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Abstract: Natural convection in a cubical cavity with a hot obstacle located on its
floor is investigated. The inner fluid is a semi-transparent mixture of dry air and
water vapor, which creates a coupled convective and radiative transport within the
fluid. The conservation equations are solved by a finite volume method and the
radiative transfer equation by using the discrete ordinates method. The radiative
properties of the mixture are accounted for by a spectral line weighted sum of gray
gases model associated to the rank correlated approach. It was observed that the
volume radiation has a strong influence on the thermal and dynamic fields. The
nearly vertical stratification of the temperature field around the plume is broken.
Radiation also accelerates the boundary layers near the lateral surfaces and the
ceiling and the floor of the enclosure. The total heat transfer is decreased due to
both the reduction in convective process near the vertical walls and the attenuation
by radiation.
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1 Introduction

The study of natural convection in confined environments is still the subject of many
research, both numerically and experimentally. In this type of problem, the different
modes of heat transfer (convection, conduction, radiation) can intervene in a coupled way.
However, when radiative transport is considered, a particular problem arises when the fluid
behaves as a semi-transparent medium, i.e., absorbs and emits infrared radiation. It is then
necessary to take into account an internal heat source within the medium, resulting from
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the difference between the radiant energy absorbed and emitted by each volume element.
Many studies have investigated this phenomenon in a rectangular enclosure (Yücel et al.
(1989), Tan and Howell (1991), Colomer et al. (2004a), Colomer et al. (2007), Soucasse
et al. (2012), Billaud et al. (2017), Hajji et al. (2018)). The problem of a heat supply placed
in a confined environment has also received attention, either with point source (Tetsu et al.
(1973), Urakawa et al. (1983), Xin et al. (2004), Hernandez (2015), etc.) or with finite
sized solid obstacles (Kuznetsov and Sheremet (2006a), Kuznetsov and Sheremet (2006b),
Xu and Wang (2008), Paroncini and Corvaro (2009), Kuznetsov et al. (2013), Souayeh
et al. (2015), Gibanov and Sheremet (2016), Iyi et al. (2013) Rahmati and Tahery (2018),
etc.), but in most cases the heat source is set within the fluid, without any contact with the
walls. Here, we address the case of a heating obstacle placed on the floor of the cavity. This
constitutes a new worthy configuration of interest.

First of all, concerning the natural convection inside a cavity containing an opaque
obstacle, Kuznetsov and Sheremet (2006b) have investigated the effects of the Grasshof
number (105 − 107) on the fluid motion and concluded the influence of this parameter on
the thermal field in the enclosure. Kuznetsov and Sheremet (2006a) have studied the same
configuration, but with a different range of the Grasshof number (107 − 109) and pointed
out that as this number increases, the flow and the heat transfer process are stabilized.
Paroncini and Corvaro (2009), Kuznetsov et al. (2013) Souayeh et al. (2015), Gibanov
and Sheremet (2016), Iyi et al. (2013) Rahmati and Tahery (2018) have studied different
convective flow in both numerical and experimental manners with the influence of the
Rayleigh number. They have reported that the increase of this parameter intensifies the fluid
motion and raises the heat transfer through convective process. In addition, the study on the
hot obstacle size of Paroncini and Corvaro (2009) pointed out that, when the height of the
obstacle is a half of the cavity, the convective heat transfer is the worst among the analyzed
cases. Besides, Bouafia and Daube (2007) have considered the unsteady behaviors in this
configuration at different aspect ratio of the enclosure and concluded that the mechanism
of the unsteadiness was the shear instabilities when the aspect ratio is 1 and 2. For higher
aspect ratio (4), the leading mechanism was the buoyancy instabilities. Hernandez (2015)
has studied a square cavity with a heat source attached to the floor. His results point out
that the unsteady behavior was due to the high horizontal velocity right above the obstacle.

Next, the problem of natural convection combined with the surface radiation have
been investigated by Sun et al. (2011), Martyushev and Sheremet (2013), Saravanan and
Sivaraj (2014), Patil et al. (2016), Miroshnichenko et al. (2018). They have concluded that
the increase in the emissivity strengthens the fluid motion near the wall, intensifies the
radiative transfer but reduces the convective transport. Sun et al. (2011) have also reported
that surface radiation slows down the transition to the unsteadiness inside the cavity.

