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We consider a class of discrete-time random walks with directed unit steps on the integer line. The direction of the steps is reversed at the time instants of events in a discrete-time renewal process and is maintained at uneventful time instants. This model represents a discrete-time semi-Markovian generalization of the telegraph process. We derive exact formulae for the propagator using generating functions. We prove that for geometrically distributed waiting times in the diffusive limit, this walk converges to the classical telegraph process. We consider the large-time asymptotics of the expected position: For waiting time densities with finite mean the walker remains in the average localized close to the departure site whereas escapes for fat-tailed waiting-time densities (i.e. densities with infinite mean) by a sublinear power-law. We explore anomalous diffusion features by accounting for the 'aging effect' as a hallmark of non-Markovianity where the discrete-time version of the 'aging renewal process' comes into play. By deriving pertinent distributions of this process we obtain explicit formulae for the variance when the waiting-times are Sibuya-distributed. In this case and generally for fat-tailed waiting time PDFs emerges a t 2 -ballistic superdiffusive scaling in the large time limit. In contrast if the waiting time PDF between the step reversals is light-tailed ('narrow' with finite mean and variance) the walk exhibits normal diffusion and for 'broad' waiting time PDFs (with finite mean and infinite variance) superdiffusive large time scaling. We also consider time-changed versions where the walk is subordinated to a continuous-time point process such as the time-fractional Poisson process. This defines a new class of biased continuoustime random walks exhibiting several regimes of anomalous diffusion.

Introduction

The topic of biased random walks on the integer line has a long history [START_REF] Doob | Stochastic Processes[END_REF][START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF][START_REF] Spitzer | Principles of Random Walk[END_REF][START_REF] Hajek | Gambler's Ruin: A Random Walk on the Simplex. Paragraph 6.3[END_REF]. Originally the main motivation stems from the gambler's ruin problem and related contexts such as betting. In the last few decades this interest is enhanced by the upswing of approaches involving fractional calculus with applications in anomalous transport and diffusion [START_REF] Metzler | The random walk's guide to anomalous diffusion : A fractional dynamics approach[END_REF][START_REF] Gorenflo | Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects[END_REF][START_REF] Gorenflo | Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit[END_REF][START_REF] Mainardi | Fractional calculus and continuous-time finance II: the waiting-time distribution[END_REF][START_REF] Scalas | Uncoupled continuous-time random walks: solution and limiting behavior of the master equation[END_REF][START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Laskin | Fractional Poisson process[END_REF][START_REF] Gorenflo | On the fractional poisson process and the discretized stable subordinator[END_REF][START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF][START_REF] Meerschaert | The fractional Poisson process and the inverse stable subordinator[END_REF][START_REF] Michelitsch | Fractional Dynamics on Networks and Lattices[END_REF] and generalized fractional dynamics [START_REF] Cahoy | Renewal processes based on generalized Mittag-Leffler waiting times[END_REF][START_REF] Michelitsch | Generalized Fractional Poisson Process and Related Stochastic Dynamics[END_REF][START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF][START_REF] Sandev | From Continuous Time Random Walks to the Generalized Diffusion Equation[END_REF] (and many others). Most of these models are based on the continuous-time random walk (CTRW) approach of Montroll and Weiss [START_REF] Montroll | Random walks on lattices II[END_REF], including asymmetric anomalous transport [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF][START_REF] Wang | Fractional Advection-Diffusion-Asymmetry Equation[END_REF] and dynamics in networks [START_REF] Riascos | Random walks on weighted networks: a survey of local and non-local dynamics[END_REF][START_REF] Barabási | Network science[END_REF][START_REF] Newman | Networks[END_REF] (and many others). A special kind of biased walk with a complete memory of its history is the so called "elephant random walk" (ERW) introduced in 2004 by Schütz and Trimper [25] and consult [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF] for the remarkable connection with Pólya urns.

