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Convergence of inertial dynamics driven by sums of potential and
nonpotential operators and with implicit Newton-like damping

Samir Adly* Hedy Attouch† Van Nam Vo‡

Abstract

We propose and study the convergence properties of the trajectories generated by a damped iner-
tial dynamic which is driven by the sum of potential and nonpotential operators. Precisely, we seek
to reach asymptotically the zeros of sums of potential term (the gradient of a continuously differen-
tiable convex function) and nonpotential monotone and cocoercive operator. As an original feature,
in addition to viscous friction, the dynamic involves implicit Newton-type damping. This contrasts
with the authors’ previous study where explicit Newton-type damping was considered, which, for the
potential term, corresponds to Hessian-driven damping. We show the weak convergence, as time goes
to infinity, of the generated trajectories towards the zeros of the sum of the potential and nonpotential
operators. Our results are based on Lyapunov analysis and appropriate setting of damping parameters.
The introduction of geometric dampings allows to control and attenuate the oscillations known for
the viscous damping of inertial methods. Rewriting the second-order evolution equation as a system
involving only first order derivative in time and space allows us to extend the convergence analysis to
nonsmooth convex potentials. Our study concerns the autonomous case with positive fixed parame-
ters. These results open the door to their extension to the nonautonomous case and to the design of
new first-order accelerated algorithms in optimization taking into account the specific properties of
potential and nonpotential terms. The proofs and techniques are original due to the presence of the
nonpotential term.

1 Introduction

With the explosion of digital information, the Gradient Descent Method (GDM) is one of the most popular
methods used in data science, image and statistical processing to minimize a function, due to its simplicity.
First-order methods have gained popularity in recent years due to their importance in solving large scale
optimization problems in Machine Learning and Data Science by only having access to the gradient of the
function. One of the drawbacks of the Gradient Descent Method is its slowness (zig-zag pattern conver-
gence on quadratic functions). An improvement of the Gradient Descent Method was proposed in 1964
by B. Polyak [38] where he considered a momentum term associated with a gradient descent step. The
associated continuous Ordinary Differential Equation (ODE) surrogate of the Polyak momentum is known
as the heavy ball with friction (HBF), an inertial system with a fixed viscous damping coefficient. From a
mechanical point of view, it could be interpreted as the motion of a material point subject to viscous fric-
tion damping and conservative potential forces. The (HBF) is a second order (in time) dissipative system
where the presence of inertia allows the system to overcome some known drawbacks of the (GDM) and
acts to accelerate the convergence. We note that the (HBF) is not a descent method and the convergence
of the trajectories towards a critical point of the potential to be minimized is well-known under various
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assumptions like convexity or analyticity of the potential to be minimized. For a strongly convex function
and a viscous damping coefficient judiciously chosen, (HBF) provides convergence at exponential rate.

For a general convex function, the asymptotic convergence rate of (HBF) isO(
1

t
) (in the worst case). This

is however not better than the steepest descent. An other momentum method was introduced by Nesterov
[39] in 1983, known in the literature as Nesterov Accelerated Gradient (NAG). To obtain a continuous
ODE surrogate of the Nesterov Accelerated Gradient algorithm, a decisive step was taken by Su-Boyd-
Candès [44] with the introduction of an Asymptotic Vanishing Damping (AVD) coefficient of the form

α

t
,

with α > 0 and t > 0 represents the time variable. In particular, for a general convex function f , the
condition α > 3 guarantees the asymptotic convergence rate of the values with a rate of ordre o

(
1/t2

)
,

as well as the weak convergence of the trajectories towards optimal solutions. The subcritical case α ≤ 3
has been examined in [7] and [12]. In line with the founding article by Beck and Teboulle [28] devoted
to Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) method, an abundant literature has been de-
voted to the extension of these results to the inertial proximal gradient algorithms for solving additively
structured “smooth + nonsmooth” optimization problems by splitting methods, see [9], [11], [33], [42] and
references therein. The introduction of the Hessian-driven damping in [10] allows to damp the transversal
oscillations which can occur with (HBF). Recent studies have been devoted to inertial dynamics that com-
bines asymptotic vanishing damping with Hessian-driven damping. In fact, the corresponding algorithms
involve a correcting term in the Nesterov method which reduces the oscillatory aspects [23, 13, 44].
The Ravine method was introduced by Gelfand and Tsetlin [34] in 1961. It is closely related to the Nes-
terov method. It mimics the flow of water in the mountains which first flows rapidly downhill through
small, steep ravines and then flows along the main river into the valley. It was put forward by B. Polyak
and more recently in [17] and [41]. It has been shown in [17] that the Ravine and the Nesterov methods
have the same dynamic interpretation and they benefit from similar fast convergence properties. In fact, the
low resolution ODE (in the sense of [43]) of both Nesterov Accelerated Gradient and the Ravine method is
given by the Su-Boyd-Candès dynamic. The high-resolution ODE of Nesterov’s and Ravine’s accelerated
gradient methods shows the Hessian-driven damping, giving a more accurate dynamic interpretation of
both methods. The explicit form of the Hessian-driven damping was introduced in [13] and [43], while the
implicit form was considered by Alesca, Laszlo and Pinta in [5].
Equally important is the study of additively structured monotone problems involving the sum of potential
and nonpotential operators. Indeed, many situations coming from physics, biology, decision sciences in-
volve equations containing both potential and nonpotential terms. For example, in decision sciences and
game theory, it comes from the presence of both cooperative and noncooperative aspects. In physics, this
is the case when the phenomena of diffusion and convection both occur. The Lagrangian approach to
linear constrained optimization problems also gives rise to similar structures. Our main concern in this
paper is the analysis of the convergence properties of the trajectories generated by a damped inertial dy-
namic, called (iDINAM), driven by the sum of a potential (the gradient of a continuously differentiable
convex function) and a nonpotential monotone operators. The originality of this model lies in the fact that
it contains an implicit Newton-type damping in addition to the viscous friction. Our approach is based on
the Lyapunov analysis combined with an adequate tuning of the parameters involved in the dynamic. We
note that the explicit Newton-type damping was considered by the authors in [3, 4]. Our main results are
Theorems 4.1 and 5.1 which show that a judicious adjustment of the damping parameters ensures the weak
convergence of the trajectories generated by (iDINAM) and the associated proximal-gradient algorithms,
obtained by temporal discretization.

The content of the paper is as follows. After the introductory Section 1, in Section 3, we show the well-
posedness of the Cauchy problem for (iDINAM). In Section 4, we analyze the convergence properties of
the solution trajectories generated by the continuous dynamics (iDINAM). We highlight the interplay be-
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tween the damping parameters βf , βb, γ and the cocoercivity parameter λ, which plays a significant role
in our Lyapunov analysis. In Section 5, we analyze various inertial proximal-gradient splitting algorithms
which come naturally from the temporal discretization of (iDINAM). We also examine the effect of errors,
perturbations in these algorithms. In Section 6, we perform numerical experiments which show that the os-
cillations are considerably reduced with the introduction of geometric damping. Applications to structured
monotone equations involving a nonpotential operator are considered.

2 Problem statement and related works

2.1 General presentation

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and the associated norm ‖ · ‖. Our
study focuses on the dynamic approach to solving the additively structured monotone problem

Find x ∈ H : ∇f(x) +B(x) = 0, (2.1)

where∇f is the gradient of a continuously differentiable convex function f : H → R (this is the potential
part), and B : H → H is an operator which is supposed to be monotone and cocoercive (this is the
nonpotential part). Specifically, our study concerns the convergence properties when t → +∞ of the
trajectories generated by the second-order evolution equation

ẍ(t) + γẋ(t) +∇f
(
x(t) + βf ẋ(t)

)
+B

(
x(t) + βbẋ(t)

)
= 0, (iDINAM)

whose stationary points are solutions of (2.1). We will see that the nonnegative coefficients βf and βb
in (iDINAM) can be interpreted as geometric damping parameters. The terminology (iDINAM) in short
stands for implicit Dynamic Inertial Newton method for Additively structured Monotone problems. In
addition to the modeling aspects described above, this system is part of the rich family of inertial systems
that have been considered in recent years to design fast first-order optimization algorithms. In the potential
case (i.e.B = 0) this system study was considered by Alesca, Laszlo and Pinta in [5], see also [37] for a
related autonomous system in the case of a strongly convex function f . The dynamic (iDINAM) is closely
related to its explicit version

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0, t ≥ 0 (DINAM)

previously studied by the authors in [3]. (DINAM) is an autonomous dynamic which involves geometric
dampings which are respectively controlled by the Hessian of the potential function f , and by a Newton-
type correction term attached to B. The link between the two dynamics above, and the justification of
their respective explicit and implicit qualification is explained by the following. When t → +∞ we have
ẋ(t)→ 0. Therefore, using the Taylor expansion, we get, when t→ +∞

∇f (x(t) + βf ẋ(t)) ≈ ∇f(x(t)) + βf∇2f(x(t))ẋ(t),

B (x(t) + βbẋ(t)) ≈ B(x(t)) + βbB
′(x(t))(ẋ(t)).

The replacement of these terms in (iDINAM) by their equivalent expressions gives (DINAM). Therefore,
both systems can be expected to behave similarly when t→ +∞. It is our main objective in this paper to
study the new system (iDINAM) and to compare it to (DINAM). In the potential case, (i.e.B = 0), such
a comparative study was carried out in [16] from the point of view of the stability of the dynamics with
respect to disturbances, errors.
Our main motivation for the study of these dynamical systems comes from the fact that the geometric
damping makes it possible to control and attenuate the oscillations known for the viscous damping of
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the inertial methods. This is crucial to develop corresponding fast optimization algorithms obtained by
temporal discretization.
Throughout the paper we make the following standing assumptions: 1

(A1) f : H → R is convex, of class C1, ∇f is Lipschitz continuous;

(A2) B : H → H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0, βf > 0, βb > 0 are given real damping parameters.

