves. At higher temper-
ature, the thermal excitations are large enough to avoid being
trapped in the minimum. As a result, the magnetic moment is
randomly distributed along the whole range of values leading
to a more broadened shape centered on O up as observed
in Fig. 6. Interestingly, our TB-FMA interatomic potential
coupled with specific MC trials on the magnetic moment
turns out to be particularly successful in achieving randomly
distributed collinear (up and down) magnetic moments. This
is a direct result of our simulations and not an assumption
established a priori, as in the disordered local moment (DLM)
approximation [73,74].

3. Tight-binding collinear approximation in comparison with the
effective interaction model

Our study shows that atomic relaxations play an important
role in the calculation of the 7. of cobalt. Moreover, an
abrupt variation of the lattice parameter is observed when
the paramagnetic state is reached. In spite of such a great
achievement, there is still an issue that seems to be problem-
atic. In case of Co, it is well known that the local on-site
electron-electron interaction is strong enough to create local
atomic moments fluctuating on a short-length scale [75]. Our
TB-Stoner formalism behaves as an Ising state with a continu-

ous distribution of moments contrary to the classical localized
Heisenberg model. The latter is notoriously insufficient and
is the source of much debate on localized versus itinerant
magnetism, which can, however, be improved with effective
interaction models (EIM) of a generalized-Heisenberg model.
We will demonstrate that the two descriptions are not in-
compatible. Actually, such discrepancy might be due to the
collinear approximation adopted in our formalism. Indeed,
the high-temperature magnetic properties of cobalt are, at
least in part, driven by fluctuating magnetic moments whose
arrangement is intrinsically noncollinear. In our TB collinear
approximation, only the amplitude of the magnetic moment
fluctuates along one axis meaning that its three components
are reduced to the longitudinal one. To justify such a choice,
we will consider an effective interaction model on lattice
based on a Heisenberg formalism with a noncollinear treat-
ment. It will then be possible to decouple each contribution
(longitudinal and transverse) of the magnetic moment and
compare their distribution to the one from our purely collinear
model.
The effective interaction model (EIM) is written as:

H= S Vit s Y dymmy, ()
J i

i

where V;; is a chemical pair interaction parameter between ith
and jth atoms. The second term corresponds to the Heisen-
berg model where J;; is the exchange coupling parameter
for the magnetic moment m; and its neighbors m;. All these
parameters are fitted to DFT calculations to investigate the
phase stability in bcc Fe-Co systems [32]. Consequently, the
bce phase of Co is considered in the following since there is
no doubt that the general conclusions will be the same for
fcc Co. More precisely, the second and the fifth neighbor
have to be considered for the chemical interactions V;; and
the magnetic interactions J;;, respectively [32]. In this model,
the magnetic moment is described by a vector in the spherical
coordinate system m = (m, 6, ¢) with m the amplitude, 6 and
¢, respectively, the polar and azimuthal angles. From DFT cal-
culations [66] and experiments [76], it has been shown that the
average moment of Co atoms stays almost constant. Hence,
the norm of the vector m is kept equal to 1.87 wp in coherence
with our TB model. MC simulations are performed using
the Metropolis algorithm with trials on the magnitude (Ising
type £m), 6 and ¢ angles. In these simulations, we perform
2.10% macrosteps to let the system being equilibrated then we
calculated the average of properties on 2.10° macrosteps. We
used a bec system of 2000 atoms (10x10x 10 cells), which
is sufficiently large for the convergence of the energy and the
magnetization.

In Fig. 8, we report the magnetic distribution along the x,
v, and z axes. They are derived from the effective interaction
model after projecting each component of the vector in the
spherical coordinate system along the three orthogonal axes.
Magnetic distribution at different temperatures are analyzed
and compared to the results from the TB-FMA model. At
low temperature, i.e., at 100 K, the magnetic moment distri-
bution according to our TB model is characterized by a narrow
Gaussian distribution centered around 1.87 up. Regarding the
noncollinear model, the x and y distributions are centered on
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FIG. 8. Local magnetic moment distribution of 500 configura-
tions of bcc system at 100 K (top), 500 K (middle), and 2000 K
(bottom) from TB-FMA model (left column) and from EIM model
(middle column) with the corresponding magnetic configuration
(right column). In this EIM model, the magnetic moment is decom-
posed in three directions: x in green, y in red, and z in black.

