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An analysis of optimal segmented flight design in a rotary dryer

In this paper, an analysis of the optimal design for two-segmented flight is performed with the aim to obtain some practical recommendations for the design of a rotary dryer. Using a geometrical model, validated with experimental results, flight loading and unloading are studied over the range of every possible angle between the flight segments. Maximum volume carried out by the flight, the maximum discharging angle and the mean falling height of material are computed for all configurations. Influence of size ratio between segments and drum radius are also investigated. By determining the curtain filling degree and the cumulative transfer area of material over one drum revolution, we estimate what the best flight design is, in order to maximise the contact surface between material and air flow necessary to increase the dryer performance.

Introduction

Rotary dryers are widely used in industrial processes to dry particulate solids [START_REF] Fidaros | Numerical modelling of flow and transport processes in a calciner for cement production[END_REF][START_REF] Hui | Food Drying Science And Technology: Microbiology, Chemistry, Applications[END_REF][START_REF] Mujumdar | Handbook of Industrial Drying[END_REF]. This kind of dryer is made of a rotating tube that can be slightly inclined to induce solid flow in the longitudinal direction. Wet granular material is usually injected into the dryer through a hot temperature air stream. Due to the tube rotation, the air stream, the presence of flights and a possible drum slope, the granular material progressively moves to the drum exit.

The hot stream provides the heat required for vaporisation of the water content in the granular material. To promote contact between the solid and the air stream, the material is usually lifted with flights disposed all around the interior lateral surface of the tube. According to the technological configuration of the system, the flights can also be This is accepted version of the paper: "An analysis of optimal segmented flight design in a rotary dryer" by Franck Lominé , Mustapha Hellou and Yves Roques published in Powder Technology 407 (2022) 117594 See https://doi.org/10.1016/j.powtec.2022.117594 used through a positive or negative slope to modify the transverse movement of the material. On the whole, the movement of solid particles inside the dryer can be decomposed into successive cascading steps [START_REF] Glikin | Transport of solids through flighted rotating drums[END_REF][START_REF] Hellou | Theoretical description of the motion of a particle in rotary dryer[END_REF].

Improving rotary dryer design to reduce power consumption and provide a better quality control of the final product, is of major interest to industries dealing with such equipments. For this reason, rotary dryers have been and are still widely studied theoretically [START_REF] Glikin | Transport of solids through flighted rotating drums[END_REF][START_REF] Hellou | Theoretical description of the motion of a particle in rotary dryer[END_REF][START_REF] Schofield | Rotary driers and coolers for granular fertilizers[END_REF][START_REF] Van | Modelling the hold up of lifters in rotary dryers[END_REF][START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF], experimentally [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Abouzeid | A study of the hold-up in rotary drums with discharge end constrictions[END_REF][START_REF] Lisboa | A study of particle motion in rotary dryer, Brazil[END_REF][START_REF] Njeng | Effect of lifter shape and operating parameters on the flow of materials in a pilot rotary kiln: part I experimental RTD and axial dispersion study[END_REF] and numerically [START_REF] Kwapinska | Continuous versus discrete modelling of heat transfer to agitated beds[END_REF][START_REF] Geng | Numerical simulation on mixing kinetics of slender particles in a rotary dryer[END_REF][START_REF] Benhsine | Influence of flight shape on discharging profiles of granular material in rotary dryer[END_REF]. Design of dryers is very important to control the drying performance. Nevertheless, giving general recommendations on the design is not an easy step because of the influence of the variety of geometrical and physical parameters, and also of the material properties.

Some studies focus on granular material behaviour inside such drums [START_REF] Khakhar | Transverse flow and mixing of granular materials in a rotating cylinder[END_REF][START_REF] Kwapinska | Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes[END_REF][START_REF] Liu | DEM study on the surface mixing and whole mixing of granular materials in rotary drums[END_REF][START_REF] Hu | Study of the critical angles of granular material in rotary drums aimed for fast DEM model calibration[END_REF]. Others try to analyse and describe thermal effects during such process [START_REF] Kwapinska | Continuous versus discrete modelling of heat transfer to agitated beds[END_REF][START_REF] Chaudhuri | Experimentally validated computations of heat transfer in granular materials in rotary calciners[END_REF][START_REF] Leguen | Drying and heating modelling of granular flow: application to the mix-asphalt processes[END_REF][START_REF] Nafsun | Heat transfer experiments in a rotary drum for a variety of granular materials[END_REF]. The last are concerned with dryer optimisation based on geometrical considerations and basic material properties such as repose angle. Among this last group of studies, some are more focused on mean residence time (MRT) prediction inside a rotary drum [START_REF] Hellou | Theoretical description of the motion of a particle in rotary dryer[END_REF][START_REF] Ajayi | Pseudophysical compartment modeling of an industrial rotary dryer with flighted and unflighted sections: solids transport[END_REF], while others are more interested in how flight shape influences cascading patterns through falling height and volume of material carried and released by the flights. Our paper belongs to this last category of studies.

Hodgson and Keast [START_REF] Hodgson | Rotary dryer flight design[END_REF] performed a series of experiments to determine the unloading rate of flights of an industrial sugar dryer. They measure the time it takes to fill a collection vessel at different locations to determine the unloading profile of the flights. Baker [START_REF] Baker | The design of flights in cascading rotary dryers[END_REF] presented a geometrical model to estimate solid holdup within two types of flights (angled flight and extended-circular flight) depending on the dryer, the flight geometry and dynamic angle of repose of the material. Then he calculated, with his model, the maximum number of flights that can be disposed on the circumference of the drum by ensuring flight loading at full capacity.

Kelly [START_REF] Kelly | Flight design in rotary dryers[END_REF] calculated the unloading rate of flights and developed a theoretical flight geometry that would ensure uniform distribution of solids across the dryer. This profile is referred as "Equal Angular Distribution" (EAD) profile.

Wang et al. [START_REF] Wang | A funtadamental study on particle transport through rotary dryers for flight design and system optimisation[END_REF] developed a geometrical model for the unloading of a two segment flight and expressed the cross-sectional area of the solid in the flight as a function of the flight angular position, the angular velocity of the drum and the material repose angle. They used this model to determine the discharging rate and the retention time as a function of the operating parameters.

Revol et al. [START_REF] Revol | The design of flights in rotary dryers[END_REF] developed correlations to determine the solid holdup in a flight constituted with two or three segments. These correlations were used to calculate the discharging rate of flights. A comparison of their results with experimental data shows relatively good agreement in flight holdup while significant difference between model prediction and experimental results were observed for the discharging rate. According to the authors, the discrepancy between prediction and measurement suggests that the dynamic angle of repose is not independent of the shape of the flight, even if it has a smaller influence on the flight holdup than the discharging rate.