The cocoercivity assumption on the operatorB plays a central role in our analysis. Recall that the operator
B : H → H is said to be λ-cocoercive for some λ > 0 if

〈By −Bx, y − x〉 ≥ λ‖By −Bx‖2, ∀x, y ∈ H.

It is easy to check that B is λ-cocoercive implies that B is 1/λ-Lipschitz continuous. The reverse im-
plication holds true in the case where the operator is the gradient of a convex and differentiable function.
Indeed, according to Baillon-Haddad’s theorem [26], ∇f is L-Lipschitz continuous implies that ∇f is a
1/L-cocoercive operator (see [27, Corollary 18.16] for more details).

2.2 Related works

Some of the material presented in this section, which refers to the existing literature on the subject, is taken
from the authors’ previous articles [3, 4]. We reproduce it for the convenience of the reader.

2.2.1 Potential case

Let us first recall some classical results concerning the potential case (B = 0). The following inertial
system with Hessian-driven damping

ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0, (2.2)

was considered by Alvarez-Attouch-Peypouquet-Redont in [10]. Then, according to the continuous inter-
pretation by Su-Boyd-Candès [44] of the accelerated gradient method of Nesterov, Attouch-Peypouquet-
Redont [23] replaced the fixed viscous damping parameter γ by an asymptotic vanishing damping param-
eter

α

t
, with α > 0. At first glance, the presence of the Hessian may seem to entail numerical difficulties.

However, this is not the case as the Hessian intervenes in the above equation in the form ∇2f(x(t))ẋ(t),
which is nothing but the derivative with respect to time of ∇f(x(t)). So, the temporal discretization of
these dynamics provides first-order algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = yk − s∇f(yk).

As a specific feature, and by comparison with the classical accelerated gradient methods, these algorithms
contain a correction term which is equal to the difference of the gradients at two consecutive steps. While
preserving the convergence properties of the accelerated gradient method, they provide fast convergence
to zero of the gradients, and reduce the oscillatory aspects. Several recent studies have been devoted to
this subject, see Attouch-Chbani-Fadili-Riahi [13, 14], Boţ-Csetnek-László [30], Kim [35], Lin-Jordan

1At several places the assumption (A1) will be relaxed, just assuming ∇f to be Lipschitz continuous on the bounded sets
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[36], Shi-Du-Jordan-Su [43]. Application to deep learning has been recently developed by Castera-Bolte-
Févotte-Pauwels [32]. In [2], Adly-Attouch studied the finite convergence of proximal-gradient inertial
algorithms combining dry friction with Hessian-driven damping.

In (2.2), the Hessian appears explicitly. A closely related ODE is obtained by considering an approach
where the Hessian driven damping appears in an implicit form. This was initiated by Alesca-Lazlo-Pinta
in [5], see also [37] for a related autonomous system in the case of a strongly convex function f . This
ODE, coined (ISIHD) for Inertial System with Implicit Hessian Damping, takes the form

ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0, (ISIHD)

where α ≥ 3 and β(t) = γ +
β

t
, γ, β ≥ 0. As mentioned above, the rationale justifying the use of the

term “implicit” comes from the observation that by a Taylor expansion (as t → +∞ we have ẋ(t) → 0
which justifies using Taylor expansion), one has

∇f
(
x(t) + β(t)ẋ(t)

)
≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),

hence making the Hessian damping appear indirectly in (ISIHD). As for (2.2), this ODE was found to
have a smoothing effect on the oscillations.

2.2.2 Non potential case

Let us now examine how these techniques can be transposed to the case of maximally monotonic operators.
The first studies carried out by Álvarez-Attouch [8] and Attouch-Maingé [20] concerned the equation

ẍ(t) + γẋ(t) +A(x(t)) = 0, (2.3)

when A : H → H is a cocoercive (and hence maximally monotone) operator, (see also [29]). The coco-
ercivity assumption plays a crucial role in the study of (2.3), not only to ensure the existence of solutions,
but also to analyze their long-term behavior. Assuming that the cocoercivity parameter λ and the damping
coefficient γ satisfy the inequality λγ2 > 1, it is proved in [20] that each trajectory of (2.3) converges
weakly to a zero of A, as t→ +∞.
Then this approach has been adapted to the case of general maximally monotone operators by Attouch-
Peypouquet [22], and by Attouch-Laszlo [18, 19]. The key property is that for λ > 0, the Yosida approx-
imation Aλ of A is λ-cocoercive and A−1λ (0) = A−1(0). So the idea is to replace the operator A by its
Yosida approximation, and adjust the Yosida regularization parameter.
The ”potential + nonpotential” structured monotone case was first considered by Attouch-Maingé [20]
who studied the asymptotic behavior of the second-order dissipative evolution equation

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) = 0, (2.4)

combining potential (f convex) with nonpotential effects (B λ-cocoercive). It was shown that the condition
insuring convergence of the trajectories to equilibria is still λγ2 > 1, i.e. the potential term does not enter
into this condition. (DINAM) is obtained by introducing the Hessian term and the corrector term of the
Newton type into this dynamic.

2.2.3 Regularized Newton methods for solving monotone inclusions

As can be expected, the geometric damping related to the Hessian, has a natural link with the method
of Newton for solving (2.1). To overcome the ill-posed character of the continuous Newton method for
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solving the equation governed by a general maximally monotone operator A, the following first order
evolution system was studied by Attouch-Svaiter [25],{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

Taking γ(t) > 0, this system can be considered as a continuous version of the Levenberg-Marquardt
method, which acts as a regularization of the Newton method. Under a fairly general assumption on the
regularization parameter γ(t), this system is well posed and generates trajectories that converge weakly to
equilibria (zeros ofA). Parallel results have been obtained for the associated proximal algorithms obtained
by implicit temporal discretization, and for the corresponding forward-backward algorithms in the case of
structured monotone problems, see [1], [21], [24]. Formally, this system is written as

γ(t)ẋ(t) + β
d

dt
(A(x(t))) +A(x(t)) = 0.

Thus (DINAM) can be considered as an inertial version of this dynamical system for structured monotone
operator A = ∇f + B. Our study is also linked to the recent works by Attouch-Laszlo [18, 19] who
considered the general case of monotone equations. By contrast with [18, 19], according to the cocoer-
civity of B, we don’t use the Yosida regularization, and exhibit minimal assumptions involving only the
nonpotential component.

3 Well-posedness of the Cauchy problem for (iDINAM)

We are going to show an existence and uniqueness result for the Cauchy problem associated with the
dynamical system (iDINAM). We will present two different approaches and results, depending on the hy-
pothesis on the potential function f . The first, relatively simple, concerns the case where f is differentiable
with ∇f globally continuous Lipschitz on H. It is based on a direct application of the Cauchy-Lipschitz
theorem to the Hamiltonian formulation of (iDINAM). The second, more complicated proof concerns the
case where f : H → R∪{+∞} is a convex lower semi-continuous proper function. In both cases we will
use the notion of strong solution, as presented below.

Definition 3.1 The function x : [0,+∞[→ H is called a strong global solution of the dynamical system
(iDINAM) if it satisfies the following properties:

(i) x, ẋ : [0,+∞[→ H are locally absolutely continuous;

(ii) ẍ(t) + γẋ(t) +∇f(x(t) + βf ẋ(t)) +B(x(t) + βbẋ(t)) = 0 for almost every t ≥ 0;

Recall that a map x : [t0,+∞[→ H is said to be locally absolutely continuous if it is absolutely con-
tinuous on any compact interval [t0, T ], where T > t0. Moreover, we have the following equivalent
characterizations of an absolutely continuous function x : [t0, T ]→ H, (see, for example [1, 25]):

(a) there exists y : [t0, T ]→ H a Lebesgue-integrable function, such that

x(t) = x(0) +

∫ t

0
y(s)ds, ∀t ∈ [0, T ];

(b) x is a continuous and its distributional derivative is Lebesgue integrable on the interval [0, T ];

(c) for every ε > 0, there exists η > 0 such that for every finite family Ik = (ak, bk) from [0, T ], the
following implication is valid:[

Ik ∩ Ij = ∅ and
∑
k

|bk − ak| < η

]
=⇒

[∑
k

‖x(bk)− x(ak)‖ < ε

]
.
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3.1 Existence and uniqueness: the smooth case

Theorem 3.1 Suppose that f : H → R is differentiable with ∇f globally continuous Lipschitz on H.
Suppose that βf > 0 and βb > 0. Then, for any (x0, x1) ∈ H × H, there exists a unique strong
global solution x : [0,+∞[→ H of the continuous dynamic (iDINAM) which satisfies the Cauchy data
x(0) = x0, ẋ(0) = x1.

Proof Let us reformulate (iDINAM) as a first order evolution equation. According to its Hamiltonian
formulation, the system (iDINAM) can be rewritten as{

Ż(t) = F (Z(t))

Z(0) = (x0, x1),
(3.1)

where Z(t) = (x(t), y(t)) and F : H2 → H2 is given by

F (x, y) =

(
y

−γy −∇f(x+ βfy)−B(x+ βby)

)
.

According to the Lipschitz continuity properties of ∇f and B, it is immediate to verify that F is a Lips-
chitz continuous map. By applying the classical Cauchy-Lipschitz theorem, we obtain the existence and
uniqueness of the solution of (3.1), and hence of the Cauchy problem for (iDINAM). Note that, without
any other assumption, we obtain a strong solution, and not a classical C2 solution, because the vector field
F is only Lipschitz continuous.

