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Abstract
This study evaluates two local-scale atmospheric inversion approaches for the
monitoring of methane (CH4) emissions from industrial sites based on in situ
atmospheric CH4 mole fraction measurements from stationary or mobile sen-
sors. We participated in a two-week campaign of CH4 controlled-release exper-
iments at TotalEnergies Anomaly Detection Initiatives (TADI) in Lacq, France
in October 2019. We analyzed releases from various points within a 40 m× 50 m
area with constant rates of 0.16 to 30 g CH4 s−1 over 25 to 75 mins, using
fixed-point and mobile measurements, and testing different inversion configu-
rations with a Gaussian dispersion model. An inlet switching system, combining
a limited number (6–7) of high-precision gas analyzers with a higher number
(16) of sampling lines, ensured that a sufficient number of fixed measurement
points sampled the plume downwind of the sources and the background mole
fractions for any wind direction. The inversions using these fixed-point measure-
ments provide release rate estimates with approximately 23%–30% average errors
and estimates of the location of the releases with approximately 8–10 m average
errors. The inversions using the mobile measurements provide estimates with
approximately 20%–30% average errors for the release rates and approximately
30 m average errors for the release locations. The precision of the release rate
estimates from both inversion frameworks corresponds to the best estimation
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precision documented on site-scale CH4 inversions. However, the use of contin-
uous measurements from fixed stations provides much more robust estimates of
the source locations than that of the mobile measurements.
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1 INTRODUCTION

The precise and efficient monitoring (hereafter referring
to detection, localization and quantification) of fugitive
methane (CH4) industrial releases is essential to achieve
cost-effective and quantifiable CH4 anthropogenic emis-
sion mitigation. CH4 is a significant greenhouse gas (GHG)
linked to climate change impacts. Overall data show that
global methane emissions have risen by about 15 to 20 Tg
year−1 in the years from 2007 to 2014 (Nisbet et al., 2014)
and about 60% (range of 50%–70%) of global methane emis-
sions come from anthropogenic activities (IPCC, 2013;
Saunois et al., 2020). Methane has a diverse range of nat-
ural and anthropogenic sources. The oil and natural-gas
industry is one of the major sources of anthropogenic
methane emissions (Zavala-Araiza et al., 2015; Alvarez
et al., 2018; Saunois et al., 2020). CH4 emissions from
upstream and downstream oil and natural-gas sectors are
estimated to represent 63% of total fossil CH4 emissions for
the 2008–2017 decade (Saunois et al., 2020).

Atmospheric techniques for the accurate monitoring
of the CH4 emissions primarily rely on appropriate mea-
surements of the CH4 mole fraction in the atmosphere.
Fortunately, there have been marked developments in
recent decades regarding measurement techniques, sen-
sors, platforms and analytics. Sampling techniques used
to monitor CH4 emissions involve ground-based mobile
laboratories, stationary sensors, aircraft, unmanned aerial
vehicles (UAVs), and satellites (Fox et al., 2019). Each of
these techniques offers its own set of advantages and disad-
vantages. A suite of techniques is often required to achieve
accurate monitoring of CH4 emissions (Fox et al., 2019
and others). For example, whilst satellites may offer broad
spatial and temporal coverage, their detection limit using
currently available measurement technology is assumed to
be on the order of 100 g CH4 s−1 or more, while a major
part of industrial emissions consists of sources with much
smaller rates (Frankenberg, 2005; Jacob et al., 2016; Hu
et al., 2018; Varon et al., 2018; Fox et al., 2019; de Gouw
et al., 2020; Zhang et al., 2020). On the other hand, sta-
tionary in situ sensors located close to or within an area
with emitting sites offer a much lower detection limit.

However, the deployment of networks of sensors that are
sufficiently dense to ensure the continuous and exhaustive
monitoring of the CH4 emissions from a site is currently
limited by cost. More specifically, it is limited by the lack of
commercially available and reliable low-cost CH4 sensors
(e.g., Fox et al., 2019; Mønster et al., 2019 and references
therein). Mobile ground laboratories can alleviate part of
this issue as spatial coverage is provided by moving the
measurement platform rather than having multiple sen-
sors (e.g., Brantley et al., 2014; Albertson et al., 2016; Ars
et al., 2017; Zhang et al., 2020; Kumar et al., 2021). This
allows for a low detection limit at relatively low cost and
provides the ability to screen emissions from large or mul-
tiple facilities. The potential to localize sources can also
be strongly enhanced by the use of mobile measurements
following tracks converging towards such sources (Albert-
son et al., 2016; von Fischer et al., 2017). However, the
main limitation of mobile ground laboratories is that they
are generally labour-intensive and cannot be used contin-
uously for a given site. Their use is generally restricted to
specific measurement campaigns and therefore the sam-
pling technique offers less temporal coverage than sta-
tionary sensors. Furthermore, mobile ground laboratories
(typically within road vehicles) may have limited access to
areas downwind of the sources depending on the meteoro-
logical conditions and on the road configuration. Hybrid
approaches have been tested combining mobile monitor-
ing to identify the location of the plume from the source
and of the source itself with sequences of stationary mea-
surements within this plume (Foster-Wittig et al., 2015;
Edie et al., 2020; FprEN-17628, 2021).

In all cases, accurate quantification of methane emis-
sions from facility-scale sources remains a challenge and
large discrepancies may exist in estimates obtained from
different measurement and modelling approaches (e.g.,
Alvarez et al., 2018, Fox et al., 2019, Mønster et al., 2019).
Atmospheric transport inverse modelling strategies rely-
ing on atmospheric dispersion modelling and on its
simple or statistical inversion, are often used to tackle
both the localization and quantification of sources (Ars
et al., 2017; Kumar et al., 2021). Controlled-release exper-
iments with known location and emission rates have
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been conducted to support the development and evalua-
tion of different measurement and modelling approaches
and to improve the accuracy, reliability and applicabil-
ity of anthropogenic methane emission monitoring at the
facility-level scale (Loh et al., 2009; Brantley et al., 2014;
Luhar et al., 2014; Albertson et al., 2016; Ars et al., 2017;
Feitz et al., 2018; Ravikumar et al., 2019; Edie et al., 2020;
Shah et al., 2020; Kumar et al., 2021). Such experi-
ments reveal that the current level of uncertainties in the
emission estimates hardly reach values lower than 30%
(Brantley et al., 2014; Foster-Wittig et al., 2015; Albert-
son et al., 2016; FprEN-17628, 2021; Kumar et al., 2021).
Similar approaches have been used and similar tests have
been conducted to support the monitoring of site-scale
emissions of pollutants for a long time. Even if facing dif-
ferent types of atmospheric background and even if based
on different types of instruments with different levels of
precision and with different constraints for deployment
on sites, the most recent studies provide levels of relative
uncertainty in the estimates of pollutant emissions that are
similar to that for CH4 (Ben Salem, 2014).

TotalEnergies developed a programme of controlled-
release experiments at the TotalEnergies Anomaly Detec-
tion Initiatives (TADI) test site at Lacq in southwestern
France to test different atmospheric measurement and
modelling techniques to monitor GHG emissions in var-
ious release scenarios corresponding to the oil and gas
extraction industries. We participated in two campaigns
in a series of such controlled-release experiments at TADI
within the framework of the TRAcking Carbon Emissions
(TRACE) programme (https://trace.lsce.ipsl.fr/). Kumar
et al. (2021) described the mobile near-surface CH4 and
CO2 measurements (from a car) and inverse modelling
method applied during the one-week campaign in Octo-
ber 2018 (TADI-2018) and the corresponding results. The
campaign featured very brief (4–8 mins) CH4 and CO2 con-
trolled releases from point sources with relatively poor
wind conditions. The results indicated that we obtained
approximately 10%–40% average error in the release rates.
However, the study showed that the precise location of
these brief releases within the emission area of approx-
imately 40 m× 50 m was challenging, since we obtained
approximately 30–40 m errors in the estimate of the loca-
tions of the releases.

This new study relates to the measurements, mod-
elling and analysis conducted for the two-week campaign
in October 2019 (TADI-2019), during which CH4 was
emitted at approximately 0.15 to 150 g CH4 s−1 rates.
Some controlled releases of CO2 and mixtures of CH4
with CO2, C2H6 or C3H8 were also conducted during
this campaign but we focussed our analysis on the CH4
releases. These CH4 controlled releases were dedicated to
test the systems for the long-term monitoring of emissions

mainly for environmental purposes. They were thus signif-
icantly longer (between 25 and 75 mins) than those during
TADI-2018, which were primarily dedicated to the test
of safety surveillance systems. This and more favourable
meteorological conditions than during TADI-2018 (with
stronger winds) gave us the opportunity to install and test
the capabilities of a network of a limited (i.e., <20) num-
ber of stationary CH4 (in situ) continuous measurement
points. These measurements relied on 6–7 high-precision
gas analyzers each connected to one of 16 possible sam-
pling lines with inlets around the release areas. We con-
ducted these stationary measurements in parallel to a
similar mobile CH4 measurement technique as that used
during TADI-2018.

In addition to providing accurate estimates of the
release location and rates, the specific objectives of our
analysis of these data based on a Gaussian plume model (as
in Kumar et al., 2021) and presented here are to: (a) evalu-
ate whether the length of the releases, larger in TADI-2019
than during TADI-2018, and the more favourable wind
conditions allow for more precise estimates of the release
rates and location when using the same mobile measure-
ment and inversion method as in Kumar et al. (2021);
(b) develop and apply an adapted inversion method to
derive accurate estimates of the release rate and loca-
tion based on the data from the few fixed measurement
points that fell within the CH4 plumes during indi-
vidual releases; and (c) compare the precision of the
estimates from the two coupled observation-inversion
methods.