Through a detailed literature review, it is shown the lack of observations on the flow
characteristics when the medium is filled by a radiatively participating gas mixture in the
configuration of a cavity with a heat source inside. This work, therefore, addresses this
problem by numerical simulations of the coupling natural convection and gas radiation in
a cubical enclosure filled with an air −H2O mixture and a heated obstacle located on its
floor.
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Nomenclature

Physical symbols

g gravitational acceleration 9.81m · s−2

n unit normal vector

qr radiative flux vector W ·m2

s a point on a propagation direction of radiation

∆T temperature difference K

A area of considered surface m2

aj weight of jth gray gas

C absorption cross section m2 ·mol−1

G incident radiation W ·m−2

I radiative intensity W ·m−2 · sr

L cavity length m

l obstacle size m

Ng number of gray gases

P absolute pressure Pa

qinc incident radiative flux W ·m−2

qnet net radiative flux, qnet = σT 4
w − qinc W ·m−2

R ideal gas constant 8.3144621 J ·K−1 ·mol

t time s

Tc absolute temperature at cold surfaces K

Th absolute temperature at hot surfaces K

Tw absolute wall temperature K

Tref reference temperature, Tref = (Th + Tc)/2 K

u, v, w velocity component m · s−1

Ux normalized velocity component, Ux = u
Uref

Uref reference velocity, Uref = α
√
Ra
L m · s−1

X,Y, Z normalized coordinates, X = x
L , Y = y

L , Z = z
L

x, y, z Cartesian coordinates m
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xH2O molar fraction of H2O in the mixture

Dimensionless numbers

Nuc convective Nusselt number, Nuc = L
∆T |

∂T
∂x |

Nur radiative Nusselt number, Nur = L|qnet|
λ∆T

Nut total Nusselt number, Nut = Nuc +Nur

Pl Planck number, Pl = λ L
4σT 3

ref

Pr Prandlt number, Pr = ν
α

Ra Rayleigh number, Ra = gβT∆TL3

αν

Greek symbols

α thermal diffusivity m2 · s−1

βT thermal expansion coefficient K−1

ε emissivity

η wavenumber cm−1

κ absorption coefficient m−1

λ thermal conductivity W ·m−1 ·K−1

ν kinematic viscosity m2 · s−1

Ω solid angle sr

Ωm discrete direction

ρ density kg ·m−3

σ Stefan Boltzmann constant 5.670367× 10−8W ·m−2 ·K−4

Abbreviation

ALBDF Absorption Line Blackbody Distribution Function

2 Mathematical model

2.1 Problem statement

The configuration under consideration in this research is illustrated in figure 1. It deals with
a cubical cavity of size L = 0.25m having adiabatic horizontal walls, while the vertical
ones are maintained at a constant and uniform temperature (Tc). A small solid cube of size
l = 0.05m is located at the center of the bottom wall. It creates an opaque obstacle whose
surfaces are uniformly set at a higher temperature (Th > Tc).
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Figure 1 Configuration of the calculation

The enclosure is filled with either dry air or a mixture of air and water vapor, depending
on the case study. The medium is homogeneous in composition. The temperature difference
between the obstacle and the cavity generates a natural convection flow and, when water
vapor is present, H2O acts as an emitting-absorbing component for infrared radiation.

2.2 Conservation equations

Several conservation equations govern the flow motion and the transfer processes in the
enclosure. They express a local balance in mass, momentum, energy and composition
within the fluid:

• Continuity equation
If density variations are neglected, the total mass conservation reads:

∇ · u = 0 (1)

• Momentum equation

ρ0
∂u
∂t

+ ρ0u ·∇u = −∇p+ ρ0βT (T0 − T )g + µ∇2u (2)
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The source term ρ0βT (T0 − T )g accounts for the buoyancy force that sets the fluid
into motion (here expressed under the Boussinesq approximation).

• Energy equation

ρ0Cp
∂T

∂t
+ ρ0Cpu ·∇T = λ∇2T −∇ · q (3)

The divergence term −∇ · q is the internal radiative source resulting from the
difference between the absorbed and emitted radiant energy in each elementary volume
of fluid. It takes non-zero values whenever H2O is present in the mixture.

2.3 Radiative transfer equation

The spectral radiative intensity Iη(s,Ω) represents the radiant flux (per unit angle solid
and per unit wavenumber) that propagates at point s = (x, y, z) in the direction Ω at the
wavenumber η. The local change of intensity is described by the radiative transfer equation,
which, for a non-scattering medium, is expressed as:

Ω ·∇Iη(s,Ω) = −κη(s)Iη(s,Ω) + κη(s)Ibη(T (s)) (4)

where κη(s) is the local spectral absorption coefficient defined as κη(s) = N(s) Y (s)
Cη(φ(s)). In this expression, Cη(φ(s)) is the spectral absorption cross section, depending
on the local thermodynamic state, φ(T, P,C), Y (s) the mole fraction and N(s) the molar
density of the absorbing species (Denison and Webb (1993)). The radiative intensity depends
on three position coordinates, two direction variables (either two polar angles or two
direction cosines) and the wavenumber. The total intensity can be found by integration over
the whole spectrum as:

I(s,Ω) =

∫ ∞
0

Iη(s,Ω)dη (5)

The source term −∇ · q, which appears in the energy equation, is the total divergence of
the radiative flux. This flux can be calculated from the total intensity by the expression:

q(s) =

∫ 4π

0

I(s,Ω)ΩdΩ =

∫ 4π

0

∫ ∞
0

Iη(s,Ω)ΩdηdΩ (6)

and, as a result (Modest (2013)):

−∇ · q(s) =

∫ ∞
0

∫ 4π

0

κη(s)Iη(s,Ω)dΩdη − 4π

∫ ∞
0

κη(s)Ibη(T (s))dη (7)
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2.4 Spectral model

When gas radiation is considered, the actual spectral behavior of the fluid (absorption)
must be accounted for. In this work, the Spectral Line-based Weighted-sum-of-gray-gases
models (SLW) (Denison and Webb (1993)) has been selected. This model, according to
Goutiere et al. (2000) and Goutière et al. (2002), provides the best compromise between
accuracy and computational cost.