3.2 Existence and uniqueness: the nonsmooth case

Let us introduce another first order formulation of (iDINAM) which is based on the new function

y(t) := x(t) + βf ẋ(t). (3.2)

Equivalently,

ẋ(t) =
1

βf
(y(t)− x(t)). (3.3)

Elementary algebra gives

x(t) + βbẋ(t) =
βb
βf
y(t) +

(
1− βb

βf

)
x(t). (3.4)

According to the above formula, and the constitutive equation (iDINAM), the time derivation of y(t) gives

ẏ(t) = ẋ(t) + βf ẍ(t) (3.5)

= ẋ(t)− βf
(
γẋ(t) +∇f(y(t)) +B

( βb
βf
y(t) +

(
1− βb

βf

)
x(t)

))
(3.6)

= (1− γβf )ẋ(t)− βf∇f(y(t))− βfB
( βb
βf
y(t) +

(
1− βb

βf

)
x(t)

)
. (3.7)

Replacing ẋ(t) with
1

βf
(y(t)− x(t)), as given by (3.3), gives

ẏ(t) =
1− γβf
βf

(y(t)− x(t))− βf∇f(y(t))− βfB
( βb
βf
y(t) +

(
1− βb

βf

)
x(t)

)
. (3.8)

The reverse transformation which consists in passing from (3.3), (3.8) to (iDINAM) is obtained in a similar
way. Let us summarize the results.
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Theorem 3.2 Let f ∈ C1(H). Suppose that βf > 0. The following statements are equivalent:

1. x : [0,+∞[→ H is a solution trajectory of (iDINAM) with initial conditions x(0) = x0, ẋ(0) = x1.

2. (x, y) : [0,+∞[→ H×H is a solution trajectory of the first-order system
ẋ(t) +

1

βf
x(t)− 1

βf
y(t) = 0.

ẏ(t) + βf∇f(y(t)) + βfB
( βb
βf
y(t) +

(
1− βb

βf

)
x(t)

)
+

1− γβf
βf

(x(t)− y(t)) = 0.

with initial conditions x(0) = x0, y(0) = x0 + βfx1.

We can naturally extend the above formulation to the case where f ∈ Γ0(H), by replacing the gradient
∇f with the subdifferential ∂f .

Definition 3.2 Let βf > 0, f ∈ Γ0(H). Given (x0, y0) ∈ H × dom(f), the Cauchy problem associated
with the generalized (iDINAM) system is defined by

ẋ(t) +
1

βf
x(t)− 1

βf
y(t) = 0

ẏ(t) + βf∂f(y(t)) + βfB
( βb
βf
y(t) +

(
1− βb

βf

)
x(t)

)
+

1− γβf
βf

(x(t)− y(t)) 3 0.

x(0) = x0, y(0) = y0.

(3.9)

The existence and uniqueness of a global strong solution of the Cauchy problem (3.9) is established in
the following theorem.

Theorem 3.3 Let f ∈ Γ0(H). Suppose that βf > 0. Then, for any Cauchy data (x0, y0) ∈ H× dom(f),
there exists a unique global strong solution (x, y) : [0,+∞[→ H×H of the generalized (iDINAM) system
(3.9) satisfying the initial condition x(0) = x0, y(0) = y0. Moreover when f ∈ C1(H), x(·) is a classical
(i.e. C2) global solution of the Cauchy problem associated with (iDINAM).

Proof We reformulate (3.9) in the product spaceH×H by setting Z(t) = (x(t), y(t)) ∈ H ×H, and
thus (3.9) can be equivalently written as

Ż(t) + βf∂G(Z(t)) +D(Z(t)) 3 0, (3.10)

where G ∈ Γ0(H × H) is the function defined as G(Z) = f(y), and operator D : H × H → H × H is
given by

D(Z) =

(
1

βf
(x− y), βfB

( βb
βf
y +

(
1− βb

βf

)
x
)

+
1− γβf
βf

(x− y)

)
. (3.11)

The differential inclusion (3.10) is governed by the sum of the convex subdifferential operator βf∂G and
the Lipschitz continuous operator D(·). The existence and uniqueness of a global strong solution for the
Cauchy problem (3.10), and hence for (3.9), follows from a direct application of [31, Proposition 3.12].
In turn, if f ∈ C1(H), then (3.9) admits a unique C1([0,+∞[) global solution (x, y). It then follows from
the first equation in (3.9) that ẋ is a C1([0,+∞[) function, and hence x ∈ C2([0,+∞[). Existence and
uniqueness of a classical global solution to the Cauchy problem associated to (iDINAM) is then obtained
thanks to the equivalence in Theorem 3.2.
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4 Asymptotic convergence properties of (iDINAM)

In this section, we study the asymptotic behavior of the solution trajectories of (iDINAM). For each so-
lution trajectory t 7→ x(t) of (iDINAM) we show that the weak limit, w- lim

t→+∞
x(t) = x∞ exists, and

satisfies x∞ ∈ S, where
S := {p ∈ H : ∇f(p) +B(p) = 0}.

We complete these results by producing integral and pointwise convergence rates.

4.1 Preliminary results

The following result relies on the cocoercivity of B.

Lemma 4.1 B(p) and ∇f(p) are uniquely defined for p ∈ S, i.e.,

p1 ∈ S, p2 ∈ S =⇒ B(p1) = B(p2) and ∇f(p1) = ∇f(p2).

Proof Since p1 ∈ S, p2 ∈ S we have

∇f(p1) +B(p1) = ∇f(p2) +B(p2) = 0.

By the monotonicity of∇f we have

〈∇f(p2)−∇f(p1), p2 − p1〉 ≥ 0.

Replacing∇f(p1) with −B(p1) and ∇f(p2) with −B(p2), we get

〈B(p2)−B(p1), p2 − p1〉 ≤ 0,

which by cocoercivity of B gives λ‖B(p2) − B(p1)‖2 ≤ 0. Therefore, B(p2) = B(p1) and hence
∇f(p1) = ∇f(p2).

The following lemma is a classic result from integration theory, often called Barlabat’s theorem in
control theory.

Lemma 4.2 Let 1 ≤ p < +∞ and 1 ≤ r ≤ +∞. Suppose that u ∈ Lp([0,+∞[;H) is a locally
absolutely function, such that u̇ ∈ Lr([0,+∞[;H).
Then lim

t→∞
u(t) = 0.

The following lemma will play a central role in the proof of our main convergence theorem. The proof
can be found in [6, 20].

Lemma 4.3 ([6]) If w ∈ C2([0,+∞[,R) is bounded from below and satisfies the following inequality

ẅ(t) + γẇ(t) ≤ g(t),

where γ is a positive constant and g ∈ L1([0,+∞[,R), then w(t) converges as t→ +∞.
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4.2 Main result

The following result will be obtained by using Lyapunov analysis. Take p ∈ S. Let x(·) be a solution
trajectory of the dynamical system (iDINAM). To analyze the convergence properties of x(·), we introduce
the function Ep : [0,+∞[→ R+ defined by

Ep(t) := a
(
f(x(t) + βf ẋ(t))− f(p)− 〈∇f(p), x(t) + βf ẋ(t))− p〉

)
+

1

2
‖x(t)− p+ βf ẋ(t)‖2 +

d

2
‖x(t)− p‖2, (4.1)

and that will serve us as a Lyapunov function. According to the convexity of f , Ep(·) is a nonnegative
function. Our goal is to adjust the constant a > 0 and d > 0 so that we have Ėp(t) ≤ 0 for every t ≥ 0.

Theorem 4.1 Let B : H → H be a λ-cocoercive operator and f : H → R a C1 convex function whose
gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f + B)−1(0) 6= ∅. Consider
the evolution equation (iDINAM) where the involved parameters satisfy the following conditions:

γβf > 1 and λ >
(βb − βf )2

4(γβf − 1)
. (4.2)

Then, for any solution trajectory x : [0,+∞[→ H of (iDINAM) the following properties are satisfied:

(i) (convergence)

x(t) converges weakly , as t→ +∞, to an element of S.

lim
t→+∞

‖ẋ(t)‖ = 0,

lim
t→+∞

‖B(x(t))−B(p)‖ = 0, lim
t→+∞

‖∇f(x(t))−∇f(p)‖ = 0,

where B(p) and ∇f(p) are uniquely defined for p ∈ S.

(ii) (integral estimates)∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖ẍ(t)‖2dt < +∞,∫ +∞

0
‖B(x(t) + βbẋ(t))−B(p)‖2dt < +∞,

∫ +∞

0
‖∇f(x(t) + βf ẋ(t))−∇f(p)‖2dt < +∞,∫ +∞

0

∥∥∥∥ ddtB(x(t) + βbẋ(t))

∥∥∥∥2 dt < +∞,
∫ +∞

0

∥∥∥∥ ddt∇f(x(t) + βf ẋ(t))

∥∥∥∥2 dt < +∞.

Proof Lyapunov analysis. Let us derivate the function Ep(·) defined in (4.1). The derivation chain
rule gives

Ėp(t) = a〈∇f(x(t) + βf ẋ(t))−∇f(p), ẋ(t) + βf ẍ(t)〉
+ 〈x(t)− p+ βf ẋ(t), ẋ(t) + βf ẍ(t)〉+ d〈x(t)− p, ẋ(t)〉.