Regarding (a), the inversion technique used by Kumar
et al. (2021) to estimate the single-point release location
and rates from the near-surface mobile measurements,
relied on the fit between the modelled and observed areas
of individual methane mole fraction plume cross-sections
and between the measured winds and the directions
from the source location estimate to these individual
plume cross-sections. Longer releases allow for increas-
ing the number of plume cross-sections, which should
thus increase the precision of such a method. Kumar
et al. (2021) often had to rely on less than three plume
cross-sections per release during TADI-2018, and they
had expectations that the use of the releases longer than
30 min would allow them to catch more than 10 plume
cross-sections (Caulton et al., 2018) with the type of car
measurements that can be conducted at the TADI. Fur-
thermore, several diagnostics by Kumar et al. (2021) indi-
cated that their results were strongly impacted by the
model errors associated to the simulation of the plume
cross-sections with a Gaussian plume model and by our
limited skill to characterize it. Wind speeds larger than
those encountered during TADI-2018 were expected to
decrease this model error.

https://trace.lsce.ipsl.fr/
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Regarding (b) and (c), inversion techniques relying
on networks of fixed measurement points to localize and
quantify sources of pollutants have been developed for
a long time (Bocquet, 2005; Keats et al., 2007; Sharan
et al., 2009; Luhar et al., 2014; Feitz et al., 2018). They
usually rely on the comparison between modelled and
observed long-term averages of the concentrations at mea-
surement locations (Keats et al., 2007; Sharan et al., 2009;
Luhar et al., 2014; Feitz et al., 2018). However, they usually
exploit a number of measurement points (Keats et al., 2007;
Sharan et al., 2009; Kumar et al., 2015) and/or on dura-
tions (over several days for instance in Feitz et al., 2018
and Luhar et al., 2014) that exceed by far the number of
measurements point and/or the duration of the releases
we could have for TADI-2019. To our knowledge, there
have been only a very limited number of experiments and
studies of CH4 emission estimation using such fixed-point
measurements (Luhar et al., 2014; Feitz et al., 2018). Here,
we propose a specific inversion technique, which, similar
to Kumar et al. (2021), takes advantage of the variation
of the wind to increase the constraint on the inversion
of the locations and rates of single CH4 release points.
It thus compares modelled and observed averages of the
concentrations at the measurement locations binned over
relatively short periods of time or within sectors of wind
directions (with two versions of this inversion technique
being tested).

We present our fixed-point and mobile near-surface
measurements, analysis, inversions, and the comparison
of the results to actual release location and rates during the
TADI-2019 campaign. We focus on the analysis of single
CH4 point-source releases only because we consider that
our limited number of fixed measurement points is not
sufficient to allow for a robust separation of overlapping
plumes from multiple CH4 sources. Section 2 describes
the experimental setup for the fixed-points, near-surface
mobile and meteorological measurements. The inversion
methods for each type of measurement are presented in
Section 3. Section 4 presents the results and their com-
parison to actual release location and rates, followed by a
discussion in Section 5 and a conclusion in Section 6.

2 TADI-2019 CAMPAIGN

The TADI-2019 campaign was conducted during October
2–10, 2019 at TotalEnergies’s controlled-release test site
TADI located in Lacq, northwest of Pau in southwestern
France (latitude: 43.413◦N, longitude: 0.642◦W). The TADI
site is an area of approximately 200 m× 200 m containing a
variety of decommissioned oil and gas equipment such as
pipes, valves, tanks, columns, well heads and flares, which
are typically found at operational natural-gas extraction

facilities. Leak points were created at different locations
and heights in these pieces of equipment to mimic realis-
tic leak sources in industrial facilities. The terrain of the
TADI platform is predominantly flat and homogeneous
but there are some obstacles to atmospheric dispersion
such as tanks located on the platform as well as shipping
containers and tents located in the areas adjacent to the
platform. Further details about the features of the platform
and surrounding areas that may influence the wind and
gas dispersion can be found in Kumar et al. (2021). The
location of the controlled releases during the campaign
was restricted to a 40 m× 50 m ATmosphere EXplosive
(ATEX) zone. Figure 1 shows a schematic of the TADI plat-
form including the ATEX zone and the experimental setup
for the meteorological, fixed-point and mobile measure-
ments. The orientation of TADI platform is 26.4◦ east of
true north (Figure 1).

During the TADI-2019 campaign, a total of 40 con-
trolled releases covering a large range of magnitudes were
carried out: 32 releases with single CH4 sources of 0.16 to
150 g CH4 s−1 (on which the analyses here are focussed),
six releases including multiple and simultaneous CH4
sources (sometimes combined with CO2, C2H6, and C3H8
sources), and two releases with CO2 sources. Each release
lasted between 25 and 75 mins and gas was released at
heights ranging from 0.39 to 6 m above the ground. For
each CH4 controlled release from a single source, we mea-
sured the mole fraction of CH4 in the atmosphere at fixed
points and from a car as well as meteorology and atmo-
spheric turbulence. The details of these measurements
and the experimental setup are presented in following
subsections.

2.1 Atmospheric CH4 measurements

2.1.1 Fixed-point measurements

Our measurements correspond to near-field dispersion
over the TADI platform, where the atmospheric travel time
from an emitting point source to the measuring tripod
locations is generally much shorter than the duration of
the releases. We installed 16 tripods at fixed points, nearly
equally spaced on a circle around the ATEX zone (i.e., the
release area, Figure 1). The practical constraints limited
the number of measurement locations to 16 and the num-
ber of simultaneously active measurement points to 6–7 at
any one time since we relied on seven high-precision gas
analyzers based on spectroscopy technology. Therefore,
our strategy was to deploy such a circle of measurement
points to ensure several points of plume intersection,
regardless of wind direction, which was known to be
potentially highly variable in the area (Kumar et al., 2021).
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F I G U R E 1 A schematic diagram of the experimental setup on a satellite image of the TotalEnergies Anomaly Detection Initiatives
(TADI) platform (source: Google earth©). The red stars show examples of the possible location of the releases in the ATEX zone (rectangle
with solid red coloured line) during the TADI-2019 campaign (see the full set of exact locations in Figure S1 in the Supplementary
information material). The dark blue symbols labelled T-1 to T-16 indicate the location of the 16 tripods where the inlets for fixed-point
measurements were located, while the dark blue dashed lines are indicative of the 16 sampling lines that run separately from each tripod to
the tent where the seven gas analyzers were located (white structure). The yellow-coloured double dotted lines show the main driving paths
for the ground-based mobile measurement platform. The meteorological station installed by TotalEnergies was located at the basis of the
black symbols [Colour figure can be viewed at wileyonlinelibrary.com]

The switching of different sampling lines between active
and passive was performed manually depending on the
atmospheric dispersion (on the wind direction and its
variability). The aim was to optimize the number of active
air inlets that sampled within the gas plume downwind
of the source during each release, whilst still obtaining a
clear measurement of the ‘background’, that is, of the CH4
atmospheric mole fractions baseline field corresponding
to the large-scale mole fraction and to external emissions,
excluding the signature of the plume from the source.

Each of the 16 tripods was equipped with a dedi-
cated air intake at a height of 2.75–3.50 m and connected
to a 6.35 mm diameter Synflex® 1,300 sampling line that
ran on the ground to a tent about 10–100 m from the
ATEX zone where most of the equipment was installed.
The active sampling lines were continuously flushed at
a rate of approximately 6 L min−1 with a dedicated
in-line flushing pump (KNF N811 with PTFE diaphragm).
Downstream of the pump, the air was split three ways
to: (a) a high-precision gas analyzer; (b) a low-cost
semiconductor-based CH4 sensor currently under devel-
opment (whose results are not presented here; Rivera et al.
in prep.); and (c) a vent to maintain the line close to
atmospheric pressure. The high-precision gas analyzers

consisted of four Picarro G2401 cavity ring-down spec-
trometers(CRDS) analyzers that measure CH4, CO2, CO
and H2O, two Picarro G2201-i isotopic CRDS analyzers
for 13CH4, 12CH4, 13CO2,

12CO2 and H2O, and one ABB
Micro-portable Greenhouse Gas Analyzer (MGGA) mea-
suring CO2, CH4 and H2O. Each gas analyzer measured
the H2O mole fraction to correct the water vapour effect
and provide the mole fraction in dry air. Continuous mole
fraction measurements from each analyzer were made
at approximately 0.3–1 Hz. Before and at the end of the
campaign, two calibration sequences were performed for
all the analyzers. They showed a good linearity over a
wide range of CH4 and CO2 mole fractions (see Kumar
et al., 2021 for details).

For each active combination of sampling line and gas
analyzer, we determined a time delay which accounts for:
(a) the time taken for air to travel from the inlet to the gas
analyzer; (b) the response time of the gas analyzer; and (c)
the offset between the clock on the gas analyzer and UTC
time. To achieve this, we spiked the inlet with a short exha-
lation of breath at a specific UTC time provided by a Global
Positioning Satellite (GPS) module, and measured the time
taken to detect a CO2/H2O response on the corresponding
gas analyzer. This time delay was subtracted from the raw

http://wileyonlinelibrary.com
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F I G U R E 2 Time series of 1-min
averaged wind speed (Ur) (solid line on
left y-axis) and direction (𝜃) (dotted line
on right y-axis) from TOTALEnergies’
3D sonic anemometer and CH4 mole
fraction measured by the analyzers
connected to the active tripods at
different locations at the TADI site for
release-1 (emission rate: 10 g CH4 s−1)
on 2 October 2019 [Colour figure can
be viewed at wileyonlinelibrary.com]

time stamp in order to synchronize all observations from
the gas analyzers to UTC time provided by a GPS module,
to which other instrumentation such as the meteorological
station was also synchronized.

An overview of the time-series of the instantaneous
CH4 mole fraction measured at six active and adjacent
tripods in and around the CH4 plume during the first con-
trolled release (release-1) is shown in Figure 2. This figure
also shows variations in wind speed (Ur) and direction
(𝜃) which were quite steady during this release. It implic-
itly provides the evolution in time over approximately 1 hr
of discrete sampling of a section across the plume whose
shape and position vary depending on the wind speed
and direction and the associated turbulence. During this
release, the wind was mostly blowing from the west, and
the source was located in the southeast quadrant of the
ATEX zone. Tripods T-4 and T-15 mostly sampled back-
ground air while the centre of the plume section seemed to
oscillate between T-1 and T-3. T-2 and T-3 measured CH4
mole fractions reaching or exceeding 500 ppm (Figure 2).

2.1.2 Mobile measurements

Near-surface mobile concentration measurements were
made with a Picarro G2210-i analyzer which simultane-
ously measures δ13CH4 and C2H6-to-CH4 ratio as well
as CO2 and H2O vapour. The gas analyzer was installed
in a vehicle (hybrid electric Mitsubishi SUV) which was
driven along the roads adjacent to the TADI site to con-
duct the mobile measurements downwind of the releases,
targeting plume cross-sections (Figure 1; and see also

Kumar et al., 2021). In addition, GPS time and position
were measured from the vehicle. During all experiments,
the sampling inlet of the analyzer was approximately 2 m
above the ground. Time delays and clock synchroniza-
tion were empirically corrected by spiking the inlet in the
same manner as for the fixed-point measurements (see
Section 2.1.1). Figure 3 shows an example of an observed
CH4 mole fraction time-series and plume cross-sections
from the mobile measurements along the roads adjacent
to the TADI platform during release-1. As illustrated in
Figure 3, approximately 15 plume cross-sections were
obtained during this release.

