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Abstract

The monoid of multipliers of a semigroup object in a monoidal cat-
egory is introduced, arising from an abstraction of the definition of the
translational hull of an ordinary semigroup or of the multiplier alge-
bra of a Banach algebra and dually, the monoid of comultipliers of a
cosemigroup object is obtained. Its set-theoretic version, the classical
translational hull, is shown to provide a functor from a subcategory
of ordinary semigroups to monoids, similar to a left adjoint. The ab-
stract multiplier monoid of a semigroup object is related to the concrete
translational hull of its convolution semigroup by a “concretization” ho-
momorphism. For semigroup objects for which this homomorphism is
onto, the multiplier construction is functorial and the concretization
homomorphisms form a natural epimorphism.

MSC 2020: 18C40, 20M30, 18M05

Keywords: Semigroup object, multiplier, translational hull, convolu-
tion semigroup.

1 Introduction

Let S = (S, ∗) be a set-theoretic semigroup. By a left (resp. right) translation
is meant a map L (resp. R) from S to itself such that L(x ∗ y) = L(x) ∗ y
(resp., R(x ∗ y) = x ∗ R(y)). Let LTr(S) and RTr(S) be respectively the
set of all left and of all right translations of S. For instance given x ∈ S,
Lx : S → S, y 7→ x ∗ y and Rx : y 7→ y ∗ x are respectively left and right
translations. Associativity of ∗ provides for such inner translations, the fol-
lowing linking relation: Rx(y) ∗ z = y ∗ Lx(z), x, y, z ∈ S. More generally
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a pair (L,R) consisting of a left and a right translations such that for each
y, z ∈ S, R(y) ∗ z = y ∗ L(z) is referred to as a multiplier of S. The set
TrHull(S) of all multipliers of S is called the translational hull of S (see
e.g. [4]), and in general it contains over multipliers than only the inner ones,
that is, those of the form MS(x) = (Lx,Rx), x ∈ S. Multipliers may be
composed by (L′, R′) ? (L,R) := (L′ ◦ L,R ◦ R′) and (idS , idS) acts as an
identity for ?, making TrHull(S) := (TrHull(S), ?, (idS , idS)) a monoid, and
MS : S → |TrHull(S)|, x 7→ (Lx,Rx) a homomorphism of semigroups, called
the canonical homomorphism of S, where | − | : Mon → Sem is the ob-
vious forgetful functor. In fact, TrHull(S) is a submonoid of the product
monoid LTr(S) × RTr(S)op, with LTr(S) := (LTr(S), ◦, idS) and RTr(S) :=
(RTr(S), ◦, idS), where for a monoid M = (M, ∗, 1), Mop := (M, ∗op, 1) de-
notes its opposite with x ∗op y := y ∗ x, x, y ∈M .

The following result is easy and shows that the translational hull is not
very interesting for monoids, what we could have suspected by thinking of
it as a kind of unitarization.

1 Lemma Let M = (M, ∗, 1) be a monoid. Then, the canonical homomor-
phism of semigroups M|M| : (M, ∗) → |TrHull(|M|)| lifts to an isomorphism
of monoids MM : M → TrHull(|M|), that is, MM is an isomorphism, and
|MM| = M|M|.

Historically multipliers appeared naturally with the study of ideal exten-
sions of semigroups [7] but dit not remain confined to the theory of ordinary
semigroups. For instance the Banach algebra of multipliers of a commuta-
tive (non-unital) Banach algebra was considered in [12] and the C∗-algebra
of multipliers of a (non-unital) C∗-algebra was studied in [3].

S acts on the set S by left (resp. right) translations. Left (right) multi-
pliers then are in fact nothing but endomorphisms of the left (resp. right)
S-act S itself. Now given a left (resp. right) translation L (resp. R),
g(L) : S×S → S, (x, y) 7→ x∗L(y) (resp. d(R) : S×S → S, (x, y) 7→ R(x)∗y)
is a homomorphism of left (resp. right) S-acts from S×S to S, where S acts
on S × S by left (resp. right) multiplication on the first (resp. second) fac-
tor. (L,R) then is a multiplier iff g(L) = d(R), that is, the translational
hull of S is nothing but the pullback of g along d. Such observations are
not only true for multipliers of semigroups, but also for those of rings or
Banach algebras. These algebraic structures have in common the fact that
they are all semigroup objects in some monoidal category: that of sets for the
ordinary semigroups, of abelian groups for the rings, and Banach spaces for
Banach algebras. This suggests to use the language of monoidal categories
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to describe multipliers more abstractly.
In doing so we are left with at least two possible ways. One way is to “in-

ternalize” the multiplier construction, as in [2]. It requires the assumptions
that the monoidal category into consideration is also closed and has some
specific pullbacks (in order to define an internal “multiplier monoid object”),
or when it is not closed, to consider what is called therein “M-morphisms”
as a substitute for morphisms into an internal multiplier monoid object that
may not exist. Without asking for extra assumptions but having in mind the
existence of a multiplier monoid, another way is to mimic the construction of
the translational hull by considering abstract endomorphisms of a semigroup
object S in a monoidal category C, seen as a left and a right act on itself. In
doing so naturally arises an ordinary monoid which is called the multiplier
monoid MultC(S) of S (see Section 4), and which reduces to the usual trans-
lational hull for a usual semigroup. This alternative approach is consistent
with the general philosophy adopted in this note that any semigroup object
in any monoidal category may be “concretized” as an ordinary semigroup
and finds its source in the original motivation of the author to study the
functorial behavior of the ordinary translational hull construction.

In fact each monoidal category C naturally comes together with a canon-
ical monoidal functor into the cartesian category of sets, namely the “con-
volution functor” which assigns to an object c of the underlying category C
of C, the set C(I, c) of morphisms from the monoidal unit I into this object
(its so-called “generalized elements”). As any monoidal functor, the convo-
lution functor lifts to a functor from the category of semigroup objects of
the domain monoidal category into that of the codomain category, and so
assigns an ordinary semigroup, its “concretization” ConvI(S) to an abstract
semigroup S. The generalized elements also play an important role in that
they induce inner multipliers (see Section 4.2). A concretization homomor-
phism then relates MultC(S) with TrHull(ConvI(S)) (Definition 43). Section 5
is entirely devoted to the study this convolution construction.

The functorial behavior of both TrHull and Mult is explored in Section 6.
More precisely it is shown that under some conditions, any homomorphism
of semigroups S

f−→ |TrHull(T)|, where S,T are ordinary semigroups, ad-

mits a unique “extension” TrHull(S)
f]−→ TrHull(T) as a homomorphism of

monoids (Theorem 56). This result is used to define a translational hull
functor from a subcategory of semigroup to monoids, which is very close to
be a left adjoint to the forgetful functor from monoids to semigroups (The-
orem 59). In Section 6.2, using the notion of concrete semigroup object,
that is, a semigroup object whose concretization homomorphism is onto,
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it is proved that under some conditions, any homomorphism of semigroups
ConvI(S)

f−→ |MultD(T)|, where S,T are semigroup objects in possibly differ-
ent monoidal categories C,D, has a unique “extension” as a homomorphism

of monoids MultC(S)
fM−−→ MultD(T) (Theorem 62). This result then is used

to provide a multiplier monoid functor from a subcategory of semigroup ob-
jects in any monoidal category to monoids, and turns the concretization
homomorphisms into a natural epimorphism between this functor and the
composition of the translational hull functor by the convolution semigroup
functor.

2 Notations and prerequisites

We next introduce some notions which could be unfamiliar for some readers.

Some notations: Let C be a category and let c, c′ be C-objects. C(c, c′)
denotes the hom-sets of C-morphisms with domain c and codomain c′ and
given a functor F : C → D, if needed one denotes by Fc,c′ the hom-component
C(c, c′) → D(Fc, Fc′) of F . Set and Cat are the categories of sets (and
maps) and of categories (and functors). Given functors F,G : C → D, that
α is a natural transformation from F to G is denoted by α : F ⇒ G : C → D
and Nat(F,G) stands for the set of all such natural transformations.

Monoidal categories and monoidal functors: A monoidal category is
denoted C = (C,− ⊗ −, I, α, λ, ρ) or sometimes simply C = (C,⊗, I), with
−⊗− : C × C → C the tensor product bifunctor, I the unit object and the
natural isomorphisms ((a⊗ b)⊗ c

αa,b,c−−−→ a⊗ (b⊗ c))a,b,c, (I ⊗ c λc−→ c)c and
(c ⊗ I ρc−→ c)c which are coherence constraints of associativity, and of left
and right unit, respectively. E.g. Set is the monoidal category of sets under
the cartesian product and initial object 1 := { 0 } with Set as its underlying
category.

Let C be a monoidal category. Then one may define its opposite Cop :=
(Cop,⊗op, I, α−1, λ−1, ρ−1) where Cop is the usual opposite category of C,
and ⊗op : Cop × Cop = (C × C)op → Cop is the usual opposite of ⊗.

One also defines the tranpose Ct = (C,⊗t, I, αt, λt, ρt) of C with (c
f−→

d) ⊗t (c′
f ′−→ d′) := c′ ⊗ c f ′⊗f−−−→ d′ ⊗ d, that is, ⊗t : C × C ' C × C ⊗−→ C,

where the isomorphism is given by ((a, b)
(f,g)−−−→ (c, d)) 7→ ((b, a)

(g,f)−−−→ (d, c)),
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αta,b,c : (a ⊗t b) ⊗t c = c ⊗ (b ⊗ c)
α−1
c,b,a−−−→ (c ⊗ b) ⊗ a = a ⊗t (b ⊗t c), λta =

I ⊗t a = a⊗ I ρa−→ a, ρta = a⊗t I = I ⊗ a λa−→ a.
Let C := (C,⊗C , IC , α, λ, ρ) to D = (D,⊗D, ID, α, λ, ρ) be monoidal

categories. A lax monoidal functor from C to D is a triple F := (F, F (2), F0)
where F : C → D is a functor (the underlying functor of F), (F (c1) ⊗D

F (c2)
F

(2)
c1,c2−−−−→ F (c1 ⊗C c2))c1,c2 is a natural transformation and F0 : J → FI

is a D-morphism, subject to coherence conditions (see [10] for details). A
lax monoidal functor is called strong monoidal (resp. strict monoidal) when
F (2) and F0 are isomorphisms (resp. identities).

Let C = (C,⊗C , IC)
F=(F,F (2),F0)−−−−−−−−−→ D = (D,⊗D, ID)

G=(G,G(2),G0)−−−−−−−−−→ E =
(E,⊗E , IE) be monoidal functors. Let G ◦ F := (G ◦ F, (G ◦ F )(2), (G ◦ F )0)

with (G ◦ F )
(2)
c,d := G(F

(2)
c,d ) ◦ G(2)

F (c),F (d) and (G ◦ F )0 := G(F0) ◦ G0. With
identity idC at C the strict monoidal functor with underlying functor idC ,
this provides the category MonCat of monoidal categories and lax monoidal
functors.

Semigroup objects: A semigroup object (or simply semigroup) in C is a
pair (S, S ⊗ S µ−→ S) such that the diagram below on the left

(S ⊗ S)⊗ S
αS,S,S

��

µ⊗idS // S ⊗ S
µ
��

S ⊗ S µ
//

f⊗f ��

S
f��

S ⊗ (S ⊗ S)
idS⊗µ

// S ⊗ S µ
// S S′ ⊗ S′

µ′
// S′

(1)

commutes, while a semigroup morphism (S, µ)
f−→ (S′, µ′) is a C-morphism

f : S → S′ making the above right diagram commutative. This defines
the category SemC of semigroups in C. Sem := Sem(Set) is the cat-
egory of ordinary semigroups and their homomorphisms. The category
CosemC of cosemigroup objects (or simply cosemigroups) in C is defined
to be (Sem(Cop))op. Let (C, σ) be a symmetric monoidal category. Given a
semigroup S = (S, µ) (resp. a cosemigroup S = (S, δ)) one has its opposite
(co)semigroup Sop := (S, µ ◦ σS,S) (resp. Sop := (S, σS,S ◦ δ)). A semigroup
(resp. cosemigroup) (S, µ) (resp. (S, δ)) is said to be commutative) (resp. co-
commutative) when S = Sop. By cSem(C) and cocCosem(C) we denote the
full subcategories of Sem(C) and Cosem(C) respectively spanned by the
(co)commutative (co)semigroups. One has cocCosemC = (cSem(Cop))op.
The next result is clear.
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2 Lemma Sem(C) = Sem(Ct) and dually Cosem(C) = Cosem(Ct).

Given a lax monoidal functor F : C→ C′, F̃(S, µ) := (FS, FS⊗′FS
F

(2)
S,S−−−→

F (S ⊗ S)) and F̃(f) := Ff define an induced functor F̃ : SemC → SemC′,
such that the diagram

SemC
Us ��

F̃ // SemC′

U ′s��

C
F

// C ′

(2)

commutes, with Us, U
′
s the obvious forgetful functors. In fact this pro-

vides a functor Sem from MonCat to Cat. For instance, given a sym-
metric monoidal category (C, σ), one has a strong monoidal functor � =
(idC , σ, idI) : C→ Ct and thus an induced functor �̃ : Sem(C)→ Sem(Ct) =
Sem(C). In fact �̃S = Sop.