According to the constitutive equation (iDINAM) we have

ẍ(t) = −γẋ(t)−∇f (x(t) + βf ẋ(t))−B(x(t) + βbẋ(t)).
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Therefore,

Ėp(t) =a〈∇f(x(t) + βf ẋ(t))−∇f(p), ẋ(t) + βf (−γẋ(t)−∇f (x(t) + βf ẋ(t))−B(x(t) + βbẋ(t)))〉
+〈x(t)− p+ βf ẋ(t), ẋ(t) + βf (−γẋ(t)−∇f (x(t) + βf ẋ(t))−B(x(t) + βbẋ(t)))〉
+d〈x(t)− p, ẋ(t)〉.

Let us denote shortly

X(t) := ∇f
(
x(t) + βf ẋ(t)

)
−∇f(p),

Y (t) := B
(
x(t) + βbẋ(t)

)
−B(p).

Since p ∈ S, we have∇f(p) +B(p) = 0. So, we can arrange Ėp(t) as follows

Ėp(t) = a〈X(t), ẋ(t) + βf (−γẋ(t)−X(t)− Y (t))〉
+ 〈x(t)− p+ βf ẋ(t), ẋ(t) + βf (−γẋ(t)−X(t)− Y (t))〉+ d〈x(t)− p, ẋ(t)〉
= −aβf‖X(t)‖2 + a(1− γβf )〈X(t)), ẋ(t)〉 − aβf 〈X(t), Y (t)〉 (4.3)

+ βf (1− γβf )‖ẋ(t)‖2 + (d+ 1− γβf )〈x(t)− p, ẋ(t)〉 − βf 〈x(t)− p+ βf ẋ(t), X(t) + Y (t)〉.

By convexity of f, we have that ∇f is monotone. By definition of X(t) this gives

〈x(t)− p+ βf ẋ(t), X(t)〉 ≥ 0.

Moreover, since B is λ-cocoercive, we have

〈x(t)− p+ βf ẋ(t), Y (t)〉 = 〈x(t)− p+ βbẋ(t), Y (t)〉+ (βf − βb)〈ẋ(t), Y (t)〉
≥ λ‖Y (t)‖2 + (βf − βb)〈ẋ(t), Y (t)〉.

Combining the above results, and taking d = γβf − 1 > 0, we deduce from (4.3) that

Ėp(t) ≤ −aβf‖X(t)‖2 + a(1− γβf )〈X(t)), ẋ(t)〉 − aβf 〈X(t), Y (t)〉
+ βf (1− γβf )‖ẋ(t)‖2 − λβf‖Y (t)‖2 − βf (βf − βb)〈ẋ(t), Y (t)〉. (4.4)

Let us majorize the scalar products that enter (4.4) with the help of the following elementary inequalities:
for any ρ > 0 and r > 0, which are parameters that will be adjusted (recall that γβf > 1)

a(1− γβf )〈X(t)), ẋ(t)〉 ≤ 1

2
ρa(γβf − 1)‖X(t)‖2 +

1

2ρ
a(γβf − 1)‖ẋ(t)‖2 (4.5)

−aβf 〈X(t), Y (t)〉 ≤ 1

2
arβf‖X(t)‖2 +

1

2r
aβf‖Y (t)‖2. (4.6)

Combining (4.4) with (4.5) and (4.6), we get

Ėp(t) ≤ −aβf‖X(t)‖2 +
1

2
ρa(γβf − 1)‖X(t)‖2 +

1

2ρ
a(γβf − 1)‖ẋ(t)‖2

+
1

2
arβf‖X(t)‖2 +

1

2r
aβf‖Y (t)‖2

+ βf (1− γβf )‖ẋ(t)‖2 − λβf‖Y (t)‖2 − βf (βf − βb)〈ẋ(t), Y (t)〉. (4.7)

After rearranging the terms, we get

Ėp(t) ≤ −a
(
βf −

1

2
ρ(γβf − 1)− 1

2
rβf

)
‖X(t)‖2 − (γβf − 1)

(
βf −

a

2ρ

)
‖ẋ(t)‖2

− βf
(
λ− a

2r

)
‖Y (t)‖2 − βf (βf − βb)〈ẋ(t), Y (t)〉. (4.8)
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Equivalently,

Ėp(t) + a

(
βf −

1

2
ρ(γβf − 1)− 1

2
rβf

)
‖X(t)‖2 + βfS(t) ≤ 0, (4.9)

where

S(t) :=
(
λ− a

2r

)
‖Y (t)‖2 + (βf − βb)〈ẋ(t), Y (t)〉+ (γβf − 1)

(
1− a

2ρβf

)
‖ẋ(t)‖2.

We have S(t) = q(Y (t), ẋ(t)) where q : H×H → R is the quadratic form

q(Y, Z) :=
(
λ− a

2r

)
‖Y ‖2 + (βf − βb)〈Y,Z〉+ (γβf − 1)

(
1− a

2ρβf

)
‖Z‖2.

The following system of conditions on the positive parameters a, r, ρ ensures that the coefficient of
‖X(t)‖2 in (4.9) is positive and the quadratic form q is positive definite:

βf −
1

2
ρ(γβf − 1)− 1

2
rβf > 0; (4.10)

λ− a

2r
> 0; (4.11)

1− a

2ρβf
> 0; (4.12)

4
(
λ− a

2r

)
(γβf − 1)

(
1− a

2ρβf

)
− (βf − βb)2 > 0. (4.13)

Conditions (4.11) and (4.12) are respectively equivalent to r >
a

2λ
and ρ >

a

2βf
. So they are satisfied by

taking r =
τa

2λ
and ρ =

τa

2βf
with τ > 1. Reinjecting these values in (4.10) we get the following condition

τa ≤
4λβ2f

λ(γβf − 1) + β2f
. (4.14)

Let us now examine the last condition (4.13) which, due to the choice of r and ρ, simplifies as follows

∆(τ) := 4λ

(
1− 1

τ

)2

(γβf − 1)− (βf − βb)2 > 0.

We have
lim
τ+∞

∆(τ) = 4λ(γβf − 1)− (βf − βb)2

which is positive by our assumption (4.2) on the parameters. So, by taking τ large enough, and adjusting
a small enough according to (4.14), we get that that the coefficient of ‖X(t)‖2 in (4.9) is positive, and that
the quadratic form q is positive definite. We infer the existence of positive real numbers η and µ such that

Ėp(t) + η‖X(t)‖2 + µβf‖ẋ(t)‖2 + µβf‖Y (t)‖2 ≤ 0. (4.15)

Estimates. We rely on the estimate (4.15) that we integrate on [0, t], t ≥ 0. We obtain

Ep(t) + η

∫ t

0
‖X(s)‖2ds+ µβf

∫ t

0
‖ẋ(s)‖2ds+ µβf

∫ t

0
‖Y (s)‖2ds ≤ Ep(0). (4.16)
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From this we immediately obtain that Ep(t) ≤ Ep(0), i.e. Ep(t) is bounded from above. According to the
definition of Ep(·) we deduce that

sup
t≥0
‖x(t)− p‖ < +∞, (4.17)

sup
t≥0
‖x(t)− p+ βf ẋ(t)‖ < +∞. (4.18)

From (4.17)-(4.18) and βf > 0, by using the triangle inequality we infer

sup
t≥0
‖ẋ(t)‖ < +∞. (4.19)

Moreover, we immediately deduce from (4.16) and Ep(t) nonnegative the following integral estimates∫ +∞

0
‖X(t)‖2dt < +∞,

∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖Y (t)‖2dt < +∞. (4.20)

Let us rewrite (iDINAM) equivalently as follows (recall that∇f(p) +Bp = 0)

ẍ(t) = −γẋ(t)−X(t)− Y (t).

According to (4.20) the second member of the above equality belongs to L2(0,+∞;H). Therefore∫ +∞

0
‖ẍ(t)‖2 dt < +∞. (4.21)

From (4.20) and (4.21) we have ẋ ∈ L2([0,+∞[;H) and ẍ ∈ L2([0,+∞[;H). By Lemma 4.2 applied to
u = ẋ with p = r = 2 we deduce that

lim
t→+∞

ẋ(t) = 0. (4.22)

Furthermore, since B is λ-cocoercive, it is
1

λ
-Lipschitz continuous. Therefore,∥∥∥∥ ddtB(x(t) + βbẋ(t))

∥∥∥∥ ≤ 1

λ
‖ẋ(t) + βbẍ(t)‖, for all t ≥ 0. (4.23)

Hence, ∫ +∞

0

∥∥∥∥ ddtB(x(t) + βbẋ(t))

∥∥∥∥2 dt ≤ 1

λ2

∫ +∞

0
‖ẋ(t) + βbẍ(t)‖2dt

≤ 2

λ2

∫ +∞

0
‖ẋ(t)‖2dt+

2β2b
λ2

∫ +∞

0
‖ẍ(t)‖2dt < +∞.

Similarly, we have ∫ +∞

0

∥∥∥∥ ddt∇f(x(t) + βf ẋ(t))

∥∥∥∥2 dt < +∞

where have used that x(t) + βf ẋ(t) remains bounded (according to (4.17) and (4.19)) and that ∇f is
Lipschitz continuous on the bounded sets. So, according to the definition of X(t) and Y (t) we have∫ +∞

0

∥∥∥∥ ddtX(t)

∥∥∥∥2 dt < +∞,
∫ +∞

0

∥∥∥∥ ddtY (t)

∥∥∥∥2 dt < +∞. (4.24)
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From (4.20)-(4.24), by applying Lemma 4.2 we deduce that lim
t→+∞

X(t) = lim
t→+∞

Y (t) = 0, that is

lim
t→+∞

‖B((x(t) + βbẋ(t))−B(p)‖ = 0, lim
t→+∞

‖∇f(x(t) + βf ẋ(t))−∇f(p)‖ = 0 (4.25)

According to the Lipschitz continuity of B, and the Lipschitz continuity of∇f on the bounded sets (recall
that x(t) and ẋ(t) are bounded) we immediately deduce from (4.25) and lim

t→+∞
ẋ(t) = 0, that

lim
t→+∞

‖B(x(t))−B(p)‖ = 0, lim
t→+∞

‖∇f(x(t))−∇f(p)‖ = 0. (4.26)

Convergence of the trajectory. To prove the existence of the weak limit of x(t) as t → +∞, we use
Opial’s lemma (see [40] for more details). Given p ∈ S, let us consider the anchor function defined by, for
every t ∈ [0,+∞[

qp(t) :=
1

2
‖x(t)− p‖2.