2.1.3 Background mole fractions

The background mole fractions during individual CH4
releases were simply calculated as the minimum value
of the corresponding mole fraction time-series from
fixed-point and mobile measurements (Kumar et al., 2021).
These CH4 background values are subtracted from
the measurement time-series to derive the enhance-
ment corresponding to the plumes from the controlled
releases.

2.2 Meteorological and turbulence data

Reliable meteorological and turbulence data are essen-
tial to determine the near-surface wind flow and the
state of the atmospheric boundary layer during a gas
release, and thus to support the definition of suitable

http://wileyonlinelibrary.com
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F I G U R E 3 (a) Time series
and (b) 3D representation of CH4

mole fractions from mobile
measurements during release-1.
The red star shows the source
location in the ATmosphere
EXplosive (ATEX) zone during
this release [Colour figure can be
viewed at
wileyonlinelibrary.com]

parameters for the atmospheric dispersion model. A
meteorological station was installed by TotalEnergies on
the TADI platform (Figure 1). The TotalEnergies meteoro-
logical station included a Metek Sonic three-dimensional
(3D) anemometer installed at a reference height (zr) of
5 m above the ground surface. It collected 1-min aver-
aged meteorological and turbulence data of wind speed
(Ur), wind direction (𝜃), sonic temperature (T), the
Monin–Obukhov stability parameter (1/L) (where L is
the Obukhov length), surface friction velocity (u*), and
standard deviation of wind velocity fluctuations in all
three dimensions (𝜎u, 𝜎v, 𝜎w). The standard deviation
of wind direction (𝜎𝜃) over a release period is calculated
from 1-min wind direction averages. These meteorological
and turbulence data are averaged over windows ranging
from several minutes to full release periods (depending

on whether we process mobile measurements or fixed
measurements, and when processing the latter, depending
on their temporal binning) to parameterize the wind flow
and diffusion parameters in our plume dispersion model
described in Section 3.1. Hereafter, the notations Ur, 𝜃, T,
L, u*, 𝜎𝜃 , and (𝜎u, 𝜎v, 𝜎w) represent such averages over the
corresponding temporal windows rather than the 1-min
data.

2.3 Meteorological conditions
and selection of the controlled releases
for the inversions

During six of the 32 single CH4 source releases, wind speed
averages over the release periods were below 0.6 m s−1.

http://wileyonlinelibrary.com
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Such low wind speed conditions are not suitable for use
within a Gaussian plume model in our inverse mod-
elling framework (Thomson and Manning, 2001; Kumar
et al., 2021). We thus excluded these six releases from
our inversion tests. Therefore, we conducted inversions for
26 CH4 releases. However, seven out of these 26 releases
still correspond to wind speeds whose average over the
duration of a given release, Ur, is less than approximately
1.5 m s−1, called hereafter ‘low wind speed conditions’. For
all 26 releases, fixed-point CH4 measurements were used
but, for practical reasons, we could not conduct mobile
measurements for one of these releases (release-9).

Table 1 summarizes information on the release loca-
tion and rate and on the meteorological and turbulence
parameters for the 26 releases for which we conducted
inversions. It also presents the number of cross-sections
(denoted ‘peaks’ in this table) made during the mobile
measurements for each release. All releases and mea-
surements were conducted during day time. The sign
and magnitude of the Monin–Obukhov stability param-
eter (1/L) computed over each release period indicate
that the atmospheric stability varied from near-neutral
to convective stability conditions (L< 0) during these
releases.

T A B L E 1 Summary of the data for the selected CH4 releases and corresponding mean velocity and turbulence statistics over the
release periods measured with TotalEnergies 3D sonic anemometer at a height of 5 m above the ground

Release
no.

Duration
(Ds; h:mm)

No. of
peaks

qs

(g s−1)
zs

(m)
Ur

(m s−1) 𝜽 (◦)
𝝈𝜽

(◦)
L
(m)

u*

(m s−1)
𝝈u

(m s−1)
𝝈v

(m s−1)
𝝈w

(m s−1)

1 0:58 11 10 0.96 2.76 267 9 −58 0.22 0.52 0.51 0.39

2 1:00 19 30 0.75 3.76 289 10 −140 0.35 0.74 0.73 0.56

3 0:32 11 1 0.39 3.31 308 18 −137 0.38 0.76 0.80 0.55

4 0:33 9 0.5 1.90 3.56 304 9 −121 0.39 0.73 0.73 0.54

5 0:33 8 5 2.50 3.91 277 12 −47 0.31 0.66 0.65 0.54

6 0:35 5 3 3.0 0.65 108 41 −10 0.12 0.19 0.20 0.22

7 0:38 6 1 0.61 1.46 319 43 −34 0.21 0.43 0.38 0.33

8 0:38 5 0.5 0.59 2.17 277 34 −25 0.24 0.46 0.46 0.37

9 0:30 N/A 0.16 0.61 2.39 286 21 −27 0.23 0.55 0.49 0.37

10 0:46 12 1 6.0 0.93 144 31 −40 0.09 0.15 0.15 0.15

11 1:01 20 2 2.22 3.50 294 9 −194 0.37 0.69 0.69 0.53

12 0:44 15 2 1.90 1.83 138 11 −26 0.14 0.26 0.26 0.22

13 0:50 14 4 2.44 1.45 145 14 −16 0.12 0.21 0.19 0.19

14 0:44 11 1 1.90 1.31 257 42 −15 0.19 0.36 0.35 0.32

15 0:33 18 1 1.90 1.11 233 49 −28 0.18 0.36 0.35 0.29

16 0:50 9 2 1.90 1.84 141 9 −28 0.15 0.26 0.23 0.24

17 0:35 16 5 1.84 3.12 291 13 −69 0.30 0.62 0.61 0.47

18 0:48 6 0.4 0.39 2.73 301 20 −45 0.31 0.57 0.62 0.44

19 0:37 17 0.5 1.26 3.12 297 17 −53 0.30 0.63 0.61 0.46

20 0:44 11 0.6 0.59 1.07 208 27 −40 0.14 0.24 0.27 0.21

21 0:44 12 1 2.22 1.51 238 19 −77 0.16 0.31 0.32 0.25

22 0:24 10 2 6.0 1.70 238 9 −50 0.18 0.36 0.34 0.29

23 0:34 13 4 0.39 3.58 283 17 −206 0.33 0.67 0.69 0.51

24 0:45 16 2 1.29 2.49 282 21 −167 0.27 0.60 0.56 0.43

25 0:59 13 2 0.59 1.28 139 20 −12 0.13 0.22 0.21 0.22

26 0:36 6 0.5 0.61 0.73 116 36 −35 0.15 0.26 0.22 0.25

Note: Here, qs and zs are the actual release rate and height of source, respectively. Grey shades correspond to the releases for which Ur <1.5 m s−1.
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3 ATMOSPHERIC INVERSION
OF THE RELEASE LOCATION AND
RATES

3.1 Dispersion model and adjoint
source–receptor relationship

3.1.1 The Gaussian plume dispersion model

The atmospheric transport of CH4 has regularly been mod-
elled as that of a passive tracer at the local scales to
mesoscales, and in particular, for short-range dispersion
simulations, using Gaussian plume models (Foster-Wittig
et al., 2015; Albertson et al., 2016; Riddick et al., 2017;
Bergamaschi et al., 2018; Feitz et al., 2018; Pison et al., 2018;
Zhou et al., 2019). Here, both the inversions using the
mobile measurements and those using the fixed mea-
surement points rely on the Gaussian plume model pre-
sented in Kumar et al. (2021). Several parameters have
been updated in this study compared to the configuration
presented in Kumar et al. (2021), mainly the enhance-
ment of the spread of the plume for low wind speed
conditions and the use of a power-law wind profile to
define the effective mean wind speed Ueff at the release
height.

Depending on the inversion framework, the Gaus-
sian plume model is driven by an effective mean wind
direction given by the meteorological or CH4 mole frac-
tions data, and by the effective wind speed Ueff given
by the meteorological data in all cases. Considering a
Cartesian coordinate system where the X and Y axis
are defined by the effective mean wind direction, this
model formulates the gas concentration C(X , Y , Z) at
the coordinates (X , Y , Z) (for positive X and Z), corre-
sponding to the plume from a point source whose effec-
tive release is located at (0, 0, zeff) with release rate q
as

C(X ,Y ,Z) =
q

2𝜋𝜎Y𝜎ZUeff
exp

(
−Y 2

2𝜎2
Y

)

×

[
exp

(
−(Z − zeff)2

2𝜎2
Z

)
+ exp

(
−(Z + zeff)2

2𝜎2
Z

)]
(1)

where zeff is the effective release height above the
ground surface (see Section 3.2), Ueff is the effective
mean wind speed at zeff (which is the effective height
of the plume centerline) and the standard deviations
𝜎Y and 𝜎Z of the concentration distribution in lateral
(Y ) and vertical (Z) directions, respectively (known as

dispersion coefficients) are parameterized as (Gryning
et al., 1987)

𝜎Y = 𝜎vt
(

1 +
√

t
2TY

)−1

(2a)

𝜎Z = 𝜎wt
(

1 +
√

t
2TZ

)−1

(2b)

where 𝜎v and 𝜎w are the standard deviation of the
turbulent velocity fluctuations in lateral and vertical
directions, respectively, TY and TZ are the Lagrangian
time scales, and t (=X/Ueff) is the travel time from
origin to X . We take TY = 200 s (Draxler, 1976) for
near-surface release and TZ = 300 s for unstable con-
ditions (L< 0) (Gryning et al., 1987). Under low wind
conditions (Ueff < 1.5 m s−1) the wind direction becomes
more variable. In order to account for this, when
Ueff < 1.5 m s−1, the lateral spread of the plume is
enhanced by following

𝜎Y =

√√√√√(
𝜎vt

(
1 +

√
t

2TY

)−1)2

+ ( 𝜎vt)2 (2c)

instead of Equation (2a) to parameterize it. A similar
parameterization of 𝜎Y has been used in some advanced
Gaussian plume dispersion models like ADMS5.2 where
the first and second terms in Equation (2c) respec-
tively correspond to the atmospheric turbulence and to
large-scale variations in the direction of the wind (Car-
ruthers et al., 2020). The meteorological and turbulent
dispersion parameters in the dispersion model are driven
by the measurements from the TotalEnergies’ 3D sonic
anemometer data at 5 m height above the ground sur-
face.