0 up whereas the z distribution is well centered on 1.87 up.
When increasing the temperature at 500 K, Gaussian distribu-
tions become a little bit wider due to thermal fluctuations. On
one, the magnetic distribution from TB-FMA is less impacted
because the magnetic moment can only have longitudinal
fluctuations. On the other, the distributions of the x and y
coordinates are wider because of longitudinal and transverse
spin fluctuations in the EIM model. Compared to the TB-
FMA, z distribution is similar except the maximal value of the
magnetic moment, which is limited to £1.87 . Above the
Curie temperature, the magnetic distribution is more dispersed
than in the ferromagnetic state. Interestingly, the distribution
resulting from the Heisenberg model is fully isotropic in good
agreement with the collinear TB-FMA model. Only the tail
of the Gaussian is slightly different since in the noncollinear
calculation it is quite sharp whereas it is much more spread
out in the TB-FMA model. This difference comes from the
approximation made in the Heisenberg model where the norm
of the vector m is kept equal to 1.87 up contrary to our
TB approach. Thus our collinear spin approximation coupled
with MC trials on both the atomic positions and the ampli-
tude of the magnetism is in a more general way capable of
capturing an important part of the magnetic excitation. The
very complete study presented on the calculation of the Curie
temperature thus fully validates the transferability of our inter-
atomic potential as well as its ability to treat magnetic systems
at finite temperature.

IV. A GENERALIZED MODEL FOR MAGNETIC
TRANSITION METALS

A further benefit of a TB model is that it can be fairly easily
generalized to other transition-metal systems since we know
qualitatively how the different parameters (transfer integrals,
atomic energy levels) vary with the nature of the metallic

-0.03

Jump in <Aa>/a at T,

FIG. 9. Discontinuity of the thermal expansion coefficient at the
Curie temperature as a function of the number of d electrons. Aa is
defined as apy — agpy, respectively, above and before the Curie point.

element. In the following, we therefore take advantage of the
physical transparency of the model to identify the influence
of the Stoner parameter and of the number of electrons on the
magnetic properties of transition metals in general.

First, a too small Stoner parameter results in a system in
a nonmagnetic state. Beyond a specific threshold for 7, the
Curie temperature increases linearly in agreement with the
Stoner model since I reflects the energy to separate the up
and down states of the density of states. This shows that T¢
can then be fitted to experimental measurements by simply
tuning the Stoner parameter. In a second step, we seek to
investigate some specific magnetic properties in the ground
state and at finite temperature as function of the number of
d valence electrons N;. Obviously, a specific adjustment of
all the parameters is mandatory to reproduce accurately the
physical properties of the different transition-metal elements.
However, since we are mainly interested in highlighting trends
with band filling, all the parameters of the TB model are fixed.
In Fig. 9, the discontinuity of the linear thermal expansion at
the Curie temperature for different d band fillings is presented.
By increasing the number of electrons, (Aa)/a increases until
Ng = 8.5 where it is almost zero. As discussed previously,
this is related to the local magnetic moment distribution in
Fig. 10 where a transition from a monomodal to a bimodal
distribution is observed with the progressive filling of the
d band. Below the Curie temperature, the local magnetic
moment distribution is always a Gaussian centered on the
magnetic moment whose value is determined by the number
of electrons, explaining its shift towards lower values. One
should keep in mind that the symmetrical distribution may
appear depending on the MC moves. Above T¢, two types of
profile are identified in the PM state, i.e., a bimodal evolving
towards a monomodal distribution with gradual filling of the d
states. At low Ny, the local magnetic moment distributions are
localized around plus or minus its mean absolute value with
a dispersion due to thermal fluctuations. The sum is therefore
zero corresponding to a PM state. When increasing Ny, the
bimodal type behavior tends to be reduced to a single and
broad magnetic moment distribution centered around zero.
Indeed, in Fig. 11, the depth of minimum at the positions
of the on-site energies decreases with gradual filling of the
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FIG. 10. Local magnetic moment distribution of 500 configura-
tions of the fcc system below and above 7Tt for different Ny.