From q̇p(t) = 〈ẋ(t), x(t)− p〉 and q̈p(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− p〉, we obtain

q̈p(t) + γq̇p(t) = ‖ẋ(t)‖2 + 〈ẍ(t) + γẋ(t), x(t)− p〉
= ‖ẋ(t)‖2 − 〈∇f (x(t) + βf ẋ(t)) +B(x(t) + βbẋ(t)), x(t)− p〉.

According to the monotonicity of∇f and B, we have

〈∇f (x(t) + βf ẋ(t)) +B(x(t) + βbẋ(t)), x(t)− p〉
= 〈X(t) + Y (t), x(t)− p〉
≥ −βf 〈X(t), ẋ(t)〉 − βb〈Y (t), ẋ(t)〉.

Therefore,
q̈p(t) + γq̇p(t) ≤ ‖ẋ(t)‖2 + βf 〈X(t), ẋ(t)〉+ βb〈Y (t), ẋ(t)〉. (4.27)

Applying the Cauchy-Schwarz inequality, we get

q̈p(t) + γq̇p(t) ≤ ‖ẋ(t)‖2 + βf‖X(t)‖‖ẋ(t)‖+ βb‖Y (t)‖‖ẋ(t)‖. (4.28)

Then note that the second member of (4.28)

g(t) := ‖ẋ(t)‖2 + βf‖X(t)‖‖ẋ(t)‖+ βb‖Y (t)‖‖ẋ(t)‖

is nonnegative and belongs to L1([0,+∞[,R). Indeed, we have∫ +∞

0
‖X(t)‖‖ẋ(t)‖dt ≤ 1

2

∫ +∞

0
‖X(t)‖2dt+

1

2

∫ +∞

0
‖ẋ(t)‖2dt,∫ +∞

0
‖Y (t)‖‖ẋ(t)‖dt ≤ 1

2

∫ +∞

0
‖Y (t)‖2dt+

1

2

∫ +∞

0
‖ẋ(t)‖2dt.

Using (4.20), we deduce that ∫ +∞

0
g(t)dt < +∞.

Since qp is nonnegative, Lemma 4.3 shows that lim
t→+∞

qp(t) exists. To complete the proof via Opial’s

lemma, we need to show that every weak sequential cluster point of x(t) belongs to S. Let tn → +∞
such that x(tn) ⇀ x∗, n→ +∞. According to (4.26)

∇f(x(tn))→ ∇f(p); B(x(tn))→ B(p) strongly inH
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and
x(tn) ⇀ x∗ weakly inH.

From the closedness property of the graph of the maximally monotone operators∇f andB in w−H×s−
H, we deduce that∇f(x∗) = ∇f(p), andB(x∗) = B(p). Therefore∇f(x∗)+B(x∗) = ∇f(p)+B(p) =
0, that is x∗ ∈ S. Consequently, x(t) converges weakly to an element of S as t goes to +∞. The proof of
Theorem 4.1 is thus completed.

Let us specialize the previous results in the case βb = βf . We set βb = βf := β > 0 andA := ∇f+B.
We thus consider the evolution system

(iDINAM) ẍ(t) + γẋ(t) +A(x(t) + βẋ(t)) = 0, t ≥ 0.

The existence of strong global solutions to this system is guaranteed by Theorem 3.1. The convergence
properties as t → +∞ of the solution trajectories generated by this system is a consequence of Theorem
4.1 and are given below.

Corollary 4.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function
whose gradient is Lipschitz continuous on the bounded sets. Suppose that the solution set S = (∇f +
B)−1(0) 6= ∅. Consider the evolution equation (iDINAM), where A = ∇f + B, βb = βf := β > 0 and
where the involved parameters satisfy the following condition γβ > 1. Then, for any solution trajectory
x : [0,+∞[→ H of (iDINAM), the following properties are satisfied:

(i) (convergence) The trajectory x(t) converges weakly, as t→ +∞, to an element x∗ ∈ S. Moreover
lim

t→+∞
‖ẋ(t)‖ = 0, and lim

t→+∞
‖A(x(t) + βẋ(t))‖ = 0.

(ii) (integral estimate)∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖ẍ(t)‖2dt < +∞,∫ +∞

0
‖A(x(t) + βẋ(t))‖2dt < +∞, and

∫ +∞

0

∥∥∥∥ ddtA(x(t) + βẋ(t))

∥∥∥∥2 dt < +∞.

4.3 Comparison of the dynamics with explicit and implicit Newton-type damping

For simplicity, let us compare the dynamics in the case βf = βb = β > 0. According to the previous study
of the authors in [3] concerning the dynamic (DINAM) with explicit Newton-type damping, the condition
on the parameters ensuring the convergence of the trajectories is

λγ > β +
1

γ
(4.29)

On the other hand, the corresponding condition for (iDINAM), as given by Corollary 4.1 is

γβ > 1. (4.30)

As a striking result, we can observe that, contrary to (DINAM), the cocoercivity parameter λ no longer
enters the condition relative to (iDINAM). This suggests in particular that it would be interesting to con-
sider the case of an asymptotic vanishing damping coefficient γ(t) =

α

t
which is in accordance with the

Nesterov accelerated scheme. By adjusting accordingly the coefficient β(t) which now tends to infinity,
this would make it possible to obtain fast convergence results for general monotone inclusions. In fact,
first results in this direction have been obtained for the ADMM algorithm, see [15].
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5 Inertial proximal algorithms associated with (iDINAAM)

We are interested in the convergence properties of several splitting algorithms with inertial features ob-
tained by temporal discretization of the second-order (in time) evolution equation:

ẍ(t) + γẋ(t) +∇f (x(t) + βf ẋ(t)) +B (x(t) + βbẋ(t)) = 0. (iDINAM)

We aim to obtain, under an appropriate adjustment of the parameters and the discretization step, conver-
gence results of the same type as those obtained in the previous section, in the continuous case.

5.1 An inertial proximal-gradient algorithm

In this section, f is a C1 convex function whose gradient is L-Lipschitz continuous. Take a fixed time step
h > 0, and consider the following finite-difference scheme for (iDINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +∇f

(
xk +

βf
h

(xk − xk−1)
)

+B

(
xk+1 +

βb
h

(xk+1 − xk)
)

= 0. (5.1)

This scheme is implicit with respect to the nonpotential B and explicit with respect to the potential op-
erator ∇f . According to the gradient-like structure of the algorithm when B = 0, we expect to obtain
convergence results by assuming that the step size h is taken small enough. After expanding (5.1), we
obtain

(1 + γh)(xk+1 − xk) + h2B

(
xk+1 +

βb
h

(xk+1 − xk)
)

= (xk − xk−1)− h2∇f
(
xk +

βf
h

(xk − xk−1)
)
. (5.2)

Set α := 1 +
βb
h

. After arranging (5.2), we obtain equivalently

xk+1 =
α− 1

α
xk +

1

α
(Id +

αh2

1 + γh
B)−1(ξk),

with

ξk = xk +
α

1 + γh

(
(xk − xk−1)− h2∇f

(
xk +

βf
h

(xk − xk−1)
))

.

We thus obtain the following algorithm.

(iDINAAM-split):

Initialize: x0 ∈ H, x1 ∈ H

α = 1 +
βb
h

,

ξk = xk +
α

1 + γh
(xk − xk−1)−

αh2

1 + γh
∇f

(
xk +

βf
h

(xk − xk−1)
)

,

xk+1 =
α− 1

α
xk +

1

α

(
Id +

αh2

1 + γh
B

)−1
(ξk).
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Theorem 5.1 Let B : H → H be a λ-cocoercive operator and f : H → R a differentiable convex
function whose gradient is L-Lipschitz continuous. Suppose the positive parameters λ, γ, βb, βf satisfy

0 < h <
2

Lβf
, γβf > 1 and λ >

(βb − βf )2

4(γβf − 1)
. (5.3)

Then, the sequence (xk) generated by the algorithm (iDINAAM-split) has the following properties:

(i) (xk) converges weakly to an element in S;

(ii) lim
k→∞

‖∇f(xk)−∇f(p)‖ = 0, lim
k→∞

‖B(xk)−B(p)‖ = 0 .

(iii)
∞∑
k=1

‖xk − xk−1‖2 < +∞,
∞∑
k=1

‖∇f(xk)−∇f(p)‖2 < +∞,
∞∑
k=1

‖B (xk)−B(p)‖2 < +∞

where∇f(p), B(p) do not depend on the choice of p ∈ S.

Proof The discrete energy Take p ∈ S. Let us consider the sequence (Ek) defined for all k ≥ 1 by

Ek :=
1

2
‖(xk − p) +

βf
h

(xk − xk−1)‖2 +
δ

2
‖xk − p‖2,

where δ is a positive coefficient to adjust.
For each k ≥ 1, let us briefly write Ek as follows:

Ek =
1

2
‖vk‖2 +

δ

2
‖xk − p‖2,

with

vk := xk − p+
βf
h

(xk − xk−1).