The SLW model involves a finite number (Ng) of gray gases and one clear (transparent)
gas. The absorption coefficient of jth gas is calculated as:

κj = N · Y · Cj (8)

where Cj is the absorption cross section. Knowing N and Y, the remaining problem

is to determine Cj . This parameter is here determined as Cj =
√
C̃j−1C̃j where

C̃j = Cmin(Cmax/Cmin)j/Ng is the supplemental cross section selected in the range
[Cmin,Cmax].

The weight of the jth gray gas aj corresponds to the difference in the absorption line
black body distribution function ALBDF at the two supplemental absorption cross sections
that define the jth interval [C̃j−1,C̃j] (Denison and Webb (1994)):

aj = F (C̃j , φg, Tb)− F (C̃j−1, φg, Tb) : for j = 1,...,Ng

a0 = F (C̃0, φg, Tb)
(9)

where Tb is equal to the local temperature in the fluid and to the wall temperature at the
boundaries.

The ALBDF is evaluated as the integral of the Planck function calculated at a source
temperatureTb over the wavenumber intervals such that the absorption cross sectionCη(φg)
at a gas thermodynamic state φg is below a prescribed C-value, namely:

F (C, φg, Tb) =
1

Eb(Tb)

∫
η:Cη(φg)<C

Ebη(Tb)dη

=
π

σT 4
b

∫
η:Cη(φg)<C

Ibη(Tb)dη

(10)

The ALBDF is determined by performing integrations over the whole spectrum at
high resolution (line by line) and different pressures, temperatures and compositions. The
resulting data are made available for the main participating species (H2O, CO2, CO)
either as mathematical correlations or in look-up tables. The most recent contribution is
reported in Pearson et al. (2014) and is based on the HITEMP-2000 spectral database.
In this research, the look-up tables provided by Solovjov (2014) have been used along
with the rank-correlated approach (Solovjov et al. (2017)) to handle the fluid temperature
variations.
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Finally, the radiative transfer equation for the jth gray gas is written as :

Ω ·∇Ij(s) = −κjIj(s) + ajκjIb(s) (11)

The total intensity and radiative source term are then obtained by the following
expressions:

I(s, (Ω)) =

Ng∑
j=1

Ij(s, (Ω)) (12)

∇ · q(s) =

Ng∑
j=1

(κj

∫ 4π

0

Gj(s)− 4πajκjIb(s)) (13)

where Gj(s) =
∫ 4π

0
Ij(s,Ω)dΩ is the incident radiation related to the jth gray gas.

2.5 Boundary conditions

Kinematic, mass and thermal fields

All the surfaces of the heated obstacle, except the one in contact with the floor of the
cavity, are black and set at constant and uniform temperature:

T = Th, ε = 1 (14)

Regarding the cavity:

• Vertical walls are black and uniformly maintained at constant temperature:

T = Tc, ε = 1 (15)

• Horizontal walls are adiabatic and assumed to behave as fully reflective surfaces:

∂T

∂z
= 0 with z = 0, L. ε = 0 (16)

Zero velocities are applied to all the walls of the cavity and all the surfaces of the obstacle.

Radiative intensity field

Intensity at the bounding walls is prescribed for all directions Ω pointing inward to the
cavity that is for Ω · n > 0 where n is the local unit vector. Assuming gray diffuse surfaces,
the boundary condition reads:

Iη(s, Ω
(Ω·n>0)

) = εIbη(T (s)) + (1− ε)
qincη

π
(17)

where:

qincη =

∫
Ω·n<0

Iη(s,Ω)|Ω · n|dΩ (18)

In this study, the surfaces of the obstacle and the vertical walls of the cavity are black
(ε = 1) and the horizontal walls of the enclosure are purely reflective (ε = 0).
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3 Methodology

All the governing equations of our problem were solved by using Code Saturne-version
5.0.4 (Archambeau et al. (2004)), an open source software for CFD calculation developed
by EDF. A built-in radiative module is available, in which we have implemented our own
data for directional integration and a specific module for gas radiation according to the SLW
model.

3.1 Computational Fluid Dynamics

Code Saturne uses a finite volume method to solve the governing equations of fluid motion
and heat and mass transfer. For the momentum equations, Code Saturne resorts to the
SIMPLEC algorithm (Semi-Implicit Methods for Pressure Linked Equations Consistent).
Different discretizations in space and in time are also available.