Lee and Sheehan [START_REF] Lee | Development of a geometric flight unloading model for flighted rotary dryers[END_REF] compared the prediction of a geometric flight unloading model for a two-segments flight with experimental data. Using a high-speed camera, the authors measured the mean surface angle of the solid in the flight and ran their model with this value. The comparison of flight discharging rate shows quite a good agreement between experiment and model prediction. Model accuracy is highly dependent on an accurate measurement of the mean surface angle of the materials. Moreover, image analysis showed that, under some conditions, the unloading process is discontinuous and that the surface angle of the material is not constant during the unloading process.

Sunkara and co-workers [START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF] derived a geometric model for rectangular shaped flights to predict flight holdhup and discharging rate. They investigated the influence of the flight length ratio on the dynamic angle, the flight holdup and the cascading rate of the flight. They showed that the flight length ratio, in the studied range, has no influence on the dynamic angle while it greatly influences flight holdup and discharging rate. High initial cascading rates were observed at small flight length ratios, but the range of discharging angles was shorter than it was at high flight length ratios. They compared their model prediction with experimental results and showed that good agreement is observed. This model was then extended [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF] to estimate the total particle surface area of the curtains using a geometrical approach of the curtain height. This work is limited to flights with 2 segments with an angle of 90 • between them.

All previous studies have illustrated that dryer flights, and more specifically their design, are critical elements to consider when designing a rotating dryer. Indeed they can significantly influence the drying performance. Globally, to promote gas-solid contact, the particulate solids should rain over a large angle range or rotation [START_REF] Revol | The design of flights in rotary dryers[END_REF].

This paper aims to further develop previous studies performed in the field of optimal flight design. Using a geometrical model like Revol [START_REF] Revol | The design of flights in rotary dryers[END_REF] and Sunkara [START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF], we extend previous works by investigating the interaction of material with two segmented flight shape of arbitrary angle between segments. As in previous works, the influence of air flow is not considered here. More specifically, we investigate the flight holdup, the discharging angle range and the falling height by varying segment length ratio, the angle between these segments and the connecting angle of the flight with the drum wall. Influence of size ratio between flight segments and drum radius is also investigated. The paper is organised as follows. In the first part, we present the geometrical model and its assumptions. Then, we validate this model with an experimental set-up allowing us to measure the volume of material in flights using image analysis. Predictions of our model are then compared with experimental results obtained in this work and also with ones found in the literature. Finally, an analysis of the optimal flight shape is conducted and conclusions of this work are given.

Geometrical model

We consider a drum of radius R and length L with N f identical flights as described in Fig. 1. The drum rotates at angular velocity w. The flight angular position is denoted θ whereas the angular position of flight tip is noted δ. Distance between a flight extremity and the cylinder axis in a Fig. 1. Schematic view of the drum section with flights. cross section (i.e the radius of the circle described by the flight tip) is R 0 .

Volume of material at the bottom of the drum

In this paper, the material inside the drum is a granular material which will be considered as a continuous medium. Therefore, the paper results may apply to granular materials for which the particle size is relatively small compared to the radius of the drum or the length of the flight segments.

The drum is partially filled with material with repose angle γ f = atan (μ), where μ is the kinematic friction angle. The drum filling ratio is defined as: χ = Vmaterial πR 2 L = Smaterial πR 2 , where V material and S material are respectively the volume occupied by the material and the cross-sectional area of the material. The relation between angle β (see Fig. 1) and χ is given by:

χ = 1 2π (β -sinβ) (1)
The maximum height of material at the bottom of the drum, measured perpendicularly to the material surface, is

h mat = R(1 -cos β 2 )
. It exists three different states of the drum loading that can be observed according to the position of the flight when it starts to discharge [START_REF] Ajayi | Pseudophysical compartment modeling of an industrial rotary dryer with flighted and unflighted sections: solids transport[END_REF][START_REF] Matchett | Particle residence times in cascading rotary dryers part 2 -application of the two-stream model to experimental and industrial data[END_REF]. If the flight starts to discharge when it is in the upper half of the drum, it is said to be under-loaded. In this case, time spent by material in the airborne phase is quite reduced. It has been suggested that a dryer is operating in an under-loaded condition when the flights are not filled to their full capacity. If the drum loading increases, then flight starts to discharge sooner. The drum is said to be design-loaded when the unloading of the flight begins at δ = 0 • . In design-loaded case, it is widely assumed that the amount of material in the airborne phase is maximum [START_REF] Ajayi | Pseudophysical compartment modeling of an industrial rotary dryer with flighted and unflighted sections: solids transport[END_REF]. If the filling ratio of the drum is further increased, the drum is classified as over-loaded. There are more solids than required to completely fill the flight. In such case, the flight begins to discharge when it disengages from the material bed at an angle δ 0 . Nevertheless the volume of material carried-up by the flight is not increased. It is admitted that when δ < 0, material falling from the flight directly roll on the material bed and therefore do not contribute to amount of material in the airborne phase. In this paper, as in the work of Sunkara et al. [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF], we assume that the drum operates in either design or over-loaded conditions in a sense that flight is loaded at its full capacity (i.e (R -R 0 ) ≤ h mat ). Due to the drum revolution, flights pass through the material bed and load a quantity of material. A flight disengages from the solid bed at an angle δ 0 when its extremity leaves the material bed (see Fig. 1):

δ 0 = - ⎛ ⎜ ⎝ π 2 -γ f -arccos ⎛ ⎜ ⎝ Rcos β 2 R 0 ⎞ ⎟ ⎠ ⎞ ⎟ ⎠ (2) 
The corresponding angular position of the flight is denoted θ 0 = θ δ=δ0 . Due to previous considerations, we assume that a flight begins to discharge and releases material in the airborne phase when the position of the flight extremity is δ = 0. The corresponding value of θ will be denoted θ ′ 0 = θ δ=0

Volume of material in segmented flights

We consider a flight as described in Fig. 2. It is composed of two segments of length l 1 and l 2 . The first segment forms an angle α 1 with the drum wall. Angle between the two segments is α 2 . The distance between flight extremity (point C) and cylinder axis (i.e. radius of the circle described by the tip of the flight) is given by:

R 0 = ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ R 2 + l 2 1 + l 2 2 + 2R(l 2 sin(α 1 + α 2 ) -l 1 sinα 1 ) -2l 1 l 2 cosα 2 √ (3) 
The angular position of the flight tip is:

δ = θ + arcsin [ - 1 R 0 l 2 cos(α 2 + α 1 ) + l 1 cos(α 1 ) ] (4) 
The volume of material in lifters is a function of both the geometry of the lifter and the position of that lifter θ. It also depends on the angle of repose of the material and the filling ratio χ of the dryer. As said previously, we assume that the value of χ is sufficient to guarantee that all flights will be loaded at their full capacity.

