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Introduction

With the explosion of digital information, the Gradient Descent Method (GDM) is one of the most popular methods used in data science, image and statistical processing to minimize a function, due to its simplicity. First-order methods have gained popularity in recent years due to their importance in solving large scale optimization problems in Machine Learning and Data Science by only having access to the gradient of the function. One of the drawbacks of the Gradient Descent Method is its slowness (zig-zag pattern convergence on quadratic functions). An improvement of the Gradient Descent Method was proposed in 1964 by B. Polyak [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF] where he considered a momentum term associated with a gradient descent step. The associated continuous Ordinary Differential Equation (ODE) surrogate of the Polyak momentum is known as the heavy ball with friction (HBF), an inertial system with a fixed viscous damping coefficient. From a mechanical point of view, it could be interpreted as the motion of a material point subject to viscous friction damping and conservative potential forces. The (HBF) is a second order (in time) dissipative system where the presence of inertia allows the system to overcome some known drawbacks of the (GDM) and acts to accelerate the convergence. We note that the (HBF) is not a descent method and the convergence of the trajectories towards a critical point of the potential to be minimized is well-known under various assumptions like convexity or analyticity of the potential to be minimized. For a strongly convex function and a viscous damping coefficient judiciously chosen, (HBF) provides convergence at exponential rate.

For a general convex function, the asymptotic convergence rate of (HBF) is O( 1 t ) (in the worst case). This is however not better than the steepest descent. An other momentum method was introduced by Nesterov [START_REF] Nesterov | A method for solving the convex programming problem with convergence rate O(1/k 2 ). (Russian)[END_REF] in 1983, known in the literature as Nesterov Accelerated Gradient (NAG). To obtain a continuous ODE surrogate of the Nesterov Accelerated Gradient algorithm, a decisive step was taken by Su-Boyd-Candès [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF] with the introduction of an Asymptotic Vanishing Damping (AVD) coefficient of the form α t , with α > 0 and t > 0 represents the time variable. In particular, for a general convex function f , the condition α > 3 guarantees the asymptotic convergence rate of the values with a rate of ordre o 1/t 2 , as well as the weak convergence of the trajectories towards optimal solutions. The subcritical case α ≤ 3 has been examined in [START_REF] Apidopoulos | The differential inclusion modeling FISTA algorithm and optimality of convergence rate in the case b ≤ 3[END_REF] and [START_REF] Attouch | Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α ≤ 3[END_REF]. In line with the founding article by Beck and Teboulle [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] devoted to Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) method, an abundant literature has been devoted to the extension of these results to the inertial proximal gradient algorithms for solving additively structured "smooth + nonsmooth" optimization problems by splitting methods, see [START_REF] Attouch | Convergence rates of inertial forward-backward algorithms[END_REF], [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF], [START_REF] Chambolle | On the convergence of the iterates of the Fast Iterative Shrinkage Thresholding Algorithm[END_REF], [START_REF] Villa | Accelerated and inexact forward-backward[END_REF] and references therein. The introduction of the Hessian-driven damping in [START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF] allows to damp the transversal oscillations which can occur with (HBF). Recent studies have been devoted to inertial dynamics that combines asymptotic vanishing damping with Hessian-driven damping. In fact, the corresponding algorithms involve a correcting term in the Nesterov method which reduces the oscillatory aspects [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF][START_REF] Attouch | First-order algorithms via inertial systems with Hessian driven damping[END_REF][START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF]. The Ravine method was introduced by Gelfand and Tsetlin [START_REF] Gelfand | Printszip nelokalnogo poiska v sistemah avtomatich, Optimizatsii[END_REF] in 1961. It is closely related to the Nesterov method. It mimics the flow of water in the mountains which first flows rapidly downhill through small, steep ravines and then flows along the main river into the valley. It was put forward by B. Polyak and more recently in [START_REF] Attouch | From the Ravine method to the Nesterov method and vice versa A dynamical system perspective[END_REF] and [START_REF] Sra | Optimization for Machine Learning Subgradient method; Accelerated gradient[END_REF]. It has been shown in [START_REF] Attouch | From the Ravine method to the Nesterov method and vice versa A dynamical system perspective[END_REF] that the Ravine and the Nesterov methods have the same dynamic interpretation and they benefit from similar fast convergence properties. In fact, the low resolution ODE (in the sense of [START_REF] Shi | Understanding the acceleration phenomenon via highresolution differential equations[END_REF]) of both Nesterov Accelerated Gradient and the Ravine method is given by the Su-Boyd-Candès dynamic. The high-resolution ODE of Nesterov's and Ravine's accelerated gradient methods shows the Hessian-driven damping, giving a more accurate dynamic interpretation of both methods. The explicit form of the Hessian-driven damping was introduced in [START_REF] Attouch | First-order algorithms via inertial systems with Hessian driven damping[END_REF] and [START_REF] Shi | Understanding the acceleration phenomenon via highresolution differential equations[END_REF], while the implicit form was considered by Alesca, Laszlo and Pinta in [START_REF] Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF]. Equally important is the study of additively structured monotone problems involving the sum of potential and nonpotential operators. Indeed, many situations coming from physics, biology, decision sciences involve equations containing both potential and nonpotential terms. For example, in decision sciences and game theory, it comes from the presence of both cooperative and noncooperative aspects. In physics, this is the case when the phenomena of diffusion and convection both occur. The Lagrangian approach to linear constrained optimization problems also gives rise to similar structures. Our main concern in this paper is the analysis of the convergence properties of the trajectories generated by a damped inertial dynamic, called (iDINAM), driven by the sum of a potential (the gradient of a continuously differentiable convex function) and a nonpotential monotone operators. The originality of this model lies in the fact that it contains an implicit Newton-type damping in addition to the viscous friction. Our approach is based on the Lyapunov analysis combined with an adequate tuning of the parameters involved in the dynamic. We note that the explicit Newton-type damping was considered by the authors in [START_REF] Adly | Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms[END_REF][START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. Our main results are Theorems 4.1 and 5.1 which show that a judicious adjustment of the damping parameters ensures the weak convergence of the trajectories generated by (iDINAM) and the associated proximal-gradient algorithms, obtained by temporal discretization.

The content of the paper is as follows. After the introductory Section 1, in Section 3, we show the wellposedness of the Cauchy problem for (iDINAM). In Section 4, we analyze the convergence properties of the solution trajectories generated by the continuous dynamics (iDINAM). We highlight the interplay be-tween the damping parameters β f , β b , γ and the cocoercivity parameter λ, which plays a significant role in our Lyapunov analysis. In Section 5, we analyze various inertial proximal-gradient splitting algorithms which come naturally from the temporal discretization of (iDINAM). We also examine the effect of errors, perturbations in these algorithms. In Section 6, we perform numerical experiments which show that the oscillations are considerably reduced with the introduction of geometric damping. Applications to structured monotone equations involving a nonpotential operator are considered.

2 Problem statement and related works

General presentation

Let H be a real Hilbert space endowed with the scalar product •, • and the associated norm • . Our study focuses on the dynamic approach to solving the additively structured monotone problem

Find x ∈ H : ∇f (x) + B(x) = 0, (2.1) 
where ∇f is the gradient of a continuously differentiable convex function f : H → R (this is the potential part), and B : H → H is an operator which is supposed to be monotone and cocoercive (this is the nonpotential part). Specifically, our study concerns the convergence properties when t → +∞ of the trajectories generated by the second-order evolution equation

ẍ(t) + γ ẋ(t) + ∇f x(t) + β f ẋ(t) + B x(t) + β b ẋ(t) = 0, (iDINAM) 
whose stationary points are solutions of (2.1). We will see that the nonnegative coefficients β f and β b in (iDINAM) can be interpreted as geometric damping parameters. The terminology (iDINAM) in short stands for implicit Dynamic Inertial Newton method for Additively structured Monotone problems. In addition to the modeling aspects described above, this system is part of the rich family of inertial systems that have been considered in recent years to design fast first-order optimization algorithms. In the potential case (i.e.B = 0) this system study was considered by Alesca, Laszlo and Pinta in [START_REF] Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF], see also [START_REF] Muehlebach | A Dynamical Systems Perspective on Nesterov Acceleration[END_REF] for a related autonomous system in the case of a strongly convex function f . The dynamic (iDINAM) is closely related to its explicit version

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) + β f ∇ 2 f (x(t)) ẋ(t) + β b B (x(t)) ẋ(t) = 0, t ≥ 0 (DINAM)
previously studied by the authors in [START_REF] Adly | Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms[END_REF]. (DINAM) is an autonomous dynamic which involves geometric dampings which are respectively controlled by the Hessian of the potential function f , and by a Newtontype correction term attached to B. The link between the two dynamics above, and the justification of their respective explicit and implicit qualification is explained by the following. When t → +∞ we have ẋ(t) → 0. Therefore, using the Taylor expansion, we get, when t → +∞

∇f (x(t) + β f ẋ(t)) ≈ ∇f (x(t)) + β f ∇ 2 f (x(t)) ẋ(t), B (x(t) + β b ẋ(t)) ≈ B(x(t)) + β b B (x(t))( ẋ(t)).
The replacement of these terms in (iDINAM) by their equivalent expressions gives (DINAM). Therefore, both systems can be expected to behave similarly when t → +∞. It is our main objective in this paper to study the new system (iDINAM) and to compare it to (DINAM). In the potential case, (i.e.B = 0), such a comparative study was carried out in [START_REF] Attouch | On the effect of perturbations in first-order optimization methods with inertia and Hessian driven damping[END_REF] from the point of view of the stability of the dynamics with respect to disturbances, errors.

