

Solid-state 31 P and 109 Ag CP/MAS NMR as a powerful tool for studying of silver(I) complexes with N -thiophosphorylated thiourea and thioamide ligands

Aydar Rakhmatullin, Vasiliy V Brusko, Elmira R Shcherbitskaya, Ilya B

Polovov, Rinat Bakirov, Catherine Bessada

▶ To cite this version:

Aydar Rakhmatullin, Vasiliy V Brusko, Elmira R Shcherbitskaya, Ilya B Polovov, Rinat Bakirov, et al.. Solid-state 31 P and 109 Ag CP/MAS NMR as a powerful tool for studying of silver(I) complexes with N -thiophosphorylated thiourea and thioamide ligands. Magnetic Resonance in Chemistry, In press, 10.1002/mrc.5294. hal-03707040

HAL Id: hal-03707040 https://cnrs.hal.science/hal-03707040v1

Submitted on 28 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Solid State ³¹P and ¹⁰⁹Ag CP/MAS NMR as a powerful tool for studying of Silver(I) Complexes with N-Thiophosphorylated Thiourea and Thioamide ligands

Aydar Rakhmatullin¹, Vasiliy V. Brusko², Elmira R. Shcherbitskaya³, Ilya B. Polovov⁴, Rinat Bakirov⁵, and Catherine Bessada¹

¹Conditions Extrêmes et Materiaux: Haute Température et Irradiation, CEMHTI, UPR 3079 -CNRS Univ Orleans 45071 Orléans, France

²A. M. Butlerov Chemistry Institute, Kazan State University, Kremlevskaya st. 18, 420008 Kazan, Russia

³JSC "NIIneftepromchim", Yershova st. 29, 420061, Kazan, Russia

⁴Department of Rare Metals and Nanomaterials, Institute of Physics and Technology Ural Federal University, Mira st. 19, 620002 Ekaterinburg, Russia

⁵Department of Technology of Mechanical Engineering and Instrument Making, Votkinsk Branch of Kalashnikov Izhevsk State Technical University, Shuvalova st. 1, 427000 Votkinsk, Russia KEYWORDS Solid state NMR, ³¹P and ¹⁰⁹Ag NMR, N-Thiophosphorylthiourea, Silver(I) complexes, Polynuclear complexes.

ABSTRACT. A family of three- and four-coordinated silver(I) complexes of formulas $[Ag(PPh_3)_2L]$, $[Ag(PPh_3)L]$ and $[AgL]_n$ with N-thiophosphorylated thiourea and thioamide ligands of general formula RC(S)NHP(S)(OPri)_2 [R = Ph, PhNH, *i*PrNH, tBuNH, NH₂] have been studied by solid-state ¹⁰⁹Ag and ³¹P CPMAS NMR spectroscopy. ¹⁰⁹Ag NMR spectra have provided valuable structural information about Ag coordination, which is in good accordance with the available crystal structure data. The data presented in this work represent a significant addition to the available ¹⁰⁹Ag chemical shifts and chemical shifts anisotropies. The silver chemical shift ranges for different P,S-environments and coordination state were discussed in detail. The ¹J(³¹P-^{107/109}Ag) and ²J(³¹P-³¹P) values were determined and analyzed.

INTRODUCTION

In spite of the fact that there are many new developments and frequent applications of different silver containing materials, the silver solid-state NMR spectroscopy is rarely used and rarely mentioned. To the best of our knowledge, the more recent review we found was published over fifteen years ago.^[1, 2] There are three major reasons for this rareness: low gyromagnetic ratios (γ), low receptivity, and the rather large longitudinal relaxation time. Low gyromagnetic ratios leads to the acoustic probe ringing which obliterates FIDs. Low receptivity and the rather large longitudinal relaxation time make the acquisition of silver NMR spectra very challenging. Let us additionally note other experimental difficulties that we encountered in the realization of this

work and which were not extensively discussed in previous in works: a wide and unknown for different environments the silver chemical shift range, which associated in solid state with high values of chemical shift anisotropy parameter.