By balancing forces acting on the volume of material transported by a flight, Schofield and Glikin [START_REF] Schofield | Rotary driers and coolers for granular fertilizers[END_REF] showed that the dynamic repose angle γ p can be estimated with:

tanγ p = μ + R 0 w 2 g (cosδ -μsinδ) 1 -R 0 w 2 g (sinδ + μcosδ) (5) 
Eq. ( 5) is widely accepted in literature [START_REF] Hodgson | Rotary dryer flight design[END_REF][START_REF] Wang | A funtadamental study on particle transport through rotary dryers for flight design and system optimisation[END_REF][START_REF] Revol | The design of flights in rotary dryers[END_REF][START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF]. It has been reported to be valid up to Froude number Fr = w 2 R g = 0.4 [START_REF] Kelly | Dynamics of granular material rotary dryers and coolers[END_REF]. It should be noted that in the range of operating parameters that will be used in this paper, the variation between γ p and γ f remains quite small. Fig. 3 shows indeed the evolution of γ p /γ f with δ for different Froude number values and α 2 . The values of Fr correspond respectively to w = 1 rpm and 4 rpm for R = 0.5 m. Fig. 3 shows that the influence of α 2 on γ p remains quite small, especially for the value of angular velocity that will be used in this work (Fr = 0.00056).

The coordinates of points D and E in the local frame are expressed as:

x D = l 2 ; y D = 0 (6)

x E = x D -l 1 cosα 2 ; y E = l 1 sinα 2 (7) 
These coordinates are related to angles δ and η by the following relations:

x E = Rcos(θ -η) -R 0 cos(δ -η) ( 9 
)

y E = Rsin(θ -η) -R 0 sin(δ -η) ( 10 
)
The angle η between the local and global frames can be determined by solving equations ( 9) and [START_REF] Lisboa | A study of particle motion in rotary dryer, Brazil[END_REF]. The surface position of the material contained in flight is given by y = x tan(γ p -η). To determine the volume of material in a flight, we first need to calculate coordinates of intersection between material surface and the drum wall or a flight segment depending on wether the material is in contact with the drum wall or with a flight segment:

-the material comes in contact with the drum wall if

γ p - η > arctan ( yE xE
)

. Intersection coordinates are found by solving the following equation

(X A -X C ) 2 + (Y A -Y C ) 2 = x 2 A (1 + tan 2 (γ p -η)) (11) 
which leads to:

x A = -B A ± ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ B A -4A A C A √ 2A A ( 12 
)
with

A A = 1 + tan 2 ( γ p -η ) , B A = 2X C ( cosη -tan(γ p -η)sinη ) + 2Y C ( tan(γ p -η)cosη + sinη
) . Among these two solutions, we retain the one that satisfies:

y A = x A tan(γ p -η) > 0 (13) 
The cross sectional area occupied by the material in the flight is:

A F = R 2 2 (κ -sinκ) + 1 2 (x D y E + y A x E -x A y E ) (14) 
where κ = 2arcsin

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅ (xE-xA) 2 +(yE-yA) 2 √ 2R
) .

-the material comes in contact with the first segment DE at coordinates (x 1 ,y 1 ), if

γ p -η < arctan ( yE xE ) and ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ (x 1 -x E ) 2 + (y 1 -y E ) 2 √ < l 1 . If α 2 ∕ = π 2 , then: x 1 = -tan(α 2 )l 2 tan(γ p -η) + tanα 2 (15 
)

y 1 = -(x 1 -l 2 )tanα 2 (16) 
Else, if α 2 = π 2 , intersection coordinates are given by x 1 = x D = l 2 and

y 1 = tan(γ p -η)x D .
The cross sectional area occupied by the material is:

A F = 1 2 x D y 1 (17)

Maximum discharging angle of flight δ max

As illustrated in Fig. 4, δ max corresponds to the flight tip position where all material has left the flight. The corresponding flight position will be noted θ max . Contrary to δ 0 , it is not possible to determine analytically values of δ max for all flight configurations, since it depends on the dynamic repose angle γ p given by equation [START_REF] Hellou | Theoretical description of the motion of a particle in rotary dryer[END_REF], which in turn depends on δ (and so on δ max ). Maximum discharging angle δ max is given by:

δ max = π + γ p -α 2 + Ψ -ε (18)
where Ψ and ε are angles illustrated in Fig. 2 and given respectively by:

Ψ = arctan ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ l2 l1 sin(α 2 + ε) l2 l1 cos(α 2 + ε) + ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅ R 2 l 2 1 -2 R l1 sinα 1 + 1 √ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ and (19) 
ε = -arcsin ⎛ ⎜ ⎜ ⎜ ⎜ ⎝ R l1 cosα 1 ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ̅ R 2 l 2 1 -2 R l1 sinα 1 + 1 √ ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ (20) 
To obtain the maximum discharging angle, we can numerically solve equation ( 18).

Falling height of material

Assuming a vertical fall of material, we can calculate the falling height of solid leaving the flight according to the angular position of the flight. It has been shown that such an assumption is reasonable [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Blumberg | Transversale schüttgutbewegung und konvektiver stoffübergang in drehrohren teil 2: mit hubschaufeln[END_REF] and that it deviates from experimental results only for high Froude numbers due to the dispersion of the curtains in such a case [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF]. This will Fig. 4. Schematic view of angles δ 0 , δ max and δ B . The flight leaves the material bed at δ = δ 0 , it starts to discharge at angle δ = 0 • and is completely empty at angle δ max , angle which can be smaller or larger than δ B . Material leaving the flight can impact the material bed from δ = 0

• to δ ≤ δ B .
be illustrated in part 3 during validation of the model. Depending on the angular position δ, the drum filling ratio χ and the material repose angle γ f , particles leaving the flight can impact on the material bed at the bottom of the drum, on the drum wall or on another flight. Impact on other flights is rather complex to estimate particularly for flight geometries investigated in this paper. Moreover its influence acts only for large values of discharging angle and therefore on a small amount of material. For these reasons, interactions of material with flights are not considered in this work.

The falling material impacts the material bed for 0 < δ < δ B where δ B is the maximum angle for which a particle of the granular material leaving the flight can fall on the material bed located at the bottom of the drum, as described in Fig. 4.

δ B = π -arccos ( R R 0 sin( β 2 -γ f ) ) (21) 
Depending on the volume carried up by the flight, the material properties and the drum filling ratio, it is important to note that the maximum discharging angle of the flight δ max can be smaller or larger than δ B . This means that for certain configurations, the material leaving the flight only interacts with material bed at the bottom of the drum.