Our main motivation for the study of these dynamical systems comes from the fact that the geometric damping makes it possible to control and attenuate the oscillations known for the viscous damping of the inertial methods. This is crucial to develop corresponding fast optimization algorithms obtained by temporal discretization.

Throughout the paper we make the following standing assumptions:1 

         (A1) f : H → R is convex, of class C 1 , ∇f is Lipschitz continuous; (A2) B : H → H is a λ-cocoercive operator for some λ > 0; (A3) γ > 0, β f > 0, β b > 0 are given real damping parameters.
The cocoercivity assumption on the operator B plays a central role in our analysis. Recall that the operator B : H → H is said to be λ-cocoercive for some λ > 0 if

By -Bx, y -x ≥ λ By -Bx 2 , ∀x, y ∈ H.
It is easy to check that B is λ-cocoercive implies that B is 1/λ-Lipschitz continuous. The reverse implication holds true in the case where the operator is the gradient of a convex and differentiable function. Indeed, according to Baillon-Haddad's theorem [START_REF] Baillon | Quelques propriétés des opérateurs angles-bornés et n-cycliquement monotones[END_REF], ∇f is L-Lipschitz continuous implies that ∇f is a 1/L-cocoercive operator (see [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert spaces[END_REF]Corollary 18.16] for more details).

Related works

Some of the material presented in this section, which refers to the existing literature on the subject, is taken from the authors' previous articles [START_REF] Adly | Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms[END_REF][START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. We reproduce it for the convenience of the reader.

Potential case

Let us first recall some classical results concerning the potential case (B = 0). The following inertial system with Hessian-driven damping

ẍ(t) + γ ẋ(t) + β∇ 2 f (x(t)) ẋ(t) + ∇f (x(t)) = 0, (2.2) 
was considered by Alvarez-Attouch-Peypouquet-Redont in [START_REF] Alvarez | A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics[END_REF]. Then, according to the continuous interpretation by Su-Boyd-Candès [START_REF] Su | A differential equation for modeling Nesterov's accelerated gradient method[END_REF] of the accelerated gradient method of Nesterov, Attouch-Peypouquet-Redont [START_REF] Attouch | Fast convex minimization via inertial dynamics with Hessian driven damping[END_REF] replaced the fixed viscous damping parameter γ by an asymptotic vanishing damping parameter α t , with α > 0. At first glance, the presence of the Hessian may seem to entail numerical difficulties.

However, this is not the case as the Hessian intervenes in the above equation in the form ∇ 2 f (x(t)) ẋ(t), which is nothing but the derivative with respect to time of ∇f (x(t)). So, the temporal discretization of these dynamics provides first-order algorithms of the form

y k = x k + α k (x k -x k-1 ) -β k (∇f (x k ) -∇f (x k-1 )) x k+1 = y k -s∇f (y k ).
As a specific feature, and by comparison with the classical accelerated gradient methods, these algorithms contain a correction term which is equal to the difference of the gradients at two consecutive steps. While preserving the convergence properties of the accelerated gradient method, they provide fast convergence to zero of the gradients, and reduce the oscillatory aspects. Several recent studies have been devoted to this subject, see Attouch-Chbani-Fadili-Riahi [START_REF] Attouch | First-order algorithms via inertial systems with Hessian driven damping[END_REF][START_REF] Attouch | Convergence of iterates for first-order optimization algorithms with inertia and Hessian driven damping[END_REF], Bot ¸-Csetnek-László [START_REF] Bot | Tikhonov regularization of a second order dynamical system with Hessian damping[END_REF], Kim [START_REF] Kim | Accelerated proximal point method for maximally monotone operators[END_REF], Lin-Jordan [START_REF] Lin | A Control-Theoretic Perspective on Optimal High-Order Optimization[END_REF], Shi-Du-Jordan-Su [START_REF] Shi | Understanding the acceleration phenomenon via highresolution differential equations[END_REF]. Application to deep learning has been recently developed by Castera-Bolte-Févotte-Pauwels [START_REF] Castera | An Inertial Newton Algorithm for Deep Learning[END_REF]. In [START_REF] Adly | Finite convergence of proximal-gradient inertial algorithms combining dry friction with Hessian-driven damping[END_REF], Adly-Attouch studied the finite convergence of proximal-gradient inertial algorithms combining dry friction with Hessian-driven damping. In (2.2), the Hessian appears explicitly. A closely related ODE is obtained by considering an approach where the Hessian driven damping appears in an implicit form. This was initiated by Alesca-Lazlo-Pinta in [START_REF] Alecsa | An extension of the second order dynamical system that models Nesterov's convex gradient method[END_REF], see also [START_REF] Muehlebach | A Dynamical Systems Perspective on Nesterov Acceleration[END_REF] for a related autonomous system in the case of a strongly convex function f . This ODE, coined (ISIHD) for Inertial System with Implicit Hessian Damping, takes the form

ẍ(t) + α t ẋ(t) + ∇f x(t) + β(t) ẋ(t) = 0, (ISIHD) 
where α ≥ 3 and β(t) = γ + β t , γ, β ≥ 0. As mentioned above, the rationale justifying the use of the term "implicit" comes from the observation that by a Taylor expansion (as t → +∞ we have ẋ(t) → 0 which justifies using Taylor expansion), one has

∇f x(t) + β(t) ẋ(t) ≈ ∇f (x(t)) + β(t)∇ 2 f (x(t)) ẋ(t),
hence making the Hessian damping appear indirectly in (ISIHD). As for (2.2), this ODE was found to have a smoothing effect on the oscillations.

Non potential case

Let us now examine how these techniques can be transposed to the case of maximally monotonic operators.

The first studies carried out by Álvarez-Attouch [START_REF] Alvarez | An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping[END_REF] and Attouch-Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] concerned the equation

ẍ(t) + γ ẋ(t) + A(x(t)) = 0, (2.3) 
when A : H → H is a cocoercive (and hence maximally monotone) operator, (see also [START_REF] Bot | Second order forward-backward dynamical systems for monotone inclusion problems[END_REF]). The cocoercivity assumption plays a crucial role in the study of (2.3), not only to ensure the existence of solutions, but also to analyze their long-term behavior. Assuming that the cocoercivity parameter λ and the damping coefficient γ satisfy the inequality λγ 2 > 1, it is proved in [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] that each trajectory of (2.3) converges weakly to a zero of A, as t → +∞.

Then this approach has been adapted to the case of general maximally monotone operators by Attouch-Peypouquet [START_REF] Attouch | Convergence of inertial dynamics and proximal algorithms governed by maximal monotone operators[END_REF], and by Attouch-Laszlo [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions, Set-Valued Var[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]. The key property is that for λ > 0, the Yosida approximation A λ of A is λ-cocoercive and A -1 λ (0) = A -1 (0). So the idea is to replace the operator A by its Yosida approximation, and adjust the Yosida regularization parameter. The "potential + nonpotential" structured monotone case was first considered by Attouch-Maingé [START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF] who studied the asymptotic behavior of the second-order dissipative evolution equation

ẍ(t) + γ ẋ(t) + ∇f (x(t)) + B(x(t)) = 0, (2.4) 
combining potential (f convex) with nonpotential effects (B λ-cocoercive). It was shown that the condition insuring convergence of the trajectories to equilibria is still λγ 2 > 1, i.e. the potential term does not enter into this condition. (DINAM) is obtained by introducing the Hessian term and the corrector term of the Newton type into this dynamic.

Regularized Newton methods for solving monotone inclusions

As can be expected, the geometric damping related to the Hessian, has a natural link with the method of Newton for solving (2.1). To overcome the ill-posed character of the continuous Newton method for solving the equation governed by a general maximally monotone operator A, the following first order evolution system was studied by Attouch-Svaiter [START_REF] Attouch | A continuous dynamical Newton-like approach to solving monotone inclusions[END_REF],

v(t) ∈ A(x(t)) γ(t) ẋ(t) + β v(t) + v(t) = 0.
Taking γ(t) > 0, this system can be considered as a continuous version of the Levenberg-Marquardt method, which acts as a regularization of the Newton method. Under a fairly general assumption on the regularization parameter γ(t), this system is well posed and generates trajectories that converge weakly to equilibria (zeros of A). Parallel results have been obtained for the associated proximal algorithms obtained by implicit temporal discretization, and for the corresponding forward-backward algorithms in the case of structured monotone problems, see [START_REF] Abbas | Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces[END_REF], [START_REF] Attouch | A dynamic approach to a proximal-Newton method for monotone inclusions in Hilbert Spaces, with complexity O(1/n 2 )[END_REF], [START_REF] Attouch | Global convergence of a closed-loop regularized Newton method for solving monotone inclusions in Hilbert spaces[END_REF]. Formally, this system is written as

γ(t) ẋ(t) + β d dt (A(x(t))) + A(x(t)) = 0.
Thus (DINAM) can be considered as an inertial version of this dynamical system for structured monotone operator A = ∇f + B. Our study is also linked to the recent works by Attouch-Laszlo [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions, Set-Valued Var[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF] who considered the general case of monotone equations. By contrast with [START_REF] Attouch | Continuous Newton-like Inertial Dynamics for Monotone Inclusions, Set-Valued Var[END_REF][START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF], according to the cocoercivity of B, we don't use the Yosida regularization, and exhibit minimal assumptions involving only the nonpotential component.