The present paper is devoted to studying a random walk on the one-dimensional infinite lattice where directed unit steps are performed at integer time instants. The walker changes the step direction at the instants of a discrete-time renewal process and maintains the step direction at uneventful time instants. Comparing this definition with the ERW [START_REF] Schütz | Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk[END_REF], our walker remembers only the last decision taken at the latest event of the renewal process. Therefore, in a sense our walker has a weaker memory as the 'elephant' walker. Invoking the popular belief that squirrels sometimes forget where they buried their nuts (having a weaker memory as elephants which "always remember"), we shall refer to our random walker as 'squirrel' and call our walk 'squirrel random walk' (SRW). Indeed, it turns out that the SRW is a semi-Markovian discrete-time generalization of the classical telegraph process which is an important model in the description of random motions on the real line. In its classical version, the telegraph process is a continuous-time random walk where a particle (the walker) moves with constant velocity which is reversed (or changed) at the arrival instants in a Poisson process (see [START_REF] Goldstein | On diffusion by discontinuous movements and the telegraph equation[END_REF][START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF][START_REF] Orsingher | Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws[END_REF] and consult [START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF] for occupation time distributions of the telegraph process). A relativistic approach to remove drift terms is presented in [START_REF] Beghin | Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations[END_REF]. In its classical (continuous-time) version the telegraph process is Markovian reflecting the memoryless feature of the standard Poisson process. Meanwhile, a large number of generalizations were introduced in the literature. Amongst them we mention here a model with occurrence of random velocities [START_REF] Stadje | Telegraph processes with random velocities[END_REF], velocity reversals governed by a renewal process with IID Erlang-distributed interarrival times [START_REF] Di Crescenzo | On random motions with velocities alternating at Erlangdistributed random times[END_REF], and further generalizations [START_REF] Di Crescenzo | On the Generalized Telegraph Process with Deterministic Jumps[END_REF] including semi-Markovian continuous time-fractional models [START_REF] Masoliver | Fractional telegrapher's equation from fractional persistent random walks[END_REF] (consult also the references therein). To the best of our knowledge non-Markovian discrete-time versions of the telegraph process were so far not considered in the literature. The present paper is devoted to this subject.

The organization of our paper is as follows. In Section 2.1 we introduce the SRW on the integer line with directed unit steps (simple walk) and discuss some relevant averages and their generating functions. Large time asymptotic features are considered in Section 2.2. In Section 3 general formulae are derived for the sojourn probabilities on sites (the 'spatial probability density function' or 'propagator'). Section 4 is devoted to the 'Bernoulli SRW', exhibiting geometrically distributed waiting times between the step reversals and standing out by the Markov property. We derive explicit expressions for the expected position, mean square displacement and variance. In the diffusive limit (Section 5.2) the Bernoulli SRW converges to the classical telegraph process where the spatial probability density function solves a telegrapher's equation with drift. In Section 5.3 we consider a SRW with step reversals at fat-tailed distributed 'fractional Bernoulli distributed arrival times'. The diffusive limit yields a fractional generalization of the telegraph process. We analyze anomalous diffusive features of the SRW (Section 6) and take into account the 'aging effect' as a sign of non-Markovianity where the discrete-time version of the so called 'Aging Renewal Process' comes into play. The Aging Renewal Process was introduced in the literature and applied to random walks for continuous times [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF][START_REF] Barkai | Aging in Subdiffusion Generated by a Deterministic Dynamical System[END_REF][START_REF] Barkai | Aging Continuous-Time Random Walks[END_REF][START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF]. For the memoryless cases such as for Bernoulli SRW no aging effect occurs. In contrast, the 'Sibuya SRW' with long waiting times between the step reversals exhibits a strong aging effect. For the Sibuya SRW we derive exact formulae for the variance in terms of discrete-time Prabhakar kernels exhibiting ballistic superdiffusive behavior in the large-time limit. The ballistic superdiffusive large time asymptotics is a general feature when the waiting times follow a fat-tailed PDF. In Section 6.3 we explore diffusive features for two classes of SRWs where the waiting time densities have finite means. The whole demonstration is accompanied by appendices where we deduce exact formulae for pertinent GFs for distributions of the 'Discrete-Time Aging Renewal Process' (DTARP) (Appendices A.1, A.2).