Temporal discretization
The time scheme is implemented in Code Saturne is a θ − scheme with:

{
θ = 1 for an implicit first order Euler scheme,
θ = 1

2 for second order Crank-Nicolson scheme.
(19)

There are two options for setting the temporal step: constant and variable. In the latter case,
the code automatically calculates the time step after each iteration that satisfies the CFL
criterion. In our study, we have used the implicit first order backward Euler scheme along
with the variable time step option.

Spatial discretization
Code Saturne proposes different schemes of first order (Upwind) and second order
(Centered or Second-Order-Linear-Upwind (SOLU)) for spatial discretization and. In this
study, we have selected the centered second order scheme.

3.2 The Discrete Ordinates Method

The discrete ordinates method (DOM) has been used to solve the radiative transfer equation
corresponding to each gray gas of SLW model. This method consists in replacing the angular
integrals by a summation over a set of discrete directions such as:

∫ 4π

0

f(Ω)dΩ ≈
M∑
m=1

ωmf(Ωm) (20)

where M denotes the number of directions in the set and ωm is the weight attributed to
the mth element. Consequently, the distribution of incident radiation and radiative flux are
approximated by:

GPη =

∫ 4π

0

IPη (Ω)dΩ ≈
M∑
m=1

ωmI
P
η,m(Ω) (21)
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qPm =

∫ 4π

0

IPη (Ω)ΩdΩ ≈
M∑
m=1

ωmI
P
η,m(Ω)Ωm (22)

where P here denotes the center of a control volume.
There are several ways to define the discrete direction sets. A more general overview on
this problem can be found in Koch and Becker (2004). We have here selected the level
symmetric SN quadrature using the improved dataset suggested by Balsara (2001).

3.3 Code Validation

3.3.1 Differentially heated cavity

In this section, Code Saturne and its improved radiative model is validated through the
simulations of both pure thermal convection and double diffusive convection coupled with
radiation in a differentially heated cavity (see figure 2).

Pure Thermal Convection
In that case, there is no radiative effects (transparent medium, non-emitting walls). The
Prandtl number is 0.71 and the computations were run over a uniform grid of 802 cells. In
this configuration, many references are available (Le Quéré (1991), Tric et al. (2000)...).
Here, the solutions are compared against the data provided by De Vahl Davis (1983) and
are presented below. A good agreement is found between our results and this reference (see
Table 1).

Ra Our work De Vahl Davis (1983) (Relative Difference %))
103 1.113 1.117 (0.36)
104 2.235 2.238 (0.13)
105 4.507 4.509 (0.04)
106 8.816 8.817 (0.01)

Table 1 Mean Nusselt number on the hot wall

Regarding 3-D cases, we have performed calculations in the configurations studied by
Colomer et al. (2004b) and Fusegi and Hyun (1994). A uniform 813 grid was used still with
Pr = 0.71. Here too, a good agreement is observed with the reference data (see Table 2).

Ra Our work Colomer et al. (2004b) Fusegi and Hyun (1994)
104 2.059 2.030 (1.42%) 2.100 (1.95 %)
105 4.365 4.334 (0.71 %) 4.361 (0.09%)
106 8.717 8.862 (1.63%) 8.770 (0.60 %)

Table 2 Mean Nusselt Number on the hot wall (Pr = 0.71)
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(a) 2D

(b) 3D
Figure 2 Differentially heated cavity

Pure Thermal Convection coupled with radiation
We now consider a semitransparent fluid (absorbing and emitting in volume). The results
of our simulations are compared against data provided by Yücel et al. (1989) (Ref.1) and
Laouar-Meftah (2010) (Ref.2) for coupled thermal convection and radiation in a gray gas
inside a 2D differentially heated square cavity. In Yücel et al. (1989), the authors have
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used a non-uniform 502 grid (but they did not specify of which type) and performed the
calculations at different values of the overall optical thickness τ = κ · L (L is the cavity
size and κ the gray absorption coefficient). The Rayleigh number was fixed at 5 · 106 with
Pr = 0.72 and the Planck number defined as Pl = λ

4σLT 3
ref

was set to Pl = 0.02. All the

bounding walls are black and the temperature ratio (θ0 = Tref/∆T ) is set to 1.5. A non-
uniform 812 grid is used, like in reference Laouar-Meftah (2010). The results are listed
in Table 3. They show that the difference between our calculations and the reference does
not exceed 4 %. This difference may come from different interpolation schemes used in
the DOM (the Lathrop variable scheme in Laouar-Meftah (2010), the STEP scheme in the
present work).