Currently, coper(I) complexes attract a special interest as promising emitting materials for OLED devices, solar cells, photocatalysts and bioimaging agents.^[3] Only a limited example of silver(I) complexes exhibit phosphorescence at room temperature.^[4] Unlike to the related Cu (I) complexes, the energetically lower d-orbitals of silver(I) lead to a larger band gap and, consequently, cause a change of spectral band position in the absorption and emission spectrum. Contrastingly, to Cu (I), the higher oxidation potential of Ag (I) due to the greater stabilization of d-electrons leads to the diminution the probability of electronic transitions in Metal-to-Ligand Charge Transfer. Therefore, Ag (I) luminophores exhibit less a delayed fluorescence than their Cu (I) analogs.^[5]

Herein, we report upon the solid-state ³¹P and ¹⁰⁹Ag NMR characterization of a series of metallocomplexes, in which the silver has the coordination number of three or four and surrounded by sulfur and phosphorus atoms. N-(Thio)phosphorylated derivatives of the thioamides and thioureas of general formula $RC(S)NHP(X)(OR`)_2$ (**TPT**, X = O, S) attract attention due to their versatile complexing properties^[6] and easy structure modification by changing the nature of X donor site and structure of the R-moiety.^[7] Changing of these key sites result in dramatically changes of the coordination properties of the **TPT** ligands. Besides the obvious factors concerned the nature of the ligand donor atom X, the structure of such complexes can be determined by: 1) electronic effects of the substituents, even quite far from the coordination core, 2) influence of the intramolecular interactions in the ligand structure, e. g.

hydrogen bonds, 3) steric factors. Moreover, the influence of these secondary factors can have crucial importance.

The structural formulas of eight studied silver(I) complexes of formulas $[Ag(PPh_3)_2L]$, $[AgL]_n$ and $[Ag(PPh_3)L]$ with **TPT** ligands of general formula $RC(S)NHP(S)(OPri)_2$ [R = Ph L^a, *i*PrNH L^b, NH₂ L^c, tBuNH L^d, PhNH L^e] are presented in Scheme 1. The synthesis are described in previously reported studies.^[8-10]

SCHEME 1. The structural formulas of the studded silver complexes.

Numerous silver complexes in solution undergo a rapid ligand exchange on the NMR timescale.^[1] This phenomenon hides useful information about spin–spin couplings and gives average chemical shifts. The solid-state NMR technique has proved to be a significant tool for the investigation of local structure around a silver core, without limitations due to a dynamics. Magic angle spinning (MAS) NMR on metal nuclei is very useful because it gives direct information about central atom of a complex: coordination numbers, coordination environments, or the distortion of coordination environments.

EXPERIMENTAL

³¹P and ¹⁰⁹Ag solid-state MAS NMR were carried out on a Bruker Avance 400 (9.4 T) spectrometer using a 4 mm and 7 mm probe-heads respectively. The ¹H-³¹P cross-polarization (CP) MAS NMR spectra were recorded at a spinning frequency of 14 kHz using a ramped cross-

polarization^[11] with a contact time of 1 ms and a recycle delay of 2 s. ¹H decoupling was achieved using the SPINAL-64 sequence^[12] with a ¹H nutation frequency of about 60 kHz. Quantitative MAS spectra were acquired using a single pulse of 0.5 μ s duration (π /12) and a recycle delay of 1 s. Chemical shift is referred to 85 % H₃PO₄ (³¹P) solution. For the compounds **4** and **6**, additionally, ³¹P MAS spectra were carry out on a Bruker Avance III 750 (17.6 T) using a 4 mm probe. ¹⁰⁹Ag magic angle spinning experiments were performed with sample spinning rates 3 kHz. Cross-polarization experiments used contact times of 20 ms and a recycle delay of 2 s, number of scans was between 10000 and 420000 depending on the signal-to-noise ratio required. ¹H decoupling was achieved using the SPINAL-64 sequence with a ¹H nutation frequency of about 60 kHz. The ¹⁰⁹Ag chemical shift of solid AgSO₃CH₃ (87.2 ppm) was used as a reference.^[13] For the compounds **1**, **7**, and **8**, additionally, the data were collected at rotor frequencies of 2.7 and 3.3 kHz. The different spinning speeds were used to distinguish spinning sidebands (ssb) from isotropic peaks. All MAS NMR spectra were modeled using the *Dmfit* program.^[14]

RESULTS

³¹P solid state NMR.