In this case (0 < δ < min[δ B , δ max ]), the falling height of the material is given by:

h f R = R 0 R (sinδ -cosδtanγ f ) + sin(β + ν) + cos(β + ν)tanγ f = cos β 2 cosγ f + R 0 R ( sinδ -cosδtanγ f ) (22) 
If δ > δ B and if the flight continues to discharge itself, material leaving the flight interacts with the drum periphery. In this case, the falling height is:

h f R = R 0 R sinδ - ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 1 - ( R 0 R ) 2 cos 2 δ √ (23)

Maximum number of flights

The number of flights in a rotary dryer should generally be as large as possible, in order to maximise the holdup and make the most effective use of the dryer volume [START_REF] Baker | The design of flights in cascading rotary dryers[END_REF]. For δ = 0, the corresponding flight is fully charged and the material comes in contact with the drum wall at point A. The maximum number of flights along the drum wall is directly related to the coordinates (X A , Y A ) of this point as described in Fig. 5. However, the optimum number of flights should guarantee that the top surface material in a flight should not intercept other flights.

Therefore, maximum number of flights N fmax can be safely estimated through:

N f max = floor ( 2π [ arctan ( Y A X A ) δ=δ0 -min [ δ; arctan ( Y D X D ) ; θ ] δ=0 ] -1 ) (24) 
While the maximum number of flights N fmax can be determined with Eq. ( 24), the number of active flights N fa can be expressed as:

N fa = N fmax × δ max /(2π).

Model implementation

Equations of this geometrical model have been implemented into a numerical program to simulate the holdup and discharge of material in the drum with N p flights rotating with speed w. This drum contains a granular material of repose angle γ f up to a drum filling ratio of χ. It allows us to investigate the optimal flight shape by varying the angle α 2 between the flight segments, the flight connecting angle α 1 , the length of each segment (l 1 and l 2 ), the maximum number of flights and the drum radius.

Analysis of optimal flight shape

Following analysis of Sunkara et al. [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF] we have assumed a 2D model, thus the flight has the same length L as the drum. Therefore, the volume of material in a flight i with angular position θ is

V Fi (θ) = A Fi (θ)L (25) 
where A Fi (θ) is the cross-sectional area occupied by the material in the flight. We can define f Fi (θ) as the ratio between the volume of material in flight i and the total volume of the drum. 

f Fi (θ) = A Fi (θ) πR 2 = m Fi (θ)
d(m Fi (θ)) dt = wρ b πR 2 L df Fi (θ) dθ (27) 
The dimensionless cascading rate c i (θ) = -dfFi(θ) dθ is the dimensionless volume of particles (i.e the number of particles) leaving flight i per unit of angle. To optimise the drying of a material, it is important to try to maximise the surface of exchange between hot gas and solid material. For this reason, we should consider the local transfer area A Ci of curtain i which can be seen as the number of particles of granular material in curtain i multiplied by the exchange surface of a particle [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF]. Therefore we have:

A Ci (θ) = 6m Ci (θ)
ρ s d p [START_REF] Lee | Development of a geometric flight unloading model for flighted rotary dryers[END_REF] where m Ci (θ) is the mass of material in curtain i when flight is at angular position θ, d p and ρ s are respectively the diameter of granular material particles and the density of the particles. Using the vertical free fall assumption, the time of fall between the flight extremity and the impact point, which can be considered as the retention time in the hot air stream, is [START_REF] Sherritt | The movement of solids through flighted rotating drums Part i: model formulation[END_REF]:

t f (θ) = 1 w ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2Fr h f (θ) R √ ( 29 
)
h f is the falling length given by Eqs. ( 22) and ( 23) depending on whether the falling material impacts the bed or the drum wall. Then, the filling degree of the curtain f Ci (θ) is:

f Ci (θ) = m Ci (θ) ρ b πR 2 L = ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2Fr h f (θ) R √ c i (θ) (30) 
Eq. ( 28) becomes [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF]:

A Ci (θ) LR = 3π ( ρ b ρ s )( D d p ) f Ci (θ) (31) 
Heat transfer due to lifting flights is directly related to the total particle surface area in all curtains [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Blumberg | Transversale schüttgutbewegung und konvektiver stoffübergang in drehrohren teil 2: mit hubschaufeln[END_REF][START_REF] Kamke | Computer simulation of a rotary dryer, Part II Heat Mass Trans[END_REF]]. An estimate of the dryer performance during a cascading cycle of one flight can therefore be achieved by considering summation of local transfer area A Ci over a cascading cycle during one revolution of the drum.

G Ci = 1 w ∫ θmax θ ′ 0 A Ci (θ) LR dθ = 3π ( ρ b ρ s )( D d p ) G ★ Ci ( 32 
)
with

G ★ Ci = 1 w ∫ θmax θ ′ 0 f Ci (θ)dθ (33) 
Since all flights of the drum will contribute during one drum revolution, the total cumulative filling degree of the curtain, considering contributions of all drum flights distributed along its periphery, can be estimated by the product of G Ci with the maximum number of flights. Thus:

ζ max = N f max × G Ci = 3π ( ρ b ρ s )( D d p ) ζ ★ max , with ζ ★ max = N f max × G ★ Ci . ζ max (or ζ ★ max
) can be assimilated to the cumulative transfer area of material carried by all flights during one drum revolution.

Discussions of the geometrical model approach

The model developed and presented in the previous sections is based on several assumptions. Despite the fact that they are quite reasonable, it is therefore important to emphasise them in order to understand the limitations and possible further developments of this model. The first assumption is that the material is a non-cohesive granular material with a dynamic repose angle given by Eq. ( 5). The material transported by a flight or located in the bed is considered to be a continuous medium. For this reason, as said previously, we assumed that the size of the particles constituting the granular material is relatively small compared to the drum radius and the length of flight segments. This allowed us to consider a flat surface material in bed and in each flight (segment AC in Fig. 2) respectively through Eqs. (1) and [START_REF] Geng | Numerical simulation on mixing kinetics of slender particles in a rotary dryer[END_REF]. Moreover, we assume that all particles are spherical.

Heat transfer is not addressed in this work. Nevertheless, as a first step to a more complex model that would include heat transfer, it can be interesting to analyse the influence of the assumptions made in this work. Heat transfer is usually analysed in terms of a volumetric heat transfer coefficient, which can be estimated or derived from the effective surface area of the particles in contact with the gas stream [START_REF] Kamke | Computer simulation of a rotary dryer, Part II Heat Mass Trans[END_REF][START_REF] Friedman | Studies in rotary dryer -Part I. Holdup and dusting[END_REF]. In this work, this surface, also called curtain area, is determined using the retention time of particles in the curtain [START_REF] Kamke | Computer simulation of a rotary dryer, Part II Heat Mass Trans[END_REF] based on the assumption of vertical free fall of particles from the flight tips. Particles can fall on the material bed or on the drum wall but the falling of material on the flights located out of the granular material bed is not considered in this work. Moreover we neglect the shielding effect of particles. This last one would tend to reduce the heat transfer coefficient. Since drag and lift forces are also not taken into account, their incorporation in such a model would increase falling time of particles which in turn would enlarge surface material in airborne phase in contact with air stream. This would lead to an increase of the heat transfer coefficient. However, if the temperature could not be considered as uniform over the entire drum cross section, the gas near curtains with high particle concentration would have lower temperature.