In order to characterize the variation of mean wind
speed in the vertical direction, the mean wind speed at
a vertical height (Z) in the atmospheric surface layer is
calculated using the power-law profile

U(Z) = Ur

(
Z
zr

)𝛼

(3)

where 𝛼 is the power-law exponent calculated as (Sharan
and Kumar, 2009)

𝛼 = u∗

𝜅

𝜙m (zr∕L)
Ur

(4)

in which 𝜅 (= 0.4) is the von Karman constant and 𝜙m is
the stability function of momentum characterized by Z
and L. We have considered 𝜙m (Z/L) = 1 in the neutral
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surface layer (L→∞). In convective atmospheric stability
conditions (L< 0),𝜙m (Z/L)= (1 – 16 Z/L)−1/4 (Dyer, 1974).
The effective wind speed at the effective height of the
plume zeff is taken as Ueff = (U[zeff]2 + 2𝜎2

v)1/2 (Qian and
Venkatram, 2011). For low wind speeds, we also set a min-
imum value of 0.3 m s−1 for 𝜎v that is used to parameterize
the Gaussian plume model.

3.1.2 Adjoint of the Gaussian plume
dispersion model

The inversions require the computation of modelled
CH4 mole fractions corresponding to observations for
each possible release rate and location in a discretized
space. For such a computation, the application of the
Gaussian model to each possible rate and location can
be much less efficient than the use of its adjoint model
(Marchuk, 1995; Pudykiewicz, 1998; Sharan et al., 2009).
The adjoint of the Gaussian model can be used to com-
pute the sensitivity of the mole fraction at a measurement
location to the emissions at all potential source loca-
tions. Recombining these sensitivities provides the full
relationship between the potential release rate and loca-
tion and the corresponding simulation of the mole
fractions with the Gaussian model. This adjoint can be
described as the Gaussian model itself with inverted wind
direction originating from the mole fraction measure-
ment location (Pudykiewicz, 1998; Sharan et al., 2009).
It is used by the inversions based on fixed-point
measurements.

With the assumptions corresponding to the Gaussian
model and that are detailed in Section 3.1.1, the sensitiv-
ity of the average mole fraction simulated by this model at
a measurement location (0, 0, zmeas) to the emission e(X ,
Y , Z) at the coordinates (X , Y , Z) (for positive X and Z)
in a Cartesian coordinate system where the X and Y axis
are defined by the direction opposed to that of the effective
mean wind, is given by

dC (0, 0, zmeas)
de(X ,Y ,Z)

= 1
2𝜋𝜎Y𝜎ZUeff

exp

(
−Y 2

2𝜎2
Y

)

×

[
exp

(
−(zmeas − Z)2

2𝜎2
Z

)
+ exp

(
−(zmeas + Z)2

2𝜎2
Z

)]
(5)

where 𝜎Y , 𝜎Z and other parameters are defined by
Equations (1)–(4) as in Section 3.1.1, with Ueff being com-
puted as (U(Z)2 + 2𝜎2

v)1/2 for consistency (the effective
wind in the Gaussian model corresponding to the wind at
source height).

3.2 Inversions using the fixed-points
measurements

We use two different least-squares frameworks to for-
mulate the inverse problem for the localization and the
quantification of the unknown continuous point sources
using the fixed-point measurements. Unlike the inversions
based on the mobile data which use some strong assump-
tions regarding the actual source height (see Section 3.3),
both of these frameworks attempt at deriving the effec-
tive release height (ze) potentially higher than the source’s
actual height zs due to the plume rise (Briggs, 1975). When
using both types of data, in principle, there is a potential
to distinguish between the injection height and the emis-
sion rate owing to variations in vertical diffusion that are
accounted for in the Gaussian model depending on the
time interval or wind sector. However, the relatively low
number of observed parameters when using the mobile
data (see Section 2.3) limits the ability to solve for the
release rate and its horizontal and vertical location. The
amount of information assimilated when using the fixed
measurements is expected to support the derivation of all
these parameters together. Furthermore, when using the
fixed-point measurements, the effective wind speed driv-
ing the plume is taken as a function of the injection height,
adding more constraint on the derivation of this parame-
ter. The inversions aim to minimize the root sum squared
(RSS) misfits between the averages of the observed and
modelled mole fraction enhancements (above the back-
ground) in the plumes, with bins corresponding at each
active station to either relatively short time windows of
equal lengths or to sectors of wind directions. The mod-
elled mole fractions are derived from simulations with the
adjoint of the Gaussian model driven by effective wind
directions derived from meteorological measurements. We
did not manage to refine such a direction based on the
mole fraction gradients across the active stations, due to
the lack of measurement points across the plume. Depend-
ing on the version of the inversion (depending on mole
fraction binning and averaging), the model effective winds
are computed consistently as averages of meteorological
data within the bins corresponding to (a) consecutive time
windows of equal lengths, or to (b) sectors of wind direc-
tion.

For each controlled release, the inversion finds the
optimal horizontal and vertical location and rate estimate
by looping over all the potential source positions in a
3D fine discretization of the volume over the ATEX area.
For each position, it computes the theoretical optimal
rate minimizing the RSS misfits using the adjoint of the
Gaussian model. The estimates of the release location and
rate are taken as those providing the smallest RSS misfits
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among the ensemble of optimal results gathered during the
loop over all potential source locations.

3.2.1 Definition of the observation vector

A usual strategy in inverse modelling when using contin-
uous measurements from fixed points would be to aver-
age them over the whole duration of the releases (Sha-
ran et al., 2009). However, given the limited number of
active stations within or at the edge of the plume dur-
ing each release (up to seven), the use of such averages
would hamper the ability to derive both the release loca-
tion and rate. Therefore, we attempt to exploit the change
in the wind direction during a release by analyzing vari-
ations in the CH4 mole fractions at a given active station.
We expect to triangulate the source location based on
the change of mole fraction depending on the change of
wind direction (Luhar et al., 2014; Kumar et al., 2021).
A trade-off is made for the averaging scale between the
need to average the data over sets that are large enough
for a proper comparison to the Gaussian model and
the attempt at catching the impact of variations of the
mean wind.

The basis for the averaging of both the CH4 mole
fraction data and the corresponding meteorological
data is the binning of the data at each active station
over successive time windows of equal duration or over
wind direction sectors. Schematic diagrams illustrat-
ing the binning of the data over time windows and
over wind direction sectors are given in Figure S2a, b
in the Supplementary information. Averaged values of
meteorological and turbulence parameters are used to
parameterize the adjoint of the Gaussian model, which
simulates the sensitivity of the average mole fractions to
emissions for the corresponding time window or wind
sector.

Let 𝛍 = (𝜇1, 𝜇2,… , 𝜇m)T ∈ Rm (superscript T defines
the transpose of a vector/matrix) be the general nota-
tion for the observation vectors containing m averages
of the binned mole fractions at the fixed active stations.
𝛍tw denotes observation vectors based on binning over
Nt (= Ds/Δt, where Ds denotes the total duration of the
corresponding release) time windows of equal length Δt
at each active station, and 𝛍ws the ones based on bin-
ning within the wind sectors at each active station. Δt
is selected to be short enough to capture the most sig-
nificant variations in the meteorological conditions and
yet long enough to reach a quasi-steady-state distribu-
tion of the mole fraction average despite turbulence (one
of the main assumptions used for the comparison to the
Gaussian plume model). Based on previous atmospheric
dispersion studies using Gaussian plume models (Hanna

et al., 1982; Hoinaski et al., 2016), Δt = approximately
15 min is selected when Ur ≥ 1.5 m s−1. This duration
appears to be sufficient to limit the impact of turbulent
patterns in the average mole fractions, and since tripods
are within approximately 50–120 m of the potential release
locations, it is reasonable to assume that the airflow is uni-
form and steady-state over such a duration in the absence
of significative obstacles in TADI area. The direction of
wind becomes more variable in low wind speed conditions.
Therefore, a shorter time interval Δt = 7 min is considered
for the corresponding releases.

The binning of the data over wind direction sectors is
based on the binning of 1-min averaged wind directions
during a release. The total number of bins is first defined
as the rounding integer of the division of the release dura-
tion (in min) by approximately 7 min. The aim, again, is
to ensure that corresponding mole fraction averages can
be representative of a timescale that is long enough for
a comparison to the Gaussian model, and to ensure that
the corresponding computation of turbulent parameters
for this model make sense. For the same reason, only bins
of wind directions gathering at least four 1-min averages
are selected for the inversion. Depending on the distribu-
tion of the wind directions and on the release duration, the
number of selected bins of wind directions ranges between
two and seven.

3.2.2 Discretization of the space of solution
for the location of the source and transport
operator

Preliminary tests (not shown) led us to assume that, even
accounting for the release exit velocity and temperature,
the estimates of the injection height of releases do not
exceed 8 m. Therefore, in order to define a set of potential
locations for the releases on which the inversion frame-
work loops, the volume of air above the ATEX zone
(whose surface measures 40 m× 50 m) up to 8 m height
is discretized with a 3D grid with 1 m horizontal resolu-
tion and 0.5 m vertical resolution. The grid cells of this
40 m× 50 m× 8 m volume are denoted xi = (xi, yi, zi),
i = 1, 2, … , N.

With such notations, the link between a given estimate
of the release location x and rate q and the corresponding
simulation of the observation vector 𝛍mod is given by the
Gaussian model and by the extraction of the average mole
fractions from this model, denoted altogether h: (x, q) →
𝛍mod = h(x, q). For a fixed release location, this operator
becomes hx, a linear function of q (Sharan et al., 2009): hx:
q → 𝛍mod

x = qhx.
In order to find the optimal release rate and location

minimizing the misfit to 𝛍o, the measured 𝛍, a solution
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could be to compute 𝛍mod for a predefined ensemble of
possible locations and rates with the Gaussian model. The
non-linearity of h with respect to x would require us to
loop over all of the predefined ensemble of possible loca-
tions. In order to save computations (see Section 3.1.2)
and to avoid defining and discretizing the range of possi-
ble rates, for a given x, we compute the adjoint hx

T of hx
and use it to solve the mathematical equation providing
the optimal release rate (see below). hx

T = (hx1, hx2,… ,
hxm) gives the sensitivity of the average mole fractions
(𝜇mod

1 , 𝜇mod
2 , … , 𝜇mod

m ) to the value of the release rate q. All
values hxi for a given i but all x are derived from a single
application of the adjoint of the Gaussian model, comput-
ing the sensitivity of 𝜇mod

i to the emissions at all potential
source locations. Therefore, the inverse computations rely
on m applications of the adjoint of the Gaussian model.