The structures of the eight crystalline complexes were characterized by ³¹P and ¹⁰⁹Ag solidstate MAS NMR spectroscopy. Modeling of NMR spectra using the *Dmfit* program has allowed to obtain chemical shifts, *J*-coupling constant values, and anisotropy parameters (Table 1 and 2). Crystal structures determined by single crystal X-Ray diffraction are known for some of these complexes namely for **1**,^[15]**2**,^[15]**3**,^[16]**7**,^[9] and **8**.^[10, 17]

In the ¹H-³¹P CPMAS spectrum of **1** (Figure 1Sa), the resonance of the P atom of the thiophosphoryl group appears as a single peak. At the same time, the triphenylphosphine group

gives a doublet owing to the direct *J*-couplings with the both ¹⁰⁷Ag and ¹⁰⁹Ag isotopes. Due to relatively small isotope shift of the ³¹P signal and the close value of the coupling constants (the ratio *J*-couplings is proportional to the ratio they gyromagnetic ratios $\gamma^{107}Ag/\gamma^{109}Ag=0.87$), the subspectra of the molecules with ¹⁰⁷Ag and ¹⁰⁹Ag nucleus demonstrate no splitting in the experimental conditions. The overall ¹*J*(³¹P–^{107,109}Ag) values are observed in the most of our samples (the only exception is the complex **4**, see later.) and also in the previous studies.^[18, 19]

The ¹H-³¹P CPMAS spectra of **2**, **3**, and **5** show singlet signals for the thiophosphoryl group and two doublet of doublets for the inequivalent PPh₃ phosphorus atoms, which are a result of ¹ $J(^{31}P^{-107/109}Ag)$ and ² $J(^{31}P^{-31}P)$ coupling (Figure 1S). The NMR measurements fit with the Xray studies of the mononuclear complex **2**, containing three different P-sites. The X-ray data shows that the unit cell has two identical asymmetric units, which contain two molecules of **2** each. ^[15] The values of the ³¹P isotropic chemical shifts, ² $J(^{31}P^{-31}P)$, and overall ¹ $J(^{31}P^{-107/109}Ag)$ coupling constants confirm **a** similarity of structure of three cores of complexes **2**, **3**, and **5** (Table 1). Crystal structure of the close analog of these compounds of formula [Ag(HL^a)(PPh₃)₂]OTf **(9)** was reported in 20. The complex **9** has the similar AgP₂S₂ tetrahedral environment around the silver(I) cation. The neutral form of the ligand HL^a demonstrates the same *S*,*S*'-bidentate coordination mode and the similar geometry of the ligand moiety.

¹H-³¹P CPMAS spectrum of complex **4** contains two independent sets of signals of the same intensity and similar splitting patterns (Figure 1). Each of the sets has one singlet for the thiophosphoryl group and two doublets of doublets for two independent PPh₃ groups. To improve the resolution and to have unambiguous fit parameters, additionally, the compound **4** was measured at second magnetic high field 17.6 T (Figure 2S). Then, the both spectra were modeled using a single consistent set of parameters. These sets of signals could be assigned to

the two isomers in the asymmetric unit of the compound **4**. This crystal structure can be created due to the formation of the more dense crystal packing as well as different non-valent intermolecular interactions. It should be noted that such structural motif is well known in different organic and metalloorganic compounds, see for example, the review^[21] or the recent work about the crystal structure of silver complex.^[22] There is another possibility of explaining signal doubling what is the coexistence of two polymorphs in the sample, which is also a common occurrence. Unfortunately, there is no any X-Ray data for this compound up to now so we can't prove our assumption.

FIGURE 1. (a) Solid state ¹H-³¹P CPMAS NMR spectrum recorded at 9.4 T of the complex 4. Expansion of the (b) experimental and (c) simulated *J*-multiplet patterns of the PPh₃ ligands.