MonCat has a binary product C× C′, with

1. tensor (C × C ′) × (C × C ′)
Σ2,3−−→ (C × C) × (C ′ × C ′) ⊗×⊗

′
−−−→ C × C ′,

where Σ2,3((c, c′), (d, d′)) = ((c, d), (c′, d′)).

2. unit object (I, I ′),

3. and with obvious coherence constraints.

MonCat also has a terminal object namely the monoidal category 1 with
underlying category 1, the category with only one object and its identity
arrow. One observes that Sem(C× C′) ' Sem(C)× Sem(C′) canonically.

The hom-functor C(−,−) : Cop×C → Set, C(b
f−→ a, c

h−→ d) : C(a, c)→
C(b, d), g 7→ h ◦ g ◦ f , is a monoidal functor Conv = (C(−,−),Γ, γ) : Cop ×
C → Set, with Γ(a,b),(c,d) : C(a, b) × C(c, d) → C(a ⊗ c, b ⊗ d), (f, g) 7→
f ⊗ g, for a, b, c, d ∈ ObC, and γ : 1 → C(I, I), 0 7→ idI . Whence Conv
induces a functor Conv := C̃onv : Cosem(C)op × Sem(C) → Sem. Given
a semigroup (S, S ⊗ S

µ−→ S) and a cosemigroup (c, c
δ−→ c ⊗ c) in C, the

the hom-set C(c, S) becomes a semigroup, called the convolution semigoup
Conv((c, δ), (S, µ)) with multiplication (g, f) 7→ g •µ,δ f = µ ◦ (g ⊗ f) ◦ δ.
Since (I, λ−1

I = ρ−1
I ) is always a cosemigroup in any monoidal category, one

has a functor ConvI : Sem(C) → Sem given by ConvI((S, µ)
f−→ (S′, µ′)) :=

(C(I, S), •µ)
C(idI ,f)−−−−−→ (C(I, S′), •µ′) with •µ := •µ,λ−1

I
.
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3 Actions of a semigroup object

Let C := (C,⊗, I, α, λ, ρ) be a monoidal category. Let S := (S, µ) be a
semigroup in C. Let c ∈ ObC, and γ : S ⊗ c → c (resp. ρ : c ⊗ S → c) be
a C-morphism. (S, γ) (resp. (S, ρ)) is called a left S-act (resp. right S-act)
when the diagram below on the left (resp. right) commutes.

S ⊗ (S ⊗ c) idS⊗γ // S ⊗ c
γ
��

(c⊗ S)⊗ S ρ⊗idS // c⊗ S
ρ
��

(S ⊗ S)⊗ c
µ⊗idc ��

c c⊗ (S ⊗ S)
idc⊗µ ��

c

S ⊗ c
γ

55

c⊗ S
ρ

55

(3)

γ (resp. ρ) then is referred to as the left (resp. right) S-action.

3 Example By associativity, (S, µ) is both a left and a right S-act.

Given left (resp. right) S-acts (c, γ), (c′, γ′) (resp. (c, ρ), (c′, ρ′)) a C-
morphism c

f−→ c′ is said to be a left (resp. right) S-morphism when the
diagram below on the left (resp. right) commutes.

c
f

// c′ c
f

// c′

S ⊗ c
γ
OO

idS⊗f
// S ⊗ c′

γ′
OO

c⊗ S
ρ
OO

f⊗idS
// c′ ⊗ S

ρ′
OO (4)

This provides the categories SAct(C) andActS(C) of left and right S-acts re-
spectively, together with obvious faithful forgetful functors S|−| : SAct(C)→
C and | − |S : ActS(C)→ C.

Let S = (S, µ) and S′ = (S′, µ′) be semigroups in C. Given an object c
together with a left S-action γ and a right S′-action ρ, (c, γ, ρ) is said to be
a S-S′-biact when the following diagram commutes.

(S ⊗ c)⊗ S′
γ⊗idS′// c⊗ S′

ρ
��

S ⊗ (c⊗ S′)
idS⊗ρ ��

c

S ⊗ c
γ

55

(5)

When S = S, a S-S-biact is simply called a two-sided S-biact.

4 Example (S, µ, µ) is a S-biact.
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Given S-S′-biacts (c, γ, ρ), (c′, γ′, ρ′), a C-morphism c
f−→ c′ which is both

a left S-morphism (c, γ)
f−→ (c′, γ′) and a right S′-morphism (c, ρ)

f−→ (c′, ρ′)
is referred to as a S-S′-morphism, and a two-sided S-morphism when S =
S′. This provides the category SActS′(C) together with a faithful forgetful
functor S| − |S′ : SActS′(C)→ C.

One easily obtains the following result.

5 Lemma Let S = (S, µ) be a semigroup in C. Then, ActS(C) = SAct(Ct)
and SAct(C) = ActS(Ct).

6 Example 1. With S an ordinary semigroup, SAct(Set) is the usual
category of left S-acts.

2. Let R be a commutative ring with a unit. Let RMod be the monoidal
category of left (unital) R-modules, with the usual tensor product ⊗R
over R. Associative R-algebras and semigroup objects in RMod are
essentially the same and so are left modules over an algebra and left
acts over a semigroup object.

3. Let Ban be the monoidal category with underlying category Ban, the
category of say complex Banach spaces with bounded linear maps, and
with the projective tensor product ⊗̂ (see [9]). A semigroup B = (B,µ)
in Ban is essentially1 a non-unital Banach algebra (B, ∗) with x ∗ y :=
µ(x⊗ y), x, y ∈ B. Left B-acts are left Banach (B, ∗)-modules.

Let (C, σ) be a symmetric monoidal category. Let S, c, d be C-objects.
Let f : S ⊗ c → d (resp. g : c ⊗ S → d) be a C-morphism. One defines
f ′ := c ⊗ S

σc,S−−→ S ⊗ c f−→ d (resp. 8g : S ⊗ c
σS,c−−→ c ⊗ S g−→ c). Of course,

8(f ′) = f and (8g)′ = g.

7 Proposition Let S = (S, µ) be a commutative semigroup in C. There are
functors Al : SAct(C)→ ActS(C), with |−|S◦Al = S|−| and Ar : ActS(C)→
SAct(C) with S|−|◦Ar = |−|S, which are inverse one from the other. There
are full embedding functors ActS(C)

Bl−→ SActS(C)
Br←−− SAct(C) such that

S| − |S ◦ Bl = S| − | and S| − |S ◦ Br = | − |S, and the following diagram
commutes.

SAct(C)
Al //

Bl
))

ActS(C)

Bruu

SActS(C)

(6)

1Up to the change of the original norm by an equivalent sub-multiplicative norm [8].
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Proof: Let (c, γ) be a left S-act. (c, γ′) is a right S-act since each cell of
the following diagram commute, so commutes the surrounding diagram.

(c⊗ S)⊗ S
σc,S⊗idS

// (S ⊗ c)⊗ S
σS⊗c,S ))

γ⊗idS // c⊗ S
σc,S
��

S ⊗ (c⊗ S)
idS⊗σc,S ��

S ⊗ (S ⊗ c)
idS⊗γ

// S ⊗ c

γ

��

c⊗ (S ⊗ S)

idc⊗µ
44

σc,S⊗S ))

S ⊗ (S ⊗ c) (S ⊗ S)⊗ c

µ⊗idc

yy

(S ⊗ S)⊗ c (S ⊗ S)⊗ c
µ⊗idc ��

σS,S⊗idc
OO

c

c⊗ S σc,S
// S ⊗ c

γ

66

(7)

(c, γ, γ′) is a two-sided S-act. Indeed all internal cells of the following diagram
commute, so commutes the surrounding diagram.

S ⊗ (c⊗ S)

idS⊗σc,S

��

(S ⊗ c)⊗ S
σS⊗c,S

��

γ⊗idS // c⊗ S

σc,S

��

S ⊗ (S ⊗ c)
idS⊗γ

++
(S ⊗ S)⊗ c

µ⊗idc
// S ⊗ c

γ

��

S ⊗ c

γ

��

S ⊗ (S ⊗ c)
idS⊗γ ��

(S ⊗ S)⊗ c
σS,S⊗idc

OO

µ⊗idc

55

S ⊗ c γ
// c

(8)

Let f ∈ SAct(C)((c1, γ1), (c2, γ2)). Then, f ∈ ActS(C)((c1, γ
′
1), (c2, γ

′
2)), and

thus f ∈ SActS(C)((c1, γ1, γ
′
1), (c2, γ2, γ

′
2)). Indeed, the two cells of the fol-

lowing diagram commute so commutes the surrounding diagram.

c1
f

// c2

S ⊗ c1

γ1
OO

idS⊗f
// S ⊗ c2

γ2
OO

c1 ⊗ S
σc1,S

OO

f⊗idS
// c2 ⊗ S

σc2,S
OO

(9)

Consequently one may define Al((c1, γ1)
f−→ (c2, γ2)) := (c1, γ

′
1)

f−→ (c2, γ
′
2)

and Bl((c1, γ1)
f−→ (c2, γ2)) := (c1, γ1, γ

′
1)

f−→ (c2, γ2, γ
′
2).
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That Ar((c1, ρ1)
f−→ (c2, ρ2)) := (c1,

8ρ1)
f−→ (c2,

8ρ2) provides a func-
tor from ActS(C) to SAct(C) and Br((c1, ρ1)

f−→ (c2, ρ2)) := (c1,
8ρ1, ρ1)

f−→
(c2,

8ρ2, ρ2) provides a functor from ActS(C) to SAct(C)S is obtained by sym-
metry. �

4 The multiplier monoid of a semigroup object

In this section is introduced the multiplier monoid of a semigroup object
together with the inner multipliers, induced by generalized elements. By du-
alization the comultiplier monoid of a cosemigroup object is freely provided.

Throughout this section C = (C,⊗, I) stands for a monoidal category.

4.1 The construction

8 Proposition Let S = (S, µ) and S′ = (S′, µ′) be semigroups in C. ⊗ : C×
C → C lifts to a functor SAct(C)×ActS′(C)→ SActS′(C), still denoted ⊗,
that is, such that the following diagram commutes.

SAct(C)×ActS′(C)

S|−|×|−|S′ ��

//
SActS′(C)

S|−|S′��

C × C ⊗
// C

(10)

Proof: Let (c, γ) and (c′, ρ′) be respectively a left S-act and a right S′-act.

Let γρ′ := S⊗(c⊗c′) ' (S⊗c)⊗c′
γ⊗idc′−−−−→ c⊗c′, and let γρ′ := (c⊗c′)⊗S′ '

c ⊗ (c′ ⊗ S′) idc⊗ρ′−−−−→ c ⊗ c′. Then, one claims that (c ⊗ c′, γρ′ , γρ′) is a two-
sided S-S′-biact. First, (c⊗ c′, γρ′) is a left S-act because all the cells of the
following diagram commute.

S ⊗ (S ⊗ (c⊗ c′))

α−1
S,S,c⊗c′

��

idS⊗α−1
S,c,c′
// S ⊗ ((S ⊗ c)⊗ c′)

α−1
S,S⊗c,c′

��

idS⊗(γ⊗idc′// S ⊗ (c⊗ c′)

α−1
S,c,c′
��

(S ⊗ S)⊗ (c⊗ c′)

µ⊗(idc⊗idc′ )
�� α−1

S⊗S,c,c′ ))

(S ⊗ (S ⊗ c))⊗ c′

α−1
S,S,c⊗idc′

��

(idS⊗γ)⊗idc′// (S ⊗ c)⊗ c′

γ⊗idc′
��

S ⊗ (c⊗ c′)

α−1
S,c,c′ ))

((S ⊗ S)⊗ c)⊗ c′

(µ⊗idc)⊗idc′
��

c⊗ c′

(S ⊗ c)⊗ c′
γ⊗idc′

66

(11)
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Secondly, that (c⊗ c′, γρ′) is a right S′-act is obtained similarly. Finally, (c⊗
c′, γρ′ , γρ

′) is a S-S′-biact because all internal cells of the following diagrams
commute, so does the surrounding diagram.