3 Well-posedness of the Cauchy problem for (iDINAM)

We are going to show an existence and uniqueness result for the Cauchy problem associated with the dynamical system (iDINAM). We will present two different approaches and results, depending on the hypothesis on the potential function f . The first, relatively simple, concerns the case where f is differentiable with ∇f globally continuous Lipschitz on H. It is based on a direct application of the Cauchy-Lipschitz theorem to the Hamiltonian formulation of (iDINAM). The second, more complicated proof concerns the case where f : H → R ∪ {+∞} is a convex lower semi-continuous proper function. In both cases we will use the notion of strong solution, as presented below.

Definition 3.1 The function x : [0, +∞[→ H is called a strong global solution of the dynamical system (iDINAM) if it satisfies the following properties:

(i) x, ẋ : [0, +∞[→ H are locally absolutely continuous; (ii) ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)) = 0 for almost every t ≥ 0;
Recall that a map x : [t 0 , +∞[→ H is said to be locally absolutely continuous if it is absolutely continuous on any compact interval [t 0 , T ], where T > t 0 . Moreover, we have the following equivalent characterizations of an absolutely continuous function x : [t 0 , T ] → H, (see, for example [START_REF] Abbas | Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces[END_REF][START_REF] Attouch | A continuous dynamical Newton-like approach to solving monotone inclusions[END_REF]):

(a) there exists y : [t 0 , T ] → H a Lebesgue-integrable function, such that

x(t) = x(0) + t 0 y(s)ds, ∀t ∈ [0, T ];
(b) x is a continuous and its distributional derivative is Lebesgue integrable on the interval [0, T ];

(c) for every > 0, there exists η > 0 such that for every finite family

I k = (a k , b k ) from [0, T ],
the following implication is valid:

I k ∩ I j = ∅ and k |b k -a k | < η =⇒ k x(b k ) -x(a k ) < .
3.1 Existence and uniqueness: the smooth case Theorem 3.1 Suppose that f : H → R is differentiable with ∇f globally continuous Lipschitz on H. Suppose that β f > 0 and β b > 0. Then, for any (x 0 , x 1 ) ∈ H × H, there exists a unique strong global solution x : [0, +∞[→ H of the continuous dynamic (iDINAM) which satisfies the Cauchy data

x(0) = x 0 , ẋ(0) = x 1 .
Proof Let us reformulate (iDINAM) as a first order evolution equation. According to its Hamiltonian formulation, the system (iDINAM) can be rewritten as

Ż(t) = F (Z(t)) Z(0) = (x 0 , x 1 ), (3.1) 
where Z(t) = (x(t), y(t)) and F : H 2 → H 2 is given by

F (x, y) = y -γy -∇f (x + β f y) -B(x + β b y) .
According to the Lipschitz continuity properties of ∇f and B, it is immediate to verify that F is a Lipschitz continuous map. By applying the classical Cauchy-Lipschitz theorem, we obtain the existence and uniqueness of the solution of (3.1), and hence of the Cauchy problem for (iDINAM). Note that, without any other assumption, we obtain a strong solution, and not a classical C 2 solution, because the vector field F is only Lipschitz continuous.

Existence and uniqueness: the nonsmooth case

Let us introduce another first order formulation of (iDINAM) which is based on the new function

y(t) := x(t) + β f ẋ(t). (3.2)
Equivalently,

ẋ(t) = 1 β f (y(t) -x(t)). (3.3) 
Elementary algebra gives

x(t) + β b ẋ(t) = β b β f y(t) + 1 - β b β f x(t). (3.4) 
According to the above formula, and the constitutive equation (iDINAM), the time derivation of y(t) gives

ẏ(t) = ẋ(t) + β f ẍ(t) (3.5) = ẋ(t) -β f γ ẋ(t) + ∇f (y(t)) + B β b β f y(t) + 1 - β b β f x(t) (3.6) = (1 -γβ f ) ẋ(t) -β f ∇f (y(t)) -β f B β b β f y(t) + 1 - β b β f x(t) . (3.7) Replacing ẋ(t) with 1 β f (y(t) -x(t))
, as given by (3.3), gives

ẏ(t) = 1 -γβ f β f (y(t) -x(t)) -β f ∇f (y(t)) -β f B β b β f y(t) + 1 - β b β f x(t) . (3.8) 
The reverse transformation which consists in passing from (3.3), (3.8) to (iDINAM) is obtained in a similar way. Let us summarize the results.

Theorem 3.2 Let f ∈ C 1 (H). Suppose that β f > 0.
The following statements are equivalent:

1.

x : [0, +∞[→ H is a solution trajectory of (iDINAM) with initial conditions x(0) = x 0 , ẋ(0) = x 1 .

2. (x, y) : [0, +∞[→ H × H is a solution trajectory of the first-order system

       ẋ(t) + 1 β f x(t) - 1 β f y(t) = 0. ẏ(t) + β f ∇f (y(t)) + β f B β b β f y(t) + 1 - β b β f x(t) + 1 -γβ f β f (x(t) -y(t)) = 0. with initial conditions x(0) = x 0 , y(0) = x 0 + β f x 1 .
We can naturally extend the above formulation to the case where f ∈ Γ 0 (H), by replacing the gradient ∇f with the subdifferential ∂f .

Definition 3.2 Let β f > 0, f ∈ Γ 0 (H). Given (x 0 , y 0 ) ∈ H × dom(f )
, the Cauchy problem associated with the generalized (iDINAM) system is defined by

           ẋ(t) + 1 β f x(t) - 1 β f y(t) = 0 ẏ(t) + β f ∂f (y(t)) + β f B β b β f y(t) + 1 - β b β f x(t) + 1 -γβ f β f (x(t) -y(t)) 0.
x(0) = x 0 , y(0) = y 0 .

(3.9)

The existence and uniqueness of a global strong solution of the Cauchy problem (3.9) is established in the following theorem.

Theorem 3.3 Let f ∈ Γ 0 (H). Suppose that β f > 0.
Then, for any Cauchy data (x 0 , y 0 ) ∈ H × dom(f ), there exists a unique global strong solution (x, y) : [0, +∞[→ H×H of the generalized (iDINAM) system (3.9) satisfying the initial condition x(0) = x 0 , y(0) = y 0 . Moreover when f ∈ C 1 (H), x(•) is a classical (i.e. C 2 ) global solution of the Cauchy problem associated with (iDINAM).

Proof We reformulate (3.9) in the product space H × H by setting Z(t) = (x(t), y(t)) ∈ H × H, and thus (3.9) can be equivalently written as

Ż(t) + β f ∂G(Z(t)) + D(Z(t)) 0, (3.10) 
where G ∈ Γ 0 (H × H) is the function defined as G(Z) = f (y), and operator D : 4 Asymptotic convergence properties of (iDINAM)

H × H → H × H is given by D(Z) = 1 β f (x -y), β f B β b β f y + 1 - β b β f x + 1 -γβ f β f (x -y) . ( 3 
In this section, we study the asymptotic behavior of the solution trajectories of (iDINAM). For each solution trajectory t → x(t) of (iDINAM) we show that the weak limit, w-lim t→+∞ x(t) = x ∞ exists, and satisfies x ∞ ∈ S, where

S := {p ∈ H : ∇f (p) + B(p) = 0}.
We complete these results by producing integral and pointwise convergence rates.

Preliminary results

The following result relies on the cocoercivity of B. Proof Since p 1 ∈ S, p 2 ∈ S we have

∇f (p 1 ) + B(p 1 ) = ∇f (p 2 ) + B(p 2 ) = 0.
By the monotonicity of ∇f we have The following lemma is a classic result from integration theory, often called Barlabat's theorem in control theory.

∇f (p 2 ) -∇f (p 1 ), p 2 -p 1 ≥ 0.
Lemma 4.2 Let 1 ≤ p < +∞ and 1 ≤ r ≤ +∞. Suppose that u ∈ L p ([0, +∞[; H) is a locally absolutely function, such that u ∈ L r ([0, +∞[; H). Then lim t→∞ u(t) = 0.
The following lemma will play a central role in the proof of our main convergence theorem. The proof can be found in [START_REF] Alvarez | On the minimizing property of a second order dissipative system in Hilbert space[END_REF][START_REF] Attouch | Asymptotic behavior of second order dissipative evolution equations combining potential with nonpotential effects[END_REF].