Unlike in previous examples, ¹H-³¹P CPMAS spectra recorded at two magnetic fields (9.4 T and 17.6 T) of **6** contain the signal of the phosphorus atom of the thiophosphoryl group and two more complex sets of signal for two different triphenylphosphine P sites (Figure 2). The each set represents two doublets of doublets owing to the couplings of the phosphorus atom to two

different isotopes of silver ${}^{1}J({}^{31}P{-}^{107}Ag)$, ${}^{1}J({}^{31}P{-}^{109}Ag)$ and between themselves ${}^{2}J({}^{31}P{-}^{31}P)$. Resulting multiplet was solved by *Dmfit* taking into account the natural abundances of the ${}^{107}Ag$ (51.82 %) and ${}^{109}Ag$ (48.18 %) isotopes.

FIGURE 2. The solid state ${}^{1}H{}^{-3}P$ CPMAS NMR spectrum of the complex **6** (a). Expansion of the experimental (b) and simulated *J*-multiplet patterns (c) of the PPh₃ ligands. *-secondary phase.

The cyclic tetramer [Ag₄L^a₄] **7** in a crystal possesses S_4 -symmetry, and all four phosphorus atoms are crystallographically equivalent. ^[9] The singlet signal is observed in the ¹H⁻³¹P CPMAS spectra (Figure S1e). Therefore, our NMR observation is in exact agreement with the X-ray data. The another cyclic tetramer [Ag₄L₄] with L = o-MeO(O)CC₆H₄NHC(S)NP(S)(OPr-*i*)₂ has a similar core with S_4 -symmetry.^[23] It is interesting to note that the copper analog of **7** in crystal contains a similar cyclic tetramer of the same formula [Cu₄L^a₄] but with lower symmetry S_2 .^[24] The ${}^{1}\text{H}^{-31}\text{P}$ CPMAS spectrum of polynuclear silver complex **8** is shown in Figure 3. The spectrum contains three resolved resonances with relative intensities in the ratio 1:1:1. The molecule of centrosymmetric hexanuclear complex [Ag₆L^b₆] **8** consists of two coaxial [Ag₃L^b₃] cycles interlinked by two Ag-S bonds. The aggregation is provided by the thiocarbonyl sulfur, all of the thiophosphoryl sulfur atoms in the structure form only one Ag-S bond. These two Ag–S–Ag-S cyclic moieties have an envelope conformation with the deviation of the four-coordinate S atoms from the main plane of the cycle. All three P–S moieties in each cycle are crystallographically inequivalent. Thus, the ${}^{1}\text{H}^{-31}\text{P}$ CPMAS spectrum clearly fits well with a crystal structure and the ratio corresponds to the three inequivalent P–S moieties per molecule.

FIGURE 3. On the left, ${}^{1}\text{H}{}^{-31}\text{P}$ CPMAS NMR spectrum of complex **8** (blue) and reconstructed (red). Dashed lines display the decomposition of the theoretical spectrum in its individual components. On the right, the structural formula of **8**.

¹⁰⁹Ag solid state NMR.

The ¹H-¹⁰⁹Ag CPMAS NMR spectra for the obtained chelates (**1**-6) represents an expected multiplet patterns in total agreement with the obtained ¹H-³¹P CPMAS data. There is doublet of doublets in the spectra of all [Ag(PPh₃)₂L] chelates (**2**, **3**, **4**, and **5**) due to two ¹J(³¹P-¹⁰⁹Ag) with the two inequivalent PPh₃ phosphorus units (Table 2 and Figure S3). The trigonal complex **1** shows one doublet with a significantly higher ¹J value compared to the tetrahedral analogues. Unlike in previous experiments, this doublet has a several intense spinning sidebands due to the

large chemical shift anisotropy of AgS₃ site (Figure S4). The spectrum of **6** exhibits two set of doublet of doublets (Figure S3). All measured ${}^{1}J({}^{31}P-Ag)$ values (329-380 Hz) are significantly lower in comparison with *J* values (643–733 Hz) reported for mixed carboxylate bis(diphenylphosphino)methane complexes with AgO₂P and AgO₃P coordination of the metal atom from solid state and solution ${}^{31}P$ NMR experiments.^[25] The closer data (203–330 Hz) were found for the complexes of silver(I) nitrate with 1,2-bis(di-*n*-pyridylphosphino)ethane (d*n*pype) with AgP₄ coordination core.^[26]