τ SN
Convective Nusselt Total Nusselt

Our work Ref.1 Ref.2 Our work Ref.1 Ref.2
0.2 S4 36.01 37.40 37.40 46.50 46.11 46.05
1 S8 31.88 31.25 31.25 39.38 38.93 38.81
5 S4 24.58 23.64 23.57 31.47 31.76 31.59

Table 3 Mean Nusselt number on the hot wall (Pr = 0.71, Pl = 0.02, θ0 = 1.5, εi = 1)

In addition, we have performed different validation tests in a 3-D differentially heated
cavity filled with a real participating gas (that is, accounting for the actual absorption
spectrum of the medium). We have reproduced the works of Billaud et al. (2017) by
considering a cubic enclosure filled with humid air (air −H2O mixture). Different case
studies based on the radiative behavior of the bounding walls and the medium have been
investigated. They are described in Table 4. Our calculations have been carried out using a
non-uniform 913 grid like in reference Billaud et al. (2017). Our results are also compared
to the data provided by Soucasse et al. (2016) and presented in Table 5. The comparisons
show a fairly good agreement between our predictions and the two references.

Case A B C D
Isothermal walls ε = 1 ε = 1 ε = 1 ε = 1
Adiabatic walls ε = 0 ε = 0 ε = 1 ε = 1

Gas nature Transparent Participating Transparent Participating
Table 4 Radiative boundary conditions and radiative properties of the medium

Case Our work Billaud et al. (2017) Soucasse et al. (2016)
A 8.64 8.65 (0.11 %) 8.64 (0.0 %)
B 7.24 7.42 (2.42 %) 7.55 (4.10 %)
C 7.93 8.10 (2.09 %) 8.47 (6.37 %)
D 8.48 8.01 (5.86 %) 8.48 (0.0 %)

Table 5 Mean convective Nusselt number on the hot wall (air −H2O mixture, Ra = 106,
Pr = 0.707)
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3.3.2 Cavity with a hot obstacle

Our purpose is now to test the ability of our simulation code to handle geometries involving
obstacles. The first validation test considers a 2-D square cavity with a heat source located
at the center of the bottom wall (see figure 3). The enclosure is 0.05m long. The heat source
is 0.01 m wide and 0.025 m high. The enclosure is filled by dry air (transparent) and the
Prandtl number is set to 0.71. The heat source is maintained at Th = 301.16 K while two
lateral walls of the cavity are prescribed at Tc = 291.16 K. The remaining surfaces of the
enclosure are adiabatic. The tests are performed at different Rayleigh numbers, using a
1002 uniform grid and the results are compared to the experiments and the simulations of
Paroncini and Corvaro (2009).

Figure 3 First validation test

Ra Reference (exp) Reference (num) Our work
1.02 · 105 10.49 10.46 10.42
1.21 · 105 10.96 10.96 10.96
1.48 · 105 11.46 11.58 11.61
1.68 · 105 11.89 11.99 12.04
1.93 · 105 12.34 12.45 12.52
2.11 · 105 12.71 12.76 12.84

Table 6 First validation test: Mean Nusselt number on the lateral wall of the heated obstacle. The
reference length is the cavity size (H).

The comparisons of our results with the reference show a good agreement, the maximum
difference being less than 1 % when comparing the two numerical simulations. Differences
are larger with respect to measured quantities (but this is also true in the reference work).
Some thermal leakage through the plexiglas plates (imperfect insulation) may explain these
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variations.

Figure 4 Second validation test

The second validation considers a hot obstacle located at the center of a 2D square
cavity (see figure 4). Now, two vertical walls of the cavity are kept adiabatic while the
horizontal one are maintained at a constant lower temperature compared to the isothermal
heated obstacle. The enclosure is filled with dry air. The simulation is run at a Rayleigh
number of Ra = 2 · 105 and a Prandlt number of Pr = 0.71. The comparisons with the results
of Sun et al. (2011) reported in table 7 prove that our code can efficiently handle this type of
configuration, both for the flow description and thermal transport (the maximum difference
is less than 0.5 %).

Our work Sun et al. (2011) Relative difference (%)
Side A’B’ or C’D’ 3.7129 3.7174 0.121
Side A’D’ (bottom) 5.6527 5.6347 0.319

Side B’C’ (top) 9.4989 9.4614 0.396
Bottom wall 2.5342 2.5346 0.015

Top Wall 6.4966 6.4778 0.290
Table 7 Second validation test: Mean Nusselt number on different walls (Ra = 2 · 105, Pr = 0.71)

4 Results and Discussion

The enclosure under study is filled with a real air −H2Omixture. It involves an absorbing-
emitting component (H2O) diluted at different concentrations into a transparent gas (dry
air). The temperature of the hot obstacle is set to Th = 580K and the vertical walls of the
cavity are maintained at Tc = 530K. The thermophysical properties of the mixture are
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calculated at the reference temperature according to the perfect gas law for density and the
Wilke-Wassiljewa formulas for dynamic viscosity and thermal conductivity, as suggested
in Meftah et al. (2009). The actual absorption spectrum is accounted for by using the SLW
model.