Finally, in Section 7 we introduce the 'continuous-time squirrel random walk' (CTSRW) and consider the SRW subordinated to a continuous-time renewal process such as the time-fractional Poisson process. The CTSRW defines a class of continuous-time random walks with different regimes of anomalous diffusion which we discuss by means of some examples.

Squirrel random walk 2.1 General definition and preliminaries

We define the SRW as a discrete-time walk characterized by the random variables X t ∈ Z, (t ∈ N 0 denotes the integer-time) with unit steps σ t = {-1, 1} to the right or left direction as follows

X t = t r=1 σ r , X 0 = 0, t = 1, 2, . . . ( 1 
)
where at t = 0 the squirrel is sitting in the origin. A precise definition follows hereafter. We consider a discrete-time counting (renewal) process N (t) ∈ N 0 such that [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF][START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF] N (t) = max(n ≥ 0 : J n ≤ t), N (0) = 0, t = 0, 1, 2 . . .

(

) 2 
with the arrival times (time instants of events, renewals) characterized by the random variables

J n = n j=1 ∆t j , J 0 = 0. (3) 
This is a discrete version of a strictly increasing subordinator (see [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF] for details and the references therein) with IID (independent and identically distributed) strictly positive integer increments ∆t j ∈ N = {1, 2, . . .} (IID interarrival times or synonymously 'waiting times' in the renewal interpretation). The increments are drawn from the discrete-time probability density function (PDF) of the form1 

P(∆t = k) = ψ k , k = 1, 2, . . . ( 4 
)
supported on positive integers k ∈ N. The strictly increasing random process (3) is called a renewal chain and its inverse the discrete-time (counting) renewal process (2) represents the number of events (renewals) up to time t. It is useful to introduce the generating function (GF) of the waiting time PDF,

u ∆t = ψ(u) = ∞ t=1 ψ t u t , |u| ≤ 1, (5) 
which fulfills ψ(u) u=1 = 1 indicating normalization of (4). We introduce a random variable Z t ∈ {0, 1} with Z t = 1 if there is an event (renewal) at instant t and Z t = 0 at uneventful time instants.

In the picture where the discrete-time renewal process is interpreted as a trial process, Z t = 1 indicates a 'success' (event) and Z t = 0 a 'fail' (no event) in the trial performed at time t. We define the initial condition Z 0 = 0 (no 'success' or event at t = 0). The counting variable (2) can then be represented as

N (t) = t k=1 Z k , N (0) = 0. (6) 
Now we connect the directed random walk [START_REF] Doob | Stochastic Processes[END_REF] with this counting process in the following way:

(i) At uneventful time instants t, i.e. Z t = 0, the squirrel performs a unit step σ t = σ t-1 in the same direction as at t -1 where this holds for t ≥ 2.

(ii) At arrival times t, i.e. Z t = 1, the step direction changes with respect to the previous step σ t = -σ t-1 .

(iii) We define that the first step is performed at t = 1 in the direction σ 1 = (1 -2Z 1 )σ 0 where σ0 ∈ {-1, 1}, i.e. the first step is in σ0 -direction if t = 1 is uneventful and in -σ 0 -direction if t = 1 is arrival time. The direction σ0 can be thought as either prescribed or randomly chosen.

A little variant of the SRW is obtained when at each renewal time J n the sign reversal of the step is performed with a certain probability p and with complementary probability 1p the step direction remains unchanged. In other words the step direction is reversed according to (i)-(iii) at arrival times of a new (composed) counting process N B [N (t)] (N B (t) being a Bernoulli counting process [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF] independent of N (t)). Therefore, this variant refers also to the class of SRWs and does not define a further type of walk.