(S ⊗ (c⊗ c′))⊗ S′
αS,c⊗c′,S′

��

α−1
S,c,c′⊗idS′

// ((S ⊗ c)⊗ c′)⊗ S′
(γ⊗idc′ )⊗idS′//

αS⊗c,c′,S′
��

(c⊗ c′)⊗ S′
αc,c′,S′
��

S ⊗ ((c⊗ c′)⊗ S′)
idS⊗αc,c′,S′

��

(S ⊗ c)⊗ (c′ ⊗ S′)
γ⊗(idc′⊗idS′ )//

(idS⊗idc)⊗ρ′

��

c⊗ (c′ ⊗ S′)
idc⊗ρ′
��

S ⊗ (c⊗ (c′ ⊗ S′))
idS⊗(idc⊗ρ′)

��

α−1
S,c,c′⊗S′

44

c⊗ c′

S ⊗ (c⊗ c′)
α−1
S,c,c′

// (S ⊗ c)⊗ c′
γ⊗idc′

44

(12)

Let f ∈ SAct((c, γc), (d, γd)) and let f ′ ∈ ActS′((c
′, ρ′c′), (d

′, ρ′d′)). Then,
f ⊗ f ′ ∈ SActS′((c⊗ c′, (γc)ρ′

c′
, γc(ρ

′
c′)), (d⊗ d′, (γd)ρ′d′ , γd(ρ

′
d′))) because the

internal cells of both following diagrams commute.

c⊗ c′ f⊗f ′
// d⊗ d′ c⊗ c′ f⊗f ′

// d⊗ d′

(S ⊗ c)⊗ c′
γc⊗idc′

OO

(idS⊗f)⊗f ′
// (S ⊗ d)⊗ d′

γd⊗idd′
OO

c⊗ (c′ ⊗ S′)
idc⊗ρ′c′

OO

f⊗(f ′⊗idS′ )
// d⊗ (d′ ⊗ S′)

idd⊗ρ′d′
OO

S ⊗ (c⊗ c′)
α−1
S,c,c′

OO

idS⊗(f⊗f ′)
// S ⊗ (d⊗ d′)

αS,d,d′
OO

(c⊗ c′)⊗ S′
αc,c′,S′

OO

(f⊗f ′)⊗idS′
// (d⊗ d′)⊗ S′

αd,d′,S′
OO

(13)
Functoriality of the construction follows from that of ⊗. �

As a consequence of the associativity condition is the

9 Lemma Let S = (S, µ) be a semigroup in C. Then, µ ∈ SActS(C)((S, µ)⊗
(S, µ), (S, µ, µ)).

Let S = (S, µ) be a semigroup in C. Let us introduce the set-theoretic
maps ActS(C)((S, µ), (S, µ))

gC,S−−→ SActS(C)((S, µ) ⊗ (S, µ), (S, µ, µ)) using

Prop. 8 and Lemma 9 by gC,S(L) := µ◦(idS⊗L) and SAct((S, µ), (S, µ))
dC,S−−→

SActS((S, µ)⊗ (S, µ), (S, µ, µ)) by dC,S(R) := µ ◦ (R⊗ idS). Let

MultC(S) := (ActS(C)((S, µ), (S, µ))) g ×d (SAct(C)((S, µ), (S, µ)))

(fibre product computed in Set). The members of MultC(S) are referred to
as the multipliers of S.
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10 Proposition Let S = (S, µ) be a semigroup in C. (MultC(S), ?, (idS , idS))
is a monoid denoted by MultC(S), under (L′, R′)?(L,R) := (L′◦L,R◦R′). In
fact, MultC(S) is a submonoid of the product monoid ActS(C)((S, µ), (S, µ))×
SAct((S, µ), (S, µ))op.

In what follows MultC(S) is referred to as the multiplier monoid of the
semigroup object S in C. The following result is clear.

11 Lemma Let C be a monoidal category and let S = (S, µ) be a semigroup
object in C. Then, MultCt(S) = { (R,L) : (L,R) ∈ MultC(S) } and (L,R) 7→
(R,L) provides an isomorphism of monoids from MultC(S) to MultCt(S)op.

4.2 Inner multipliers induced by generalized elements

Since they might be no elements for an object S in an arbitrary monoidal
category C, one cannot directly define the inner multipliers as in the set-
theoretic situation. To get rid of this obstruction one uses instead the gen-
eralized elements, that is, the members of the hom-set C(I, S).

12 Lemma Let S = (S, µ) be a semigroup in C. Let f ∈ C(I, S). Let

Lf := S
λ−1
S−−→ I ⊗ S f⊗idS−−−−→ S ⊗ S µ−→ S. Then, Lf ∈ ActS(C)((S, µ), (S, µ)).

Proof: All the cells commute in the diagram below, so commutes the
surrounding diagram. (The left down triangle commutes by coherence.)

S
λ−1
S // I ⊗ S f⊗idS // S ⊗ S µ

// S

I ⊗ (S ⊗ S)
λ−1
S⊗S

uu

idI⊗µ
OO

f⊗(idS⊗idS)
// S ⊗ (S ⊗ S)

idS⊗µ
OO

S ⊗ S

µ

OO

λ−1
S ⊗idS
// (I ⊗ S)⊗ S

(f⊗idS)⊗idS
// (S ⊗ S)⊗ S µ

// S ⊗ S

µ

OO (14)

�

By symmetry,

13 Lemma Let S = (S, µ) be a semigroup in C. Let f ∈ C(I, S). Let

Rf := S
ρ−1
S−−→ S ⊗ I idS⊗f−−−−→ S ⊗ S µ−→ S. Then, Rf ∈ SAct(C)((S, µ), (S, µ)).

14 Lemma Let S = (S, µ) be a semigroup in C. Let f ∈ C(I, S). Then,
(Lf , Rf ) ∈ MultC(S).
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Proof:

µ ◦ (Rf ⊗ idS) = µ ◦ (µ⊗ idS) ◦ ((idS ⊗ f)⊗ idS) ◦ (ρ−1
S ⊗ idS)

= µ ◦ (idS ⊗ µ) ◦ αS,S,S ◦ ((idS ⊗ f)⊗ idS) ◦ (ρ−1
S ⊗ idS)

(by associativity of µ)
= µ ◦ (idS ⊗ µ) ◦ (idS ⊗ (f ⊗ idS)) ◦ αS,I,S ◦ (ρ−1

S ⊗ idS)
(by naturality of α)

= µ ◦ (idS ⊗ µ) ◦ (idS ⊗ (f ⊗ idS)) ◦ (idS ⊗ λ−1
S )

(by coherence)
= µ ◦ (idS ⊗ Lf ).

(15)
�

According to Lemma 14, for each semigroup S in C, one has a map

C(I, S)
MC,S−−−→ MultC(S) given by f 7→ (Lf , Rf ). The image of this map is

the set of all inner multipliers of S in C and is denoted InnMultC(S) :=
MS(C(I, S)). Moreover Lf and Rf are respectively called the inner left
translation and the inner right translation induced by f . MC,S plays the
role of the canonical homomorphism MS for an ordinary semigroup S.

15 Proposition Let S = (S, µ) be a semigroup in C. Then,MS : ConvI(S)→
|MultC(S)| = (MultC(S), ?) is a homomorphism of semigroups and in partic-
ular, InnMultC(S) is a sub-semigroup of (MultC(S), ?).

Proof: Let f, g ∈ C(I, S). One has

Lg•µf = µ ◦ (µ⊗ idS) ◦ ((g ⊗ f)⊗ idS) ◦ (λ−1
I ⊗ idS) ◦ λ−1

S

= µ ◦ (idS ⊗ µ) ◦ αS,S,S ◦ ((g ⊗ f)⊗ idS) ◦ (λ−1
I ⊗ idS) ◦ λ−1

S

(by associativity)
= µ ◦ (idS ⊗ µ) ◦ αS,S,S ◦ ((g ⊗ idS)⊗ idS) ◦ ((idI ⊗ f)⊗ idS) ◦ (λ−1

I ⊗ idS) ◦ λ−1
S

= µ ◦ (idS ⊗ µ) ◦ (g ⊗ (idS ⊗ idS)) ◦ αI,S,S ◦ ((idI ⊗ f)⊗ idS) ◦ (λ−1
I ⊗ idS) ◦ λ−1

S

(by naturality of α)
= µ ◦ (g ⊗ idS) ◦ (idI ⊗ µ) ◦ αI,S,S ◦ ((idI ⊗ f)⊗ idS) ◦ (λ−1

I ⊗ idS) ◦ λ−1
S

= µ ◦ (g ⊗ idS) ◦ (idI ⊗ µ) ◦ (id⊗(f ⊗ idS)) ◦ αI,I,S ◦ (λ−1
I ⊗ idS) ◦ λ−1

S

(by naturality of α)
= µ ◦ (g ⊗ idS) ◦ (idI ⊗ µ) ◦ (id⊗(f ⊗ idS)) ◦ (idI ⊗ λ−1

S ) ◦ λ−1
S

(by coherence)
= µ ◦ (g ⊗ idS) ◦ (idI ⊗ µ) ◦ λ−1

S⊗S ◦ (f ⊗ idS) ◦ λ−1
S

= µ ◦ (g ⊗ idS) ◦ λ−1
S ◦ µ ◦ (f ⊗ idS) ◦ λ−1

S

(by naturality of λ for the two above equations)
= Lg ◦ Lf .

(16)
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By symmetry one also has Rg•µf = Rf ◦Rg. �

16 Remark The proof of Prop. 15 also shows that the maps C(I, S)
LC,S−−−→

ActS(C)((S, µ), (S, µ)), f 7→ Lf , and C(I, S)
RC,S−−−→ SAct(C)((S, µ), (S, µ)),

f 7→ Rf , are homomorphisms ConvI(S) → (ActS(C)((S, µ), (S, µ)), ◦) and
ConvI(S)op → (SAct(C)((S, µ), (S, µ)), ◦) respectively.

17 Example Let S := (S, ∗) be a semigroup. Then, MultSet(S) is the or-
dinary translational hull TrHull(S) of S. Moreover, S ' Conv1(S) under
x 7→ (genS(x) : 1→ S) with genS(x)(0) := x. (When S = ∅, then genS is
the empty map.) Moreover MS =MSet,S ◦ genS.

18 Example Let S be a semigroup object in Ban, considered as a Banach
algebra. Then, MultBan(S) is the underlying semigroup of the multiplier
Banach algebra of S (see e.g. [6, Theorem 1.2.4, p. 29]).

Let S = (S, µ) be a semigroup object in C. Let f, g ∈ C(I, S). Then,

Lf ◦ g = µ ◦ (f ⊗ idS) ◦ λ−1
S ◦ g

= µ ◦ (f ⊗ idS) ◦ (idI ⊗ g) ◦ λ−1
I

= f •µ g
(17)

and almost identically,
Rf ◦ g = g •µ f. (18)

From these computations one deduces the following

19 Lemma Let S = (S, µ) be a semigroup object in C. Assume that ConvI(S)
is non-degenerate (see Definition 47). Then,MC,S : ConvI(S)→ (MultC(S), ?)
is one-to-one.

20 Proposition Let us assume that (C, σ) is a symmetric monoidal cate-
gory. Let S be a commutative semigroup in S. Then, one has { (L,L) : L ∈
SAct(C)((S, µ), (S, µ)) } = { (R,R) : R ∈ ActS(C)((S, µ), (S, µ)) } ⊆ MultC(S).
When furthermore µ is an epimorphism, then MultC(S) = { (L,L) : L ∈
SAct(C)((S, µ), (S, µ)) }. In this case, the multiplier monoid MultC(S) and
the endomorphism monoid (SAct(C)((S, µ), (S, µ)), ◦, idS) are isomorphic
under (L,L) 7→ L.

14



Proof: The first equality is a consequence of Prop. 7 since one may notice
that the isomorphism Al : SAct(C)→ ActS(C) restricts to the identity from
SAct(C)((S, µ), (S, µ)) to ActS(C)((S, µ), (S, µ)) (because Al(S, µ) = (S, µ◦
σS,S) = (S, µ)). Let L ∈ SAct(C)((S, µ), (S, µ)). Then, µ ◦ (idS ⊗ L) =
µ ◦ σS,S ◦ (L⊗ idS) = µ ◦ (L⊗ idS). Since L ∈ ActS((S, µ), (S, µ)) it follows
that (L,L) ∈ MultC(S). Let us assume that µ is an epimorphism. Let
(L,R) ∈ MultC(S). Then, R ◦ µ = µ ◦ (idS ⊗ R) = µ ◦ σS,S ◦ (R ⊗ idS) =
µ ◦ (R⊗ idS) = µ ◦ (idS ⊗L) = µ ◦ σS,S ◦ (L⊗ idS) = µ ◦ (L⊗ idS) = L ◦ µ,
and since µ is an epimorphism, R = L. �

4.3 The case of monoids

A monoid object, or simply a monoid in a monoidal category C is a triple
M = (M,µ, η) where (M,µ) is a semigroup in C and η : I → M is a C-
morphism such that the diagrams

I ⊗M η⊗idM//

λM ))

M ⊗M
µ
��

M ⊗ IidM⊗ηoo

ρMuu
M

(19)

commute. When M is a monoid, the convolution semigroup ConvI(M,µ)
becomes an ordinary monoid ConvI(M) := (C(I,M), •µ, η).

21 Remark An ordinary monoid M = (M, ∗, 1M ) is a monoid object in Set
with η := gen |M|(1M ) (see Example 17). Besides gen |M| : |M| ' Conv1(M, ∗)
lifts to an isomorphism genM : M ' Conv1(M) of monoids.

Similarly to the set-theoretic setting (Lemma 1) one has the

22 Proposition Let M = (M,µ, η) be a monoid in C. Then, MC,(M,µ) is
the underlying homomorphism of semigroups of an isomorphism of monoids
MC,M : ConvI(M) ' MultC(|M|). In particular a monoid object has only
inner multipliers.