The characteristic parameters of the simulations are presented in Table 8.

xH2O (%) Ra Pr Pl
5 4.663 · 106 7.251 · 10−1 4.394 · 10−3

10 4.693 · 106 7.351 · 10−1 4.392 · 10−3

20 4.753 · 106 7.553 · 10−1 4.389 · 10−3

Table 8 The three configurations under study

In all these configurations, a steady state flow is obtained. In each case, the results are
compared to the reference (transparent) values, which are generated using the same gas
mixture but without including any radiation effects in volume.

We present below the cross section planes and the crosslines used to display the results.
The dimensionless temperature and velocity fields are plotted in the median vertical plane
of the cavity (Y = 0.5 or y = 0.125m) (see figure 5). We also consider the profiles of these
quantities along different crosslines in the plane Y = 0.5:

• Z-lines: Z = 0.1, Z = 0.5, Z = 0.8

• X-lines: X = 0.2, X = 0.5, X = 0.8

All the results presented hereafter are normalized with respect to the reference temperature
Tref = Th+Tc

2 , the reference length L and the reference velocity Uref = α
√
Ra
L

(a) Median plane (b) Cross lines
Figure 5 Median plane (Y = 0.5) and crosslines used for the results display
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4.1 Convergence on spatial grid

Before conducting original simulations, we have analyzed the convergence of the results
with respect to the spatial meshing, the angular discretization and the number of gray gases
(spectral divisions) in the SLW model. We have run different tests, but we only present
here those concerning natural convection case atRa = 5 · 106,Pr = 0.71, T0 = 555K and
∆T = 50K with black active walls and purely reflective adiabatic walls. Three uniform
grids of different sizes have been considered: 803, 1003 and 1203.

(a) 803 (b) 1003

(c) 1203

Figure 6 Temperature T−Tref
Th−Tc

distribution in the median plane (Y = 0.5) with different mesh
sizes: transparent medium.

Mesh umax (m/s) wmax (m/s)
803 0.191 0.339
1003 0.191 0.342
1203 0.191 0.342

Table 9 Maximum horizontal and vertical velocities for different mesh sizes.
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Mesh Front wall Back wall Left wall Right wall
803 1.690 1.690 1.690 1.690
1003 1.682 1.682 1.682 1.682
1203 1.681 1.681 1.681 1.681

Table 10 Mean Nusselt numbers at the bounding surfaces of the enclosure.

Mesh Front wall Back wall Left wall Right wall Top wall
803 38.664 38.664 38.664 38.664 14.343
1003 38.508 38.508 38.508 38.508 14.166
1203 38.492 38.492 38.492 38.492 14.132

Table 11 Mean Nusselt numbers at the bounding surfaces of the hot source.

From the result displayed above, we consider that the simulations are converged with
respect to the spatial meshing when using a 1003 grid. A same observation was made
in configurations involving gas radiation. Therefore, we have selected this mesh for our
subsequent calculations.

All the subsequent calculations have been carried out using a uniform 1003 grid with
the S8 discrete ordinates method and a 5-gray gas SLW model.

4.2 Thermal and dynamic fields

(a) Transparent medium (b) Participating medium

Figure 7 2D-contours of temperature T−Tref
Th−Tc

in the median plane of the cavity (Y = 0.5) at
xH2O = 0.05



18

(a) Transparent medium (b) Participating medium

Figure 8 2D-contours of temperature T−Tref
Th−Tc

in the median plane of the cavity (Y = 0.5) at
xH2O = 0.10

(a) Transparent medium (b) Participating medium

Figure 9 2D-contours of temperature T−Tref
Th−Tc

in the median plane of the cavity (Y = 0.5) at
xH2O = 0.20

Figures 7, 8 and 9 display the thermal field in the median plane (Y = 0.5) in both cases
of transparent and participating media at different concentrations of the water vapor. The
most sensitive effect of radiation (at these concentrations) is a slight broadening of the
temperature contours in the lower half of the cavity (Figures 7 b, 8 b, 9 b). The radiant
flux coming from the hot surfaces of the obstacle heats up the medium between the heater
and the vertical walls of the cavity. As a result, the nearly vertical thermal stratification
in absence of radiation is broken. The air (outside the thermal plume), therefore, slightly
becomes more uniform in temperature.
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(a) xH2O = 0.05 : Z = 0.8 (b) xH2O = 0.10 : Z = 0.8 (c) xH2O = 0.20 : Z = 0.8

(d) xH2O = 0.05 : Z = 0.5 (e) xH2O = 0.10 : Z = 0.5 (f) xH2O = 0.20 : Z = 0.5

(g) xH2O = 0.05 : Z = 0.1 (h) xH2O = 0.10 : Z = 0.1 (i) xH2O = 0.20 : Z = 0.1

Figure 10 Temperature T−Tref
Th−Tc

profiles along different Z-cross lines in the median plane
(Y = 0.5) at different concentrations of water vapor
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(a) xH2O = 0.05 : X = 0.2 (b) xH2O = 0.10 : X = 0.2 (c) xH2O = 0.20 : X = 0.2