As noted above, in phosphorus spectra the overall ${}^{1}J({}^{31}P_{-}{}^{107,109}Ag)$ values are observed in the most cases (Table 1). To compare the *J* coupling constants obtained from ${}^{31}P$ and ${}^{109}Ag$ spectra, the following calculations were made. The ${}^{1}J({}^{31}P_{-}{}^{107/109}Ag)$ coupling constants observables from ${}^{31}P$ spectra can be present as ${}^{1}J_{over}={}^{1}J({}^{31}P_{-}{}^{107}Ag)\times Nat.ab.{}^{107}Ag+{}^{1}J({}^{31}P_{-}{}^{109}Ag)\times Nat.ab.{}^{109}Ag$, where *Nat.ab.* ${}^{107}Ag$ and *Nat.ab.* ${}^{109}Ag$ are natural abundance for 107 and 109 isotopes, respectively. In consideration of ${}^{1}J({}^{31}P_{-}{}^{107}Ag)={}^{1}J({}^{31}P_{-}{}^{109}Ag)\times \gamma {}^{107}Ag/\gamma {}^{109}Ag$, where $\gamma {}^{107}Ag$ and $\gamma {}^{109}Ag$ are gyromagnetic ratios for 107 and 109 isotopes, respectively. We obtain ${}^{1}J_{over}={}^{1}J({}^{31}P_{-}{}^{109}Ag)\times \gamma {}^{107}Ag/\gamma {}^{109}Ag$, And finally by substituting the values of Nat.ab. ${}^{107}Ag=51.82$ %, Nat.ab. ${}^{109}Ag=48.18$ % and $\gamma {}^{107}Ag/\gamma {}^{109}Ag=0.87$ in equation, we get ${}^{1}J_{over}=0.932634\times {}^{1}J({}^{31}P_{-}{}^{109}Ag)$. The values ${}^{1}J({}^{31}P_{-}{}^{109}Ag)$ were obtained directly from ${}^{109}Ag$ NMR spectra (Table 2). The calculated values ${}^{1}J_{over}$ are presented in the Table 1 and they are in a very good agreement with the values obtained from the fitting of the experimental ${}^{31}P$

For the tetracoordinated complexes of general formula $[Ag(PPh_3)_2L]$ the ¹⁰⁹Ag isotropic chemical shift values keep within 1301-1342 ppm range (Table 2), and even at a low rotation rate of 3 kHz the effect of silver chemical shielding anisotropy is negligible. The δ_{Ag} signals of

compounds **1** and **7** with the trigonal coordinated silver(I) cation are shifted upfield on approximately 200 ppm.

FIGURE 4. Experimental (bleu) and simulated (red), ¹H-¹⁰⁹Ag solid state CPMAS NMR spectra of complexes [Ag₄L^a₄] **7**.

As stated above, ³¹P spectrum contains three lines. Thereby, ³¹P NMR data are definitely useful for prediction of only [Ag₃L₃] aggregates formation in the crystal but not the association of the trimeric fragment in the symmetric structures of a higher order. Similar ³¹P spectral pattern (like at Figure 3) was observed earlier both for the copper(I) trimer containing in the crystal [Cu₃L₃], L=3-MorphC(S)NP(S)(OPr-*i*)₂ cyclic moiety^[27] and for the copper(I) centrosymmetric hexamer of formula [(Cu₃L^c₃)₂], which consists of two Cu₃L^c₃ cyclic units bonded by two Cu-S bridges via thiophosphoryl sulfur atoms.^[28] It should keep in mind that in the trimer complex all copper atoms are three coordinated, while in the hexamer the copper/silver atoms have coordination number of 3 and 4. At the low MAS frequency (3 kHz) solid-state ¹H-¹⁰⁹Ag CP MAS NMR spectrum showed three set of signals due to the strong effect of silver chemical shielding anisotropy (CSA) (Figure 5). AgS₄ site is more symmetrical and it has a different coordination than AgS₃ sites. It leads to different values of the CSA and chemical shift, respectively. See, for example, the NMR parameters for the complexes given above **1-6**. We assigned the signal with higher values of chemical shift at 1160 ppm and with lower values of

CSA parameters to AgS₄ and the rest two signals to AgS₃ environments. Thus, based on ¹⁰⁹Ag NMR data further association of the trimeric fragment in the symmetric structures of a higher order can be revealed.