Proof: Let L ∈ Act(M,µ)(C)((M,µ), (M,µ)). Then, L = LL◦η. Indeed,

M
λ−1
M−−→ I ⊗M η⊗idM−−−−→M ⊗M L⊗idM−−−−→M ⊗M µ−→M

= M
λ−1
M−−→ I ⊗M η⊗idM−−−−→M ⊗M µ−→M

L−→M
(since L is a right (M,µ)-morphism)

= M
idM−−→M

L−→M.
(since η is the unit of M)

(20)
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By symmetry for R ∈ (M,µ)Act(C)((M,µ), (M,µ)), R = RR◦η. Now assume
that (L,R) ∈ MultC(M,µ). Let us check that R ◦ η = L ◦ η. For each
f ∈ C(M,M), one has

µ ◦ ((f ⊗ η)⊗ η) = µ ◦ (idM ⊗ η) ◦ ((f ◦ η)⊗ idI)
= ρM ◦ ((f ◦ η)⊗ idI)
= (f ◦ η) ◦ ρI

(by naturality of ρ)

(21)

and
µ ◦ (η ⊗ (f ◦ η)) = µ ◦ (η ⊗ idM ) ◦ (idI ⊗ (f ◦ η))

= λM ◦ (idI ⊗ (f ◦ η))
= (f ◦ η) ◦ λI .

(by naturality of λ)

(22)

Furthermore,

µ ◦ ((R ◦ η)⊗ η) = µ ◦ (R⊗ idM ) ◦ (η ⊗ η)
= µ ◦ (idM ⊗ L) ◦ (η ⊗ η)
= µ ◦ (η ⊗ idM ) ◦ (idI ⊗ (L ◦ η))
= λM ◦ (idI ⊗ (L ◦ η))
= L ◦ η ◦ λI

(23)

Therefore by the above (R◦η)◦ρI = L◦η◦λI so that R◦η = L◦η◦λI ◦ρ−1
I =

L ◦ η. So withf := L ◦ η = R ◦ η, one thus hasMC,(M,µ)(f) := (L,R) which
shows thatMC,(M,µ) : C(I,M)→ MultC(M,µ) is onto.

Let f, g ∈ C(I,M) so that Lf = Lg. Then, because η is the unit of
ConvI(M), f = µ◦(f⊗idM )◦λ−1

M ◦η = Lf ◦η = Lg◦η = µ◦(g⊗idM )◦λ−1
M ◦η =

g. Assume that Rf = Rg. Then, f = µ ◦ (idM ⊗ f) ◦ ρ−1
M ◦ η = Rf ◦ η =

Rg ◦ η = µ ◦ (idM ⊗ g) ◦ ρ−1
M ◦ η = g.

As a consequenceMC,(M,µ) is also one-to-one, and hence provides an iso-
morphism of semigroups ConvI(M,µ)→ (Mult(M,µ), ?). As,MC,(M,µ)(η) =

(Lη, Rη) = (idM , idM ) since Lη = µ◦ (η⊗ idM )◦λ−1
M = λM ◦λ−1

M = idM and
Rη = µ ◦ (idM ⊗ η) ◦ ρ−1

M = ρM ◦ ρ−1
M = idM ,MC,(M,µ) is an isomorphism of

monoids from ConvI(M) to MultC(M,µ). �

4.4 Comultipliers by dualization

By a simple dualization process, that is, essentially by replacing a category
by its opposite, one now summarizes without proofs some important results
about coactions of cosemigroups, deduced from that of actions of semigroups
and one introduces the notion of comultipliers.
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Let S := (S, δ) be a cosemigroup in C, that is, a semigroup in Cop. A
left (resp. right) S-coact (c, β) (resp. (c, τ)) is an object of SAct(Cop) (resp.
ActS(Cop)). In what follows β (resp. τ) is referred to as a left (resp. right)
S-coaction.

23 Example By coassociativity, (C, δ) is both a left and a right S-coact.

Now on defines the category SCoact(C) := SAct(Cop)op (respectively,
CoactS(C) := ActS(Cop)op) of left (resp. right) S-coacts.

Let S = (S, δ) and S′ = (S′, δ′) be cosemigroups in C. A S-S′-bi-coact is
a S-S′-biact in Cop, and one defines SCoactS′(C) := SActS′(Cop)op. When
S = S′, a S-S′-bi-coact is simply called a (two-sided) S-bi-coact.

24 Example (S, δ, δ) is a S-bi-coact.

25 Lemma Let S = (S, δ) be a cosemigroup in C. Then, CoactS(C) =

SCoact(Ct).

26 Proposition Let S = (S, δ) and S′ = (S′, δ′) be cosemigroups in a
monoidal category C. ⊗ : C × C → C lifts to a functor SCoact(C) ×
CoactS′(C) → SCoactS′(C), that is, such that the following diagram com-
mutes.

SCoact(C)×CoactS′(C)

S|−|op×|−|opS′
��

//
SCoactS′(C)

S|−|opS′
��

C × C ⊗
// C

(24)

27 Lemma δ ∈ SCoactS(C)((S, δ), (S, δ) ⊗ (S, δ)) for a cosemigroup S =
(S, δ) in C.

Let S = (S, δ) be a cosemigroup in C. Define ComultC(S) := MultCop(S).
In other words,

ComultC(S) := CoactS(C)((S, δ), (S, δ))gCop,S×dCop,SSCoact(C)((S, δ), (S, δ))

with gCop,S(L) = g(L) := (idS ⊗ L) ◦ δ and dCop,S(R) = (R ⊗ idS) ◦ δ. The
members of ComultC(S) are referred to as the comultipliers of S.

28 Proposition Let S = (S, δ) be a cosemigroup in C. Then, ComultC(S) :=
(ComultC(S), ?, (idS , idS)) is a monoid under (L′, R′)? (L,R) := (L◦L′, R′ ◦
R). ComultC(S) is in fact a submonoid of CoactS(C)((S, δ), (S, δ))op ×
SCoact(C)((S, δ), (S, δ)) (product monoid).
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In what follows ComultC(S) is referred to as the comultiplier monoid of
S in C.

29 Lemma Let C = (S, δ) be a cosemigroup in C. Let f ∈ C(S, I).

1. Lf := S
δ−→ S⊗S f⊗idS−−−−→ I⊗S λS−→ S. Then, Lf ∈ CoactS(C)((S, δ), (S, δ)).

2. Rf := S
δ−→ S⊗S idS⊗f−−−−→ S⊗I ρS−→ S. Then, Rf ∈ SCoact(C)((S, δ), (S, δ)).

3. Moreover (Lf , Rf ) ∈ ComultC(S).

Let S = (S, δ) be a cosemigroup in C. Let CC,S := MCop,S : C(S, I) →
ComultC(S) be given by CC,S(f) := (Lf , Rf ). The image of CC,S into ComultC(S)
is the set InnComultC(S) of all inner comultipliers of S.

Recall that C(S, I) = Cop(I, S) becomes a semigroup under convolution
which here means g •δ f := S

δ−→ S ⊗ S g⊗f−−→ I ⊗ I λI=ρI−−−−→ I.

30 Proposition Let S = (S, δ) be a cosemigroup in C. CC,S : (C(S, I), •δ)→
(ComultC(S), ?) is a homomorphism of semigroups and InnComultC(S) is a
sub-semigroup of (ComultC(S), ?).

Let S = (S, δ) be a cosemigroup object in C. Let f, g ∈ C(S, I). Then,

g ◦ Lf = f •δ g and g ◦Rf = g •δ f. (25)

As a consequence one has the

31 Lemma Let S = (S, δ) be a cosemigroup object in C. Assume that
(C(S, I), •δ) is non-degenerate (see Definition 47). Then, CC,S : (C(S, I), •δ)→
(ComultC(S), ?) is one-to-one.

5 Concretization by convolution

5.1 The category of all internal semigroups

Let C = (C,⊗C , IC) and D = (D,⊗D, IC) be monoidal categories, and F =
(F,Φ, φ) : C→ D be a lax monoidal functor.

32 Proposition For all semigroups S = (S, µ),S′ = (S′, µ′) in C, F induces
functors ActS(C)→ ActF̃(S)

(D), SAct(C)→ F̃(S)
Act(D) and SActS′(C)→
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F̃(S)
ActF̃(S′)(D), all denoted by F̃ , and the following diagrams commute.

ActS(C)
F̃ //

|−|S ��

ActF̃(S)
(D)
|−|F̃(S)��

SAct(C)

S|−| ��

F̃ //
F̃(S)

Act(D)

F̃(S)
|−|

��

C
F

// D C
F

// D

SActS′(C)
S|−|S′

OO

F̃

//
F̃(S)

ActF̃(S′)(D)
F̃(S)
|−|F̃(S′)

OO

(26)

Proof: Let (c, γ) be a left S-act. One claims that F̃ (c, γ) := (F (c), F (γ) ◦
ΦS,c) is a left F̃(S)-act. This follows from the commutativity of the following
diagram. (The top left cell commutes by coherence and the bottom right
cell commutes since γ is a left action.)

F (S)⊗D (F (S)⊗D F (c))
idF (S)⊗ΦS,c

//

α−1
F (S),F (S),F (c)

��

F (S)⊗D F (S ⊗C c)

ΦS,S⊗Cc
��

idF (S)⊗DF (γ)

))

(F (S)⊗D F (S))⊗D F (c)

ΦS,S⊗DidF (c)

��

F (S ⊗C (S ⊗C c))

F (α−1
S,S,c)

��

F (idS⊗Cγ)

))

F (S)⊗D F (c)

ΦS,c
��

F (S ⊗C S)⊗D F (c)

F (µ)⊗idF (c)

��

ΦS⊗CS,c // F ((S ⊗C S)⊗C c)

F (µ⊗C idc)
��

F (S ⊗C c)

F (γ)

��

F (S)⊗D F (c)
ΦS,c

// F (S ⊗C c)
F (γ)

// F (c)

(27)
Now let f ∈ SAct(C)((c, γ), (c′, γ′)). Then, F̃ (f) := F (f) belongs to

F̃(S)
Act(D)((F (c), F (γ) ◦ ΦS,c), (F (c′), F (γ′) ◦ ΦS,c′)) as it is shown by the

commutativity of the following diagram.

F (c)
F (f)

// F (c′)

F (S ⊗C c)
F (γ)

OO

F (idS⊗cf)
// F (S ⊗C c′)

F (γ′)
OO

F (S)⊗D F (c)

ΦS,c
OO

idF (S)⊗DF (f)
// F (S)⊗D F (c′)

ΦS,c′
OO

(28)

One thus obtains the desired functor F̃ : SAct(C)→ F̃(S)
Act(D).

Let (c, ρ) be a right S-act. By symmetry, F̃ (c, ρ) := (F (c), F (ρ) ◦ Φc,S)

is a right F̃(S)-act and given f ∈ ActS(C)((c, ρ), (c′, ρ′)), F̃ (f) := F (f) ∈
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ActF̃(S)
(D)((F (c), F (ρ) ◦ Φc,S), (F (c′), F (ρ′) ◦ Φc′,S)). One thus obtains the

desired functor F̃ : ActS(C)→ ActF̃(S)
(D).

Let (c, γ, ρ) be a S-S′-biact. That (F (c), F (γ) ◦ ΦS,c, F (ρ) ◦ ΦS′,c) is a
F̃(S)-F̃(S′)-biact follows from the commutativity of the following diagram.
(The top right cell commutes by coherence. The bottom left diagram com-
mutes because (c, γ, ρ) is a S-S′-biact.)

(F (S)⊗D F (c))⊗D F (S′)
αF (S),F (c),F (S′) ��

ΦS,c⊗DidF (S′)
// F (S ⊗C c)⊗D F (S′)

ΦS⊗Cc,S′ ��

F (γ)⊗DidF (S′)
++

F (S)⊗D (F (c)⊗D F (S′))
idF (S)⊗DΦc,S′ ��

F ((S ⊗C c)⊗C S′)
F (αS,c,S′ ) �� F (γ⊗C idS′ ) ++

F (c)⊗D F (S′)
Φc,S′��

F (S)⊗D F (c⊗C S′)
ΦS,c⊗CS′

//

idF (S)⊗DF (ρ)
��

F (S ⊗C (c⊗C S′))
F (idS⊗ρ)

��

F (c⊗C S′)
F (ρ)
��

F (S)⊗D F (c)
ΦS,c

// F (S ⊗C c)
F (γ)

// F (c)

(29)
One may thus define a functor F̃ : SActS′(C) → F̃(S)

ActF̃(S′)(D) acting as

F̃ ((c, γ, ρ)
f−→ (c′γ′, ρ′)) = (F (c), F (γ)◦ΦS,c, F (ρ)◦Φc,S′)

F (f)−−−→ (F (c′), F (γ′)◦
ΦS,c′ , F (ρ′) ◦ Φc′,S′). �

33 Lemma Let S = (S, µ),S′ = (S′, µ′) be semigroups in C. Let (c, γ) be a
left S-act and let (c′, ρ′) be a right S′-act. Then, Φc,c′ ∈ F̃(S)

ActF̃(S′)(D)(F̃ (c, γ)⊗D
F̃ (c′, ρ′), F̃ ((c, γ)⊗C (c′, ρ′))).