(d) xH2O = 0.05 : X = 0.5 (e) xH2O = 0.10 : X = 0.5 (f) xH2O = 0.20 : X = 0.5

Figure 11 Temperature T−Tref
Th−Tc

profiles along different X-cross sections in the median plane
(Y = 0.5) at different concentrations of water vapor
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As a whole, radiation does not significantly change the thermal profile along the
centerline (Z = 0.5) (see figures 10 d,e,f) and in the lower half of the cavity (Z = 0.1) (see
figures 10 g,h,i). But at a higher position (Z = 0.8) (see figures 10 a,b,c), a slight decrease
of temperature in the re-circulation zone between the plume and the wall boundary layer
can now be observed. In this region of low convective transport, the gas radiates toward the
cold surfaces and the colder parts of the fluid (it emits more than it absorbs): this results in
a negative radiative source within the fluid (see figures 12 a, 13 a and 14 a).

(a) Emission (b) Absorption
Figure 12 Distribution of radiative source term in the median plane (Y = 0.5) at xH2O = 0.05.

Sources are normalized by 4σT 4
ref/L.

(a) Emission (b) Absorption
Figure 13 2D-contour of radiative source term in the median plane (Y = 0.5) at xH2O = 0.10.

Sources are normalized by 4σT 4
ref/L.
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(a) Emission (b) Absorption
Figure 14 2D-contour of radiative source term in the median plane (Y = 0.5) at xH2O = 0.20.

Sources are normalized by 4σT 4
ref/L.

(a) xH2O = 0.05 : Z = 0.8 (b) xH2O = 0.10 : Z = 0.8 (c) xH2O = 0.20 : Z = 0.8

(d) xH2O = 0.05 : Z = 0.5 (e) xH2O = 0.10 : Z = 0.5 (f) xH2O = 0.20 : Z = 0.5

(g) xH2O = 0.05 : Z = 0.1 (h) xH2O = 0.10 : Z = 0.1 (i) xH2O = 0.20 : Z = 0.1

Figure 15 Profiles of vertical velocities w
Uref

at different Z-cross sections in the median plane
(Y = 0.5) at different concentrations of water vapor
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Moreover, the change in the thermal field alters the buoyancy forces in the cavity.
Consequently, the vertical velocities slightly increase near the lateral walls and significantly
near the plume flow (see Fig 15). The two boundary layers (climbing along the obstacle,
descending along the wall) now interfere and create a shear flow in this region.

(a) xH2O = 0.05 : X = 0.2 (b) xH2O = 0.10 : X = 0.2 (c) xH2O = 0.20 : X = 0.2

Figure 16 Profiles of horizontal velocities u
Uref

at different X-cross sections in the median plane
(Y = 0.5) at different concentrations of water vapor

Another change in the fluid motion can be found in the profiles of horizontal velocities
along the vertical cross-sections, which are displayed in Fig 16 a. Compared to the
transparent case, the fluid near the ceiling and the floor of the enclosure is accelerated. This
is due to an increase in the mass flow driven by the plume. These alterations of the velocity
field are enhanced when the medium becomes more absorbing: comparison between figures
15 b,e,h and 16 b (xH2O = 0.10) versus 15 c,f,i and 16 c (xH2O = 0.20).

(a) No Radiation (b) Participating medium
Figure 17 Vector field in the median plane (Y = 0.5) at xH2O = 0.05
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(a) Transparent medium (b) Participating medium
Figure 18 Vector field in the median plane (Y = 0.5) at xH2O = 0.10

(a) Transparent medium (b) Participating medium
Figure 19 Vector field in the median plane (Y = 0.5) at xH2O = 0.20

Figure 17, 18 and 19 represent the velocity vectors in the mid-depth (Y = 0.5) plane
for three concentrations of the absorbing component. They display the typical patterns
explaining the formation of the plume. The fluid is accelerated along the lateral surfaces
of the hot body, goes up and then combines above the top surface of the obstacle. Here,
the fluid between the plume and its surroundings is pushed upward by the buoyancy force
created by the temperature difference. The hot fluid, then, moves along the ceiling of the
enclosure and then flows down near the cold walls. Besides, it is clearly observed that the
plume broadens and the boundary layers near vertical walls get thicker when the radiation
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effects are present (compared to the transparent cases).
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(b) Participating medium
Figure 20 Flow lines in the median plane (Y = 0.5) at xH2O = 0.05
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(a) Transparent medium

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Participating medium
Figure 21 Flow lines in the median plane (Y = 0.5) at xH2O = 0.10



26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Transparent medium
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(b) Participating medium
Figure 22 Flow lines in the median plane (Y = 0.5) at xH2O = 0.20

The flow line patterns show that, in the transparent case, three vortices are formed on
each side of the cavity (see figure 20 a, 21 a, 22 a). They are the projections in n the median
plane Y = 0.5 of 3-D swirls, but are associated to low velocity parts of the flow. However,
when the medium participates to radiation, the number of vortices decreases (see figure 20
b, 21 b, 22 b).