Lemma 4.3 ([6]) If w ∈ C 2 ([0, +∞[, R
) is bounded from below and satisfies the following inequality

ẅ(t) + γ ẇ(t) ≤ g(t),
where γ is a positive constant and g ∈ L 1 ([0, +∞[, R), then w(t) converges as t → +∞.

Main result

The following result will be obtained by using Lyapunov analysis. Take p ∈ S. Let x(•) be a solution trajectory of the dynamical system (iDINAM). To analyze the convergence properties of x(•), we introduce the function E p : [0, +∞[→ R+ defined by

E p (t) := a f (x(t) + β f ẋ(t)) -f (p) -∇f (p), x(t) + β f ẋ(t)) -p + 1 2 x(t) -p + β f ẋ(t) 2 + d 2 x(t) -p 2 , (4.1) 
and that will serve us as a Lyapunov function. According to the convexity of f , E p (•) is a nonnegative function. Our goal is to adjust the constant a > 0 and d > 0 so that we have Ėp (t) ≤ 0 for every t ≥ 0.

Theorem 4.1 Let B : H → H be a λ-cocoercive operator and f : H → R a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f + B) -1 (0) = ∅. Consider the evolution equation (iDINAM) where the involved parameters satisfy the following conditions:

γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) . (4.2)
Then, for any solution trajectory x : [0, +∞[→ H of (iDINAM) the following properties are satisfied:

(i) (convergence)
x(t) converges weakly , as t → +∞, to an element of S. (ii) (integral estimates)

+∞ 0 ẋ(t) 2 dt < +∞, +∞ 0 ẍ(t) 2 dt < +∞, +∞ 0 B(x(t) + β b ẋ(t)) -B(p) 2 dt < +∞, +∞ 0 ∇f (x(t) + β f ẋ(t)) -∇f (p) 2 dt < +∞, +∞ 0 d dt B(x(t) + β b ẋ(t)) 2 dt < +∞, +∞ 0 d dt ∇f (x(t) + β f ẋ(t)) 2 dt < +∞.
Proof Lyapunov analysis. Let us derivate the function E p (•) defined in (4.1). The derivation chain rule gives

Ėp (t) = a ∇f (x(t) + β f ẋ(t)) -∇f (p), ẋ(t) + β f ẍ(t) + x(t) -p + β f ẋ(t), ẋ(t) + β f ẍ(t) + d x(t) -p, ẋ(t) .
According to the constitutive equation (iDINAM) we have

ẍ(t) = -γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t)).
Therefore,

Ėp (t) =a ∇f (x(t) + β f ẋ(t)) -∇f (p), ẋ(t) + β f (-γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t))) + x(t) -p + β f ẋ(t), ẋ(t) + β f (-γ ẋ(t) -∇f (x(t) + β f ẋ(t)) -B(x(t) + β b ẋ(t))) +d x(t) -p, ẋ(t) .
Let us denote shortly

X(t) := ∇f x(t) + β f ẋ(t) -∇f (p), Y (t) := B x(t) + β b ẋ(t) -B(p).
Since p ∈ S, we have ∇f (p) + B(p) = 0. So, we can arrange Ėp (t) as follows

Ėp (t) = a X(t), ẋ(t) + β f (-γ ẋ(t) -X(t) -Y (t)) + x(t) -p + β f ẋ(t), ẋ(t) + β f (-γ ẋ(t) -X(t) -Y (t)) + d x(t) -p, ẋ(t) = -aβ f X(t) 2 + a(1 -γβ f ) X(t)), ẋ(t) -aβ f X(t), Y (t) (4.3) 
+ β f (1 -γβ f ) ẋ(t) 2 + (d + 1 -γβ f ) x(t) -p, ẋ(t) -β f x(t) -p + β f ẋ(t), X(t) + Y (t) .
By convexity of f, we have that ∇f is monotone. By definition of X(t) this gives

x(t) -p + β f ẋ(t), X(t) ≥ 0.
Moreover, since B is λ-cocoercive, we have

x(t) -p + β f ẋ(t), Y (t) = x(t) -p + β b ẋ(t), Y (t) + (β f -β b ) ẋ(t), Y (t) ≥ λ Y (t) 2 + (β f -β b ) ẋ(t), Y (t) .
Combining the above results, and taking d = γβ f -1 > 0, we deduce from (4.3) that

Ėp (t) ≤ -aβ f X(t) 2 + a(1 -γβ f ) X(t)), ẋ(t) -aβ f X(t), Y (t) + β f (1 -γβ f ) ẋ(t) 2 -λβ f Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.4) 
Let us majorize the scalar products that enter (4.4) with the help of the following elementary inequalities: for any ρ > 0 and r > 0, which are parameters that will be adjusted (recall that γβ f > 1)

a(1 -γβ f ) X(t)), ẋ(t) ≤ 1 2 ρa(γβ f -1) X(t) 2 + 1 2ρ a(γβ f -1) ẋ(t) 2 (4.5) -aβ f X(t), Y (t) ≤ 1 2 arβ f X(t) 2 + 1 2r aβ f Y (t) 2 . (4.6)
Combining (4.4) with (4.5) and (4.6), we get

Ėp (t) ≤ -aβ f X(t) 2 + 1 2 ρa(γβ f -1) X(t) 2 + 1 2ρ a(γβ f -1) ẋ(t) 2 + 1 2 arβ f X(t) 2 + 1 2r aβ f Y (t) 2 + β f (1 -γβ f ) ẋ(t) 2 -λβ f Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.7)
After rearranging the terms, we get

Ėp (t) ≤ -a β f - 1 2 ρ(γβ f -1) - 1 2 rβ f X(t) 2 -(γβ f -1) β f - a 2ρ ẋ(t) 2 -β f λ - a 2r Y (t) 2 -β f (β f -β b ) ẋ(t), Y (t) . (4.8) 
Equivalently,

Ėp (t) + a β f - 1 2 ρ(γβ f -1) - 1 2 rβ f X(t) 2 + β f S(t) ≤ 0, (4.9) 
where

S(t) := λ - a 2r Y (t) 2 + (β f -β b ) ẋ(t), Y (t) + (γβ f -1) 1 - a 2ρβ f ẋ(t) 2 .
We have S(t) = q(Y (t), ẋ(t)) where q : H × H → R is the quadratic form

q(Y, Z) := λ - a 2r Y 2 + (β f -β b ) Y, Z + (γβ f -1) 1 - a 2ρβ f Z 2 .
The following system of conditions on the positive parameters a, r, ρ ensures that the coefficient of X(t) 2 in (4.9) is positive and the quadratic form q is positive definite: 

β f - 1 2 ρ(γβ f -1) - 1 2 rβ f > 0; (4.10) λ - a 2r > 0; (4.11) 1 - a 2ρβ f > 0; (4.12) 4 λ - a 2r (γβ f -1) 1 - a 2ρβ f -(β f -β b ) 2 > 0. ( 4 
τ a ≤ 4λβ 2 f λ(γβ f -1) + β 2 f . (4.14) 
Let us now examine the last condition (4.13) which, due to the choice of r and ρ, simplifies as follows

∆(τ ) := 4λ 1 - 1 τ 2 (γβ f -1) -(β f -β b ) 2 > 0.
We have lim

τ +∞ ∆(τ ) = 4λ(γβ f -1) -(β f -β b ) 2
which is positive by our assumption (4.2) on the parameters. So, by taking τ large enough, and adjusting a small enough according to (4.14), we get that that the coefficient of X(t) 2 in (4.9) is positive, and that the quadratic form q is positive definite. We infer the existence of positive real numbers η and µ such that

Ėp (t) + η X(t) 2 + µβ f ẋ(t) 2 + µβ f Y (t) 2 ≤ 0. (4.15)
Estimates. We rely on the estimate (4.15) that we integrate on [0, t], t ≥ 0. We obtain Convergence of the trajectory. To prove the existence of the weak limit of x(t) as t → +∞, we use Opial's lemma (see [START_REF] Peypouquet | Evolution Equations for Maximal Monotone Operators Asymptotic Analysis in Continuous and Discrete Time[END_REF] for more details). Given p ∈ S, let us consider the anchor function defined by, for every t ∈ [0, +∞[

E p (t) + η t 0 X(s) 2 ds + µβ f t 0 ẋ(s) 2 ds + µβ f t 0 Y (s) 2 ds ≤ E p (0). ( 4 
d dt B(x(t) + β b ẋ(t)) 2 dt ≤ 1 λ 2 +∞ 0 ẋ(t) + β b ẍ(t) 2 dt ≤ 2 λ 2 +∞ 0 ẋ(t) 2 dt + 2β 2 b λ 2 +∞ 0 ẍ(t)
q p (t) := 1 2 x(t) -p 2 .
From qp (t) = ẋ(t), x(t) -p and qp (t) = ẋ(t) 2 + ẍ(t), x(t) -p , we obtain

qp (t) + γ qp (t) = ẋ(t) 2 + ẍ(t) + γ ẋ(t), x(t) -p = ẋ(t) 2 -∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)), x(t) -p .
According to the monotonicity of ∇f and B, we have