With these considerations we can establish a simple recursion for the steps (see Eq. ( 1))

σ t = (-1) Zt σ t-1 = (1 -2Z t )σ t-1 , t ≥ 2 (7) 
with σ 1 = (-1) Z 1 σ0 and initial condition σ t t=0 = σ 0 = 0 (not equal to σ0 ), i.e. no step at t = 0 to fulfill initial condition X 0 = 0. Hence, the increment at time t can be represented by

σ t = σ0 [(-1) N (t) -δ t0 ], t ≥ 0, (8) 
where δ rs indicates the Kronecker symbol 2 . The random variable (1) then becomes

X t = X t-1 + σ0 (-1) N (t) , t = 1, 2, . . . ( 9 
)
Now let us introduce the state probabilities P[N (t) = n] = Φ (n) (t) denoting the probabilities for n = 0, 1, 2, . . . arrivals within the discrete time interval [0, t]. We note that Φ (n) (t) = 0 for n > t as a consequence that N (t) ≤ t almost surely and of the initial condition Φ (n) (t) t=0 = δ n0 . In order to compute the average position of the squirrel it is useful to consider the generating function

v N (t) = P(v, t) = t n=0 P[N (t) = n]v n |v| ≤ 1. (10) 
For a discrete-time counting process this GF is a polynomial of degree t. We called this polynomial in a former work 'state polynomial' P(v, t) of the counting process [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF]. Considering σ0 given, the mean increment at time t writes

σ t = σ0 (-1) N (t) -δ t0 = σ0 t n=0 P(N (t) = n)[(-1) n -δ t0 ] = σ0 [P(-1, t) -δ t0 ] (t ≥ 0) (11) 
with σ t t=0 = 0. Separating the even and odd event numbers we get the probabilities that at time t the step direction is σ0 i.e. for state |+ ) and -σ 0 for state |-, where we come back later to this interpretation. Thus we get

P(σ t σ0 = σ, t) = 1 2 1 + (-1) N (t) σ = 1 2 [1 + σ t σ] σ = ±1, t = 1, 2, . . . ( 12 
)
which picks up in [START_REF] Laskin | Fractional Poisson process[END_REF] the terms with even n for σ = 1 and the terms with odd n for σ = -1.

Therefore,

σ t = σ0 σ=±1 σ P(σ t σ0 = σ, t), t = 1, 2, . . . ( 13 
)
It is then useful to evaluate the GF σ(u) of expression [START_REF] Laskin | Fractional Poisson process[END_REF] yielding

σ(u) = ∞ t=0 σ t u t = σ0 P(v, u) v=-1 -1 (14) 
where comes into play the GF of the state polynomial

P(v, u) = ∞ n=0 v n Φ(n) (u) = 1 -ψ(u) (1 -u)[1 -v ψ(u)] , |u| < 1, |v| ≤ 1 (15) 
in which we used the GF of the state probabilities [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF] Φ(n

) (u) = ∞ t=0 Φ (n) (t)u t = 1 -ψ(u) 1 -u ( ψ(u)) n . ( 16 
)
One gets, for the expected position,

X t = t r=0 σ r = σ0 t r=0 [P(-1, r) -δ r0 ] (17) 
which has the GF

X(1) (u) = ∞ t=0 u t X t = σ(u) 1 -u = [1 -ψ(u)]σ 0 (1 -u) 2 [1 + ψ(u)] - σ0 1 -u (18) with X(1) (u) u=0 = X 0 = 0.
Consider now a sample path of the SRW up to time t with the renewal chain (3)

J 1 = ∆t 1 , J 2 = ∆t 1 + ∆t 2 , .., J N (t) = ∆t 1 + . . . + ∆t N (t)
. Per construction no step is performed at t = 0 followed by ∆t 1 -1 steps in σ0 -direction, ∆t 2 steps in -σ 0 -direction at the instants {J 1 , . . . , J 2 -1}, ∆t N (t) steps in (-1) N (t)-1 σ0 -direction at the instants {J N (t)-1 , . . . , J N (t) -1}, and finally with t -J N (t) + 1 ≥ 1 steps in direction (-1) N (t) σ0 at instants {J N (t) , . . . , t}. This consideration leads to the representation