3.2.3 The minimization process

Overall, the inversion looks for the minimization of the
following cost function:

Jfix(x, q) = ‖‖‖𝛍o − 𝛍mod‖‖‖2
= ‖‖𝛍o − h(x, q)‖‖2 (6)

using the notation ||v||2 = vTv for a vector v. The opti-
mization approach is similar to that described in Sharan
et al. (2012). For each grid cell x, Jfix

x (q) = Jfix(x, q) =‖𝛍o − qhx)‖2 is minimized with respect to q in order to
derive the optimal release rate qopt

x . The minimum of the
quadratic function Jfix

x is found by solving for 𝜕Jfix
x (q)
𝜕q

= 0
that is,

qopt
x =

hT
x𝛍o‖‖‖hx
‖‖‖2 (7)

The minimum value of Jfix (Equation 6) at x is given by

Jfix
(

x, qopt
x

)
= Jfix

x

(
qopt

x

)
= ‖𝛍o‖2 [1 − S(x)2] (8a)

where

S(x) = Sx =
hT

x𝛍o‖hx‖ ‖𝛍o‖ (8b)

The minimum of Jfix(x, q) is thus found by deriving the
maximum of Sx with respect to x.

In summary, the inversion loops over all x in the
ensemble of possible source locations to derive corre-
sponding values of qopt

x and Sx, and it identifies the location
xe providing the largest value for Sx. qe = qopt

xe
and xe = (xe,

ye, ze) are taken as the estimates of the release rate and
location, respectively.

3.3 Inversion method for mobile
measurements

We use the same atmospheric inversion modelling frame-
work as Kumar et al. (2021) for the localization and quan-
tification of the releases, using the near-surface mobile
mole fraction measurements. The rationale and the details
for this approach are given in this previous publication
and we just summarize them. Due to the very different
information content of the data from the mobile measure-
ments and from the fixed stations, we need to use some
very different assumptions and slightly different targets
when processing these two datasets. Here the inversion
estimates the location and rate of a release using the inte-
grals of the CH4 mole fractions above the background in
the Np plume cross-sections from the mobile transects dur-
ing a release. These integrals characterize the amplitudes
of the plume cross-sections. The observed amplitudes are
compared individually to the amplitudes simulated with
the Gaussian model.

We conduct one simulation with this model per plume
cross-section and per potential source location. For a
potential source location and a simulation corresponding
to the ith plume cross-section, we define the effective wind
direction 𝜃mi as the direction from the potential source
location to the ‘centre’ of the plume transect. In practice,
the ‘centre’ of the plume transect is defined manually by
analyzing the measurements. The effective wind speed at
the actual source height (zs) in the Gaussian model is sys-
tematically defined using the power-law profile detailed in
Section 3.1.1, and the averages of the values of the meteoro-
logical and turbulence parameters over the release periods.
In order to extract the amplitude of a plume transect from
the Gaussian model, the mole fractions from this model
are sampled at the measurement locations before being
integrated along this plume cross-section in a way con-
sistent with the computation of the observed amplitude.
The method requires the availability of at least two plume
cross-sections for a given release, exploiting the variations
of the amplitudes as a function of the location of the
plume cross-sections, and the variations of these locations
to identify the source locations as well as the release rates.

Unlike inversions using the measurements from the
fixed stations, inversions using mobile measurements do
not attempt to derive the injection height of the source.
This height is constrained using the known height of the
release zs. However, as for the use of the measurements
from the fixed stations, the ATEX area is discretized with
a 1 m horizontal resolution to define the ensemble of pos-
sible horizontal locations for the source xhoriz = (x, y),
over which the algorithm loops to identify the optimal
one. Using the adjoint of the transport model would have
been more difficult in this inverse modelling framework
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since the observation vector is composed of a complex
combination of instant mole fractions along the mobile
transects and since the effective wind direction driving
the Gaussian plume follows the direction between the
potential source location and the centre of the plume
cross-sections.

The inversion minimizes the relative misfits between
the modelled and observed integrals of individual plume
cross-sections, and between the measured average wind
direction and the directions from the source location esti-
mate to these individual plume cross-sections, that is, of
the following cost function Jmob of the source location and
rate (Kumar et al., 2021):

Jmob = Jp + Jw (9)

where

Jp =
Np∑
i=1

[
Aoi − Ami

Aoi

]2

(10)

is the quadratic sum of relative errors between the mod-
elled (Ami) and observed (Aoi), amplitudes of the Np plume
cross-sections and

Jw =
Np∑
i=1

[
𝜃 − 𝜃mi

𝜎𝜃

]2

(11)

is the quadratic sum of the weighted departure from 𝜃 of
the implicit effective wind directions 𝜃mi corresponding to
the Np plume cross-sections.

Kumar et al. (2021) minimized Jmob (Equation 9) by
iterating on all the predefined values of the potential loca-
tions and rates for the releases: a set of potential release
rates was defined for this purpose. In order to reduce the
corresponding level of computations and to avoid relying
on a predefined set of potential release rates, here the mini-
mization of Jmob is performed in two steps, in a way similar
to the approach when using fixed-point measurements.
In the first step, the optimal rates for each potential loca-
tion (xhoriz) are estimated using Aoi and the amplitudes Rmi
simulated with the Gaussian model forced with a unity
emission rate (1 kg s−1) as (see Appendix A):

qopt
xhoriz =

∑Np

i=1

(
Rmi
Aoi

)
∑Np

i=1

(
Rmi
Aoi

)2 (12)

In the second step, the algorithm loops over all possible
source locations xhoriz and compares the values of Jmob

corresponding to qopt
xhoriz to identify the global minimum of

Jmob. The location xhoriz
e =

(
xe, ye

)
or xe = (xe, ye, zs) and

the rate qe = qopt
xhoriz

e
corresponding to the global minimum

of Jmob are taken as estimates of the release location and
rate, respectively.

Kumar et al. (2021) showed that Equations (9)–(11)
implicitly assume a relative random model error when
simulating the amplitude of individual plume transects
of 100%. Kumar et al. (2021) also showed, in their appli-
cation of the method to the measurement made during
TADI-2018, that Jmob was dominated by Jw. As a result, the
inversion system was not able to exploit the variations of
the amplitudes from one plume cross-section to the other
to identify the release location, and tended to locate this
release at the upwind boundary of the ATEX zone to mini-
mize Jw. They conducted tests giving more weight to Jp in
Equation (9), that is, assuming that the model error could
be very small, by artifically rescaling Jw. These tests high-
lighted a lack of constraint to derive the source location
using Jp, whose cause was thought to be the lack of plume
cross-sections. We attempt to apply the method with its
default configuration here, assuming that the much larger
number of plume cross-sections available for the releases
during the TADI-2019 campaign should help to overcome
this problem.

4 RESULTS

4.1 Evaluation of the model
and inversion configurations using
the known release rate and location

This section is dedicated to the evaluation of the skill of the
model to simulate the values given by the measurements
for the different observation vectors defined in Section 3
(𝛍o

tw and𝛍o
ws for the inversion using fixed-point measure-

ments, and the Aoi when using the mobile measurements).
The model is run with the known release rates qs and
locations xs = (xs, ys, zs) and compared to these values.
The aim is to provide some first insights into the reliabil-
ity of the inverse modelling configurations regarding both
the choice of the transport model and the definition of
the observation vectors and cost functions to minimize.
However, the reference inversion configurations are not
adjusted based on information from such diagnostics, with
data (the location and rate of the releases) which should be
unknown in the inversion process.

4.1.1 Model error when considering
the fixed-point measurements

Figure 4 illustrates the results for release-1 with the
fixed-point measurements when using both binning meth-
ods. The mean wind directions (𝜃) corresponding to a
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F I G U R E 4 Observed and modelled (with known release location and rate) average CH4 mole fractions for (a) 𝛍tw (b) 𝛍ws for release-1.
The average wind direction 𝜃 corresponding to each binning period or sector is given on the top right of the plots [Colour figure can be
viewed at wileyonlinelibrary.com]

given temporal bin or to a given bin of wind directions, is
highly consistent with the direction from the release loca-
tion to the tripod with maximum average mole fractions
for this bin. In a general way, this consistency allows the
model to produce average mole fraction variations across
the active tripods that are well correlated with those from
the measurements. However, the maximum values of the
CH4 mole fraction in each individual bin are generally
overestimated by the model (Figure 4). Since the model
also tends to underestimate mole fraction at the active
tripods that appear to be located at the edge of the plumes,
it generally produces average plumes that are narrower
than observed. Overall, for all releases, the modelled mole
fractions in each individual bin (whatever the binning
method) are in good agreement with observations.

The least-squares inversion for fixed-points measure-
ments minimizes the RSS misfits between the averages of
the observed (𝛍o

tw or 𝛍o
ws) and modelled enhancements

of CH4 mole fractions at all the active tripods in all the bins
of a given release. Therefore, the performance of the model
for a release is quantified using the root mean square error
(RMSE) between these observed and modelled enhance-
ments when the model uses the known release rate and
location. Since the emission rates vary depending on the
releases in a wide range between 0.16 and 30 g CH4 s−1

(Table 1), we compute a normalized RMSE (i.e., NRMSE)
which is defined by normalizing the RMSE by the standard
deviation of the observed averaged CH4 mole fractions
across all the active tripods in all the bins of a release. This
normalization supports the comparisons of the scores of
RMSE obtained from the different releases.

The NRMSEs for both binning methods are shown for
all releases in Figure 5. The NRMSE values for release-1
(Figure 4) are 107% and 80%, respectively, for 𝛍tw and 𝛍ws.
For 𝛍tw, the NRMSE ranges from 32% (release-24) to 268%
(release-22), with an average value of 102% over all 26
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F I G U R E 5 Model error when using
the actual release location and rate for
each release: Normalized root mean
square error (NRMSE), expressed in
percentage, between the modelled and the
observed observation vectors 𝛍tw and 𝛍ws

when using fixed-point measurements and
the model errors (average of the absolute
relative differences between the
amplitudes of the observed and the
simulated plume cross-sections) when
using mobile measurements. The solid
coloured lines indicate the average of the
NRMSEs and model errors over all
releases [Colour figure can be viewed at
wileyonlinelibrary.com]

releases. Similarly, for 𝛍ws, the NRMSE ranges from 40%
(release-23) to a maximum of 273% (release-8) (Figure 5),
with an average value of 102% over all 26 releases. Even
though the number of time windows and wind sectors for
the respective binning methods and for a given release
are generally very different, the NRMSEs corresponding
to the two binning methods are very similar for almost all
releases. Overall, the results show that the modelling capa-
bility is suitable for the inverse modelling framework using
fixed-point measurements with both binning methods.
We can expect similar performances from both inversion
configurations.