By definition of vk and (5.1), we have

vk+1 − vk = xk+1 − xk +
βf
h

(xk+1 − 2xk + xk−1)

= (1− γβf )(xk+1 − xk)− hβf∇f
(
xk +

βf
h

(xk − xk−1)
)
− hβfB

(
xk+1 +

βb
h

(xk+1 − xk)
)

= (1− γβf )(xk+1 − xk)− hβf∇f (yk)− hβfB(zk),

where we write shortly

yk := xk +
βf
h

(xk − xk−1),

zk := xk+1 +
βb
h

(xk+1 − xk).

Therefore, for k ≥ 1, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −1

2
‖vk+1 − vk‖2 + 〈vk+1 − vk, vk+1〉

= −1

2
(γβf − 1)2‖xk+1 − xk‖2 −

1

2
h2β2f‖∇f (yk) +B(zk)‖2

−hβf (γβf − 1)〈xk+1 − xk,∇f (yk) +B(zk)〉

−〈xk+1 − p+
βf
h

(xk+1 − xk), (γβf − 1)(xk+1 − xk) + hβf∇f (yk) + hβfB(zk)〉. (5.4)
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Then use the elementary identity

1

2
‖xk+1 − p‖2 −

1

2
‖xk − p‖2 = −1

2
‖xk+1 − xk‖2 + 〈xk+1 − xk, xk+1 − p〉. (5.5)

Take δ = γβf − 1. Thus, as the first condition on the parameters, we ask

γβf > 1. (5.6)

From (5.4) and (5.5), we deduce that

Ek+1 − Ek = −
(

1

2
δ2 +

δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2 −

1

2
h2β2f‖∇f (yk) +B(zk)‖2

− hβfδ〈xk+1 − xk,∇f (yk) +B(zk)〉

− 〈xk+1 − p+
βf
h

(xk+1 − xk), hβf∇f (yk) + hβfB(zk)〉.

According to∇f(p) +B(p) = 0, we can rewrite the previous relation as follows

Ek+1 − Ek = −
(

1

2
δ2 +

δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2 −

1

2
h2β2f‖Yk + Zk‖2

− hβfδ〈xk+1 − xk, Yk + Zk〉 − hβf 〈xk+1 − p+
βf
h

(xk+1 − xk), Yk + Zk〉, (5.7)

where Yk = ∇f (yk)−∇f(p) and Zk = B(zk)−B(p).
Since B is λ-cocoercive we have

〈xk+1 − p+
βf
h

(xk+1 − xk), Zk〉 = 〈zk − p+
1

h
(βf − βb)(xk+1 − xk), B(zk)−B(p)〉

≥ λ‖B(zk)−B(p)‖2 +
1

h
(βf − βb)〈(xk+1 − xk), B(zk)−B(p)〉

= λ‖Zk‖2 +
1

h
(βf − βb)〈(xk+1 − xk), Zk〉,

Similarly, since∇f is 1/L-cocoercive, and by using the constitutive equation (5.1), we get

〈xk+1 − p+
βf
h

(xk+1 − xk), Yk〉

= 〈yk − p+ xk+1 − xk +
βf
h

(xk+1 − 2xk + xk−1),∇f(yk)−∇f(p)〉

≥ 1

L
‖Yk‖2 + 〈xk+1 − xk +

βf
h

(xk+1 − 2xk + xk−1),∇f(yk)−∇f(p)〉,

=
1

L
‖Yk‖2 + 〈xk+1 − xk − γβf (xk+1 − xk)− hβf∇f(yk)− hβfB(zk),∇f(yk)−∇f(p)〉

=
1

L
‖Yk‖2 − 〈δ(xk+1 − xk) + hβfYk + hβfZk, Yk〉

Combining the above relations with (5.7), we get

Ek+1 − Ek ≤
(

1

2
h2β2f −

hβf
L

)
‖Yk‖2 −

(
1

2
δ2 +

δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2

− (hβfδ + βf (βf − βb))〈xk+1 − xk, Zk〉 −
(

1

2
h2β2f + hβfλ

)
‖Zk‖2. (5.8)
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Equivalently,

Ek+1 − Ek + Sk ≤
(

1

2
h2β2f −

hβf
L

)
‖Yk‖2, (5.9)

where

Sk =

(
1

2
δ2 +

δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2+ (hβfδ + βf (βf − βb))〈xk+1 − xk, Zk〉

+

(
1

2
h2β2f + hβfλ

)
‖Zk‖2.

Thus, as second conditions on the parameters, we ask
1

2
h2β2f −

hβf
L

< 0, that is

0 < h <
2

Lβf
. (5.10)

Then note that Sk = q(xk+1 − xk, Zk) > 0 if 4ag − b2 > 0 where q : H×H → R is the quadratic form

q(u, v) := a‖u‖2 + b〈u, v〉+ g‖v‖2,

where

a =
1

2
δ2 +

δβf
h

+
1

2
δ,

b = hβfδ + βf (βf − βb),

g =
1

2
h2β2f + hβfλ.

The third and last condition on the parameters will be obtained by asking the quadratic form q to be positive
definite. Since a and g are positive this is equivalent to having 4ag − b2 > 0. We have

4ag − b2 = 4

(
1

2
δ2 +

δβf
h

+
1

2
δ

)(
1

2
h2β2f + hβfλ

)
− (hβfδ + βf (βf − βb))2

= β2f

(
4λδ − (βf − βb)2

)
+ 2hδβf

(
λ(δ + 1) + βfβb

)
+ h2β2fδ

≥ β2f
(

4λδ − (βf − βb)2 > 0, (5.11)

where the last inequality comes from our assumptions. Therefore, q is positive definite, and there exist
positive real numbers µ and η such that for any k ≥ 1,

Ek+1 − Ek + µ‖xk+1 − xk‖2 + µ‖B(zk)−B(p)‖2 + η‖∇f(yk)−∇f(p)‖2 ≤ 0. (5.12)

Note that µ depends on all the damping coefficients involved in the algorithm and on the step size h. Its
precise estimation is an interesting subject for numerical purpose.

Estimates. According to (5.12), the sequence of nonnegative numbers (Ek) is nonincreasing, and
therefore converges. In particular, it is bounded. From this, we immediately deduce that

sup
k
‖(xk − p) +

βf
h

(xk − xk−1)‖ < +∞, (5.13)

sup
k
‖xk − p‖ < +∞. (5.14)
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Moreover, by summing the inequalities (5.12), we deduce that

∞∑
k=1

‖xk − xk−1‖2 <∞,
∞∑
k=1

‖∇f(yk)−∇f(p)‖2 <∞,
∞∑
k=1

‖B(zk)−B(p)‖2 <∞. (5.15)

Elementary algebra and the Lipschitz continuity of∇f give, for each k ≥ 1

‖∇f(xk)−∇f(p)‖2 ≤ (‖∇f(yk)−∇f(p)‖+ ‖∇f(xk)−∇f(yk)‖)2

≤ 2‖∇f(yk)−∇f(p)‖2 + 2‖∇f(xk)−∇f(yk)‖2

≤ 2‖∇f(yk)−∇f(p)‖2 + 2L2‖xk − yk‖2

≤ 2‖∇f(yk)−∇f(p)‖2 +
2L2β2f
h2
‖xk − xk−1‖2. (5.16)

According to (5.15) we get
∞∑
k=1

‖∇f(xk)−∇f(p)‖2 < +∞.

Similarly, since B is 1/λ-Lipschitz, we get

∞∑
k=1

‖B(xk)−B(p)‖2 < +∞.

Since the general term of a convergent series goes to zero, we deduce (ii).

Convergence of (xk). Let us first show that every weak cluster point x∗ of the sequence (xk) belongs to
S. Consider a subsequence (xkn) of (xk), such that xkn ⇀ x∗, as n → +∞. According to the item (ii)
already proved we have

∇f (xkn)→ ∇f(p), B (xkn)→ B(p) strongly inH,

and
xkn ⇀ x∗ weakly inH.

From the closedness property of the graph of the maximally monotone operators∇f andB in w−H×s−
H, we deduce that∇f(x∗) = ∇f(p), andB(x∗) = B(p). Therefore∇f(x∗)+B(x∗) = ∇f(p)+B(p) =
0, that is x∗ ∈ S.

According to the estimate (iii) we have
∞∑
k=1

‖xk − xk−1‖2 < +∞. Since the general term of a con-

vergent series goes to zero, we deduce that lim
k
‖xk − xk−1‖ = 0. According to the definition of Ek, and

since lim
k
Ek exists (indeed it is nonincreasing) , we deduce that, for any p ∈ S

lim
k→∞

‖xk − p‖ exists.

So, the two conditions of the Opial’s lemma are satisfied, which completes the proof of the convergence
of the sequence (xk).
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5.2 Errors, perturbations

Now we will examine the effect of the introduction of perturbations, errors in the algorithm (iDINAAM).
Let us start from the perturbed version of (iDINAM):

ẍ(t) + γẋ(t) +∇f (x(t) + βf ẋ(t)) +B (x(t) + βbẋ(t)) = e(t), (iDINAM)

where the right-handside e(·) takes into account perturbations, errors. A similar discretization as before
gives

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk − xk−1) +∇f

(
xk +

βf
h

(xk − xk−1)
)

+B

(
xk+1 +

βb
h

(xk+1 − xk)
)

= ek. (5.17)

Hence, we obtain the following algorithm.

(iDINAAM-pert):

Initialize: x0 ∈ H, x1 ∈ H

α = 1 +
βb
h

,

ξk = xk +
α

1 + γh
(xk−xk−1)−

αh2

1 + γh
∇f

(
xk +

βf
h

(xk − xk−1)
)

+
αh2

1 + γh
ek,

xk+1 =
α− 1

α
xk +

1

α

(
Id +

αh2

1 + γh
B

)−1
(ξk).