∇f (x(t) + β f ẋ(t)) + B(x(t) + β b ẋ(t)), x(t) -p = X(t) + Y (t), x(t) -p ≥ -β f X(t), ẋ(t) -β b Y (t), ẋ(t) .
Therefore,

qp (t) + γ qp (t) ≤ ẋ(t) 2 + β f X(t), ẋ(t) + β b Y (t), ẋ(t) . (4.27)
Applying the Cauchy-Schwarz inequality, we get

qp (t) + γ qp (t) ≤ ẋ(t) 2 + β f X(t) ẋ(t) + β b Y (t) ẋ(t) . (4.28) 
Then note that the second member of (4.28)

g(t) := ẋ(t) 2 + β f X(t) ẋ(t) + β b Y (t) ẋ(t)
is nonnegative and belongs to L 1 ([0, +∞[, R). Indeed, we have +∞ 0

X(t) ẋ(t) dt ≤ 1 2 +∞ 0 X(t) 2 dt + 1 2 +∞ 0 ẋ(t) 2 dt, +∞ 0 Y (t) ẋ(t) dt ≤ 1 2 +∞ 0 Y (t) 2 dt + 1 2 +∞ 0 ẋ(t) 2 dt.
Using (4.20), we deduce that +∞ 0 g(t)dt < +∞.

Since q p is nonnegative, Lemma 4.3 shows that lim t→+∞ q p (t) exists. To complete the proof via Opial's lemma, we need to show that every weak sequential cluster point of x(t) belongs to S. Let t n → +∞ such that x(t n )

x * , n → +∞. According to (4.26)

∇f (x(t n )) → ∇f (p); B(x(t n )) → B(p) strongly in H and x(t n ) x * weakly in H.
From the closedness property of the graph of the maximally monotone operators ∇f and B in w -H ×s-H, we deduce that ∇f (x * ) = ∇f (p), and B(x * ) = B(p). Therefore ∇f (x * )+B(x * ) = ∇f (p)+B(p) = 0, that is x * ∈ S. Consequently, x(t) converges weakly to an element of S as t goes to +∞. The proof of Theorem 4.1 is thus completed. Let us specialize the previous results in the case β b = β f . We set β b = β f := β > 0 and A := ∇f +B. We thus consider the evolution system

(iDINAM) ẍ(t) + γ ẋ(t) + A(x(t) + β ẋ(t)) = 0, t ≥ 0.
The existence of strong global solutions to this system is guaranteed by Theorem 3.1. The convergence properties as t → +∞ of the solution trajectories generated by this system is a consequence of Theorem 4.1 and are given below. 

Comparison of the dynamics with explicit and implicit Newton-type damping

For simplicity, let us compare the dynamics in the case

β f = β b = β > 0.
According to the previous study of the authors in [START_REF] Adly | Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms[END_REF] concerning the dynamic (DINAM) with explicit Newton-type damping, the condition on the parameters ensuring the convergence of the trajectories is

λγ > β + 1 γ (4.29)
On the other hand, the corresponding condition for (iDINAM), as given by Corollary 4.1 is

γβ > 1. (4.30)
As a striking result, we can observe that, contrary to (DINAM), the cocoercivity parameter λ no longer enters the condition relative to (iDINAM). This suggests in particular that it would be interesting to consider the case of an asymptotic vanishing damping coefficient γ(t) = α t which is in accordance with the Nesterov accelerated scheme. By adjusting accordingly the coefficient β(t) which now tends to infinity, this would make it possible to obtain fast convergence results for general monotone inclusions. In fact, first results in this direction have been obtained for the ADMM algorithm, see [START_REF] Attouch | Fast convergence of dynamical ADMM via time scaling of damped inertial dynamics[END_REF].

Inertial proximal algorithms associated with (iDINAAM)

We are interested in the convergence properties of several splitting algorithms with inertial features obtained by temporal discretization of the second-order (in time) evolution equation:

ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B (x(t) + β b ẋ(t)) = 0. (iDINAM)
We aim to obtain, under an appropriate adjustment of the parameters and the discretization step, convergence results of the same type as those obtained in the previous section, in the continuous case.

An inertial proximal-gradient algorithm

In this section, f is a C 1 convex function whose gradient is L-Lipschitz continuous. Take a fixed time step h > 0, and consider the following finite-difference scheme for (iDINAM):

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + ∇f x k + β f h (x k -x k-1 ) + B x k+1 + β b h (x k+1 -x k ) = 0. (5.1)
This scheme is implicit with respect to the nonpotential B and explicit with respect to the potential operator ∇f . According to the gradient-like structure of the algorithm when B = 0, we expect to obtain convergence results by assuming that the step size h is taken small enough. After expanding (5.1), we obtain

(1 + γh)(x k+1 -x k ) + h 2 B x k+1 + β b h (x k+1 -x k ) = (x k -x k-1 ) -h 2 ∇f x k + β f h (x k -x k-1 ) . (5.2)
Set α := 1 + β b h . After arranging (5.2), we obtain equivalently

x k+1 = α -1 α x k + 1 α (Id + αh 2 1 + γh B) -1 (ξ k ),
with

ξ k = x k + α 1 + γh (x k -x k-1 ) -h 2 ∇f x k + β f h (x k -x k-1
) .

We thus obtain the following algorithm.

(iDINAAM-split):

Initialize:

x 0 ∈ H, x 1 ∈ H α = 1 + β b h , ξ k = x k + α 1 + γh (x k -x k-1 ) - αh 2 1 + γh ∇f x k + β f h (x k -x k-1 ) , x k+1 = α -1 α x k + 1 α Id + αh 2 1 + γh B -1 (ξ k ).
Theorem 5.1 Let B : H → H be a λ-cocoercive operator and f : H → R a differentiable convex function whose gradient is L-Lipschitz continuous. Suppose the positive parameters λ, γ, β b , β f satisfy

0 < h < 2 Lβ f , γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) . (5.3)
Then, the sequence (x k ) generated by the algorithm (iDINAAM-split) has the following properties:

(i) (x k ) converges weakly to an element in S;

(ii) lim k→∞ ∇f (x k ) -∇f (p) = 0, lim k→∞ B(x k ) -B(p) = 0 . (iii) ∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞
where ∇f (p), B(p) do not depend on the choice of p ∈ S.

Proof The discrete energy Take p ∈ S. Let us consider the sequence (E k ) defined for all k ≥ 1 by

E k := 1 2 (x k -p) + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2 ,
where δ is a positive coefficient to adjust.

For each k ≥ 1, let us briefly write E k as follows:

E k = 1 2 v k 2 + δ 2 x k -p 2 , with v k := x k -p + β f h (x k -x k-1 ).
By definition of v k and (5.1), we have

v k+1 -v k = x k+1 -x k + β f h (x k+1 -2x k + x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f x k + β f h (x k -x k-1 ) -hβ f B x k+1 + β b h (x k+1 -x k ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ),
where we write shortly

y k := x k + β f h (x k -x k-1 ), z k := x k+1 + β b h (x k+1 -x k ).
Therefore, for k ≥ 1, we have

1 2 v k+1 2 - 1 2 v k 2 = - 1 2 v k+1 -v k 2 + v k+1 -v k , v k+1 = - 1 2 (γβ f -1) 2 x k+1 -x k 2 - 1 2 h 2 β 2 f ∇f (y k ) + B(z k ) 2 -hβ f (γβ f -1) x k+1 -x k , ∇f (y k ) + B(z k ) -x k+1 -p + β f h (x k+1 -x k ), (γβ f -1)(x k+1 -x k ) + hβ f ∇f (y k ) + hβ f B(z k ) . (5.4)
Then use the elementary identity

1 2 x k+1 -p 2 - 1 2 x k -p 2 = - 1 2 x k+1 -x k 2 + x k+1 -x k , x k+1 -p .
(5.5) Take δ = γβ f -1. Thus, as the first condition on the parameters, we ask

γβ f > 1.
(5.6)

From (5.4) and (5.5), we deduce that

E k+1 -E k = - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 - 1 2 h 2 β 2 f ∇f (y k ) + B(z k ) 2 -hβ f δ x k+1 -x k , ∇f (y k ) + B(z k ) -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) .
According to ∇f (p) + B(p) = 0, we can rewrite the previous relation as follows

E k+1 -E k = - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 - 1 2 h 2 β 2 f Y k + Z k 2 -hβ f δ x k+1 -x k , Y k + Z k -hβ f x k+1 -p + β f h (x k+1 -x k ), Y k + Z k , (5.7) 
where