4.1.2 Model error when considering mobile
measurements

The model error for the inversions using mobile measure-
ments is defined consistently with the formulation of Jp
(Equation 10) (Kumar et al., 2021) as the average over
all plume cross-sections during a release of the absolute
value of the relative differences between the amplitudes
of the observed and the simulated plume cross-sections
when forcing the Gaussian model with a known release
rate and location. This model error varies from approxi-
mately 27% (release-3) to approximately 100% (release-26)
with an average value of approximately 54% for all the 25
releases. These values are generally much smaller than the
100% model error implicitly assumed by the formulation
of Jp (see Section 4.2.3 and Kumar et al., 2021). The

default setup of the inversion configuration when using
the mobile measurements can thus be seen as conserva-
tive: it allows departure from the observed plume ampli-
tudes to exceed those obtained when using the actual
release rates and locations. However, despite the better
meteorological conditions during TADI-2019 than dur-
ing TADI-2018, these model errors are similar to those
encountered in Kumar et al. (2021). They continue to
exceed the values artificially used by Kumar et al. (2021) to
balance the weight of Jp and Jw in Jmob.

When using the actual source location, the deviation
of the 𝜃mi from 𝜃 varies from 0.02◦ to approximately
108◦ with an average deviation of approximately 18◦ over
all the plume cross-sections of all the releases. This is
smaller than the average value of 𝜎𝜃 (∼20◦) which varies
between approximately 9◦ and approximately 48◦. Again,
the configuration of Jw can thus be seen as being conser-
vative, allowing for departures from the measured wind
that are larger than those obtained when using the actual
release location. This partially balances the conservatism
of the assumption on the model error in the formulation
of Jp.

4.2 Estimates of release rates
and locations

The estimates of the rates and locations of the releases
from all of the inversions (using fixed points or mobile
measurements) are evaluated against the actual values. For
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T A B L E 2 Summary of inversion results using the fixed-points and the mobile measurements, and comparisons between the actual and
the inverted source height and rates

Inversions using fixed-point measurements
Actual source
parameters

With data binned over
the time windows (𝝁o

tw)
With data binned over
the wind sectors (𝝁o

ws)
Inversions using
mobile measurements

No zs (m)
qs

(g s−1) ze (m)
qe

(g s−1)
Rel.
error

El

(m)
ze

(m)
qe

(g s−1)
Rel.
error

El

(m)
qe

(g s−1)
Rel.
error

El

(m)

1 0.96 10 0.5 6.36 36.35% 3.83 0.5 5.90 41.04% 3.80 10.74 7.35% 23.52

2 0.75 30 1.5 17.48 41.74% 12.71 0.5 16.25 45.83% 5.79 23.86 20.48% 23.52

3 0.39 1 0.5 1.23 23.23% 10.03 0.5 1.16 16.52% 4.76 0.95 4.92% 15.88

4 1.9 0.5 0.5 0.73 46.22% 2.70 0.5 0.57 13.88% 3.23 0.49 1.69% 24.00

5 2.5 5 0.5 6.57 31.47% 13.72 0.5 7.31 46.20% 6.69 7.92 58.47% 30.65

6 3 3 3.0 1.64 45.31% 20.00 2.0 1.50 49.93% 21.57 1.99 33.75% 43.44

7 0.61 1 1.5 0.88 11.99% 13.63 2.0 0.96 3.47% 18.16 1.07 7.27% 26.22

8 0.59 0.5 0.5 0.34 33.10% 11.81 0.5 0.43 14.52% 6.96 0.29 42.00% 17.54

9 1.9 0.16 0.5 0.20 21.69% 12.70 0.5 0.18 12.81% 5.08

10 6 1 8.0 1.04 4.33% 1.40 6.5 0.89 11.47% 11.11 0.99 1.28% 12.40

11 2.22 2 1.0 2.92 45.98% 3.48 0.5 2.80 39.98% 3.65 2.37 18.62% 25.40

12 1.9 2 1.0 3.10 55.16% 9.61 1.0 2.52 26.14% 6.83 1.57 21.52% 31.61

13 2.44 4 2.5 4.76 18.97% 8.39 2.0 5.47 36.70% 10.58 3.53 11.68% 23.31

14 1.9 1 2.5 1.36 36.38% 8.22 1.0 1.31 31.06% 9.10 1.04 4.37% 48.99

15 1.9 1 0.5 0.46 53.91% 3.42 0.5 0.90 10.44% 15.56 0.96 4.18% 48.99

16 1.9 2 0.5 2.18 9.16% 6.36 0.5 2.23 11.65% 4.85 1.73 13.69% 27.39

17 1.83 5 1.0 6.80 36.01% 19.08 0.5 4.11 17.75% 5.95 4.62 7.55% 22.51

18 0.39 0.4 3.5 0.36 8.85% 13.94 0.5 0.34 16.08% 4.77 0.48 19.78% 32.88

19 1.26 0.5 0.5 0.82 64.54% 20.99 0.5 0.48 4.76% 0.50 0.45 10.73% 27.56

20 0.59 0.6 0.5 0.60 0.07% 4.53 0.5 0.57 5.18% 3.62 0.73 21.06% 43.79

21 2.22 1 3.0 1.40 39.53% 0.16 2.0 0.96 3.98% 4.59 1.97 96.65% 37.88

22 6 2 8.0 1.48 26.08% 15.89 7.5 1.65 17.35% 14.29 2.03 1.70% 53.09

23 0.39 4 0.5 5.32 33.06% 10.91 1.0 6.36 59.06% 10.56 4.40 9.98% 11.85

24 1.29 2 1.5 3.09 54.28% 9.91 0.5 2.04 1.75% 2.88 1.39 30.52% 22.32

25 0.59 2 0.5 2.62 30.80% 4.41 0.5 2.08 4.27% 2.72 1.79 10.59% 28.32

26 0.61 0.5 8.0 0.44 12.06% 15.35 0.5 0.17 65.78% 14.43 0.29 41.01% 17.71

MEAN 31.55% 9.89 23.37% 7.77 20.03% 28.83

each release, the horizontal location error (El) is defined as
the Euclidean distance between the inverted

(
xhoriz

e
)

and
actual [(xhoriz

s = (xs, ys)] horizontal source locations, and
the relative error in the emission rate is computed as the
ratio between the absolute value of the estimation error
and the actual emission rate (Table 2). We also analyze the
difference between the estimates of the injection heights
when using fixed-point measurements with the actual
release heights. This difference, if explained as expected by
the exit velocity and temperature of the releases, should

be positive. Figure 6 shows the ratios between the esti-
mated (qe) and actual (qs) emission rates for all of the
inversions.

4.2.1 Results when using fixed-point
measurements and 𝛍tw

Results from the inversions using fixed-point measure-
ments and the observation vector 𝛍tw are illustrated by
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F I G U R E 6 Ratios of the estimated to the actual emission rates (qe/qs) for the three sets of inversions using the fixed-points (with two
versions of the observation vector) and mobile measurements. The solid line is the one-to-one line whereas the dotted and dashed lines
correspond to a factor of 1.5 and 2 respectively, relative to the actual (qs) emission rates [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 7 Contours of the function Sx (normalized by its maximum value) as a function of xhoriz in the ATmosphere EXplosive
(ATEX) area when fixing z to ze; results from the inversions with (a) 𝛍tw and (b) 𝛍ws for release-1. Black and white stars respectively show the
actual and estimated locations of this release [Colour figure can be viewed at wileyonlinelibrary.com]

those from release-1 (Figures 7a and 8). The release rate
estimate for this release-1 is 6.36 g CH4 s−1 and should be
compared to the actual rate of 10 g CH4 s−1: the error is
approximately 36%. Figure 7a gives the shape of the func-
tion Sx when fixing z to ze, the optimal release height
estimate given by the inversion. A clear maximum is found

near the actual source location. Here, the variability of
the wind direction allows the system to provide a pre-
cise estimate of source location with an error of approx-
imately 3.8 m. The contours of Sx for all releases are
illustrated in Figures S3.1 and S3.2 in the Supplementary
information.
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F I G U R E 8 Observed and modelled CH4 average mole fractions at all of the active tripods in each bin when using 𝛍tw for release-1.
Modelled average mole fractions are computed using xe and qe [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8 compares the observed and modelled (using
xe and qe) average CH4 mole fractions at each active tri-
pod location across the plume for the different bins of
𝛍tw. It illustrates a good agreement between the observed
and modelled average mole fractions, with a NRMSE of
approximately 24%. This NRMSE is much smaller than the
approximately 107% NRMSE obtained using the known
release rate and location in the model. When considering
all the 26 releases, the NRMSE ranges from approximately
4% (release-22) to 103% (release-3), with an average value
of approximately 43% over all releases. The smaller NRM-
SEs obtained when using xe and qe than when using xs and
qs is the result of the overfit of the data by the inverse mod-
elling framework. Part of the model error is projected into
the estimate of the release rate and locations rather than
being interpreted as noise in the comparison between the
modelled and observed average mole fractions.

Using 𝛍tw, approximately 96% of all the release rate
estimates are within a factor of two of the actual emissions
(Figure 6, Table 2). The relative error of these estimates
ranges from 0.07% (for release-20) to 64.5% (for release-19),
with an average value of 31.5%. The location error ranges
from 0.16 to 21.0 m, with an average value of 9.9 m, which
appears to be a moderate error given the size of the ATEX
zone. For almost all releases, xe is located within the ATEX
zone (i.e., not at the border of this zone). This indicates that
the results would have probably been the same if allowing
the solution to be found outside the ATEX zone. Ignor-
ing the seven releases corresponding to low wind speed
conditions, the average relative error in the emission rates
is 33.5% and the average location error is 10.5 m. There-
fore, wind speed does not appear to be the main driver of
the precision of the estimation. Notably, in approximately
50% of cases, injection height estimates are smaller than zs
(Table 2).