As the distribution of particles along drum axis is considered as uniform, the application of the model is limited to a cross section. The drum is assumed to be either design-loaded or over-loaded in a sense that a flight is loaded at its maximum capacity when it leaves the material bed. Moreover, due to the cyclical aspect of the loading and unloading phases during rotation of the drum, the volume of material inside the bed is kept constant during rotation cycle. This can be assimilated to a rotary dryer continuously supplied with material.

Model validation with experiment

In our knowledge, all experiments available in the literature, with two-segmented flights, report results with angles α 1 and α 2 of 90 • [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF].

No other angle has been studied especially for discharging profile. Some works have been done numerically [START_REF] Benhsine | Influence of flight shape on discharging profiles of granular material in rotary dryer[END_REF], but not for particles that were small enough to consider the material surface as flat. To validate our geometrical model and also the validity of the assumptions described previously in Section 2.8, we developed an experimental set-up to measure the volume of material carried up by two-segmented flights with different values of α 2 and ratio l 2 /l 1 .

The experimental device consists of a rotating cylinder of radius R = 0.15 m made of polyvinyl chloride. Length of cylinder accessible to material is 0.04 m and it can be closed with a plexiglass cover. Polylactic acid (PLA) flights can be placed on the inner circumference of the drum. In this work, in order to validate the model for one flight, we only use one flight. Acquisition is made using a video camera coupled with a triggering device at a framerate of 50 Hz.

To analyse images obtained from the camera, as illustrated in Fig. 6, we developed a python code using opencv library [START_REF] Bradski | The OpenCV Library[END_REF]. This permits to determine the volume of material in a flight at different angular positions. Moreover the falling height of material is estimated using ImageJ software [START_REF] Schneider | NIH Image to ImageJ: 25 years of image analysis[END_REF]. Different flight shapes have been tested: α 2 = 90 • , α 2 = 120 • , α 2 = 150 • and α 2 = 180 • and two values of the ratio l 2 / l 1 = 0.5, 1. We use quartz sand of diameter d = 0.6 mm and γ f = 36 • .

Flight holdup and discharging profiles

In a first step, we compared the flight holdup and the cascading rate predicted by our model with our experimental results and with ones obtained from literature [START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF]. In a same manner the predicted flight holdup for flights with different ratio l 2 /l 1 is presented in Fig. 8. Both figures show a good agreement between prediction of the geometrical model and experimental results.

The measured values of the holdup were used to evaluate the rate of variation in the flight filling degree. We compute the cascading rate c i as the opposite of the change in the flight filling degree over the corresponding change in the discharge angle. 

Falling height

Sunkara and co-workers [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF] reported measurements of mean falling height of material over discharging angle range for two values of angular speed w. According to the authors, experimental data can be represented with 10% error bars. Nevertheless, as explained previously, these experiments were limited to flights with α 2 = 90 • . We conducted a series of experiments to determine falling height of material for different values of α 2 . Length of particle trajectories were measured for different discharging angles. Errors were estimated using minimum and maximum values of trajectory lengths.

These results are presented in Fig. 10 in conjunction with the falling height predicted by the model and results of Sunkara et al. [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF]. It can be observed in Fig. 10 that good agreement is obtained between model prediction and our experimental results, especially for values of discharging angles below 100 • . Indeed, it is important to recall that one of the main assumptions of this model is that the falling trajectory is a vertical line, which is obviously not the case for a large discharging angle where granular material tends to hit the drum wall instead of falling straight down. Moreover, this also explains why predicted falling height is in the lower error range of our experiment. Fig. 10 also illustrates that predictions of our model deviate from results of Sunkara and co-workers [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF] for discharging angles larger than 100 • . Indeed, our model does not take into account the presence of other flights during the falling process. For this reason our experiments use only one flight which is not the case for experiments of [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF]. This impact with other flights is more likely to occur for large δ. For these reason, we can state that our model can overestimate the falling height at the end of the discharging profile if the drum is equipped with several flights. Nevertheless, the amount of material involved is quite limited relatively to the total mass of material released in the curtain, since it occurs at the end of the flight discharge.

It can also be seen in Fig. 10 that the inertial effect, that increases with angular speed w, tends to increase experimental falling height while it has no effect on predictions of geometrical model with the vertical fall assumption. As also observed by Sunkara [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF], this deviation is the result of a change in the trajectories of the curtains at higher Froude numbers.

To conclude, Fig. 10 illustrates that the falling height is correctly estimated with our model, despite the assumption of free vertical fall. Deviation with experimental data of [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF] can be explained for large values of δ. Nevertheless, their effects can be considered as relatively negligible and since h f will be used through the integration of curtain filling degree over discharging angle range, we can state that tendencies and results obtained in this work, even if they can be slightly overestimated, are correct.

Results

We have investigated the influence of the parameters of flight shape on the material holdup, the cascading rate and the dryer performance.

Influence of α 2 , l2 l1 and χ

First, we chose to investigate the case where the flights are attached perpendicularly to the wall (α 1 = 90 • ), since it is the most common case [START_REF] Lee | Development of a geometric flight unloading model for flighted rotary dryers[END_REF]. We performed several calculations by varying the angle α 2 for R/ l 1 = 10, R = 0.5 m, l 2 /l 1 = 1, χ = 10% and μ = 0.5. The dependency of the flight filling degree f Fi on α 2 is presented in Fig. 11. f Fi is plotted against flight tip angular position δ. As expected, as flight discharges itself, f Fi decreases with δ.

Moreover Fig. 11 shows that the angle between the two flight segments has important influence on the discharging profile of the flight. It should be noted that the initial volume of material in a flight f Fimax also depends on the angle between the segments. Fig. 12 represents maximum filling degree f Fimax of the flight as a function of α 2 such as l 2 / l 1 = 0.5, 1, 1.5, 2, χ = 10%, R/l 1 = 10 and R = 0.5 m. On the whole, we can observe that f Fimax increases with l 2 /l 1 and with α 2 except for large values of α 2 (greater than 140 • ). This behaviour is expected since the volume of material in flight is determined by the line inclined at angle γ p and passing through the flight extremity (segment AC in Fig. 2) [START_REF] Van | Modelling the hold up of lifters in rotary dryers[END_REF].