FIGURE 5. ¹⁰⁹Ag CPMAS NMR experimental spectrum of complex $[Ag_nL^b_n]$ 8 (a) and its simulation (b). Decomposition of the theoretical spectrum in its individual components (c).

The silver chemical shift range is a wide and unknown yet for all different environments and all coordination state. ¹⁰⁹Ag chemical shifts obtained in our system for the mixed AgS₂P₂ tetrahedral environments range from 1281 ppm to 1358 ppm and for AgS₄ tetrahedra at 1160 ppm. Berners-Price et al. reported ¹⁰⁹Ag chemical shifts for the different AgP₄ local environments in the bisphosphine complexes at the high-frequency end of the currently known shift range: 1378–1468 ppm.^[26] More electronegative phosphorus than sulfur leads to deshielding of Ag and signal appears at downfield. Fijolek et al. studied AgS₂, AgS₃, and AgS₄ coordinations in silver thiolates and in silver butanethiolate and they found 826 ppm for AgS₂ and range 950-1230 ppm for AgS₃.^[29, 30] Our measurements show chemical shift values from

1007 ppm to 1096 ppm and 1141 ppm for AgS₃ and AgS₂P planar trigonal coordination, respectively. To summarize, the silver isotropic chemical shifts tend to increase for increasing coordination state and for more electronegative phosphorus than sulfur environments.

Narula et al. studied silver-substituted yeast metallothionein and found a wide range of ¹⁰⁹Ag chemical shifts, for a protein in which Ag(I) ligation occurs exclusively through cysteine thiolates. They could only assume the presence of mixed Ag(I) coordination numbers.^[31] Based on our and previous studies the assignment of seven resonances ranged from 790 ppm to 1250 ppm to different coordination state can be provided and number of different Ag(I) sites can be quantified.

Conclusions

The ³¹P and ¹⁰⁹Ag CPMAS NMR data have shown their undoubted usefulness for the studying of the obtained silver(I) chelates in the solid phase. Silver solid state NMR can suggest the structure of polynuclear aggregates or their key structural fragments in the crystalline phase. Based on experimental and on literature data, the silver chemical shift ranges for different P,S-environments and coordination state were established. The overall ${}^{1}J({}^{31}P-{}^{107,109}Ag)$ and ${}^{1}J({}^{31}P-{}^{109}Ag)$ values obtained by both ³¹P and ¹⁰⁹Ag NMR measurements agree. The knowledge obtained in this study will propel the field of silver NMR and provide new insight into the design of new silver(I) complexes.

ACKNOWLEDGMENT

Financial support from the IR-RMN-THC Fr3050 CNRS for conducting the research is gratefully acknowledged. This paper has been supported by the Kazan Federal University Strategic Academic Leadership Program (Priority-2030).

REFERENCES

[1] G. H. Penner, X. Liu, Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49 (2), 151.

[2] G. H. Penner, W. Li, *Inorg. Chem.* **2004**, *43* (18), 5588.

[3] M. J. Leitl, D. M. Zink, A. Schinabeck, T. Baumann, D. Volz, H. Yersin, *Top. Curr. Chem.* 2016, 374 (3), 25.

[4] Z.-W. Ruan, X. Zhang, A.-Y. Pang, F.-R. Dai, Z.-N. *Inorg. Chem. Commun.* 2020, *116*, 107916.

[5] G. Chakkaradhari, T. Eskelinen, C. Degbe, A. Belyaev, A. S. Melnikov, E. V. Grachova,
S. P. Tunik, P. Hirva, I. O.Koshevoy, *Inorg. Chem.* 2019, *58* (6), 3646.