Several tests using 𝛍tw in which we fix the injection
height to the actual source height, and/or the horizontal

location of the release to the actual one, are conducted
to assess the robustness of the inversions and the ability
to quantify the release rate from a known source location
(Sharan et al., 2009; Kumar et al., 2021). When fixing the
horizontal and vertical location of the source in the model
to its actual location xs, the emissions are estimated within
a factor of two of the actual emissions for approximately
77% of releases and the average relative error in the release
rate estimates is approximately 32%. This is comparable
to an average error of approximately 31% obtained when
optimizing both the source location and rate. When fix-
ing ze to zs, but optimizing the horizontal location together
with the release rate, the average location error is 10.4 m
and is thus comparable to that when optimizing ze along
with the horizontal source location and rate. However,
the average relative error in the estimates of the emission
rates increases to approximately 37%. Furthermore, fixing
the horizontal location to xhoriz

s and optimizing both the
release rate and height yields the best results in terms of
release rate estimate with an error of approximately 27%.
These results could be interpreted as a need to account
for actual injection height but since ze is often smaller
than zs, it should more likely be interpreted as a need
to compensate for a bias in the vertical dispersion of the
Gaussian model (Kumar et al., 2021). Overall, this ensem-
ble of results confirms that better release rates are obtained
when fixing the horizontal location of the source to its
actual position.

4.2.2 Results when using fixed-point
measurements and 𝛍ws

The results when using 𝛍ws appear to be better than those
obtained using 𝛍tw (Figure 6, Table 2). Figure 7b shows
the shape of Sx when fixing the source height to ze for
release-1 when using 𝛍ws (Figures S4.1 and S4.1 in the
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F I G U R E 9 Observed and modelled (using xe and qe) average CH4 mole fractions in each bin corresponding to sectors of wind
direction at each tripod location for release-1 [Colour figure can be viewed at wileyonlinelibrary.com]

Supplementary information show Sx when z is fixed to ze
for all the releases). Seven wind sectors are used for 𝛍ws in
release-1 during which the averaged wind direction varied
across a wide range of values from 249◦ to 284◦ (Figure 9).
The observed and modelled (using xe and qe) CH4 mole
fractions are in good agreement at all tripods and in all the
bins of the wind direction sectors (Figure 9). The source
is estimated within less than 4 m downwind to the actual
source location (Figure 7b). The emission rate is estimated
as 5.90 g CH4 s−1 with a relative error of approximately 41%
from the actual rate (Table 2). The NRMSE between the
observed and modelled CH4 mole fractions with xe and qe
for this release-1 is approximately 46%, which is smaller
than the approximately 80% NRMSE obtained using xs and
qs in the model.

When considering all 26 releases, the relative error
in the estimated emissions varies from 1.75% (release-24)
to 65.8% (release-26) (Table 2), with an average value of
23.4%. In almost all of the releases (approximately 96%),
emissions are estimated within a factor of two of the actual
emissions. In only one release (release-26) corresponding
to low wind speed conditions, the release rate is under-
estimated within a factor of three of the actual emission
(Figure 6, Table 2). The location errors vary from 0.50 m
(release-19) to 21.6 m (release-6) with an average value of
7.8 m, which appears to be relatively precise. Ignoring the
seven releases corresponding to low wind speed condi-
tions, the average relative error in the release rate estimates
is 22.6% and the average location error is 6.5 m. The aver-
age value of NRMSEs between the observed and modelled
CH4 mole fractions corresponding to 𝛍ws using xe and qe
for all releases is approximately 46%, which is smaller than

the approximately 102% average NRMSE obtained with xs
and qs. This indicates an overfit of the observations that is
similar to that when using 𝛍tw.

Tests when fixing the horizontal location of the release
and/or its height to their actual values lead to similar
conclusions, albeit with significant differences between
when using 𝛍ws and when using 𝛍tw. Fixing the horizon-
tal location to xhoriz

s leads to a similar average error in the
release rate estimate (∼30%) when the release height is
fixed to zs or an increase of it when the release height
is optimized from approximately 23% to approximately
29%. Fixing the release height to zs increases the average
error from approximately 23% to approximately 30% or
approximately 29% when optimizing or fixing the horizon-
tal location of the source. Again, since ze is often smaller
than zs in these cases, this should be seen as a compen-
sation for a bias in the vertical diffusion of the Gaussian
model rather than the impact of the need to account for the
vertical rise of the plume exiting the source at zs. Notably,
when fixing the release height to zs and optimizing the hor-
izontal location of the source, the average location error
(7.6 m) is comparable to that obtained when optimizing
this height together with the horizontal location and rate
of the release.

4.2.3 Results using the mobile
measurements

The results of the inversions using mobile measurements
are presented in Table 2. As an example, Figure 10 shows
the shapes of Jmob and of its components, Jp and Jw, as
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F I G U R E 10 Contour plots of (a) Jp, (b) Jw, and (c) Jmob when fixing q to qe for release-1. Black and white stars show respectively the
actual and inverted source locations [Colour figure can be viewed at wileyonlinelibrary.com]

a function of the estimate of the source horizontal loca-
tion xhoriz

e when fixing q to qe from the inversion for
release-1 (Figures S5.1 to S5.5 of the Supplementary infor-
mation show this for all releases). This figure illustrates
the dominant role of the minimization of Jw for the local-
ization of the releases as in Kumar et al. (2021). This
applies to all releases, and as in Kumar et al. (2021), this
leads to the location of the source at the border of the
ATEX area and to relatively large location errors rang-
ing from approximately 12 m to approximately 53 m with
an average value of approximately 29 m. However, in all
the 25 CH4 releases for which mobile measurements are
available, the emission rates are estimated within a fac-
tor of two of the actual emissions. In fact, in approxi-
mately 88% of the releases, emissions are estimated within
a factor of approximately 1.6. The relative error in the
emission rate estimates in these tests ranges from approxi-
mately 1% (release-10) to 97% (release-21) with an average
relative error of approximately 20%. Ignoring release-21,
which corresponds to the largest error in the release rate
estimate, this average relative error decreases to approxi-
mately 17%.

The average misfits between the amplitudes of the
observed and the simulated plume cross-sections using
xe and qe in the model vary from approximately 22%
(release-26) to approximately 68% (release-15) with an
average value of approximately 43% for all 25 releases.
This is smaller than but close to the approximately 54%
model error when using xs and qs, despite the relatively
large relative location error. The sensitivity to the loca-
tion of the source within the ATEX zone of the fit to
the observed amplitude of the cross-sections appears to
be relatively weak. The average of this absolute relative
difference between the amplitudes of the observed and
simulated cross-sections using xe, and qe over all the
plume cross-sections from all releases is approximately

45%. Furthermore, this average value of the misfits is com-
parable to the approximately 43% average misfit over all
of the plume cross-sections from all the seven releases
obtained in Kumar et al. (2021).

When fixing the location of the release to xs, the rela-
tive error in the release rate estimates ranges from approx-
imately 3% (release-23) to approximately 61% (release 15,
under low wind speed conditions), with an average value
of approximately 30%. Ignoring the seven releases under
low wind speed conditions which correspond to the seven
largest relative errors, this average value decreases to
approximately 24%. Unlike what is observed when using
the fixed-point measurements, but as observed in Kumar
et al. (2021), and even though the results obtained here
are more precise than those from this study, the release
rate estimates based on the mobile measurements are
thus improved when fixing the release location to its
actual position rather than optimizing it. This should be
explained by model biases.

As in Kumar et al. (2021), we analyzed the results when
giving more weight to Jp in Jmob, following the same proce-
dure, that is, by recomputing J𝜆mob = Jp + 𝜆Jw with 𝜆 vary-
ing from approximately 10−5 to 1.0 even though it should
reflect the level of model error. Figure 11 synthetizes the
corresponding results. The location error appears to be
weakly sensitive to 𝜆. Even when J𝜆mob is dominated by
Jp, and thus when optimizing the release location mainly
based on the variations of the amplitude of the plume
cross-sections as a function of their location, this loca-
tion is not precise. Crossing the source of information
brought by these variations (reflected by Jp) and that of
the measured wind direction (reflected by Jw) does not sig-
nificantly improve the results. The optimal values for the
error in the release rate and location estimates are obtained
for 𝜆 = 0.008 but this corresponds to an unrealistically low
model error of approximately 9%.
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F I G U R E 11 Average errors in the emission rates (solid line
on left y-axis) and locations (dotted line on right y-axis) for all the
releases with respect to λ in the cost function J𝜆mob = Jp + 𝜆Jw

[Colour figure can be viewed at wileyonlinelibrary.com]

5 DISCUSSION

We evaluated two different types of atmospheric inversion
frameworks for the monitoring of CH4 emissions from
industrial sites and facilities. They are based on stationary
and near-surface mobile CH4 mole fraction measure-
ments and on a local-scale atmospheric dispersion model.
In all the cases, using fixed or mobile data measured at
various distances, and any of the specific inversion con-
figurations proposed here, the inversions provide precise
rate estimates for most of the releases. The average of
the relative errors in the estimates of the wide range of
CH4 release rates tested during the TADI-2019 campaign
typically ranges (depending on the inversion configu-
ration) between approximately 20% and approximately
30%. Using the mobile measurements provides a slightly
better estimate of the emission rates than using the sta-
tionary measurements with both observation binning
approaches, with average relative errors of approximately
20% and approximately 23%–30% respectively. However,
the source location is more precise when using the contin-
uous measurements from fixed stations than when using
mobile measurements, with an average location error of
approximately 8–10 m and approximately 29 m respec-
tively. The inversion tests constraining the source location
in the model to the actual position of the release and
using the mobile or fixed-point measurements also yield
approximately 30% average relative error in the emission
rate estimates.

The results indicate that the use of both approaches
to bin the fixed-point measurements is suitable for both
localization and quantification of the sources. The relative
errors in the release rates estimated from the inversions
using the fixed-point measurements do not show a

correlation with the durations of the releases during the
campaign (Figure S6a). This precision on the release rate
estimates is smaller than 30% for the shortest releases, of 20
to 35 mins duration, when using both binning approaches.
However, the location errors from the inversions with
both binning approaches of the fixed-point measurements
tend to decrease with longer releases (Tables 1 and 2,
Figure S6b). With longer releases, strengthening the mea-
surement constraint and the occurrence of more samples
of the sectors of wind direction support a better triangu-
lation of the source location. Release durations of more
than 40 mins appear to be required for an estimate of the
source location with errors smaller than approximately
10–15 m. Of note, this correlation between the precision
of the release location estimates and the duration of the
releases is slightly weaker when binning the observations
according to the wind direction sectors than according
to sequences of temporal windows. By source reconstruc-
tions, the inversions using the averaged mole fractions
and atmospheric meteorological and turbulence data over
bins corresponding to successive time windows of equal
duration, assimilate more data during longer releases. The
binning according to wind sectors can tend to select the
data from long releases over the dominant sectors of wind
directions so that the increase of the number of assimi-
lated data for longer releases will be smaller than with the
other binning. Another drawback of binning according to
the wind sectors is that averaging data for a given wind sec-
tor over a long release may mix data corresponding to very
different turbulence conditions. In principle, the approach
should apply only to releases with approximately steady
turbulence conditions. Accordingly, the inversion method
using𝛍ws is suitable for estimating releases over a duration
on the order of 1 hr or less, but may not be so well suited
for longer inversions.