d state. Therefore at high temperature, the thermal excita-
tions are large enough to avoid being trapped in one local
minimum. These results are in line with the widely accepted
itinerant magnetism description of ferromagnetic transition
metals [29,77,78]. In such case, a Heisenberg-type model is
perfectly adequate to describe materials in which the elec-
trons responsible for the magnetism are localized. Regarding
transition elements of the 3d series, this is typically the case
for Fe or Co roughly corresponding to a band filling with
Ny < 7.0 electrons. Besides, it is well known that the theory
of the Heisenberg ferromagnet fails entirely to describe mag-
netic properties of Ni [27-30]. Regarding our analysis, this is
in good agreement with the distribution of the longitudinal
spin fluctuations (LSF), which is no more localized when
increasing Nyq. However, our results show how our TB-FMA
combined with the Stoner formalism is adequate to describe
the itinerant electron magnetism inherent to transition metals.
Indeed, the local electronic structure description coupled to
magnetic excitations driven by MC trials enables us to unify
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FIG. 11. Energy with respect to the ground state as a function of
normalized magnetic moment for different Ny at 0 K.

a theory of itinerant electron magnetism at high temperatures.
Different works have already been successful in establishing
models to predict the magnetic properties at finite temperature
of transition metals [27-29].

Consequently, the variation of the lattice parameter at T¢
appears to be a response of the system to the reorganization
of local magnetic moments during the transition from FM to
PM state. At small values of Ny, the latter is very significant
since it is characterized by the emergence of a second popula-
tion of magnetic moments centered around a negative value
of m. This strong transformation is associated with a very
significant variation of the lattice parameter. For larger Ny, the
system goes smoothly from a rather sharp monomodal state
to a wider monomodal distribution when crossing from FM to
PM state. As a result, this transformation does not involve a
drastic variation of the lattice parameter. From an experimen-
tal point of view, a contraction of the lattice parameter at the
Curie temperature has only been reported in case of Fe [79].
Anomalies at the Curie point characterized by an inflection of
the slope have already been observed in pure elements [80]
or alloys such as Fe-Co [81] as well as FegsNiss [82]. The
latter exhibits a very smooth temperature dependence with
two different slopes below and above the Curie temperature,
well known as the Invar effect, which is a transition from a
state with a higher magnetic moment and a large volume to
a high-temperature state with a lower magnetic moment and
volume.

V. CONCLUSION

In this work we have presented a TB model based on
the fourth-moment approximation with an explicit magnetic
contribution via the Stoner theory, which provides an efficient
tool to perform structural relaxations of magnetic transition
metals. Remarkably, our approach coupled to MC simulations
is able to reproduce localized and itinerant magnetism at finite
temperature. The good agreement of our results for the Curie
temperature in the case of Co highlights the importance of
considering all physical contributions such as longitudinal
spin fluctuations, atomic relaxations, and lattice expansion.
A further advantage of our model is that it can be fairly
generalized to other magnetic transition metals since we know
semiquantitatively how the different parameters (transfer in-
tegrals, atomic energy levels, Stoner parameter) vary with the
nature of the metallic element.

We have developed an interatomic potential, which is effi-
cient to investigate structural properties at finite temperature
of large systems where complete relaxation is required. This
is crucial in the case of nanoparticles where the Curie tem-
perature decreases as the system size increases [83] because
the magnetic moment is larger at the surface than in the core.
Moreover, phase transformation at the nanoscale can also be
driven by magnetic contribution and our model is able to cap-
ture this effect. In this context, the study of bce-fee transitions
of Fe nanoparticles at different sizes is currently under inves-
tigation. An additional advantage of our model is that it can be
extended to steel (Fe-C) and to transition-metal alloys such as
Co-Pt or Fe-Co where magnetism is a driving force of phase
stability and chemical ordering. Lastly, a complete and precise
description of the magnetism at a microscopic level can be
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developed by including noncollinear magnetism [84] where
MC tests on the amplitude of magnetism and also angles
will be integrated. This work constitutes, therefore, a major
step in the development of interatomic potential with a high
degree of transferability to characterize phase transformation
of magnetic transition metals.
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