Proof: According to Proposition 8, (c, γ)⊗C (c′, ρ′) = (c⊗C c′, (γ ⊗ idc′) ◦
α−1
S,c,c′ , (idc ⊗ ρ

′) ◦ αc,c′,S′) whence F̃ ((c, γ)⊗C (c′, ρ′)) = (F (c⊗C c′), F (γ ⊗
idc′) ◦ F (α−1

S,c,c′) ◦ ΦS,c⊗Cc′ , F (idc ⊗ ρ′) ◦ F (αc,c′,S′) ◦ Φc⊗Cc′,S′).
Now F̃ (c, γ)⊗D F̃ (c′, ρ′) = (F (c), F (γ)◦ΦS,c)⊗D (F (c′), F (ρ′)◦Φc′,S′) =

(F (c)⊗DF (c′), (F (γ)⊗D idF (c′))◦(ΦS,c⊗ idF (c′))◦α−1
F (S),F (c),F (c′), (idF (c)⊗D

F (ρ′)) ◦ (idF (c) ⊗D Φc′,S′) ◦ αF (c),F (c′),F (S′)).
The following diagram commutes. (The top cell commutes by naturality
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while the bottom cell commutes by coherence.)

F (c)⊗D F (c′)
Φc,c′

// F (c⊗C c′)

F (S ⊗C c)⊗D F (c′)

F (γ)⊗DidF (c′)
OO

ΦS⊗Cc,c′
// F ((S ⊗C c)⊗C c′)

F (γ⊗cidc′ )
OO

(F (S)⊗D F (c))⊗D F (c′)

ΦS,c⊗DidF (c′)
OO

F (S ⊗C (c⊗C c′))
F (α−1

S,c,c′ )
OO

F (S)⊗D (F (c)⊗D F (c′))

α−1
F (S),F (c),F (c′)

OO

idF (S)⊗DΦc,c′
// F (S)⊗D F (c⊗C c′)

ΦS,c⊗Cc′
OO

(30)

Whence Φc,c′ is a left F̃(S)-morphism. Symmetrically, Φc,c′ is a right F̃(S′)-
morphism. Consequently, Φc,c′ ∈ F̃(S)

ActF̃(S′)(D)(F̃ (c, γ)⊗DF̃ (c′, ρ′), F̃ ((c, γ)⊗C
(c′, ρ′))). �

Let S = (S, µ) be a semigroup in C. Let L ∈ ActS(C)((S, µ), (S, µ)). By
Prop. 32, F̃ (L) = F (L) ∈ ActF̃(S)

(D)(F̃ (S, µ), F̃ (S, µ))). Now

F̃ (gC,S(L)) ◦ ΦS,S = F (µ) ◦ F (idS ⊗C L) ◦ ΦS,S

= F (µ) ◦ ΦS,S ◦ (idF (S) ⊗D F (L))

= gD,F̃(S)
(F̃ (L)).

(31)

In a similar way one sees that for eachR ∈ SAct(C)((S, µ), (S, µ)), F̃ (dC,S(R)) =
dD,F̃(S)(F̃ (R)) as members of F̂(S)ActF̂(S)(F̃ (S, µ)⊗D F̃ (S, µ), F̃ (S, µ)).

Now let (L,R) ∈ MultC(S). Then (F̃ (L), F̃ (R)) = (F (L), F (R)) ∈
MultD(F̃(S)) since

gD,F̃(S)(F̃ (L)) = F̃ (gC,S(L)) ◦ ΦS,S

= F̃ (dC,S(R)) ◦ ΦS,S

= dD,F̃(S)(F̃ (R)).

(32)

Now one thus easily obtains the following

34 Proposition (L,R) 7→ (F (L), F (R)) is a homomorphism Multdisc(S;F)
of monoids from MultC(S) to MultD(F̃(S)). If F is faithful, then this homo-
morphism is one-to-one.

35 Corollary Let (C, σ) be a symmetric monoidal category. Then for each
semigroup S in C, MultC(S)op ' MultC(Sop), (L,R) 7→ (R,L). In particu-
lar if S is commutative, then (L,R) 7→ (R,L) provides an involutive anti-
automorphism of MultC(S).
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Proof: It suffices to apply Prop. 34 with the monoidal functor � :=
(idC , σ, idI) : C→ Ct to obtain the homomorphismMultdisc(S;�) : MultC(S)→
MultCt(S

op), and then to note that (Sop)op = S and (Ct)t = C so that � : Ct →
C, which then provides a homomorphism of monoids from MultCt(S

op) to
MultC(S), inverse from the first one. One concludes using Lemma 11. �

36 Example Assume that C′ is a monoidal subcategory of C, that is, the
canonical inclusion functor is strictly monoidal. Then for any semigroup
S in C′, MultC′(S) ⊆ MultC(S). If the inclusion is full, then one has even
MultC′(S) = MultC(S).

37 Lemma Let S be a semigroup in C.

1. Multdisc(S; IdC) = idMultC(S).

2. Let F : A → B and G : B → C be lax monoidal functors. Then one
has Multdisc(S;G ◦F) = Multdisc(F̃(S);G) ◦Multdisc(S;F) : MultA(S)→
MultC(G̃ ◦ F(S)).

What kind of functoriality is stated above? By Grothendieck’s con-
struction (see e.g. [1]) the functor Sem : MonCat → Cat from Section 2
provides a split opfibration over MonCat, that is, an opfibred category
IntSem

Π−→MonCat with a choice of cartesian morphisms, where IntSem
is the category of all internal semigroups. In details, IntSem has objects
the pairs (C,S) consisting of a monoidal category C together with a semi-

group S in C, morphisms (C, S)
(F,f)−−−→ (D,T) the pairs (F, f) consisting of a

monoidal functor F : C → D and a morphism f ∈ Sem(D)(F̃(S),T), com-

position: (C,S)
(F,f)−−−→ (D,T)

(G,g)−−−→ (E,U) = (C, S)
(G◦F,g◦G̃(f))−−−−−−−−→ (E,U), and

identities id(C,S) := (C,S)
(idC,idS)−−−−−→ (C, S). Moreover the projection func-

tor Π: IntSem → MonCat is a split opfibration given by Π((C,S)
(F,f)−−−→

(D,T)) := C
F−→ D and with cleavage described as follows: given a monoidal

functor F : C → D and a semigroup S in C, (C,S)
(F,idF̃(S)

)
−−−−−−→ (D, F̃(S)) is an

opcartesian morphism over F with domain (C,S). The fibre at a monoidal
category C, that is, the subcategory of IntSem consisting of morphisms of

the form (C, S)
(idC,f)−−−−→ (C,T), is isomorphic to Sem(C).

IntSem has a subcategory of particular interest for us: let IntSemdisc

be the subcategory of IntSem consisting only of its opcartesian morphisms.
IntSemdisc is in fact (isomorphic to) the category of elements (see [5]) of the
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functor MonCat
Sem−−→ Cat

Ob−−→ Set and thus corresponds to a discrete op-
fibration. Lemma 37 tells us that there is a functor Multdisc : IntSemdisc →

Mon, acting as Multdisc((C, S)
(F,idF̃(S)

)
−−−−−−→ (D, F̃(S)) := MultC(S)

Multdisc(S;F)−−−−−−−−→
MultD(F̃(S)).

5.2 The convolution functor as an initial object

5.2.1 The domain fibration

Let F = (F,Φ, φ),G = (G,Ψ, ψ) be monoidal functors from C = (C,⊗C , I)
to D = (D,⊗D, J). Let MonNat(F,G) be the set of all monoidal natural
transformations from F to G, that is, α ∈ MonNat(F,G) (also written α : F⇒
G : C→ D) iff α ∈ Nat(F,G) and the following diagram commutes.

Fc⊗D Fd
αc⊗Dαd//

Φc,d ��

Gc⊗D Gd
Ψc,d��

J
φ

zz

ψ

$$

F (c⊗C d) αc⊗Cd
// G(c⊗C d) FI αI

// GI

(33)

Note that a monoidal natural transformation α : F ⇒ G : C → D lifts to a
natural transformation α̃ : F̃⇒ G̃ : Sem(C)→ Sem(D) with α̃S = αS , where
S stands for the underlying object of a semigroup object S.

Let MonCat ⇓ Set be the category with

1. objects the lax monoidal functors C F−→ Set for varying monoidal cate-
gories C,

2. hom-sets (MonCat ⇓ Set)((C
F−→ Set), (C′

F′−→ Set)) the pairs (H, α),
where C H−→ D is a monoidal functor, and α : F⇒ F′ ◦H : C→ Set is a
monoidal natural transformation.

There is an obvious projection functorMonCat ⇓ Set dom−−→MonCat which
is a split fibration as it arises from the Grothendieck’s construction applied
to the functor (−)∗ : MonCatop → Cat given by C∗ := SetC, that is, C∗ is
the category whose objects are monoidal functors C→ Set and whose mor-
phisms are monoidal natural transformations with vertical composition of the
underlying natural transformations, and for a monoidal functor H : C → D,
H∗ : SetD → SetC is the functor given by (F : D→ Set) 7→ (F ◦H : C→ Set)
and (α : F⇒ G : D→ Set) 7→ (αH : F ◦H⇒ G ◦H : C→ Set), where the un-
derlying natural transformation of αH is αH , with H the underlying functor
of H.
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5.2.2 The Yoneda lemma for monoidal functors

Let C be a monoidal category.
Let us define the following monoidal functor GI = (GI ,Γ, γ) : C→ Cop×C

as follows: its underlying functor is GI : C → Cop×C, GI(c
f−→ d) := (I

idI−−→

I, c
f−→ d), Γc,d : GI(c)⊗GI(d) = (I⊗I, c⊗d)

(λ−1
I ,idc⊗d)
−−−−−−−→ GI(c⊗d) = (I, c⊗d),

and γ = (I, I)
(idI ,idI)−−−−−→ GI(I) = (I, I). The composite monoidal functor

Conv ◦ GI is denoted ConvI = (C(I,−),ΘC , θC) and of course, C̃onvI =
ConvI , since ΘC

c,d : C(I, c)×C(I, d)→ C(I, c⊗ d), (f, g) 7→ (f ⊗ g) ◦λ−1
I and

θC : 1→ C(I, I), 0 7→ idI .
The Yoneda Lemma [5] tells us that for each functor F : C → Set and

each C-object c, Nat(C(c,−), F ) ' Fc under α 7→ αc(idc), with inverse
x ∈ Fc 7→ x where xd(f) := Ff(x), f ∈ C(c, d).

38 Lemma Let F = (F,Φ, φ) : C → Set be a monoidal functor. Then,
MonNat(ConvI ,F) ' {φ(0) }. Put another way, ConvI is an initial object
in the category SetC.

Proof: Let α : ConvI ⇒ F be a monoidal natural transformation. Compat-
ibility with the unit constraints (the rightmost diagram in Diag. (33)) implies
that αI(idI) = φ(0). Conversely one has to check that x : ConvI ⇒ F for
x := φ(0). As just explained above, compatibility with the unit constraint
is immediate so it remains to check that the leftmost diagram in Diag. (33)
commutes. By direct inspection one first observes that the following diagram
commutes.

C(I, I)× C(I, I)
xI×xI //

ΘCI,I ��

FI × FI
ΦI,I��

C(I, I ⊗ I) xI⊗I
// F (I ⊗ I)

(34)

Now let (f, g) ∈ C(I, c)× C(I, d). Then,

Φc,d(xc(f),xd(g)) = (Φc,d ◦ (F (f)× F (g)) ◦ (xI × xI))(idI , idI)
= (F (f ⊗ g) ◦ ΦI,I ◦ (xI × xI))(idI , idI)

(by naturality of Φ)
= (F (f ⊗ g) ◦ xI⊗I ◦ΘC

I,I)(idI , idI)

(by commutativity of Diag. (34))
= (xc⊗d ◦ C(I, f ⊗ g) ◦ΘC

I,I)(idI , idI)

(by naturality of x)
= xc⊗d(Θ

C
c,d(f, g)).

(35)

�
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5.2.3 The convolution section functor

Let Sect(dom) be the set of all sections of the functor dom, that is, X ∈
Sect(dom) iff X : MonCat→MonCat ⇓ Set such that dom◦X = idMonCat.
So for a section X one has X (C) := X(C) = (X(C),ΨX ,C, ψX ,C) : C → Set
and given a monoidal functor F : C → D, X (F) := (F, xX ,F) : X(C) → X(D)
in MonCat ⇓ Set.

Sect(dom) is the set of objects of a subcategory Sect(dom) of (MonCat ⇓
Set)MonCat, whose hom-set Sect(dom)(X ,X ′) consists of the natural trans-
formations α : X ⇒ X ′ : MonCat → MonCat ⇓ Set such that for each
monoidal category C, dom(αC) = idC. Whence αC = (idC, α

m(C)) : X(C)→
X′(C) where αm(C) : X(C) ⇒ X′(C) : C → Set is a monoidal natural trans-
formation. Note that by naturality, for each monoidal functor F : C → D,
and for each C-object c,

xX
′,F

c ◦ αm(C)c = αm(D)Fc ◦ xX ,Fc . (36)

Among the sections of dom there is a canonical one which is now de-
scribed. Let F = (F,Φ, φ) : C = (C,⊗, I) → D = (D,⊗, J) be a monoidal
functor. According to Lemma 38, MonNat(ConvI ,ConvJ ◦ F) has only one
element namely F] := x with x = D(J, φ)(θD(0)) = φ. One then defines
the convolution section Conv : MonCat → MonCat ⇓ Set by Conv(C) :=
ConvI : C → Set and given F : C → D, Conv(F) := (F,F\) where F\ is as
above.