It can be observed that the maximum flight filling degree is obtained with angle α 2 between 120 • and 160 • . This figure also illustrates that the angle α 2 which allows the maximum flight filling degree tends to increase with the ratio l 2 /l 1 .

Fig. 13 shows the variation of the cascading rate c i in the range of α 2 60 • -180 • when the flight shape is described by It can be interesting to consider variation of δ 0 with α 2 . Fig. 14 illustrates that the angle δ 0 , for which the flight disengages from the bed, decreases with α 2 and increases with χ. Nevertheless, as explained before, the flight is assumed to release material in the curtain at an angle δ = 0 • which does not depend on α 2 nor χ. The dependency for different values of l 2 /l 1 are also presented in Fig. 14. Dependency of the terminal discharge angle of a flight δ max on α 2 is illustrated in Fig. 15. Fig. 15 shows clearly that δ max almost "linearly" decreases when α 2 increases from 60 • to 180 • . This can be explained by considering Eq. ( 18). Given a α 1 value, ε is fixed. When varying α 2 , variations of ψ remain small (at maximum 6.34 • in our case). So if we define a constant k = πε, Eq. ( 18) leads to δ max = k + ψ + γ p -α 2 . Since variations of γ p around γ f remain small, δ max can be roughly estimated with

l 2 /l 1 = 1, R/l 1 = 10,
δ max ≈ k + ψ + γ f -α 2 ,
where ψ and ε are given by Eqs. ( 19) and ( 20).

Variation range of δ max is quite important (from 30 • to 160 • ), which clearly illustrates that flight discharging angle range increases significantly when the position of flight extremity tends to be higher (lower value of α 2 ). It can also be noted that even if δ max increases with the aspect ratio l 2 /l 1 , it does not play an important role to increase δ max compared to α 2 . Since flight is loaded at its full capacity, δ max is obviously not dependent on χ.

The falling height of the particles is a quantity which deserves to be checked in order to improve the dryer performance. For example, the filling degree of the curtain depends on the rate of material released by the flight and also on the falling height h f given by Eqs. [START_REF] Ajayi | Pseudophysical compartment modeling of an industrial rotary dryer with flighted and unflighted sections: solids transport[END_REF] or [START_REF] Hodgson | Rotary dryer flight design[END_REF]. Thus it depends on the angle δ and the filling ratio χ. Fig. 16 illustrates evolution of h f /R with discharging angle δ for different values of α 2 and drum filling ratio χ. It can be observed in Fig. 16 that obviously the falling height increases with the increase of the discharging angle, and that it tends to a limit at δ max for which the flight is completely Fig. 12. Maximum flight filling degree with α 2 obtained for l 2 /l 1 = 1, R/ l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5, α 1 = 90 • and χ = 10%. Fig. 13. Cascading rate with discharging angle obtained for l 2 /l 1 = 1, R/ l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5, α 1 = 90 • , χ = 10% and various α 2 . Fig. 14. Angle for which the flight disengages from the material bed with α 2 obtained for various l 2 /l 1 , α 1 = 90 • and various χ with R/l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5. 
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Dimensionless falling height h f /R with δ obtained for l 2 /l 1 = 1, R/ l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5, α 1 = 90 • and various α 2 and χ.

discharged. However, for the case α 2 ≤ 90 • , the falling height decreases after it reaches a maximum because the remaining particles at this stage impact the drum wall in place of the material bed (δ max > δ B ). As we might have expected, Fig. 16 illustrates that the falling height h f decreases when the filling ratio of the drum increases. It can also be observed that for a given position δ, α 2 has less influence than χ on h f /R. Fig. 17 shows evolution of maximum curtain filling degree for χ = 10%, α 1 = 90 • , as a function of angle α 2 for various l 2 /l 1 ratio.

It increases with α 2 up to an optimal value of α 2 (between 140 • and 170 • for the l 2 /l 1 range investigated), and then decreases. Moreover, the maximum curtain filling degree increases with ratio l 2 /l 1 , since the volume carried and released by the flights also increases with this ratio.

The cumulative transfer area G ★ Ci (Eq. ( 33)) is a parameter that can provide useful indications to maximize the contact of particles with the hot air steam. Fig. 18 shows the evolution of G ★ Ci with α 2 for various ratio l 2 /l 1 and χ values. We can observe that similarly to the evolution of the maximum curtain filling degree, cumulative curtain filling degree G ★ Ci increases, then decreases with α 2 . On the whole, G ★ Ci is larger when the length of the second flight segment l 2 increases. As previously observed in Fig. 12 and16, this is more related to the increase in material volume lifted by the flight than to the increase of the falling height. Fig. 18 highlights that the optimum angle α 2 to maximize G ★ Ci is between 115 • -140 • and increases with l 2 /l 1 . As previously observed in Fig. 16, the drum filling ratio χ greatly reduces falling height h f . For this reason, when considering the influence of χ on G ★ Ci , as presented in Fig. 18, we can notice that G ★ Ci decreases with increasing χ.

Influence of α 1

As said previously, in industries using rotary dryers, flights are usually fixed to the drum wall with an angle α 1 = 90 • [START_REF] Lee | Development of a geometric flight unloading model for flighted rotary dryers[END_REF]. This is mainly for practical reasons. However, wet granular materials are usually cohesive and a clogging of the flights can be encountered. We believe that, as a prevention of this phenomenon, we should choose a not so small angle depending on material. Nevertheless, with a cohesionless material, as it is assumed in this study, what is exactly the influence of α 1 on the curtain filling degree ? To investigate this, we have 19 show that if we need to slightly increase α 1 to reduce clogging for a particular product, this can be accompanied with a decrease of α 2 to maintain a quite large value of G ★ Ci .

Number of flights

In this section, we investigate the maximum number of identical flights which it is possible to distribute along the drum periphery for each configuration. In practice, it is not easy and not often desired to change the lifting layout of a drum dryer every time the material or operational conditions are changed. For a specific drum, if we know the number of flights and their shapes, it is possible to estimate the dryer performance of the drum by multiplying F Ci by the number of flights in the drum. Fig. 20 shows the evolution of the maximum number of flights given by Eq. ( 24) with α 2 . On the whole, we observe that when Fig. 17. Maximum filling degree of the curtain with α 2 obtained for various values of l 2 /l 1 , R/l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5, α 1 = 90 • and χ = 10%. 110 • < α 2 < 140 • , N f max does not vary so much with α 2 , while it decreases when α 2 < 110 • and increases when α 2 > 140 • . Nevertheless, as explained before, it is not convenient to reduce the value of α 2 below 90 • due to the possibility of clogging. A flight is always assumed to be loaded at its maximum capacity at δ = 0, N f max does not depend on χ. However as illustrated in Fig. 20, it decreases with l 2 /l 1 .