X t = σ0 -1 + ∆t 1 -∆t 2 + ∆t 3 -. . . + (-1) N (t)-1 ∆t N (t) + (-1) N (t) [t -J N (t) + 1] = X (+) t -X (-) t (19) with X 0 = 0 where |X t | ≤ t and time t = σ0 [X (+) t + X (-)
t ] counts the total number of steps made up to t. In this relation σ0 X (+) t = ∆t 1 -1 + ∆t 3 + . . . indicates the number of steps in σ0 -direction and σ0 X (-) t = ∆t 2 + ∆t 4 + . . . in the opposite direction up to time t. An interesting interpretation of the SRW is therefore that of a two-state system (or connected graph of two nodes) where the squirrel is in state |+ (i.e. N (t) is even) at time instants when the step is in σ0 -direction and in state -| (N (t) is odd) when a step is made in the opposite direction. The random variables σ0 X (±) t can then be conceived as occupation times (sojourn times), i.e. the number of time units the squirrel has spent in these states during the interval [0, t].

For the following we introduce the propagator P (x, t) =: P(X t = x) which indicates the probability that the squirrel at time t ∈ N 0 is present on the site x ∈ Z. The propagator has the Fourier representation

P (x, t) = δ x,Xt = 1 2π π -π e iκ(x-Xt) dκ = 1 2π π -π
e iκx e -iκXt dκ, (x ∈ Z, t ∈ N 0 ) [START_REF] Montroll | Random walks on lattices II[END_REF] and fulfills initial condition P (x, t) t=0 = δ x,0 as a consequence of X 0 = 0 and with the characteristic function

P κ (t) = e -iκXt . ( 21 
)
In section 3 we derive the GF of ( 21) in explicit form (see Eqs. ( 38), ( 39)).

Large time asymptotics of the expected position

Before doing so, let us consider the large-time asymptotics of the expected position X t which can be extracted from [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF] for u → 1 by virtue of Tauberian arguments. We notice the general asymptotic feature [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF] ψ

(u) = 1 -A µ (1 -u) µ + o[(1 -u) µ ], µ ∈ (0, 1], (u → 1) (22) 
with A µ > 0 and the admissible index range µ ∈ (0, 1]. For µ ∈ (0, 1) the waiting time density is fat-tailed (FT) and scales as t -µ-1 for large times, where the waiting time has infinite mean [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF] for some details). The class with µ = 1 contains two important subclasses: (i) Waiting time densities where all moments are finite implying that d r du r ψ(u) u=1 < ∞ (∀r ∈ N 0 ) where A 1 = d du ψ(u) u=1 = ∞ t=1 ψ t t ≥ 1 (light-tailed -'narrow' waiting time densities falling off at least geometrically). (ii) Broad waiting time densities (not light-tailed) where the mean waiting time is finite but the variance infinite. This suggests the asymptotic expansion

d du ψ(u)| u=1 → ∞ (see
(u → 1-) ψ(u) = 1 -A 1 (1 -u) + B λ (1 -u) λ + o[(1 -u) λ ] (23) 
where B λ > 0 and 1 < λ ≤ 2. The subclass (i) is contained for λ = 2. The class (ii) (broad densities) has non-integer λ ∈ (1, 2). For the rest of the paper we classify waiting-time densities as follows. We call the subclass (i) with µ = 1, λ = 2 'narrow' or 'light-tailed' (LT) densities, the subclass (ii) which has µ = 1, 1 < λ < 2 we call 'broad' densities and the class with 0 < µ < 1

'fat-tailed' (FT) densities. For continuous times having the same type of large time behavior as for discrete times, the subclass (ii) has been first considered in [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF] and see also [START_REF] Singh | General approach to stochastic resetting[END_REF] for an application to stochastic resetting. The large time behavior of a broad waiting time density is then governed by the power-law scaling (we use notation "∼" for asymptotic equality)