Let α ∈ Sect(dom)(Conv ,X ). Then, for each monoidal category C,
αm(C) ∈ MonNat(ConvI ,X ) = {xX ,C } (again by Lemma 38) with xX ,C :=
ψX ,c(0). It then follows easily that Conv is an initial object in Sect(dom).

5.2.4 Relation with IntSem

Let X ∈ Sect(dom). Let S = (S, µS) (resp. T = (T, µT )) be a semigroup
in C = (C,⊗, I) (resp. D = (D,⊗, J)). Let (F, f) ∈ IntSem((C,S), (D,T)).

Then, one has a map X(F, f) := X(C)(S)
xX ,FS−−−→ X(D)(FS)

X(D)(f)−−−−−→ X(D)(T ).

39 Example In the case where X = Conv , one has Conv(F, f) = C(I, S)
F]S−−→

D(J, FS)
D(J,f)−−−−→ D(J, T ), g 7→ f ◦ F (g) ◦ φ.

Since X̃(D)(f) = X(D)(f) ∈ Sem(X̃(D)(F̃S), X̃(D)T) and x̃X ,FS = xX ,FS ∈
Sem(X̃(C)S, X̃(D)(F̃S)), one has X(F, f) ∈ Sem(X̃(C)S, X̃(D)T).
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40 Lemma With the above notation X is a functor from IntSem to Sem

with X(C, S) := X̃(C)S.

Proof: Let X be a section of dom. Using functoriality of X it is easy
to see that X(idC, idS) = idX(C,S). Let F : A → B and G : B → C be
monoidal functors. Let f ∈ Sem(B)(F̃S,T) and g ∈ Sem(C)(G̃T,U). One
has X((G, g) ◦ (F, f)) = X(G ◦ F, g ◦ G(f)) = X(C)(g ◦ G(f)) ◦ xX ,G◦FS =

X(C)(g) ◦ X(C)(G(f)) ◦ xX ,G◦FS = X(C)(g) ◦ X(C)(G(f)) ◦ xX ,GFS ◦ x
X ,F
S (by

functoriality) = X(C)(g) ◦ xX ,GT ◦ X(B)(f) ◦ xX ,FS (by naturality of xX ,G)
= X(G, g) ◦ X(F, f). �

41 Remark When X = Conv , one let X be Conv : IntSem → Sem. In de-

tails, Conv acts as ((C, S)
(F,f)−−−→ (D,T)) 7→ (ConvI(S)

D(φ,f)◦FI,S−−−−−−−−→ ConvJ(T)),
that is, Conv(F, f)(g) = f ◦ F (g) ◦ φ ∈ D(J, T ) for g ∈ C(I, S).

Now let X ,X ′ ∈ Sect(dom) and let α ∈ Sect(dom)(X ,X ′). Then,
of course, for each semigroup S = (S, µS) of C, α̃m(C)S = αm(C)S ∈
Sem(X̃(C)S, X̃′(C)S) = Sem(X(C,S),X′(C,S)). The commutativity of the
two internal cells of the diagram below, where (F, f) : (C, S) → (D,T) is a
IntSem-morphism, shows that α̃m := (α̃m(C)S)(C,S) : X ⇒ X′ : IntSem →
Sem is a natural transformation. (The top square commutes by Eq. (36)
while the bottom square commutes by naturality of αm(D).)

X(C)S

xX ,FS
��

αm(C)S
// X ′(C)S

xX
′,F

S
��

X(D)FS

X(D)(f)

��

αm(D)FS

// X ′(D)FS

X′(D)(f)
��

X(D)T
αm(D)T

// X′(D)T

(37)

The following result then is clear.

42 Lemma The correspondences X ∈ Sect(dom) 7→ X ∈ Ob(SemIntSem)
and α ∈ Sect(dom)(X ,X ′) 7→ α̃m : X⇒ X′ provide a functor from Sect(dom)
to SemIntSem.
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5.3 The concretization homomorphism

43 Definition Given a semigroup S = (S, µ) in a monoidal category C,
according to Prop. 34 one has a homomorphism of monoids, called the con-
cretization homomorphism,

ConcC(S) := MultC(S)
Multdisc(S;ConvI)−−−−−−−−−−−→ MultSet(ConvI(S)) = TrHull(ConvI(S))

which acts as (L,R) 7→ (C(idI , L), C(idI , R)). Of course, C(idI , L) : C(I, S)→
C(I, S), f 7→ L ◦ f and C(idI , R) : C(I, S)→ C(I, S), f 7→ R ◦ f .

44 Remark When C(I,−) is faithful, then MultC(S) is (isomorphic to) a
submonoid of TrHull(ConvI(S)).

45 Definition A semigroup S in C. S is said to be concrete when the
concretization homomorphism ConcC(S) : MultC(S) → TrHull(ConvI(S)) is
onto.

Let us finally consider the composite ConvI(S)
MC,S−−−→ |MultC(S)| ConcC(S)−−−−−−→

|TrHull(ConvI(S))|. It is the map f 7→ (C(I, Lf ), C(I,Rf )). Using Eqs. (17)
and (18), C(I, Lf ) = Lf , and C(I,Rf ) = Rf . Therefore, the above compo-
sition is nothing but MConvI(S) : ConvI(S)→ |TrHull(ConvI(S))|.

46 Example 1. Every ordinary semigroup is concrete (as it follows easily
from Example 17).

2. The underlying semigroup object of any monoid object in any monoidal
category is concrete. Indeed according to Prop. 22, for each monoid M,
MC,M : ConvI(|M|) ' MultC(M). Moreover MConvI(M) : ConvI(M) '
Mult(|ConvI(M)|) is also an isomorphism of monoids (see the Introduc-
tion). Consequently, ConcC(|M|) = MConvI(|M|)◦M−1

C,|M| = |MConvI(M)◦
M−1

C,M| is an isomorphism of semigroups.

3. Let R be a unital and commutative ring. Then, any R-algebra A =
(A,µ), that is, a semigroup in RMod = (RMod,⊗R, R), faithful as
a module over itself, is concrete. Indeed, the usual forgetful functor
RMod → Set is represented by the free module of rank one, that is,
|−| ' RMod(R,−). Let (L,R) ∈ TrHull(|A|, ∗), with x∗y := µ(x⊗y).
Let x, y, z ∈ |A| and let α ∈ R. Then, x∗L(αy+z) = R(x)∗(αy+z) =
R(x)∗(αy)+R(x)∗z = α(R(x)∗y)+R(x)∗z = α(x∗L(y))+x∗L(z) =
x∗(αL(y)+L(z)) so that L(αy+z) = αL(y)+L(z) since A is faithful.
Similarly R is also linear. Consequently, (L,R) ∈ MultAb(A).
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4. According to [12] any commutative Banach algebra B = (B, ∗) without
order (that is, x ∗ y = 0 for all x implies x = 0) and such that B2 = B
(that is, ∗ is onto), is concrete in Ban = (Ban, ⊗̂,C). In fact it is proven
in [12] that under the condition that B is without order and with |−| the
forgetful functor into Set, L ∈ Act(|B|,∗)((|B|, ∗), (|B|, ∗)) iff (L,L) ∈
TrHull(|B|, ∗) iff (L,L) ∈ MultBan(B). So if one assumes furthermore
that B2 = B, that is, ∗ is epi, and thus so is the multiplication as
a morphism B⊗̂B → B, since faithful functors reflect epimorphisms,
then (L,R) ∈ MultBan(B) implies L = R by Prop. 20.

6 Around ordinary semigroups

In this section one first turns the ordinary translational hull construction
into a functor from a subcategory of semigroups to monoids, which behaves
almost like a left adjoint to the forgetful functor from monoids to semigroups.
Secondly, one extends the abstract multiplier monoid construction into a
functor from a subcategory of IntSem to monoids, and the concretization
homomorphisms then become a natural transformation.

6.1 The translational hull functor

47 Definition Let S = (S, ∗) be an ordinary semigroup. It is said to be

1. globally idempotent when S ∗ S = S, that is, S = {x ∗ y : x, y ∈ S } or
in other terms ∗ : S × S → S is onto,

2. right non-degenerate (resp. left non-degenerate) when x ∗ y = x ∗ z
(resp. y ∗ x = z ∗ x) for all x ∈ S implies y = z. It is non-degenerate
when it is both left and right non-degenerate.

The first easy results below are stated without proofs.

48 Lemma S = (S, ∗) is right (resp. left) non-degenerate iff LS : S →
LTr(S), x 7→ Lx (resp. RS : S → RTr(S), x 7→ Rx) is one-to-one. If S is
non-degenerate, then MS is one-to-one.

49 Lemma Let M = (M, ∗, 1) be a monoid. Then, |M| is globally idempotent
and non-degenerate.

50 Definition Let S be a set and let (T, ∗) be a semigroup.
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1. Let f : S → T be a map. It is said to be non-degenerate if T =
{ f(s) ∗ t : s ∈ S, t ∈ T } = { t ∗ f(s) : s ∈ S, t ∈ T }.

2. Let f : S → TrHull(T, ∗) be a map. Let fL := p1 ◦ f and fR :=

p2 ◦ f where LTr(T, ∗) p1←− TrHull(T, ∗) p2−→ RTr(T, ∗) is the canonical
pullback diagram. In other words for each s ∈ S, f(s) = (fL(s), fR(s)).

3. Let f : S → TrHull(T, ∗) be a map. It is said to be translation non-
degenerate when T = { fL(s)(t) : s ∈ S, t ∈ T } = { fR(s)(t) : s ∈
S, t ∈ T }.

51 Lemma Let S = (S, ∗) be a semigroup. S is globally idempotent iff idS
is non-degenerate.

Let f : S → T be a map, and let T = (T, ·) be a semigroup. Noticing
that (MT ◦ f)L = LT ◦ f and (MT ◦ f)R = RT ◦ f , one obtains the following
result and its corollary (also using Lemma 51).

52 Lemma Let S be a set and let T = (T, ·) be a semigroup. Let f : S →
T be a map. f is a non-degenerate map iff MT ◦ f : S → |TrHull(T)| is
translation non-degenerate.

53 Corollary Let S = (S, ∗) be a globally idempotent semigroup. Then,
MS : S → |TrHull(S)| is translation non-degenerate.

Let us state for a later use the following two easy lemmas.

54 Lemma Let S,T,U be semigroups. Let S
f−→ T and T

g−→ U be non-
degenerate homomorphism of semigroups. Then, so is S

g◦f−−→ U.

55 Lemma Let M = (M, ∗, 1) and N = (N, ∗, 1) be monoids and let f : M→
N be a homomorphism of monoids. Then, |f | : (M, ∗) → (N, ∗) is a non-
degenerate homomorphism of semigroups.

56 Theorem Let S = (S, ∗) and T = (T, ·) be semigroups, with T non-
degenerate. Let f : S→ |TrHull(T)| be a homomorphism of semigroups which
is translation non-degenerate. Then, there is a unique homomorphism of
monoids f ] : TrHull(S) → TrHull(T) such that |f ]| ◦ MS = f . Moreover
|f ]| : |TrHull(S)| → |TrHull(T)| is also translation non-degenerate.
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Proof: Let s ∈ S. Then, MS(L(s)) = (LS(L(s)),RS(L(s))). Let s′ ∈ S.
Then, LS(L(s))(s′) = L(s)∗s′ = L(s∗s′) = L(LS(s)(s′)) so that LS(L(s)) =
L ◦ LS(s). Also RS(L(s))(s′) = s′ ∗ L(s) = R(s′) ∗ s = RS(s)(R(s′)) so that
RS(L(s)) = RS(s) ◦ R. Therefore, MS(L(s)) = (L ◦ LS(s),RS(s) ◦ R) =
(L,R) ?MS(s). Similarly, MS(R(s)) = (L,R) ?MS(s).

Assume that f ] exists. Then, for each (L,R) ∈ TrHull(S), s ∈ S

and t ∈ T , fL(L(s))(t) = f ]L(MS(L(s)))(t) = f ]L((L,R) ◦ MS(s))(t) =

f ]L(L,R)(f ]L(MS(s))(t)) = f ]L(L,R)(fL(s)(t)). In a way similar, fR(R(s))(t) =

f ]R(L,R)(fR(s)(t)). Since f is non-degenerate, it follows that f ] is unique.
Now let (L,R) ∈ TrHull(S). Let u ∈ T . Then there are s ∈ S and

t ∈ T such that u = fL(s)(t). Define f ]L(L,R)(u) := fL(L(s))(t). There
are also r ∈ S and v ∈ T such that u = fR(r)(v), and one also defines
f ]R(L,R)(u) := fR(R(r))(v).