[6] F. D. Sokolov, V. V. Brusko, D.Safin, R. A. Cherkasov, N. G.Zabirov, In *Transition Metal Chemistry: New Research*, Varga, B. Kis, L., Eds. Nova Science Publishers: 2008 pp 101.

[7] F. D.Sokolov, V. V. Brusko, N. G. Zabirov, R. A. Cherkasov, *Curr. Org. Chem.* 2006, *10*(1), 27.

[8] E. R. Shakirova, PhD thesis, Kazan Federal University, Kazan, 2010.

[9] V. N. Solov'ev, A. N. Chekhlov, N. G. Zabirov, I. V. Martynov, *Dokl. Akad. Nauk* 1995, 341 (4), 502.

[10] M. G. Babashkina, D. A. Safin, M. Bolte, Y. Garcia, *Dalton Trans.* 2011, 40 (34), 8523.

[11] G. Metz, X. L. Wu, S. O. Smith, J. Magn. Reson., Ser. A 1994, 110 (2), 219.

[12] B. M. Fung, A. K. Khitrin, K. Ermolaev, J. Magn. Reson. 2000, 142 (1), 97.

- [13] G. H. Penner, W. Li, Solid State Nucl. Magn. Reson. 2003, 23 (3), 168.
- [14] D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J. O. Durand, B.Bujoli, Z. Gan, G. Hoatson, *Magn. Reson. Chem.* 2002, 40 (1), 70.
- [15] I. A. Litvinov, F. A. Karamov, J. Struct. Chem. 2019, 60 (11), 1812.
- [16] I. A. Litvinov, O. A. Lodochnikova, F. A. Karamov, J. Struct. Chem. 2020, 61 (6), 923.
- [17] I. A. Litvinov, O. A. Lodochnikova, F. A.Karamov, J. Struct. Chem. 2020, 61 (11), 1786.
- [18] J. V. Effendy Hanna, C. Pettinari, R. Pettinari, C. Santini, B. W. Skelton, A. H.White, *Inorg. Chem. Commun.* **2007**, *10* (5), 571.
- [19] G. A. Bowmaker, J. V. Hanna, C. E. F. Rickard, A. S. Lipton, *J. Chem. Soc., Dalton Trans.* **2001**, (1), 20.
- [20] O. Crespo, V. V. Brusko, M. C. Gimeno, M. L. Tornil, A. Laguna, N. G.Zabirov, *Eur. J. Inorg. Chem.* 2004, 2004 (2), 423.
- [21] A. Gavezzotti, *CrystEngComm* **2008**, *10* (4), 389.
- [22] C. Venter, M. P. Akerman, CrystEngComm 2021, 23 (5), 1294.
- [23] D. A. Safin, M. G. Babashkina, M. Bolte, Y.Garcia, CrystEngComm 2012, 14 (3), 774.
- [24] M. G. Babashkina, D. A. Safin, F. Fayon, A. I. Rakhmatullin, F. D. Sokolov, A. Klein, D.
- B. Krivolapov, T. Pape, F. E. Hahn, H.Kozlowski, Dalton Trans. 2010, 39 (35), 8261.

[25] E. Szłyk, I. Szymańska, A. Surdykowski, T. Głowiak, A. Wojtczak, A. Goliński, *Dalton Trans.* 2003, (17), 3404.

[26] J. Berners-Price, S. J. Bowen, R. J. Harvey, P. C. Healy, P. A. Koutsantonis, *J. Chem. Soc., Dalton trans.* **1998**, (11), 1743.

[27] F. D. Sokolov, M. G. Babashkina, D. A. Safin, A. I. Rakhmatullin, F. Fayon, N. G.
 Zabirov, M. Bolte, V. V. Brusko, J. Galezowska, H.Kozlowski, *Dalton Trans.* 2007, (41), 4693.

[28] F. D. Sokolov, M. G. Babashkina, F. Fayon, A. I. Rakhmatullin, D. A. Safin, T. Pape, F.
 Ekkehardt Hahn, J. Organomet. Chem. 2009, 694 (2), 167-172.

[29] H. G. Fijolek, T. A. Oriskovich, A. J. Benesi, P. González-Duarte, M. J. Natan, *Inorg. Chem.* 1996, 35 (4), 797.