Y k = ∇f (y k ) -∇f (p) and Z k = B(z k ) -B(p).
Since B is λ-cocoercive we have

x k+1 -p + β f h (x k+1 -x k ), Z k = z k -p + 1 h (β f -β b )(x k+1 -x k ), B(z k ) -B(p) ≥ λ B(z k ) -B(p) 2 + 1 h (β f -β b ) (x k+1 -x k ), B(z k ) -B(p) = λ Z k 2 + 1 h (β f -β b ) (x k+1 -x k ), Z k ,
Similarly, since ∇f is 1/L-cocoercive, and by using the constitutive equation (5.1), we get

x k+1 -p + β f h (x k+1 -x k ), Y k = y k -p + x k+1 -x k + β f h (x k+1 -2x k + x k-1 ), ∇f (y k ) -∇f (p) ≥ 1 L Y k 2 + x k+1 -x k + β f h (x k+1 -2x k + x k-1 ), ∇f (y k ) -∇f (p) , = 1 L Y k 2 + x k+1 -x k -γβ f (x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ), ∇f (y k ) -∇f (p) = 1 L Y k 2 -δ(x k+1 -x k ) + hβ f Y k + hβ f Z k , Y k
Combining the above relations with (5.7), we get

E k+1 -E k ≤ 1 2 h 2 β 2 f - hβ f L Y k 2 - 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 -(hβ f δ + β f (β f -β b )) x k+1 -x k , Z k - 1 2 h 2 β 2 f + hβ f λ Z k 2 . (5.8) 
Equivalently,

E k+1 -E k + S k ≤ 1 2 h 2 β 2 f - hβ f L Y k 2 , (5.9) 
where

S k = 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ Z k 2 .
Thus, as second conditions on the parameters, we ask

1 2 h 2 β 2 f - hβ f L < 0, that is 0 < h < 2 Lβ f . (5.10) 
Then note that

S k = q(x k+1 -x k , Z k ) > 0 if 4ag -b 2 > 0 where q : H × H → R is the quadratic form q(u, v) := a u 2 + b u, v + g v 2 ,
where

a = 1 2 δ 2 + δβ f h + 1 2 δ, b = hβ f δ + β f (β f -β b ), g = 1 2 h 2 β 2 f + hβ f λ.
The third and last condition on the parameters will be obtained by asking the quadratic form q to be positive definite. Since a and g are positive this is equivalent to having 4ag -b 2 > 0. We have

4ag -b 2 = 4 1 2 δ 2 + δβ f h + 1 2 δ 1 2 h 2 β 2 f + hβ f λ -(hβ f δ + β f (β f -β b )) 2 = β 2 f 4λδ -(β f -β b ) 2 + 2hδβ f λ(δ + 1) + β f β b + h 2 β 2 f δ ≥ β 2 f 4λδ -(β f -β b ) 2 > 0, (5.11) 
where the last inequality comes from our assumptions. Therefore, q is positive definite, and there exist positive real numbers µ and η such that for any k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + η ∇f (y k ) -∇f (p) 2 ≤ 0. (5.12) 
Note that µ depends on all the damping coefficients involved in the algorithm and on the step size h. Its precise estimation is an interesting subject for numerical purpose.

Estimates. According to (5.12), the sequence of nonnegative numbers (E k ) is nonincreasing, and therefore converges. In particular, it is bounded. From this, we immediately deduce that

sup k (x k -p) + β f h (x k -x k-1 ) < +∞, (5.13) 
sup k x k -p < +∞. (5.14) 
Moreover, by summing the inequalities (5.12), we deduce that

∞ k=1 x k -x k-1 2 < ∞, ∞ k=1 ∇f (y k ) -∇f (p) 2 < ∞, ∞ k=1 B(z k ) -B(p) 2 < ∞. (5.15) 
Elementary algebra and the Lipschitz continuity of ∇f give, for each k ≥ 1

∇f (x k ) -∇f (p) 2 ≤ ( ∇f (y k ) -∇f (p) + ∇f (x k ) -∇f (y k ) ) 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2 ∇f (x k ) -∇f (y k ) 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2L 2 x k -y k 2 ≤ 2 ∇f (y k ) -∇f (p) 2 + 2L 2 β 2 f h 2 x k -x k-1 2 .
(5.16)

According to (5.15) we get

∞ k=1 ∇f (x k ) -∇f (p) 2 < +∞.
Similarly, since B is 1/λ-Lipschitz, we get

∞ k=1 B(x k ) -B(p) 2 < +∞.
Since the general term of a convergent series goes to zero, we deduce (ii).

Convergence of (x k ). Let us first show that every weak cluster point x * of the sequence (x k ) belongs to S. Consider a subsequence (x kn ) of (x k ), such that x kn x * , as n → +∞. According to the item (ii) already proved we have ∇f (x kn ) → ∇f (p), B (x kn ) → B(p) strongly in H,

and

x kn x * weakly in H.

From the closedness property of the graph of the maximally monotone operators ∇f and B in w -H ×s-H, we deduce that ∇f (x * ) = ∇f (p), and B(x

* ) = B(p). Therefore ∇f (x * )+B(x * ) = ∇f (p)+B(p) = 0, that is x * ∈ S.
According to the estimate (iii) we have

∞ k=1 x k -x k-1 2 < +∞.
Since the general term of a convergent series goes to zero, we deduce that lim

k x k -x k-1 = 0.
According to the definition of E k , and since lim k E k exists (indeed it is nonincreasing) , we deduce that, for any p ∈ S lim k→∞ x k -p exists.

So, the two conditions of the Opial's lemma are satisfied, which completes the proof of the convergence of the sequence (x k ).

Errors, perturbations

Now we will examine the effect of the introduction of perturbations, errors in the algorithm (iDINAAM). Let us start from the perturbed version of (iDINAM):

ẍ(t) + γ ẋ(t) + ∇f (x(t) + β f ẋ(t)) + B (x(t) + β b ẋ(t)) = e(t), (iDINAM) 
where the right-handside e(•) takes into account perturbations, errors. A similar discretization as before gives

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k -x k-1 ) + ∇f x k + β f h (x k -x k-1 ) + B x k+1 + β b h (x k+1 -x k ) = e k . (5.17) 
Hence, we obtain the following algorithm.

(iDINAAM-pert):

Initialize:

x 0 ∈ H, x 1 ∈ H α = 1 + β b h , ξ k = x k + α 1 + γh (x k -x k-1 ) - αh 2 1 + γh ∇f x k + β f h (x k -x k-1 ) + αh 2 1 + γh e k , x k+1 = α -1 α x k + 1 α Id + αh 2 1 + γh B -1 (ξ k ).
Theorem 5.2 Let us make the assumptions of Theorem 5.1, and suppose that the sequence (e k ) of perturbations, errors satisfies:

∞ k=1 e k < +∞.
Then, the sequence (x k ) generated by the algorithm (iDINAAM-pert) has the following properties (where p ∈ S):

(i) (x k ) converges weakly to an element in S;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f x k + β f h (x k -x k-1 ) -∇f (p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇(p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, lim k→∞ ∇f (x k ) -∇f (p) = 0.
Passing from the Lyapunov analysis in the unperturbed case to the perturbed case is a classical procedure, see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF] for example. It is based on a similar Lyapunov analysis and the use of the following discrete version of the Gronwall Lemma, see [START_REF] Attouch | Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity[END_REF]Lemma A.9.] for a proof.

Lemma 5.1 Let a be a positive real number and (y k ), (g k ) be nonnegative sequences such that for all k ≥ 0, we have

1 2 y 2 k ≤ 1 2 a 2 + 0≤i<k g i y i .
Then, the following inequality holds for all k ≥ 0:

y k ≤ a + 0≤i<k g i .
Proof (of Theorem 5.

2) The proof is similar to that of Theorem 5.1. It uses the following sequence (E k ) as a discrete energy function

E k := 1 2 x k -p + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2 ,
where δ are positive coefficient to adjust.

By setting δ = γβ f -1, Y k = ∇f x k + β f h (x k -x k-1 ) -∇f (p), Z k = B x k+1 + β b h (x k+1 -x k ) - B(p)
for k ≥ 1 and using the same argument as in the proof of Theorem 5.1, we have

E k+1 -E k + S k + hβ f L - 1 2 h 2 β 2 f Y k 2 ≤ ε k , (5.18) 
where

S k = 1 2 δ 2 + δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ Z k 2 ,
and

ε k = hβ f x k+1 -p + β f h (x k+1 -x k ), e k .
According to an elementary inequality, we have that

x k+1 -x k , e k ≤ 1 2η x k+1 -x k 2 + η 2 e k 2 , (5.19) 
holds for any η > 0. Moreover, by using Cauchy-Schwarz inequality, we have

x k+1 -p, e k ≤ x k+1 -p e k .
(5.20)

Combining (5.18)-(5.20), we obtain

E k+1 -E k + S k + hβ f L - 1 2 h 2 β 2 f Y k 2 ≤ ε k , (5.21) 
where

S k = 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f 2η x k+1 -x k 2 + (hβ f δ + β f (β f -β b )) x k+1 -x k , Z k + 1 2 h 2 β 2 f + hβ f λ Z k 2 ,
and

ε k = ηβ 2 f 2 e k 2 + hβ f x k+1 -p e k .
We choose η > 0 such that

1 2 δ 2 + δβ f h + 1 2 δ - β 2 f 2η > 0.
Since S k is a quadratic form, S k > 0 if