To be well-defined one has to check that for each (L,R) ∈ TrHull(S) if
fL(s)(t) = fL(s′)(t′), then fL(L(s))(t) = fL(L(s′))(t′) and for each (L,R) ∈
TrHull(S) if fR(s)(t) = fR(s′)(t′), then fR(R(s))(t) = fR(R(s′))(t′).

Now let (L,R) ∈ TrHull(S). Assume that fR(s)(t) = fR(s′)(t′). Let
u ∈ S, v ∈ T . Then,

fR(R(s))(t) · fL(u)(v) = fR(u)(fR(R(s)))(t) · v
= fR(R(s) ∗ u)(t) · v
= fR(s ∗ L(u))(t) · v
= fR(L(u))(fR(s)(t)) · v
= fR(L(u))(fR(s′)(t′)) · v
= fR(s′ ∗ L(u))(t′) · v
= fR(R(s′) ∗ u)(t′) · v
= fR(u)(fR(R(s′))(t′)) · v
= fR(R(s′))(t′) · fL(u)(v).

(38)

Since f is non-degenerate, this is equivalent to fR(R(s))(t)·w = fR(R(s′))(t′)·
w for each w ∈ T , and since T is both left and right non-degenerate,
fR(R(s))(t) = fR(R(s′))(t′). Consequently, f ] is well-defined.

One observes that f ]L(MS(a))(u) = f ]L(MS(a))(fL(s)(t)) = fL(LS(a)(s))(t) =
fL(a ∗ s)(t) = fL(a)(fL(s)(t)) = fL(a)(u) when u = fL(s)(t), that is,
f ]L ◦MS = fL and also f ]R(MS(a))(u) = fR(a)(u) when u = fR(s)(t), that
is, f ]R ◦MS = fR. Consequently, f ] ◦MS = f .

Now let us check that for each (L,R) ∈ TrHull(S), (f ]L(L,R), f ]R(L,R)) ∈
TrHull(T). One has f ]L(L,R)(u·v) = f ]L(L,R)(fL(s)(t)·v) = f ](L,R)(fL(s)(t·
v)) = fL(L(s))(t · v) = fL(L(s))(t) · v = f ]L(L,R)(u) · v when u = fL(s)(t),
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and similarly f ]R(L,R)(u · v) = u · f ]R(L,R)(v) when v = fR(s)(t). Let
u = fR(s)(t) and u′ = fL(s′)(t′). Then,

f ]R(L,R)(u) · u′ = fR(R(s))(t) · u′
= t · fL(R(s))(u′)
= t · fL(R(s))(fL(s′)(t′))
= t · fL(R(s) ∗ s′)(t′)
= t · fL(s ∗ L(s′))(t′)
= t · fL(s)(fL(L(s′)(t′)))

= t · fL(s)(f ]L(L,R)(u′))

= fR(s)(t) · f ]L(L,R)(u′)

= u · f ]L(L,R)(u′).

(39)

Finally let us check that f ] is a homomorphism: let (L,R), (L′, R′) ∈ TrHull(S).
Let s ∈ S and t ∈ T . Then,

f ]L(L′ ◦ L,R ◦R′)(fL(s)(t)) = fL(L′(L(s)))(t)

= f ]L(L′, R′)(fL(L(s))(t))

= f ]L(L′, R′)(f ]L(L,R)(fL(s)(t)).

(40)

Likewise one also has f ]R(L′◦L,R◦R′)(fR(s)(t)) = f ]R(L,R)(f ]R(L′, R′)(fR(s)(t)).
Consequently, f ] is a homomorphism of semigroups. Since it evidently pre-
serves the units, it is in fact a homomorphism of monoids.

Let u ∈ T . Since f is translation non-degenerate, there are s ∈ S and
t ∈ T such that fL(s)(t) = u. Then, f ]L(MS(s))(t) = fL(s)(t) = u. The last
assertion now follows easily. �

By defining TrHull(f) := (MT ◦ f)] one obtains the

57 Corollary Let S and T be semigroups, with T non-degenerate. Let
f : S→ T be a homomorphism of semigroups which is non-degenerate. Then,
there is a unique homomorphism of monoids TrHull(f) : TrHull(S)→ TrHull(T)
such that the following diagram commutes in Sem. Moreover |TrHull(f)| is
translation non-degenerate.

|TrHull(S)|)
|TrHull(f)|

// |TrHull(T)|

S

MS

OO

f
// T

MT

OO
(41)
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Let Semnd be the subcategory of semigroups whose objects are the glob-
ally idempotent and non-degenerate semigroups, and Semnd(S,T) consist-
ing of all homomorphisms of semigroups which are non-degenerate. (From
Lemma 51 it follows that idS ∈ Semnd(S, S) and from Lemma 54 that com-
position of non-degenerate homomorphisms is a non-degenerate homomor-
phism.)

58 Corollary TrHull provides a functor from Semnd to Mon, and M =
(MS)S : J ⇒ |− | ◦TrHull : Semnd → Sem, where J : Semnd → Sem is the
canonical (non-full) embedding functor.

According to Lemmas 49 and 55, the forgetful functor |−| : Mon→ Sem
co-restricts to a functor still denoted | − | from Mon to Semnd. Note that
| − | : Mon → Semnd is still faithful because so is the embedding functor
Semnd ↪→ Sem.

Nevertheless M is not a natural transformation idSemnd
⇒ |− | ◦TrHull

from Semnd to Semnd because MS while translation non-degenerate, may
fail to be non-degenerate. Indeed, let s ∈ S and let (L,R) ∈ TrHull(S).
Then, MS(s) ? (L,R) = MS(R(s)). So if it happens that TrHull(S) contains
other multipliers than the inner ones, MS cannot be non-degenerate.

Nevertheless TrHull : Semnd →Mon is very close to be a left adjoint to
|−| : Mon→ Semnd as is shown by the next theorem (the only missing part
is that M cannot be a unit for this “adjunction”), and in any case, TrHull
may be thought to as a unitarization functor.

59 Theorem Let S = (S, ∗) be a globally idempotent and non-degenerate
semigroup and let M = (M, ∗, 1) be a monoid. Let f : S → |M| be a non-
degenerate homomorphism of semigroups. Then, there is a unique homo-

morphism of monoids Mult(S)
f[−→ M such that |f [| ◦MS = f .

Proof: The homomorphism of semigroups S = (S, ∗) f−→ |M| = (M, ∗)
M|M|−−−→

|TrHull(|M|)| is translation non-degenerate by Lemma 52 since f is non-
degenerate, and since (M, ∗) = |M| is non-degenerate by Lemma 49, The-
orem 56 tells us that there is a unique homomorphism of monoids gf :=
(M|M| ◦ f)] : TrHull(S) → TrHull(|M|) such that |gf | ◦MS = M|M| ◦ f . Ac-
cording to Lemma 1, MM : M→ TrHull(|M|) is an isomorphism, and thus one
may consider the homomorphism of monoids f [ := M−1

M ◦gf : TrHull(S)→ M.
It satisfies |f [| ◦MS = M−1

|M| ◦M|M| ◦ f = f . Uniqueness is easily checked. �

One may also use TrHull to define another category in order to turn
the translational hull construction into an adjoint. Let S,T,U be semi-
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groups, where T,U are non-degenerate. Let f : S→ |TrHull(T)| and g : T→
|TrHull(U)| be translation non-degenerate homomorphisms of semigroups.
Then, |g]| ◦ f : S→ |TrHull(U)| is of course a homomorphism of semigroups.
Let us check that it is translation non-degenerate too. One first notices
that (g] ◦ f)(s) = g](fL(s), fR(s)) = (g]L(fL(s), fR(s)), g]R(fL(s), fR(s))),
s ∈ S. Consequently, (g] ◦ f)L = g]L ◦ f and (g] ◦ f)R = g]R ◦ f . Now
let u ∈ U . One has to show that there are s ∈ S and v ∈ U such that
g]L(fL(s), fR(s))(v) = u. For this u ∈ U there are t ∈ T and v ∈ U such
that gL(t)(v) = u. Moreover there are s ∈ S and r ∈ T . Then, fL(s)(r) = t.
Whence gL(fL(s)(r))(v) = u. By definition of g], g](f(s))(gL(r)(v)) =
gL(fL(s)(r))(v) = gL(t)(v) = u. In a same way given u ∈ U , there are
s ∈ S and v ∈ U such that g]R(fL(s), fR(s))(v) = u.

Now let S be a globally idempotent semigroup. Then, according to Corol-
lary 53, MS : S→ |TrHull(S)| is translation non-degenerate.

By the above one can define the category MultSemnd whose objects are
globally idempotent, non-degenerate semigroups, MultSemnd(S,T) consists
of the homomorphisms of semigroups S→ |TrHull(T)| which are translation
non-degenerate, g • f := |g]| ◦ f , and idS := MS. (Note that MultSemnd is
not a subcategory of Sem.) The morphisms of MultSemnd are similar to
that used in [11] to define multiplier Hopf algebras.

According to Lemma 52 one has a functor E : Semnd → MultSemnd,
(S

f−→ T) 7→ (S
MT◦f−−−→ T). Since for each non-degenerate semigroup S, MS

is one-to-one it follows that the functor E is faithful and thus provides an
embedding of Semnd into MultSemnd.

Now one may also define a functor T̃rHull : MultSemnd →Mon as fol-

lows: T̃rHull(S
f−→ |TrHull(T)|) := TrHull(S)

f]−→ TrHull(T) and one recovers

TrHull : Semnd →Mon as Semnd
E−→MultSemnd

T̃rHull−−−−→Mon.
Let M = (M, ∗, 1), and N = (N, ∗, 1) be monoids and let M

f−→ N be
a homomorphism of monoids. Then, |f | : |M| = (M, ∗) → |N| = (N, ∗) is
non-degenerate by Lemma 55, and thus M|N| ◦ |f | : |M| → |Mult(|M|)| is
translation non-degenerate (Lemma 52). Since any monoid is automatically
globally idempotent and non-degenerate, it is clear that (M|N| ◦ |f |) may
be considered as a MultSemnd-morphism from |M| to |N|. So one may
consider the unique homomorphism of monoids (M|N| ◦ |f |)] : TrHull(|M|)→
TrHull(|N|) such that |(M|N|◦|f |)]|◦M|M| = M|N|◦|f |, that is, (M|N|◦|f |)] =

T̃rHull(M|N| ◦ |f |) = TrHull(|f |). Now let P be also a monoid and let
g : N→ P be a homomorphism of monoids. Then, (M|P| ◦ |g|)• (M|N| ◦ |f |) =
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|(M|P| ◦ |g|)]| ◦ (M|N| ◦ |f |) = M|P| ◦ |g| ◦ |f | = M|P| ◦ |g ◦ f |.
All of this provides a functor F : Mon→MultSemnd given by F (M

f−→

N) := |M| |f |−→ |N|
M|N|−−−→ |TrHull(|N|)|. One has the factorisation F =

Mon
|−|−−→ Semnd

E−→MultSemnd.

60 Proposition F is a left adjoint of T̃rHull .

Proof: Let M = (M, ∗, 1) be a monoid. Let S be a globally idempo-
tent and non-degenerate semigroup and let M

f−→ TrHull(S) be a homomor-
phism of monoids. Let us consider the homomorphism of monoids f̃ :=

TrHull(|M|)
M−1

M−−−→ M
f−→ TrHull(S). Then, |f̃ | ∈ Sem(|TrHull(|M|)|, |TrHull(S)|) =

MultSemnd(|TrHull(|M|)|, S) is such that |f̃ | ◦M|M| = |f |. Therefore, as |f |
is non-degenerate, f̃ = |f |] = T̃rHull(|f |). So by construction |T̃rHull(|f |)|◦
|MM| = |T̃rHull(|f |)| ◦M|M| = |f | as homomorphisms of semigroups and

thus T̃rHull(|f |) ◦MM = f as homomorphisms of monoids since the for-
getful functor is faithful. Now let φ ∈ MultSemnd(|TrHull(|M|)|, S) such
that T̃rHull(φ) ◦MM = f . Then T̃rHull(φ) = f ◦M−1

M = |f |] and thus
φ = |f |. Consequently, |f | ∈ MultSemnd(|M|,S) is the unique morphism
such that T̃rHull(|f |) ◦ MM = f . By direct inspection one checks that
M := (MM)M : idMon ⇒ T̃rHull ◦ F : Mon→Mon. �

6.2 The multiplier functor

Let C = (C,⊗C , I) be a monoidal category. Let S = (S, µ) be a semi-
group in C and let X be a set. For a map X

f−→ MultC(S), one defines
fL : X → ActS(C)((S, µ), (S, µ)) and fR : X → SAct(C)((S, µ), (S, µ)) by
fL := p1 ◦f and fR := p2 ◦f , where ActS(C)((S, µ), (S, µ))

p1←− MultC(S)
p2−→

SAct(C)((S, µ), (S, µ)) is the canonical pullback diagram.
A map X

f−→ MultC(S) is said to be multiplier non-degenerate when
C(I, S) = { fL(x) ◦ s : x ∈ X, s ∈ C(I, S) } = { fR(x) ◦ s : x ∈ X, s ∈
C(I, S) }.