Fig. 21 presents the evolution of the number of active flights with α 2 for various l 2 /l 1 with α 1 = 90 • and R/l 1 = 10, R = 0.5 m, w = 1 rpm and μ = 0.5. It can be observed that since discharging angle range decreases with α 2 , N fa decreases with α 2 . Even if the discharging angle range of the flight increases with l 2 /l 1 , the volume carried up by the flights also increases which in turn reduces the maximum number of flights and therefore N fa .

Fig. 22 shows the evolution of the cumulative dimensionless transfer area, of material for all flights and for one drum revolution ζ ★ max , with α 2 .

ζ ★ max increases then decreases with α 2 . An optimal value of angle α 2 that permits to maximize ζ ★ max exists for each ratio l 2 /l 1 and each value of χ.

Globally, we can observe that this optimum angle between flight segments is set in the range 110 • -160 • . As already observed in Fig. 12 and 18, an increase of ratio l 2 /l 1 increases the volume of material lifted and released by the flight leading to a higher value of ζ ★ max . An increase of drum filling ratio χ decreases falling height h F that leads to a decrease of ζ ★ max as observed in Fig. 22.

Influence of R l1

In the design-loaded or over-loaded drum condition, the size ratio when α 2 = 180 • must satisfies: R/l 1 ≥ (1 + (l 2 /l 1 ))/(1 -cos(β/2)). For l 2 /l 1 = 1, α 1 = 90 • and χ = 10%, we investigated the influence of size ratio R/l 1 in the range 6.5 < R/l 1 < 15 on ζ ★ max in Fig. 23. It can be observed that ζ ★ max decreases with increasing size ratio R/l 1 . It has been observed that the filling degree of the curtain decreases with R/l 1 while the maximum number of flights that can be set along the drum periphery increases. However, in the range of parameters investigated in this paper, ζ ★ max is more controlled by the flight hold-up than by the falling height or the number of flights. Optimal value lies between 120 • < α 2 < 140 • and tends to decrease with R/l 1 . Fig. 23 also shows that the variation range of ζ ★ max , over α 2 range, increases when R/l 1 decreases. This illustrates that the choice of α 2 is important to maximize the cumulative transfer area of the material carried by all flights; especially when the drum size ratio R/l 1 is small. 

Conclusion and perspectives

In this paper, a geometrical model has been used to analyse the optimal shape of a two-segmented flight in order to increase the dryer performance of a granular material in a rotating drum. To validate this model, we developed an experimental device that allowed us to measure the volume carried by a flight using image analysis. Our model has been validated by comparison with experimental results obtained in this work and also with results from literature [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF]. It allowed us to conduct a parametric study. We computed the volume of material carried by the flights and its discharging profile for several values of α 1 , α 2 and l 2 /l 1 .

Moreover, the influence of drum radius and drum filling ratio have been investigated. Considering the widely used assumption of a vertical fall [START_REF] Sunkara | Influence of flight design on the particle distribution of a flighted rotating drum[END_REF][START_REF] Sunkara | Modeling the discharge characteristics of rectangular flights in a flighted rotary drum[END_REF][START_REF] Blumberg | Transversale schüttgutbewegung und konvektiver stoffübergang in drehrohren teil 2: mit hubschaufeln[END_REF], assumption that we proved to be reasonable by comparison with our experimental results, we estimated the filling degree of the curtain and the maximum number of flights that can be disposed on the periphery of the drum. Then we computed the cumulative surface of material exposed to the air steam considering contribution of all flights.

The results presented in this paper show that an optimal angle α 2 , between flight segments, exists to maximize the volume of material carried out by each flight. This optimal value tends to increase with ratio l 2 /l 1 . For the flight discharge, it has been shown that the uniformity of the discharging profile increases when α 2 decreases. This also leads to an increase in the discharging angle range, which in turn leads to smaller values of the cascading rate. For the falling height of material, it has been observed that, even if it slightly decreases with α 2 , it is mainly affected by the drum filling ratio χ. An increase of χ reduces the falling height.

Curtain filling degree has been integrated over the range of discharging angles leading to the study of the cumulative curtain filling degree ζ max . Results obtained in this work show that the cumulative curtain filling degree increases then decreases with α 2 . The optimum angle α 2 , which maximizes ζ max , is between 110 • and 160 • . It can also be noted that, on the whole, the cumulative curtain filling degree is higher when the second segment of the flight is longer (higher value of l 2 ). An increase in the drum filling ratio causes ζ max to decrease. It also tends to lower the optimum angle α 2 for which the cumulative curtain filling degree value is at its maximum. In this study, the influence of the flight connecting angle α 1 on the drum wall has also been investigated. It has been demonstrated that a value of α 1 = 90 • is good enough to maximize the cumulative curtain filling degree. Better values can be obtained for α 1 in the range 70 • -80 • , but it seems that these values are not usable for cohesive materials. For such materials, for which flight clogging should be avoided, a slightly larger value of α 1 could sometimes be desired. In such cases, our work shows that the increase of α 1 should be accompanied by a slight decrease of α 2 in order to maintain a high value of cumulative curtain filling ratio.

The maximum number of flights, that can be disposed over the drum periphery to maximize lifted material volume without interfering with other flights is almost constant for 110 • < α 2 < 140 • . It decreases with α 2 for α 2 < 110 • and increases for α 2 > 140 • . If we consider that the drum is equipped with this maximum number of flights, we can show that there is an optimal value for the angle between flight segments to maximize the value of the cumulative dimensionless transfer area of material carried by all flights.

To conclude, the results presented in this paper show that with the use of the geometrical model presented and validated in this work, some general recommendations can be stated when considering the optimal flight design. The choice of α 2 is important to maximize the cumulative transfer area of the material carried by all flights especially when the drum size ratio R/l 1 is small. Due to the high number of parameters involved in the flight design, in the drum operational conditions and due to the wide range of material repose angles that can be used in such rotary drum, it is impossible to study all cases. Moreover the use of a quite simple geometrical model is proved to be powerful compared to numerical or experimental studies in terms of time or money cost.

Equations given in this paper can be easily applied to a specific case to help design a specific rotary dryer with specific material. Connecting angle between flight and drum wall, and angle between flight segments (see Fig. 4)

Notations

η, ε, ψ, λ Intermediate angles as defined in Fig. 2 and Fig. 1 ν

Angle between the top of the bed material and an horizontal line passing through the drum section center as described in 

Fig. 2 .

 2 Fig. 2. Design of the two segmented flight studied in this paper.

Fig. 3 .

 3 Fig. 3. γ p /γ f versus δ, for various α 2 , α 1 = 90 • , R/l 1 = 10, R = 0.5 m, l 2 /l 1 = 1 and w = 1 rpm (Fr = 0.00056) and w = 4 rpm (Fr = 0.0089).