[30] H. G. Fijolek, J. R. Grohal, J. L. Sample, M. J. Natan, *Inorg. Chem.* 1997, 36 (4), 622.

[31] S. S. Narula, R. K. Mehra, D. R. Winge, I. M. Armitage, J. Am. Chem. Soc. 1991, 113
(24), 9354.

	2	¹ <i>J</i> (³¹ P-	1 т	2 K31D 31D) H	Integral
compound	d _{iso} , ppm	^{107,109} Ag), Hz	$^{1}J_{over},$	$^{2}J(^{3}P-^{3}P), Hz$	intensity, %
	(±0.1 ppm)	(±2 Hz)	Hz	(±2 Hz)	(± 1%)
1	56.8 [AgL ^a]	-	-	-	50
I	12.8 [PPh ₃]	497	495.6	-	50
	61.8 [AgL ^a]	-	-	-	33
2	5.4 [PPh3]	353	355.3	95	32
	-1.6 [PPh ₃]	285	287.3	95	35
	63.6 [AgL ^b]	-	-	-	33
3	5.7 [PPh ₃]	340	344	123	32
	1.4 [PPh ₃]	290	295	123	35
	59.1 [AgL ^c]	-	-	-	33
	6.2 [PPh ₃]	330 (¹⁰⁷ Ag)		100	22
4		379 (¹⁰⁹ Ag)	-	108	32
	4.6 [PPh3]	290 (¹⁰⁷ Ag)		100	25
		331 (¹⁰⁹ Ag)	-	108	35
5	62.1 [AgL ^d]	-	-	-	33
	2.7 [PPh ₃]	342	340	91	32
	-4.4 [PPh ₃]	276	280	91	35
	64.5 [AgL ^e]		-	-	17
6	9.6 [PPh3]		306	125	15

TABLE 1. ³¹P isotropic chemical shifts and ${}^{1}J_{P-Ag}$ and ${}^{2}J_{P-P}$ coupling constants of Ag complexes.

	6.8 [PPh ₃]		346	346 125		
	59.3 [AgL ^e]		-	-	17	
	8.4 [PPh ₃]		310	125	17	
	4.2 [PPh ₃]		353	125	17	
7	56.1 [AgL ^a]	-	-	-	100	
	58.2 [AgL ^b]	-	-	-	33	
8	57.8 [AgL ^b]	-	-	-	32	
	54.9 [AgL ^b]	-	-	-	35	

TABLE 2. ¹⁰⁹Ag isotropic chemical shifts and ${}^{1}J({}^{31}P-{}^{109}Ag)$ coupling constants of Ag complexes.

			1 21 100			Integral		
Compou	Coordinati	δ_{iso} , ppm	$^{1}J(^{31}P-^{109}Ag),$	Δ_{csa} , ppm	η_{cs}	• , •,	0 /	<i>(</i>)
nd	on	$(\pm 0.1 \text{ ppm})$	$H_{7}(+2 H_{7})$	(+10 ppm)	(+0.1)	intensity,	%	(±
nu	on	(±0.1 ppiii)	$\Pi Z (\pm 2 \Pi Z)$	(±10 ppiii)	(±0.1)	1%)		
						1,0)		
1	AgS ₂ P	1141	531	668	0.83	100		
			200					
2	A aSaPa	1358	308	-	-	100		
L	Ag_{212}	1558	380	-	_	100		
			317	-	-			
3	AgS_2P_2	1331	2(0			100		
			369	-	-			
			330	_	_			
4	AgS_2P_2	1301				100		
			379	-	-			
		12.42	201			100		
5	AgS_2P_2	1342	301	-	-	100		

			369	-	-	
	AgS ₂ P ₂	1280.8	329	_	-	50
6	822		372			
	$A \sigma S_2 P_2$	1326.6	331	_	-	50
	1195212	1320.0	377			
7	AgS ₃	1096	-	697	0.7	100
	AgS ₄	1160	-	460	0.63	33.1
8	AgS ₃	1082	-	742	0.55	33.6
	AgS ₃	1007	-	765	0.39	33.3