Similar modifications in dynamic and thermal field were reported by Billaud et al.
(2017) for a differentially heated cavity: gas radiation was found to accelerate the global
circulation and to set into motion some parts of the fluid that were stagnant in the transparent
case.

4.3 Heat Transfer

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 23 Local convective Nusselt number along the vertical centerline of any lateral wall of the
cavity

The plots in the figure 23 clearly show that the convective Nusselt number along the
centerline of any vertical wall of the enclosure is decreased close to the roof of the cavity
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and increased elsewhere. The reason is that, in the upper part, the fluid was cooled down
(figures 12 a, 13 a and 14 a) before reaching the lateral walls. On the other hand, in the
lower part, absorption dominates over the emission (figures 12 b, 13 b and 14 b), thus, the
medium is heated up and the thermal gradient is increased. However, the increased part
does not compensate the decreased one. Therefore, overall, the average convective Nusselt
number over the vertical wall of the enclosure is reduced (see table 12).

This decreasing trend in the local convective Nusselt number is also found when
considering the vertical hot surfaces of the obstacle. This is illustrated in figure 24. The
reason is that the thermal gradient is reduced when the radiation is considered. Indeed, the
fluid is warmed up (by the absorption) along the floor of the enclosure before arriving at the
vertical hot surfaces of the obstacle. Consequently, the average values of NuC displayed
in table 14 are decreased when the radiation is taken into account.

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 24 Local convective Nusselt number along the vertical center line of each lateral surfaces
of the obstacle

(a) xH20 = 0.05 (b) xH20 = 0.10 (c) xH20 = 0.20

Figure 25 Local convective Nusselt number along the horizontal centerline of the obstacle top
surface

However, it is observed that the convective transfer along the horizontal upper surface
of the obstacle increases. When radiation is present, the fluid layer near the hot surfaces
becomes cooler due to the emission (it is evidenced by the negative values of the radiative
source in the figures 12, 13 and 14). Consequently, the thermal gradient in this region is
enhanced, which induces the increase in local values of Nusselt number with the appearance
of the radiation (figure 25). This explains the higher average convective Nusselt number
obtained in table 14.
The values of average convective Nusselt number and average total Nusselt number, which
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are defined as Nu = 1
A

∫
A
Nu(s)dA, are presented in the tables below:

xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 1.67 1.34 12.47 12.38
10 1.67 1.27 12.48 12.33
20 1.68 1.24 12.50 12.26

Table 12 Average convective and total Nusselt numbers along any vertical wall of the cavity

xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 38.28 37.09 252.07 250.25
10 38.34 36.75 252.19 249.31
20 38.57 36.59 252.59 247.93

Table 13 Average convective and total Nusselt numbers along any vertical wall of the obstacle

xH2O(%) Convective Nusselt number Total Nusselt number
Transparent Participating Transparent Participating

5 14.12 14.50 239.91 238.26
10 14.17 14.90 240.03 236.92
20 14.30 15.85 240.34 234.74

Table 14 Average convective and total Nusselt numbers along the horizontal upper wall of the
obstacle

Regarding the total heat transfer, the table 12, 13 and 14 reveal that, compared to the
transparent cases, the average total Nusselt number along any black surfaces is decreased.
This, along the vertical walls, is due to the drop off in the convective Nusselt number. In
addition, the attenuation of radiative transfer by the absorbing medium also contributes to
the reduction of total thermal transport, especially, when considering this quantity along
the upper surfaces of the obstacle, where the convective transfer is accelerated.

5 Conclusion

The coupling of natural convection with volume radiation in a cubical cavity with a heat
source located on its floor has been investigated for an air −H20 mixture at different
concentration. The radiant sources created by the gas absorption and emission in the infrared
range have been computed using the discrete ordinates method and SLW model associated
with the rank-correlated approach. The other conservation equations have been solved using
a finite volume method implemented in the Code Saturne software. The obtained results
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have been compared to the case where the medium is considered as transparent. These
comparisons show that:

• Radiation tends to non-uniformly accelerate the boundary layers along the cavity and
the hot inner obstacle. It also sets into motion some parts of the fluid that were stagnant
in the transparent case. This results in making the plume flow and its recirculation
along the walls interfere and create a shear flow.

• Radiation partly modifies the thermal gradient near the bounding surfaces of the cavity:
the convective Nusselt values are increased in the upper half and decreased in the lower
half. However, an inverse trend is observed at the horizontal surface of the obstacle.

• Radiation modifies the nearly vertical thermal stratification outside the plume and
slightly uniformizes the medium temperature.

• The presence of radiation reduces the total thermal transfer, especially the convective
part on the vertical walls and the radiative part along the upper surface of the obstacle.

• All these effects were found to increase when the medium becomes more absorbing
(in the considered range of H2O molar fractions).
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