The relative errors in the estimates of the release
rates from the inversions using mobile measurements
are generally smaller when acquiring more plume
cross-sections in the measurements, and the number
of plume cross-sections generally increases with longer
releases (Figure S6c). For 18 out of the 19 releases dur-
ing which we have at least nine plume cross-sections, the
average relative error in the emission rate is approximately
11%, which is much smaller than the approximately 20%
average relative error over all releases. This approximately
11% average error is also much smaller than the approxi-
mately 31% average error obtained in Kumar et al. (2021)
for seven brief CH4 releases with a small number (two
to four) of plume cross-sections. The results confirm the
natural assumption that having a larger number of plume
cross-sections that can be extracted from the mobile
measurements during longer releases yields more robust
estimates of the emission rates. This partly explains why
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we obtain an approximately 30% average error in the emis-
sion rate estimates when fixing the source locations to
their actual locations whereas Kumar et al. (2021) had an
approximately 44% average relative error for seven brief
CH4 releases.

However, in our inversions, the location error does not
decrease when encountering more plume cross-sections
(Figure S6d), opposed to what was assumed in the discus-
sions of Kumar et al. (2021). The level of errors and the
problems encountered for the localization of the releases
(such as the location of releases at the border of the
ATEX zone) in the inversions using the mobile measure-
ments here are similar to those documented by Kumar
et al. (2021) for much shorter releases. As in Kumar
et al. (2021), we conducted inversions using the mobile
measurements where we ignore the Jw term in the cost
function, taking Jmob = Jp. This led to the same issues
as those encountered with such tests in this study, even
though it was assumed that a cost function Jp based on a
large number of plume cross-sections should, in principle,
support a robust triangulation of the source location. We
acknowledge a lack of understanding of this problem, but
these results support the assumption that the dispersion
errors with the Gaussian model are the main explana-
tion for the lack of ability to localize the releases with
our inverse modelling framework when using the mobile
measurements. The quantification and analysis of the
model errors proposed in Section 4.1.2 implicitly assumes
that these errors are completely random from one plume
cross-section to the other, but the model likely bears biases.

An analysis of the relative errors in estimated emis-
sion rates with respect to the NRMSEs (for fixed points)
or model errors (for mobile measurements) shows that
the errors in estimated rates have a negligible correla-
tion with the NRMSEs or model errors (Figure S7a, c).
However, better estimations of the source locations are
obtained with smaller values of NRMSEs or model errors
in the inversions using fixed points or mobile measure-
ments (Figure S7b, d). For fixed-point measurements, the
location errors for inversions using 𝛍ws have higher cor-
relation with the NRMSEs compared to the inversions
using 𝛍tw (Figure S7b). These results highlight a clear link
between the problem of the localization of the source and
the model errors.

The impact of the model error is further highlighted
when fixing all or part of the release location. First, the
release rate estimates based on the mobile data are more
precise when optimizing rather than fixing the source’s
horizontal location (see Section 4.2.3). Second, the tests
of sensitivity to the optimization of the vertical injec-
tion height when using the fixed-point measurements
yield estimates of the injection heights smaller than the
actual release heights (see Sections 4.2.1 and 4.2.2). Even

though such an optimization does not significantly impact
the horizontal localization of the sources, this demon-
strates that the model can have significant biases. Actually,
such a conclusion applies to inversions with the optimiza-
tion of ze along with the source’s horizontal locations
and rates when using mobile measurements, even though
we assumed that adding an unknown to the inversion
problem when using the mobile data would be problem-
atic. In such experiments, the average location error is
28.8 m for all 25 releases, which is comparable to the
28.8 m average error obtained when ze is fixed to zs. The
relative errors in the emission rates for most of the releases
are also approximately similar to those obtained when fix-
ing ze to zs. Again, in these tests, many of the estimates of ze
fall below the actual release heights zs. The problem is not
related to the vertical resolution nor to the vertical extent
of the grid used to derive ze: the shapes of the cost func-
tions as functions of ze (once fixing the release horizontal
locations and rates) are smooth and with a single local
minimum, and the optimizations systematically localize
the sources below 8 m height. Furthermore, we have con-
ducted tests with finer (0.25 m) and coarser (1 m) vertical
resolutions for this grid and the results were very similar
(not shown). Notably, the wind shear near the ground sur-
face is large, so that accounting for the variations of the
wind speed on the vertical (simulated with the power-law
profile — Equation 3) plays an important role in the inver-
sions. For example, the average errors of the release rate
and location estimates increase respectively from 23.4%
and 7.8 m to approximately 48% and approximately 9 m
in inversions using fixed-point measurements and 𝛍ws,
deriving ze and fixing Ueff in Equations (2a–c) and (5) to
[U(Z = 5 m)2 + 2𝜎2

v]1/2 with the averaged observed wind
speed U(Z = 5 m) at 5 m in each bin. Considering the rela-
tive simplicity of Equation 3, the lack of the wind vertical
profile in the measurements, and more generally of dif-
ferent meteorological measurement points to characterize
the 3D meteorological field, this highlights an important
source of modelling uncertainty.

While demonstrating the presence of model biases,
these tests do not provide a direct explanation for the high
location errors when using mobile data. The comparison
of the Gaussian plume model, which aims at modelling
average dispersion fields, to near instantaneous plume
cross-sections in the inversions using mobile data (while
this model is properly compared to mole fraction averages
in the inversions using data from fixed stations) proba-
bly provides a good theoretical link between the model
errors and this problem. A last hypothesis could be that
model errors become more problematic when applying a
Gaussian model to mobile data measured much further
from the source than the measurements from the fixed
stations.
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The inversions using a limited number of fixed mea-
surement stations provide good estimates of both the loca-
tion and rate of the releases, but we expect that denser
networks of fixed sensors could support a more precise and
robust monitoring of emissions. As discussed in Kumar
et al. (2021), and supported by our new discussions on
the impact of the modelling errors, another perspective for
the improvement of flux estimates should be the use of a
complex dispersion modelling system that could account
for spatial and temporal wind variations and for vertical
profiles of mole fraction, especially when deriving source
locations with the mobile measurements. Finally, one of
the main objectives of this study was to compare the obser-
vation and inversion frameworks relying on fixed-point
and mobile measurements, but the concept of combining
both types of measurements in a single inversion frame-
work opens many perspectives. Various approaches could
be considered such as using one dataset to refine the model
configuration and the other for constraining the release
location and rate estimates, or one dataset to localize the
release and the other to derive the release rate, consid-
ering the strength and weaknesses of each dataset and
of their respective treatment, if not, ultimately, constrain-
ing simultaneously the location and rate of releases based
on both datasets. However, instead of highlighting some
complementarities between the two types of datasets, our
inverse modelling frameworks promote the choice of one
type of measurements based on a trade-off between logis-
tical constraints and the expectation for the estimates in
terms of precision.

6 CONCLUSIONS

This study presents local-scale inversion frameworks for
the localization and quantification of methane releases
using either mobile or fixed-point CH4 mole fraction
measurements. The inversions are tested during the
TADI-2019 campaign with 26 controlled releases of 0.16 to
30 g CH4 s−1, lasting between 25 and 75 mins. The mea-
surements were simultaneously taken near the surface
around the release area at fixed points and from a mobile
vehicle. All inversion approaches rely on a Gaussian plume
dispersion model: in ‘retro-transport’ (adjoint) mode when
using the fixed-point measurements and in forward mode
when using the mobile measurements.

When using the fixed-points measurements, the esti-
mate of the emission rates and locations corresponds to
the least-squares minimization of the misfits between the
modelled and measured average mole fractions. In order
to maximize the number of fixed points of high-precision
measurements across the plumes from the CH4 releases,
a system of switching the available limited number (6–7)

of high-precision gas analyzers between a higher number
(16) of different sampling lines depending on the wind
direction was put in place during the campaign. How-
ever, the number of points within the plume was generally
limited to mostly 3–5 despite such a configuration. To over-
come this limitation and to take advantage of the wind
variability, the inversion considers, at each location, the
binning of the measurements over successive windows
of equal time lengths or over sectors of wind direction.
The results obtained when binning the data over sectors
of wind direction appear to be more precise than those
obtained when binning over time windows of equal dura-
tions, with an average relative error of approximately 23%
in the emission rate estimates and an average error of 7.8 m
for the location estimates, for the 26 controlled releases
analyzed in this study.

The inversion framework by Kumar et al. (2021), ini-
tially tested with the very brief controlled releases of
the TADI-2018 campaign, is used to process the mobile
measurements during the much longer releases analyzed
here. The corresponding inversions provide more pre-
cise estimates of the release rates than those presented
in Kumar et al. (2021) since the method can rely on the
analysis of a larger number of plume cross-sections. These
estimates are also slightly more precise than the release
rate estimates provided by the inversions based on the sta-
tionary measurements, with an average relative error of
approximately 20%. However, the errors in the estimates
of the release locations are much larger when using the
mobile measurements with an average location error of
approximately 29 m.

The increase of the length of the releases associated
with longer measurement time-series tend to support an
improvement of the results but such an improvement is
limited by the impact of model biases, especially for the
localization of the releases. While this impact is high-
lighted by the analysis, the model biases themselves are
difficult to characterize. The precision of the release rate
estimates slightly degrades when fixing the location of the
sources to its actual position in the inversion frameworks.
The inversion frameworks lack the ability to derive or to
limit the impact of the effective injection height of the
releases, especially since the vertical diffusion of the model
is difficult to adjust. However, overall, all approaches pro-
vide good estimates of the release rates, and, when using
the fixed-point data, of the release locations.
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where Rmi is the amplitude simulated with the Gaussian
model using a unity emission rate (Ami and Rmi depending
on xhoriz). Accordingly, the cost function Jmob (Equation 9)
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can be rewritten as:

Jmob (xhoriz, q
)
=

Np∑
i=1

[
Aoi − q Rmi

Aoi

]2

+ Jw (A2)

where Jw (Equation 11) is independent of the release rate q.
When fixing xhoriz, the minimum of the quadratic function

Jmob
xhoriz(q) = Jmob (xhoriz, q

)
(Equation A2) can be found by

solving for
𝜕Jmob

xhoriz

𝜕q
= 0, that is,

qopt
xhoriz =

∑Np

i=1

(
Rmi
Aoi

)
∑Np

i=1

(
Rmi
Aoi

)2 (A3)
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