Theorem 5.2 Let us make the assumptions of Theorem 5.1, and suppose that the sequence (ek) of pertur-
bations, errors satisfies:

∞∑
k=1

‖ek‖ < +∞.

Then, the sequence (xk) generated by the algorithm (iDINAAM-pert) has the following properties (where
p ∈ S):

(i) (xk) converges weakly to an element in S;

(ii)
∞∑
k=1

‖xk − xk−1‖2 < +∞,
∞∑
k=1

‖∇f
(
xk +

βf
h

(xk − xk−1)
)
−∇f(p)‖2 < +∞,

∞∑
k=1

‖B
(
xk +

βf
h

(xk − xk−1)
)
−B(p)‖2 < +∞,

∞∑
k=1

‖∇f (xk)−∇(p)‖2 < +∞,

∞∑
k=1

‖B
(
xk +

βf
h

(xk − xk−1)
)
−B(p)‖2 < +∞,

∞∑
k=1

‖B (xk)−B(p)‖2 < +∞,

∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) lim
k→∞

‖xk+1 − xk‖ = 0, lim
k→∞

‖B(xk)−B(p)‖ = 0, lim
k→∞

‖∇f(xk)−∇f(p)‖ = 0.
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Passing from the Lyapunov analysis in the unperturbed case to the perturbed case is a classical procedure,
see [11] for example. It is based on a similar Lyapunov analysis and the use of the following discrete
version of the Gronwall Lemma, see [11, Lemma A.9.] for a proof.

Lemma 5.1 Let a be a positive real number and (yk), (gk) be nonnegative sequences such that for all
k ≥ 0, we have

1

2
y2k ≤

1

2
a2 +

∑
0≤i<k

giyi.

Then, the following inequality holds for all k ≥ 0: yk ≤ a+
∑

0≤i<k
gi.

Proof (of Theorem 5.2) The proof is similar to that of Theorem 5.1. It uses the following sequence (Ek)
as a discrete energy function

Ek :=
1

2
‖xk − p+

βf
h

(xk − xk−1)‖2 +
δ

2
‖xk − p‖2,

where δ are positive coefficient to adjust.

By setting δ = γβf−1, Yk = ∇f
(
xk +

βf
h

(xk − xk−1)
)
−∇f(p), Zk = B

(
xk+1 +

βb
h

(xk+1 − xk)
)
−

B(p) for k ≥ 1 and using the same argument as in the proof of Theorem 5.1, we have

Ek+1 − Ek + Sk +

(
hβf
L
− 1

2
h2β2f

)
‖Yk‖2 ≤ εk, (5.18)

where

Sk =

(
1

2
δ2 +

δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2+ (hβfδ + βf (βf − βb))〈xk+1 − xk, Zk〉

+

(
1

2
h2β2f + hβfλ

)
‖Zk‖2,

and
εk = hβf 〈xk+1 − p+

βf
h

(xk+1 − xk), ek〉.

According to an elementary inequality, we have that

〈xk+1 − xk, ek〉 ≤
1

2η
‖xk+1 − xk‖2 +

η

2
‖ek‖2, (5.19)

holds for any η > 0. Moreover, by using Cauchy-Schwarz inequality, we have

〈xk+1 − p, ek〉 ≤ ‖xk+1 − p‖‖ek‖. (5.20)

Combining (5.18)-(5.20), we obtain

Ek+1 − Ek + Sk +

(
hβf
L
− 1

2
h2β2f

)
‖Yk‖2 ≤ ε′k, (5.21)

where

Sk =

(
1

2
δ2 +

δβf
h

+
1

2
δ −

β2f
2η

)
‖xk+1 − xk‖2+ (hβfδ + βf (βf − βb))〈xk+1 − xk, Zk〉

+

(
1

2
h2β2f + hβfλ

)
‖Zk‖2,
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and

ε′k =
ηβ2f
2
‖ek‖2 + hβf‖xk+1 − p‖‖ek‖.

We choose η > 0 such that
1

2
δ2 +

δβf
h

+
1

2
δ −

β2f
2η

> 0.

Since Sk is a quadratic form, Sk > 0 if

4

(
1

2
h2β2f + hβfλ

)(
1

2
δ2 +

δβf
h

+
1

2
δ −

β2f
2η

)
− (hβfδ + βf (βf − βb))2 > 0. (5.22)

Notice that

lim
h→0+

4

(
1

2
h2β2f + hβfλ

)(
1

2
δ2 +

δβf
h

+
1

2
δ −

β2f
2η

)
− (hβfδ + βf (βf − βb))2

= 4β2f

[
λ−

(βb − βf )2

4δ

]
> 0 (5.23)

thanks to the assumption on the parameters. This guarantees the existence of h > 0 satisfying (5.22).
Thus, there exists a positive real number µ such that for any k ≥ 1,

Ek+1 − Ek + µ‖xk+1 − xk‖2 + µ‖B(zk)−B(p)‖2 +

(
hβf
L
− 1

2
h2β2f

)
‖∇f(yk)−∇f(p)‖2 ≤ ε′k.

(5.24)

From (5.24) we deduce that
Ek+1 ≤ E1 +

∑
1≤i<k+1

ε′i.

Taking into account the form of the energy sequence (Ek), we obtain

δ

2
‖xk+1 − p‖2 ≤ E1 +

∑
1≤i<k+1

ε′i. (5.25)

According to the assumption
∞∑
k=1

‖ek‖ < +∞, this implies that
∞∑
k=1

‖ek‖2 < +∞. Therefore, there exists

C > 0 such that ∑
1≤i<k+1

ε′i ≤ hβf
∑

1≤i<k+1

‖xk+1 − p‖‖ek‖+ C. (5.26)

From (5.25) and (5.26), we conclude that

δ

2
‖xk+1 − p‖2 ≤ E1 + hβf

∑
1≤i<k+1

‖xk+1 − p‖‖ek‖+ C.

More precisely, we can rewrite this estimate as follows

1

2
‖xk+1 − p‖2 ≤

1

2
C2
0 + c0

∑
1≤i<k+1

‖xk+1 − p‖‖ek‖, (5.27)

where

C0 =

√
E1 + C

δ
, c0 =

hβf
δ
.
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Now, by applying Lemma 5.1 to (5.27), we obtain

‖xk+1 − p‖ ≤ C0 + c0
∑

1≤i<k+1

‖ei‖ < +∞. (5.28)

Therefore, (‖xk − p‖) and consequently (‖xk‖) is a bounded sequence.
Returning to (5.26), according to the boundedness of (‖xk − p‖) and the assumption of (ek), we obtain

∞∑
k=1

ε′k < +∞.

The rest of the proof is similar to that of Theorem 5.1, so we omit here.

5.3 A variant of the proximal-gradient algorithm

In this section, we consider a variant of the previous proximal-gradient algorithm, where the role of the
operators is reversed. We consider the following semi-implicit finite-difference scheme for (iDINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +∇f

(
xk+1 +

βf
h

(xk+1 − xk)
)

+B

(
xk +

βb
h

(xk − xk−1)
)

= 0, (5.29)

where h > 0 is a fixed time step.
After expanding (5.29), we obtain the following algorithm.

(iDINAAM-var):

Initialize: x0 ∈ H, x1 ∈ H

α = 1 +
βf
h

,

yk = xk + (h2 − γh)(xk − xk−1)− h2B
(
xk +

βb
h

(xk − xk−1)
)

,

zk = (Id +αh2∇f)−1(αyk − (α− 1)xk),

xk+1 =
1

α
(α− 1)xk +

1

α
zk.

Theorem 5.3 Let B : H → H be a λ-cocoercive operator and f : H → R be a convex differentiable
function whose gradient is L-Lipschitz continuous. Suppose that the positive parameters λ, γ, βb, βf sat-
isfy

γβf > 1 and λ >
(βb − βf )2

4(γβf − 1)
. (5.30)

Then, there exists h∗ such that for all 0 < h < h∗, the sequence (xk) generated by the algorithm
(iDINAAM-var) has the following properties (where p ∈ S):

(i) (xk) converges weakly to an element in S;

(ii)
∞∑
k=1

‖xk − xk−1‖2 < +∞,
∞∑
k=1

‖∇f
(
xk +

βf
h

(xk − xk−1)
)
−∇f(p)‖2 < +∞,

∞∑
k=1

‖B
(
xk +

βf
h

(xk − xk−1)
)
−B(p)‖2 < +∞,

∞∑
k=1

‖∇f (xk)−∇(p)‖2 < +∞,
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∞∑
k=1

‖B
(
xk +

βf
h

(xk − xk−1)
)
−B(p)‖2 < +∞,

∞∑
k=1

‖B (xk)−B(p)‖2 < +∞,

∞∑
k=1

‖∇f(xk)−∇f(xk−1)‖2 < +∞, and
∞∑
k=1

‖B(xk)−B(xk−1)‖2 < +∞;

(iii) lim
k→∞

‖xk+1 − xk‖ = 0, lim
k→∞

‖B(xk)−B(p)‖ = 0, lim
k→∞

‖∇f(xk)−∇f(p)‖ = 0.

Proof The discrete energy Take p ∈ S. Consider the sequence (Ek) defined for all k ≥ 1 by the formula

Ek :=
1

2
‖xk − p+

βf
h

(xk − xk−1)‖2 +
δ

2
‖xk − p‖2,

where δ is a positive coefficient to adjust.
For each k ≥ 1, let us briefly write Ek as follows:

Ek =
1

2
‖vk‖2 +

δ

2
‖xk − p‖2,

with

vk := xk − p+
βf
h

(xk − xk−1).