61 Lemma Let f : X → C(I, S) be a map. f is non-degenerate iff X
f−→

C(I, S)
MC,S−−−→ MultC(S) is multiplier non-degenerate.
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Proof: One first notes that (MC,S ◦ f)L = LC,S ◦ f and (MC,S ◦ f)R =
RC,S ◦ f . Since for each x ∈ X and s ∈ C(I, S), f(x) •µ s = Lf(x) ◦ s and
s •µ Rf(x) = f(x) ◦ s, the expected result follows easily. �

62 Theorem Let S = (S, µS) be a semigroup in C = (C,⊗C , I) and let
T = (T, µT ) be a semigroup in D = (D,⊗D, J). Let us assume that the
convolution semigroup ConvJ(T) is non-degenerate, and T is concrete.

Let f : ConvI(S) → (MultD(T), ?) be a homomorphism of semigroups
which is translation non-degenerate. Then, there is a unique homomorphism
of monoids fM : MultC(S)→ MultD(T) such that |fM |◦MC,S = f . Moreover,
|ConcD|◦f : ConvI(S)→ |TrHull(ConvJ(D))| is multiplier non-degenerate and
(|ConcD(T)| ◦ f)] ◦ ConcC(S) = ConcD(T) ◦ fM .

Proof: Preambule: let (L,R) ∈ MultC(S) and let s ∈ C(I, S). Then,
MC,S(L ◦ s) = (L ◦ Ls, Rs ◦ R) because LL◦s = L ◦ Ls and RL◦s = Rs ◦ R.
ThereforeMC,S(L ◦ s) = (L,R) ?MC,S(s). Also,MC,S(R ◦ s) = (Ls ◦L,R ◦
Rs) =MC,S(s) ? (L,R).

Now let us assume that the homomorphism fM : MultC(S) → MultD(T)
such that |fM | ◦ MC,S = f exists. Let (L,R) ∈ MultC(S) and s ∈ C(I, S).
Then,

fL(L ◦ s) = fML (MC,S(L ◦ s))
= fML ((L,R) ?MC,S(s))
= fML (L,R) ◦ fML (MC,S(s))
= fML (L,R) ◦ fL(s).

(42)

Now let t ∈ D(J, T ). Then, fL(L◦s)◦t = (fML (L,R)◦fL(s))◦t = fML (L,R)◦
(fL(s)◦t). So if g : MultC(S)→ MultD(T) is a homomorphism such that |fM |◦
MC,S = f , then for each t ∈ D(J, T ), each s ∈ C(I, S), gL(L,R)◦(fL(s)◦t) =
fML (L,R) ◦ (fL(s) ◦ t). Since f is assumed non-degenerate, this is equivalent
to the fact that for each u ∈ D(J, T ), gL(L,R) ◦ u = fML (L,R) ◦ u. Since
ConvJ(T) is assumed non-degenerate, it follows that gL(L,R) = fML (L,R)
which guarantees uniqueness of fML . Similarly, one obtains uniqueness of
fMR , and so that of fM .

Let (L,R) ∈ MultC(S) and let u ∈ D(J, T ). Define Gf (L,R)(u) :=
fL(L◦s)◦ t when u = fL(s)◦ t, and define Df (L,R)(u) := fR(R◦s)◦ t when
u = fR(s) ◦ t.

Let us check that both Gf (L,R)(u) and Df (L,R)(u) are well-defined.
So let s, s′ ∈ C(I, S) and t, t′ ∈ D(J, T ) such that fL(s) ◦ t = fL(s′) ◦ t′. Let

35



u ∈ C(I, S) and v ∈ D(J, T ). Then,

(fR(u) ◦ v) •µT (fL(L ◦ s) ◦ t) = D(J, fR(u))(v) •µT (fL(L ◦ s) ◦ t)
= v •µT D(J, fL(u))(fL(L ◦ s) ◦ t)
= v •µT (fL(u) ◦ fL(L ◦ s) ◦ t)
= v •µT (fL(u •µS (L ◦ s)) ◦ t)
= v •µT (fL(u •µS C(I, L)(s)) ◦ t)
= v •µT (fL(C(I,R)(u) •µS s) ◦ t)
= v •µT (fL((R ◦ u) •µS s) ◦ t)
= v •µT (fL(R ◦ u) ◦ fL(s) ◦ t)
= v •µT (fL(R ◦ u) ◦ fL(s′) ◦ t′)
= v •µT (fL((R ◦ u) •µS s′) ◦ t′)
= v •µT (fL(C(I,R)(u) •µS s′) ◦ t′)
= v •µT (fL(u •µS C(I, L)(s′)) ◦ t′)
= v •µT (fL(u •µS (L ◦ s′)) ◦ t′)
= v •µT (fL(u) ◦ fL(L ◦ s′) ◦ t′)
= v •µT (D(J, fL(u))(fL(L ◦ s′) ◦ t′))
= D(J, fR(u))(v) •µT (fL(L ◦ s′) ◦ t′)
= (fR(u) ◦ v) •µT (fL(L ◦ s′) ◦ t′).

(43)
Since f is non-degenerate, this means that for each w ∈ D(J, T ), w •µT
(fL(L ◦ s) ◦ t) = w •µT (fL(L ◦ s′) ◦ t′) and since ConvJ(D) is non-degenerate,
fL(L ◦ s) ◦ t = fL(L ◦ s′) ◦ t′), and Gf (L,R)(u) is well-defined. Likewise
Df (L,R)(u) is well-defined.

Now let us show that (Gf (L,R), Df (L,R)) ∈ TrHull(ConvJ(T)). Let
u, v ∈ D(J, T ). Let s ∈ C(I, S) and t ∈ D(J, T ) such that u = fL(s) ◦ t.
Then,

Gf (L,R)(u •µT v) = G(L,R)((fL(s) ◦ t) •T v)
= Gf (L,R)(D(J, fL(s))(t) •µT v)
= Gf (L,R)(D(J, fL(s))(t •µT v))
= Gf (L,R)(fL(s) ◦ (t •µT v))
= fL(L ◦ s) ◦ (t •µT v)
= D(J, fL(L ◦ s)(t •µT v)
= D(J, fL(L ◦ s))(t) •µT v
= (fL(L ◦ s) ◦ t) •µT v
= Gf (L,R)(u) •µT v.

(44)

Likewise Df (L,R)(u •µT v) = u •µT Df (L,R)(v), u, v ∈ D(J, T ).
Let u, u′ ∈ D(J, T ) and let s, s′ ∈ C(I, S), t, t′ ∈ D(J, T ) such that
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u = fR(s) ◦ t and u′ = fL(s′) ◦ t′. Then,

D(L,R)(u) •µT u′ = (fR(R ◦ s) ◦ t) •µT u′
= D(J, fR(R ◦ s))(t) •µT u′
= t •µT D(J, fL(R ◦ s))(u′)
= t •µT (fL(R ◦ s) ◦ u′)
= t •µT (fL(R ◦ s) ◦ fL(s′) ◦ t′)
= t •µT (fL((R ◦ s) •µS s′) ◦ t′)
= t •µT (fL(C(I,R)(s) •µS s′) ◦ t′)
= t •µT (fL(s •µS C(I, L)(s′)) ◦ t′)
= t •µT (fL(s •µS (L ◦ s′)) ◦ t′)
= t •µT (fL(s) ◦ fL(L ◦ s′) ◦ t′)
= t •µT D(J, fL(s))(fL(L ◦ s′) ◦ t′)
= D(J, fR(s))(t) •µT (fL(L ◦ s′) ◦ t′)
= (fR(s) ◦ t) •µT G(L,R)(u′)
= u •µT G(L,R)(u′).

(45)

Consequently, (G(L,R), D(L,R)) ∈ TrHull(ConvJ(D)). By the concreteness
assumption then so exists fM (L,R) ∈ MultD(T) such thatD(J, fM (L,R)) =
(Gf (L,R), Df (L,R)), that is, for each u ∈ D(J, T ), fML (L,R)◦u = Gf (L,R)(u)
and fMR (L,R) ◦ u = Df (L,R)(u).

Let us assume that for each (L,R) ∈ MultC(S) is chosen fM (L,R) ∈
MultD(T) as above. One then defines a map fM : (L,R) 7→ fM (L,R). Let
a ∈ C(I, S) and let u = fL(s) ◦ t ∈ D(J, T ) for s ∈ C(I, S) and t ∈ D(J, T ).
Then,

fML (MC,S(a)) ◦ u = G(La, Ra)(fL(s) ◦ t)
= fL(La ◦ s) ◦ t
= fL(a •µS s) ◦ t
= fL(a) ◦ fL(s) ◦ t
= fL(a) ◦ u.

(46)

By non-degeneracy of ConvJ(T), fML (MC,S(a)) = fL(a). Similarly, fMR (MC,S(a))◦
u = fR(a) ◦ u. One so obtains that fM ◦MC,S = f .

Let (L,R), (L′, R′) ∈ MultC(S) and let u, t ∈ D(J, T ), s ∈ C(I, S) such
that fL(s) ◦ t = u. Then,

fML ((L′, R′) ? (L,R)) ◦ u
= fML (L′ ◦ L,R ◦R′) ◦ fL(s) ◦ t
= fL(L′ ◦ L ◦ s) ◦ t
= fML (L′, R′) ◦ fL(L ◦ s) ◦ t
= fML (L′, R′) ◦ fML (L,R) ◦ fL(s) ◦ t
= fML (L′, R′) ◦ fML (L,R) ◦ u.

(47)
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By non-degeneracy of ConvJ(T), it then follows that fML ((L′, R′) ? (L,R)) =
fML (L′, R′)◦fML (L,R). Similarly, fMR ((L′, R′)?(L,R)) = fMR (L,R)◦fMR (L′, R′).
Consequently, fM ((L′, R′)?(L,R)) = fM (L′, R′)?fM (L,R). Finally, since it
quite clear that fM (idS , idS) = (idT , idT ), fM ∈Mon(MultC(S),MultD(T)).

The remaining assertion is checked by direct inspection. �

63 Definition Let IntSemnd be the subcategory of IntSem consisting of
those objects (C,S) with ConvC(S) globally idempotent and non-degenerate,
and morphisms (F, f) : (C,S) → (D,T) such that Conv(F, f) : ConvC(S) →
ConvD(T) is non-degenerate.

Let concIntSemnd be the full subcategory of IntSemnd spanned by the
concrete semigroup objects.

64 Remark By definition, Conv : IntSem→ Sem restricts and co-restricts
as a functor Convnd : IntSemnd → Semnd.

65 Proposition There is a functor Mult : concIntSemnd →Mon such that
Mult(C, S) = MultC(S).

Proof: Let (F, f) ∈ concIntSemnd((C, S), (D,S)). It suffices to define
Mult(F, f) := (MD,T ◦ Conv(F, f))M : MultC(S) → MultD(T) using Theo-
rem 62. �

Let Conc := (ConcC(S))(C,S)∈ObconcIntSemnd
. Using Theorem 62, one

easily shows that Conc is a natural transformation Mult ⇒ TrHull ◦Convnd
from concIntSemnd to Mon. As a consequence of the above lemma, the
following diagram commutes up to the natural epimorphism Conc.

IntSemnd
TrHull◦Convnd//Mon

concIntSemnd
?�

OO

Mult

55 (48)

References

[1] Borceux, F. (1994). Handbook of Categorical Algebra: Volume 2, Cate-
gories and Structures. Cambridge: Cambridge University Press.

[2] Böhm, G., and Lack, S. "A category of multiplier bimonoids." Applied
Categorical Structures, vol. 25 (2017), pp. 279–301.

38



[3] Busby, R. C. "Double centralizers and extensions of C∗-algebras."
Transactions of the American Mathematical Society, vol. 132 (1968),
pp. 79-99.

[4] Clifford, A. H., and Preston, G. B. (1961). The algebraic theory of semi-
groups. AMS surveys.

[5] Mac Lane, S. (2013). Categories for the working mathematician (Vol.
5). Springer Science & Business Media.

[6] Palmer, T. W. (1994). Banach Algebras and the General Theory of ∗-
Algebras: Volume 1, Algebras and Banach Algebras. Cambridge: Cam-
bridge university press.

[7] Petrich, M. "The translational hull in semigroups and rings." Semigroup
Forum, vol. 1 (1970), pp. 283-360.

[8] Poinsot, L. "Hilbertian (function) algebras." Communications in Alge-
bra, vol. 48 (2020), pp. 961-991.

[9] Ryan, R. A. (2013). Introduction to Tensor Products of Banach Spaces.
New York, USA: Springer Science & Business Media.

[10] Street, R. (2007). Quantum groups. Cambridge: Cambridge University
Press.

[11] Van Daele, A. "Multiplier Hopf algebras." Transactions of the American
Mathematical Society, vol. 342 (1994), pp. 917-932.

[12] Wang, J.-K. "Multipliers of commutative Banach algebras." Pacific J.
Math., vol. 11 (1961) no. 4, pp. 1131–1149.

39