4 1 2 h 2 β 2 f + hβ f λ 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f 2η -(hβ f δ + β f (β f -β b )) 2 > 0. (5.22) 
Notice that

lim h→0 + 4 1 2 h 2 β 2 f + hβ f λ 1 2 δ 2 + δβ f h + 1 2 δ - β 2 f 2η -(hβ f δ + β f (β f -β b )) 2 = 4β 2 f λ - (β b -β f ) 2 4δ > 0 (5.23)
thanks to the assumption on the parameters. This guarantees the existence of h > 0 satisfying (5.22). Thus, there exists a positive real number µ such that for any k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + hβ f L - 1 2 h 2 β 2 f ∇f (y k ) -∇f (p) 2 ≤ ε k . (5.24) 
From (5.24) we deduce that

E k+1 ≤ E 1 + 1≤i<k+1 ε i .
Taking into account the form of the energy sequence (E k ), we obtain More precisely, we can rewrite this estimate as follows

δ 2 x k+1 -p 2 ≤ E 1 + 1≤i<k+1 ε i . ( 5 
1 2 x k+1 -p 2 ≤ 1 2 C 2 0 + c 0 1≤i<k+1 x k+1 -p e k , (5.27) 
where

C 0 = E 1 + C δ , c 0 = hβ f δ .
Now, by applying Lemma 5.1 to (5.27), we obtain

x k+1 -p ≤ C 0 + c 0 1≤i<k+1 e i < +∞.
(5.28)

Therefore, ( x k -p ) and consequently ( x k ) is a bounded sequence.

Returning to (5.26), according to the boundedness of ( x k -p ) and the assumption of (e k ), we obtain

∞ k=1 k < +∞.
The rest of the proof is similar to that of Theorem 5.1, so we omit here.

A variant of the proximal-gradient algorithm

In this section, we consider a variant of the previous proximal-gradient algorithm, where the role of the operators is reversed. We consider the following semi-implicit finite-difference scheme for (iDINAM):

1 h 2 (x k+1 -2x k + x k-1 ) + γ h (x k+1 -x k ) + ∇f x k+1 + β f h (x k+1 -x k ) + B x k + β b h (x k -x k-1 ) = 0, (5.29) 
where h > 0 is a fixed time step. After expanding (5.29), we obtain the following algorithm.

(iDINAAM-var):

Initialize:

x 0 ∈ H, x 1 ∈ H α = 1 + β f h , y k = x k + (h 2 -γh)(x k -x k-1 ) -h 2 B x k + β b h (x k -x k-1 ) , z k = (Id +αh 2 ∇f ) -1 (αy k -(α -1)x k ), x k+1 = 1 α (α -1)x k + 1 α z k .
Theorem 5.3 Let B : H → H be a λ-cocoercive operator and f : H → R be a convex differentiable function whose gradient is L-Lipschitz continuous. Suppose that the positive parameters λ, γ, β b , β f satisfy

γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) .
(5.30)

Then, there exists h * such that for all 0 < h < h * , the sequence (x k ) generated by the algorithm (iDINAAM-var) has the following properties (where p ∈ S): (i) (x k ) converges weakly to an element in S;

(ii)

∞ k=1 x k -x k-1 2 < +∞, ∞ k=1 ∇f x k + β f h (x k -x k-1 ) -∇f (p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇(p) 2 < +∞, ∞ k=1 B x k + β f h (x k -x k-1 ) -B(p) 2 < +∞, ∞ k=1 B (x k ) -B(p) 2 < +∞, ∞ k=1 ∇f (x k ) -∇f (x k-1 ) 2 < +∞, and ∞ k=1 B(x k ) -B(x k-1 ) 2 < +∞; (iii) lim k→∞ x k+1 -x k = 0, lim k→∞ B(x k ) -B(p) = 0, lim k→∞ ∇f (x k ) -∇f (p) = 0.
Proof The discrete energy Take p ∈ S. Consider the sequence (E k ) defined for all k ≥ 1 by the formula

E k := 1 2 x k -p + β f h (x k -x k-1 ) 2 + δ 2 x k -p 2 ,
where δ is a positive coefficient to adjust.

For each k ≥ 1, let us briefly write E k as follows:

E k = 1 2 v k 2 + δ 2 x k -p 2 , with v k := x k -p + β f h (x k -x k-1 ).
By definition of v k and the formula (5.29), we have

v k+1 -v k = x k+1 -x k + β f h (x k+1 -2x k + x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f x k+1 + β f h (x k+1 -x k ) -hβ f B(x k + β b h (x k -x k-1 ) = (1 -γβ f )(x k+1 -x k ) -hβ f ∇f (y k ) -hβ f B(z k ) ,
in which

y k = x k+1 + β f h (x k+1 -x k ), z k = x k + β b h (x k -x k-1 ).
Therefore, for k ≥ 1, we have

1 2 v k+1 2 - 1 2 v k 2 = - 1 2 v k+1 -v k 2 + v k+1 -v k , v k+1 ≤ -(γβ f -1) x k+1 -p + β f h (x k+1 -x k ), x k+1 -x k -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) . (5.31) 
Using the elementary identity, one has

1 2 x k+1 -p 2 - 1 2 x k -p 2 = - 1 2 x k+1 -x k 2 + x k+1 -x k , x k+1 -p . (5.32) 
Take δ = γβ f -1. Then, from (5.31) and (5.32), we deduce that

E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 -x k+1 -p + β f h (x k+1 -x k ), hβ f ∇f (y k ) + hβ f B(z k ) .
Notice that ∇f (p) + B(p) = 0. Thus, we can rewrite the previous relation as follows

E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 -hβ f x k+1 -p + β f h (x k+1 -x k ), Y k + Z k , where Y k = ∇f (y k ) -∇f (p) and Z k = B(z k ) -B(p).
Since B is λ-cocoercive, we have

x k+1 -p + β f h (x k+1 -x k ), Z k = z k -p + (1 + 1 h (β f -β b ))(x k+1 -x k ), B(z k ) -B(p) ≥ λ B(z k ) -B(p) 2 + (1 + 1 h (β f -β b )) (x k+1 -x k ), B(z k ) -B(p) = λ Z k 2 + (1 + 1 h (β f -β b )) (x k+1 -x k ), Z k ,
Moreover, due to ∇f is 1/L-cocoercive, we deduce that

x k+1 -p + β f h (x k+1 -x k ), Y k = y k -p, ∇f (y k ) -∇f (p) ≥ 1 L ∇f (y k ) -∇f (p) 2 . (5.33) E k+1 -E k ≤ - δβ f h + 1 2 δ x k+1 -x k 2 (5.34) + (-hβ f -β f (β f -β b )) x k+1 -x k , Z k -hβ f λ Z k 2 - hβ f L Y k 2 . (5.35) 
Equivalently,

E k+1 -E k + hβ f L Y k 2 + S k ≤ 0, (5.36) 
where

S k = δβ f h + 1 2 δ x k+1 -x k 2 + (hβ f + β f (β f -β b )) x k+1 -x k , Z k + hβ f λ Z k 2 .
Our goal here is to find h > 0 such that S k > 0. Let us observe that q : H × H → R is a quadratic form

q(u, v) := a u 2 + b u, v + g v 2 , with a = δβ f h + 1 2 δ, b = hβ f + β f (β f -β b ), g = hβ f λ. Then, S k = q(x k+1 -x k , Z k ) > 0 if 4ag -b 2 > 0. One has, 4ag -b 2 = 4 δβ f h + 1 2 δ hβ f λ -(hβ f + β f (β f -β b )) 2 = 4 δβ f + 1 2 hδ β f λ -(hβ f + β f (β f -β b )) 2 . Hence, lim h→0 + (4ag -b 2 ) = β 2 f (4λδ -(β f -β b ) 2 ) > 0 since 4λδ > (β f -β b ) 2 .
This implies there exists h * > 0 such that for all h ∈ (0, h * ), we have S k > 0. Therefore, under the above condition, and by taking h sufficiently small, there exist positive real numbers µ and η such that for all k ≥ 1,

E k+1 -E k + µ x k+1 -x k 2 + µ B(z k ) -B(p) 2 + η ∇f (y k ) -∇f (p) 2 ≤ 0.
(5.37)

The rest of the proof is analogous to Theorem 5.1's one, so we omit it.

Numerical illustrations

The main purpose of this section is to implement our algorithms to numerically compute the trajectory of the dynamical system (iDINAM). For further applications, we refer the reader to [START_REF] Adly | Asymptotic behavior of Newton-like inertial dynamics involving the sum of potential and nonpotential terms[END_REF], [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. Before we start, let us recall a useful remark.