By definition of vk and the formula (5.29), we have

vk+1 − vk = xk+1 − xk +
βf
h

(xk+1 − 2xk + xk−1)

= (1− γβf )(xk+1 − xk)− hβf∇f
(
xk+1 +

βf
h

(xk+1 − xk)
)
− hβf

(
B(xk +

βb
h

(xk − xk−1)
)

= (1− γβf )(xk+1 − xk)− hβf∇f (yk)− hβfB(zk)〉,

in which

yk = xk+1 +
βf
h

(xk+1 − xk),

zk = xk +
βb
h

(xk − xk−1).

Therefore, for k ≥ 1, we have

1

2
‖vk+1‖2 −

1

2
‖vk‖2 = −1

2
‖vk+1 − vk‖2 + 〈vk+1 − vk, vk+1〉

≤ −(γβf − 1)〈xk+1 − p+
βf
h

(xk+1 − xk), xk+1 − xk〉

− 〈xk+1 − p+
βf
h

(xk+1 − xk), hβf∇f (yk) + hβfB(zk)〉. (5.31)

Using the elementary identity, one has

1

2
‖xk+1 − p‖2 −

1

2
‖xk − p‖2 = −1

2
‖xk+1 − xk‖2 + 〈xk+1 − xk, xk+1 − p〉. (5.32)

Take δ = γβf − 1. Then, from (5.31) and (5.32), we deduce that

Ek+1 − Ek ≤−
(
δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2

− 〈xk+1 − p+
βf
h

(xk+1 − xk), hβf∇f (yk) + hβfB(zk)〉.
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Notice that∇f(p) +B(p) = 0. Thus, we can rewrite the previous relation as follows

Ek+1 − Ek ≤ −
(
δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2 − hβf 〈xk+1 − p+

βf
h

(xk+1 − xk), Yk + Zk〉,

where Yk = ∇f (yk)−∇f(p) and Zk = B(zk)−B(p).
Since B is λ-cocoercive, we have

〈xk+1 − p+
βf
h

(xk+1 − xk), Zk〉 = 〈zk − p+ (1 +
1

h
(βf − βb))(xk+1 − xk), B(zk)−B(p)〉

≥ λ‖B(zk)−B(p)‖2 + (1 +
1

h
(βf − βb))〈(xk+1 − xk), B(zk)−B(p)〉

= λ‖Zk‖2 + (1 +
1

h
(βf − βb))〈(xk+1 − xk), Zk〉,

Moreover, due to ∇f is 1/L-cocoercive, we deduce that

〈xk+1 − p+
βf
h

(xk+1 − xk), Yk〉 = 〈yk − p,∇f(yk)−∇f(p)〉 ≥ 1

L
‖∇f(yk)−∇f(p)‖2. (5.33)

Ek+1 − Ek ≤ −
(
δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2 (5.34)

+ (−hβf − βf (βf − βb)) 〈xk+1 − xk, Zk〉 − hβfλ‖Zk‖2 −
hβf
L
‖Yk‖2. (5.35)

Equivalently,

Ek+1 − Ek +
hβf
L
‖Yk‖2 + Sk ≤ 0, (5.36)

where Sk =

(
δβf
h

+
1

2
δ

)
‖xk+1 − xk‖2 + (hβf + βf (βf − βb)) 〈xk+1 − xk, Zk〉+ hβfλ‖Zk‖2.

Our goal here is to find h > 0 such that Sk > 0. Let us observe that q : H×H → R is a quadratic form

q(u, v) := a‖u‖2 + b〈u, v〉+ g‖v‖2,

with

a =
δβf
h

+
1

2
δ,

b = hβf + βf (βf − βb),
g = hβfλ.

Then, Sk = q(xk+1 − xk, Zk) > 0 if 4ag − b2 > 0. One has,

4ag − b2 = 4

(
δβf
h

+
1

2
δ

)
hβfλ− (hβf + βf (βf − βb))2

= 4

(
δβf +

1

2
hδ

)
βfλ− (hβf + βf (βf − βb))2 .

Hence, lim
h→0+

(4ag − b2) = β2f (4λδ − (βf − βb)2) > 0 since 4λδ > (βf − βb)2. This implies there exists

h∗ > 0 such that for all h ∈ (0, h∗), we have Sk > 0.
Therefore, under the above condition, and by taking h sufficiently small, there exist positive real numbers
µ and η such that for all k ≥ 1,

Ek+1 − Ek + µ‖xk+1 − xk‖2 + µ‖B(zk)−B(p)‖2 + η‖∇f(yk)−∇f(p)‖2 ≤ 0. (5.37)

The rest of the proof is analogous to Theorem 5.1’s one, so we omit it.
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6 Numerical illustrations

The main purpose of this section is to implement our algorithms to numerically compute the trajectory of
the dynamical system (iDINAM). For further applications, we refer the reader to [3], [4]. Before we start,
let us recall a useful remark.

Remark 6.1 A general method to generate monotone cocoercive operators which are not gradients of
convex functions is to start from a linear skew symmetric operator A and then take its Yosida approxi-
mation Aλ. As a model situation, take H = R2 and start from A equal to the rotation of angle

π

2
. We

have A =

(
0 −1
1 0

)
. An elementary computation gives that, for any λ > 0, Aλ =

1

1 + λ2

(
λ −1
1 λ

)
,

which is therefore λ-cocoercive. As a consequence, for λ = 1, we obtain that the matrix B =

(
1 −1
1 1

)
is

1

2
-cocoercive. With these basic blocks, one can easily construct many other cocoercive operators which

are not potential operators.

Example 6.1 Let us start this section by a simple illustrative example in R2. We take H = R2 equipped
with the usual Euclidean structure. Let us consider B as a linear operator whose matrix in the canonical
basis of R2 is defined by B = Aλ for λ = 5. According to the above remark, we can check that B is
λ-cocoercive with λ = 5 and that B is a nonpotential operator. To observe the classical oscillations, in the
heavy ball with friction, we take f : R2 → R defined by

f(x1, x2) = 10x22.

It is clear that f is convex but not strongly convex. We set γ = 0.9 and consider the dynamical system
(iDINAM) which γ, f, and B defined as before. As a straight application of Theorem 4.1, we obtain that
the trajectory x(t) generated by (iDINAM) converges to x∞, where x∞ ∈ S = (B + ∇f)−1(0) = {0}
whenever the positive parameters βb, βf satisfy

γβf > 1 and λ >
(βb − βf )2

4(γβf − 1)
.

The trajectory obtained by using Matlab is depicted in Figure 1, where we represent the components x1(t)
and x2(t) in red and blue respectively.
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(c) Case βb = 3, βf = 2.

Figure 1: Trajectories of (iDINAM) for different values of the parameters βb, βf .

Now we study the behavior of the trajectories by considering more different values of βb and βf . We
study four more different cases where the plots of the solutions have been depicted in Figure 2. Through
Figures 1 and 2, we can conclude that by introducing the Hessian damping (βf > 0), the oscillations of
the trajectories in Figure 2 are attenuated. The oscillations of the solutions appear whenever βf goes to 0.
It is depicted clearly in Figure 3.



28

0 1 2 3 4 5 6 7 8 9 10

t

-1

-0.5

0

0.5

1
x
(t
)

x1(t)
x2(t)

(a) Case βb = 2, βf = 0.1.
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(b) Case βb = 0, βf = 0.1.
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Figure 2: Oscillation of the trajectories of (DINAM) for different values of βb, βf .

Example 6.2 In [3], it is considered the dynamical system

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0, t ≥ 0. (DINAM)

It is shown that under certain conditions on the parameters, namely βf > 0 and

4λγ >
(βb − βf )2

βf
+ 2

(
βb +

1

γ

)
+ 2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
, (6.1)

then any trajectory generated by (DINAM) converges weakly, and its limit belongs to the solution set
S = (∇f + B)−1. Morover, in [4], the authors proposed some algorithms to find the zeros of ∇f + B.
Since our article provides similar results, it is interesting to compare these different types of algorithms.
Following the same setting on B and γ as in the previous example and replacing f by f(x) = 5x21 + 10x22,
let us compare their numerical performance.

In Figure 4, we show the objective function for each iteration k when we apply our algorithms includ-
ing 2 new ones and (DINAAM-split) proposed in [4]. We can see that (iDIAAM-split) and (iDIAAM-var)
gave the same numerical results while (DINAAM-split) did better in the long term in this case. A compar-
ison between explicit algorithm (iDINAAM) and implicit one (DINAAM), is done in Figure 4. We note
that, by introducing the implicit terms in both operators∇f and B, we obtain a new algorithm for finding
the zeros of∇f +B.

Example 6.3 Let us return to Example 6.1 and consider the effect of the introduction of perturbations,

errors. With the same numerical values of the involved parameters, we just add the errors ek =
1

k2
.

Clearly, the errors (ek) satisfy the assumptions of Theorem 5.2. Running algorithm (iDINAAM-pert) in
Matlab, the plot of ‖∇f(xk) +B(xk)‖ versus k is depicted in Figure 5. To give a link with the analogous
algorithm presented in [4], we applied (DINAAM-split-pert) in our numerical experiment. From Figure 5,
we can see that algorithm (iDINAAM-pert) behaves as well as the nonperturbed version and gives almost
the same numerical results as (DINAAM-split-pert) does.
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Figure 3: The attenuation of the oscillation by introducing the Hessian damping (βf > 0).
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Figure 4: The numerical performance of algorithms to find the zeros of∇f +B.
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