ρ b πR 2 L ( 26 )f

 226 Fi will be referred as the filling degree of the flight representing the volume of material in the flight per unit volume of the drum. m Fi and ρ b are respectively the mass of material in flight i at angular position θ and the density of the bulk of the material. The mass of the material in flight is expressed as m Fi (θ) = ρ b πR 2 Lf Fi (θ). When the flight moves from dθ, the cascading rate of material released by this flight in the air stream can be expressed as:

Fig. 5 .

 5 Fig. 5. Schematic view of optimal flight loading.

Fig. 7

 7 presents flight filling degree f Fi with discharging angle δ predicted by the geometrical model. Different flight shapes, with different values of α 2 are presented.

  Fig. 9 presents c i with δ for different values of l 2 /l 1 and α 2 . Both experimental results and our model predictions are represented. Figs. 7-9 show good agreement between the geometrical model and experimental data for different flight shapes (different ratios l 2 /l 1 and different values of α 2 . It can be concluded that the volume of material in flight and its discharge are correctly estimated with the geometrical model used in this work. Influences of α 2 and size ratio l 2 /l 1 will be more precisely analysed in Section 4.1.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Example of pictures of a flight discharge obtained with the experimental device, using quartz sand of diameter d = 0.6 mm.

Fig. 8 .

 8 Fig. 8. Comparison of flight holdup predicted by the geometrical model, for different α 2 and l 2 /l 1 ratio, with our experimental data (R = 0.15 m, w = 1 rpm, μ = arctan(36 • ) using quartz sand of diameter d = 0.6 mm) and results of Sunkara [29] (R = 0.25 m, α 2 = 90 • , μ = arctan(32.4 • ) and w = 2 rpm (Fr = 0.0011), using quartz sand of diameter 0.2 mm) with α 1 = 90 • , R/l 1 = 5 and χ = 15%.

α 1 =

 1 figure illustrates the fact that c i can be considered as quite uniform over the discharging angle range only for 60 • < α 2 < 90 • . Moreover, the uniformity of the release of particles from the flight decreases when α 2 increases, and cascading rate becomes more important for small values of discharging angle δ. Particles leave the flight more quickly when the two segments tend to be aligned (α 2 = 180 • ). Material lost by a flight and released in the curtain, during a variation of angle δ, is approximately proportional to the length of the line AC (see Fig.2)[START_REF] Van | Modelling the hold up of lifters in rotary dryers[END_REF]. This explains the variation of c i with α 2 illustrated by Fig.13. Indeed, during the discharging of the flight, the length of AC decreases until δ = γ p , then it increases until the point A is superimposed with point E. In this case the cascading rate has reached its maximum value occurring at δ = π -(λ + ε + α 2γ p -ψ) depending particularly on α 2 . After this angle, the length of AC, hence the cascading rate, decreases continuously.
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 91011 Fig. 9. Comparison of cascading rate predicted by the geometrical model, for different α 2 and l 2 /l 1 ratio, with our experimental data (R = 0.15 m, w = 1 rpm, μ = arctan(36 • ) using quartz sand of diameter d = 0.6 mm) and results of Sunkara [29] (R = 0.25 m, α 2 = 90 • , μ = arctan(32.4 • ) and w = 2 rpm (Fr = 0.0011), using quartz sand of diameter 0.2 mm) with α 1 = 90 • , R/l 1 = 5 and χ = 15%.
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 15 Fig. 15. Maximum discharging angle with α 2 obtained for various l 2 /l 1 and for α 1 = 90 • , χ = 10%, R/l 1 = 10, R = 0.5 m, w = 1 rpm, and μ = 0.5.

  conducted a series of computations for flights fixed to the drum wall with different values of α 1 and for all the range of angle α 2 previously studied. The dependency of G ★ Ci on α 2 for different angles α 1 is presented in Fig. 19. It shows that the maximum of G ★ Ci is obtained with α 1 in the range 70 • -80 • . This maximum decreases when α 1 increases. From a global point of view, the maximum of the cumulative curtain filling can be obtained for α 1 around 80 • . When α 1 ≤ 100 • , a relative high value of G ★ Ci can be obtained for 110 • ≤ α 2 ≤ 140 • . Results presented in Fig.
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 1819 Fig. 18. Cumulative curtain filling degree during one cycle with α 2 obtained for various l 2 /l 1 and χ, R/l 1 = 10, R = 0.5 m, w = 1 rpm, μ = 0.5, α 1 = 90 • .
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 2021 Fig. 20. Maximum number of flights with α 2 for various l 2 /l 1 with α 1 = 90 • , χ = 10% and R/l 1 = 10, R = 0.5 m, w = 1 rpm and μ = 0.5.

Fig. ζ ★ max with α 2 ,

 2 Fig. ζ ★ max with α 2 , for various l 2 /l 1 and χ, α 1 = 90 • , R/l 1 = 10, R = 0.5 m, w = 1 rpm and μ = 0.5.

Fig. 23 .

 23 Fig. 23. ζ ★ max with α 2 , for various size ratio R/l 1 for R = 0.5 m, l 2 /l 1 = 1, μ = 0.5, w = 1 rpm, α 1 = 90 • and χ = 10%.

Symbols used R 0

 0 Distance between the flight extremity and the drum axis R, D Drum radius and diameter l 1 , l 2 Length of the flight segments w Rotational speed of the drum g Acceleration due to gravity Fr = w 2 R/g Froude number h mat Height of material bed N fmax , N fa Maximum number of flights and number of active flights respectively V Fi , A Fi , m Fi Respectively volume cross-sectional area and mass of material in flight i f Fi Ratio between volume of material in flight i and the volume of the drum c i Dimensionless cascading rate A Ci , m Ci Local transfer area of curtain i and mass of material released by curtain i f Ci Filling degree of the curtain i d p Diameter of particles h f , t f Falling height and falling time of material G Ci , G ★ Ci Summation of local transfer area of curtain i over a cascading cycle, starred version is dimensionless one Greek letters θ, δ Angular flight position, angular flight tip position θ 0 , δ 0 Respectively angular flight position and angular flight tip position when flight extremity leaves the material bed δ max Angular flight tip position when flight is completely discharged (see Fig. 4) δ B Maximum angular flight tip position for which a falling particle can touch the material bed θ 0 angular flight position when the flight starts to discharge in the curtain χ, β Drum filling ratio, angle defined by surface material bed (see Fig. 1) γ f , μ Material repose angle and dynamic friction coefficient γ p & dynamic repose angle of material α 1 , α 2

Fig. 1 ρ

 1 b , ρ s Material bulk density, solid density ζ max , ζ ★ max Total cumulative transfer area of material carried by all flights during one drum rotation, starred version is dimensionless
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