Remark 6.1 A general method to generate monotone cocoercive operators which are not gradients of convex functions is to start from a linear skew symmetric operator A and then take its Yosida approximation A λ . As a model situation, take H = R 2 and start from A equal to the rotation of angle π 2 . We have A = 0 -1 1 0 . An elementary computation gives that, for any λ > 0,

A λ = 1 1 + λ 2 λ -1 1 λ ,
which is therefore λ-cocoercive. As a consequence, for λ = 1, we obtain that the matrix

B = 1 -1 1 1 is 1 2 -cocoercive.
With these basic blocks, one can easily construct many other cocoercive operators which are not potential operators. Example 6.1 Let us start this section by a simple illustrative example in R 2 . We take H = R 2 equipped with the usual Euclidean structure. Let us consider B as a linear operator whose matrix in the canonical basis of R 2 is defined by B = A λ for λ = 5. According to the above remark, we can check that B is λ-cocoercive with λ = 5 and that B is a nonpotential operator. To observe the classical oscillations, in the heavy ball with friction, we take f : R 2 → R defined by

f (x 1 , x 2 ) = 10x 2 2 .
It is clear that f is convex but not strongly convex. We set γ = 0.9 and consider the dynamical system (iDINAM) which γ, f, and B defined as before. As a straight application of Theorem 4.1, we obtain that the trajectory x(t) generated by (iDINAM) converges to x ∞ , where x ∞ ∈ S = (B + ∇f ) -1 (0) = {0} whenever the positive parameters β b , β f satisfy γβ f > 1 and λ > (β b -β f ) 2 4(γβ f -1) .

The trajectory obtained by using Matlab is depicted in Figure 1, where we represent the components x 1 (t) and x 2 (t) in red and blue respectively. then any trajectory generated by (DINAM) converges weakly, and its limit belongs to the solution set S = (∇f + B) -1 . Morover, in [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF], the authors proposed some algorithms to find the zeros of ∇f + B.

Since our article provides similar results, it is interesting to compare these different types of algorithms. Following the same setting on B and γ as in the previous example and replacing f by f (x) = 5x 2 1 + 10x 2 2 , let us compare their numerical performance.

In Figure 4, we show the objective function for each iteration k when we apply our algorithms including 2 new ones and (DINAAM-split) proposed in [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF]. We can see that (iDIAAM-split) and (iDIAAM-var) gave the same numerical results while (DINAAM-split) did better in the long term in this case. A comparison between explicit algorithm (iDINAAM) and implicit one (DINAAM), is done in Figure 4. We note that, by introducing the implicit terms in both operators ∇f and B, we obtain a new algorithm for finding the zeros of ∇f + B. Example 6.3 Let us return to Example 6.1 and consider the effect of the introduction of perturbations, errors. With the same numerical values of the involved parameters, we just add the errors e k = 1 k 2 . Clearly, the errors (e k ) satisfy the assumptions of Theorem 5.2. Running algorithm (iDINAAM-pert) in Matlab, the plot of ∇f (x k ) + B(x k ) versus k is depicted in Figure 5. To give a link with the analogous algorithm presented in [START_REF] Adly | Newton-type inertial algorithms for solving monotone equations governed by sums of potential and nonpotential operators[END_REF], we applied (DINAAM-split-pert) in our numerical experiment. From Figure 5, we can see that algorithm (iDINAAM-pert) behaves as well as the nonperturbed version and gives almost the same numerical results as (DINAAM-split-pert) does. 

Lemma 4 . 1 B

 41 (p) and ∇f (p) are uniquely defined for p ∈ S, i.e., p 1 ∈ S, p 2 ∈ S =⇒ B(p 1 ) = B(p 2 ) and ∇f (p 1 ) = ∇f (p 2 ).

Replacing ∇f (p 1 )

 1 with -B(p 1 ) and ∇f (p 2 ) with -B(p 2 ), we get B(p 2 ) -B(p 1 ), p 2 -p 1 ≤ 0, which by cocoercivity of B gives λ B(p 2 ) -B(p 1 ) 2 ≤ 0. Therefore, B(p 2 ) = B(p 1 ) and hence ∇f (p 1 ) = ∇f (p 2 ).

  t)) -B(p) = 0, lim t→+∞ ∇f (x(t)) -∇f (p) = 0, where B(p) and ∇f (p) are uniquely defined for p ∈ S.

Corollary 4 . 1

 41 Let B : H → H be a λ-cocoercive operator and f : H → R be a C 1 convex function whose gradient is Lipschitz continuous on the bounded sets. Suppose that the solution set S = (∇f + B) -1 (0) = ∅. Consider the evolution equation (iDINAM), where A = ∇f + B, β b = β f := β > 0 and where the involved parameters satisfy the following condition γβ > 1. Then, for any solution trajectory x : [0, +∞[→ H of (iDINAM), the following properties are satisfied:(i) (convergence) The trajectory x(t) converges weakly, as t → +∞, to an element x * ∈ S. Moreover lim t→+∞ ẋ(t) = 0, and lim t→+∞ A(x(t) + β ẋ(t)) = 0. (ii) (integral estimate) (t) + β ẋ(t)) 2 dt < +∞, and +∞ 0 d dt A(x(t) + β ẋ(t)) 2 dt < +∞.

. 25 )e k 2 <

 252 According to the assumption ∞ k=1 e k < +∞, this implies that ∞ k=1 +∞. Therefore, there existsC > 0 such that 1≤i<k+1 ε i ≤ hβ f 1≤i<k+1 x k+1 -p e k + C.(5.26)From (5.25) and (5.26), we conclude thatδ 2 x k+1 -p 2 ≤ E 1 + hβ f 1≤i<k+1x k+1 -p e k + C.
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 1 Figure 1: Trajectories of (iDINAM) for different values of the parameters β b , β f .

  Case β b = 2, β f = 0.1. Case β b = 0, β f = 0.1. Case β b = 2, β f = 0. Case β b = 0, β f = 0.
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 2 Figure 2: Oscillation of the trajectories of (DINAM) for different values of β b , β f .

Figure 3 :

 3 Figure 3: The attenuation of the oscillation by introducing the Hessian damping (β f > 0).

Figure 4 :

 4 Figure 4: The numerical performance of algorithms to find the zeros of ∇f + B.

  The difference of values in log-scale (b) The difference of the objective function obtained by two algorithms.

Figure 5 :

 5 Figure 5: The effect of perturbations, errors in the algorithm (iDINAAM).

  .16) From this we immediately obtain that E p (t) ≤ E p (0), i.e. E p (t) is bounded from above. According to the definition of E p (•) we deduce that

			sup	x(t) -p < +∞,	(4.17)
			t≥0	
		sup	x(t) -p + β f ẋ(t) < +∞.	(4.18)
		t≥0			
	From (4.17)-(4.18) and β f > 0, by using the triangle inequality we infer
				sup	ẋ(t) < +∞.	(4.19)
				t≥0
	Moreover, we immediately deduce from (4.16) and E p (t) nonnegative the following integral estimates
	+∞			+∞	+∞
	X(t) 2 dt < +∞,				ẋ(t) 2 dt < +∞,	Y (t) 2 dt < +∞.	(4.20)
	0		0			0
					t→+∞	ẋ(t) = 0.	(4.22)
	Furthermore, since B is λ-cocoercive, it is	1 λ	-Lipschitz continuous. Therefore,
	d dt	B(x(t) + β b ẋ(t)) ≤	1 λ	ẋ(t) + β b ẍ(t) , for all t ≥ 0.	(4.23)
	Hence,				
	+∞				
	0				

Let us rewrite (iDINAM) equivalently as follows (recall that ∇f (p) + Bp = 0)

ẍ(t) = -γ ẋ(t) -X(t) -Y (t).

According to (4.20) the second member of the above equality belongs to L 2 (0, +∞; H). Therefore +∞ 0 ẍ(t) 2 dt < +∞. (4.21) From (4.20) and (4.21) we have ẋ ∈ L 2 ([0, +∞[; H) and ẍ ∈ L 2 ([0, +∞[; H). By Lemma 4.2 applied to u = ẋ with p = r = 2 we deduce that lim

  2 dt < +∞.

	From (4.20)-(4.24), by applying Lemma 4.2 we deduce that lim t→+∞	X(t) = lim t→+∞	Y (t) = 0, that is
	lim t→+∞	B((x(t) + β b ẋ(t)) -B(p) = 0, lim t→+∞	∇f (x(t) + β f ẋ(t)) -∇f (p) = 0	(4.25)
	According to the Lipschitz continuity of B, and the Lipschitz continuity of ∇f on the bounded sets (recall
	that x(t) and ẋ(t) are bounded) we immediately deduce from (4.25) and lim t→+∞	ẋ(t) = 0, that
		lim t→+∞	B(x(t)) -B(p) = 0, lim t→+∞	∇f (x(t)) -∇f (p) = 0.	(4.26)
	Similarly, we have											
					0	+∞	d dt	∇f (x(t) + β f ẋ(t))		
		0	+∞	d dt	X(t)	2	dt < +∞,	0	+∞	d dt	Y (t)	2	dt < +∞.	(4.24)

2 dt < +∞

where have used that x(t) + β f ẋ(t) remains bounded (according to (4.17) and (4.

[START_REF] Attouch | Newton-like inertial dynamics and proximal algorithms governed by maximally monotone operators[END_REF]

) and that ∇f is Lipschitz continuous on the bounded sets. So, according to the definition of X(t) and Y (t) we have

At several places the assumption (A1) will be relaxed, just assuming ∇f to be Lipschitz continuous on the bounded sets