ψ(t) ∼ B λ Γ(t -λ) Γ(t + 1)Γ(-λ) ∼ B λ t -λ-1 Γ(-λ) → 0, λ ∈ (1, 2) (24) 
where -3 < -λ -1 < -2 having hence a lighter tail as a FT density. Be reminded that Γ(-λ) = Γ(2-λ) λ(λ-1) > 0 as λ ∈ (1, 2). In the light-tailed limit λ → 2-(24) converges to B 2 d 2 dt 2 δ(t) = 0 thus the tail dies out reflecting the rapid decay of LT densities. The GF [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF] of the expected position yields

X(1) (u) ∼            σ0 A µ 2 (1 -u) µ-2 + o[(1 -u) µ-2 ], µ ∈ (0, 1) σ0 A 1 2 -1 (1 -u) -1 -σ0 B λ 2 (1 -u) λ-2 + o[(1 -u) λ-2 ], µ = 1, λ ∈ (1, 2] (25) 
which yields for µ ∈ (0, 1) a power-law escape for large times:

X t ∼              σ0 A µ 2 Γ(t + 2 -µ) Γ(2 -µ)Γ(t + 1) ∼ σ0 A µ 2 t 1-µ Γ(2 -µ) → ∞, µ ∈ (0, 1) σ0 2 (A 1 -2) -σ0 B λ 2 Γ(t + 2 -λ) Γ(2 -λ)Γ(t + 1) ∼ σ0 2 (A 1 -2) -σ0 B λ 2 t 1-λ Γ(2 -λ) → σ0 2 (A 1 -2), µ = 1. (26) 
For µ = 1 the squirrel in the average remains trapped where the expected position approaches the limit value σ0 2 (A 1 -2) either (i) at least geometrically or (ii) slower with a t 1-λ power-law. As | X t | ≤ t is bounded, the escape of the squirrel cannot be faster than t. The only class where the squirrel escapes to infinity is the FT class 0 < µ < 1 where the escape is sublinear with a t 1-µ -law and in the direction of σ0 . The power-law escape behavior can be explained by long waiting times between the step direction reversals and can be interpreted as a fractal scaling of the expected position with respect to time (number of steps).

As said µ = 1 represents the class with finite mean waiting times A 1 = d du ψ1 (u) u=1 < ∞ where A 1 ≥ 1 as ψ t is supported on N. The special case if A 1 = 1 which corresponds to the minimum waiting time ∆t = 1 a.s. (i.e. ψ(t) = δ t1 ), represented by the trivial counting process N (t) = t, yields an oscillatory and deterministic motion X t = X t = σ0 2 [(-1) t -1] with GF X(1)

1 (u) = -uσ 0 (1+u)(1-u) ∼ -σ0 2(1-u) (u → 1-) with the large-time average X t ∼ -σ0
2 of (26). This oscillatory motion also occurs for p = 1 in the 'Bernoulli SRW' considered in Section 4. For A 1 = 2 the walk is asymptotically unbiased with X t = 0 for large t where in the long-time average the direction of each second step is reversed behaving as the symmetric Bernoulli SRW with p = 1/2.

Limit of infinite waiting times µ → 0+: 'frozen limit'

It is worthy to consider here the limit of infinite waiting times characterized by the limit µ = ǫ → 0+ more closely. Without loss of generality we assume A µ = 1 corresponding to Sibuya distributed waiting times (considered subsequently in details, see (87), (88)). In this limit for finite t, the squirrel is trapped in the state |+ (corresponding to N (t) = 0) performing steps solely in σ0 -direction (a.s.). In particular, we are interested in the time range 0 ≤ t < t ǫ → ∞ (as ǫ → 0+) for which the survival probability (which scales for large

t as P[N ǫ (t) = 0] ∼ 1 Γ(1-ǫ) t -ǫ ∼ 1-[39]
) remains close to one: (t ǫ ) ǫ ∼ 1+, i.e. ǫ ln(t ǫ ) → 0+. By assuming the scaling ln(t ǫ ) ∼ ǫ -δ 1 (≫ 1) with δ 1 ∈ (0, 1), this defines for ǫ → 0+ an infinitely large time interval without events. Therefore,

X t = σ0 t, 0 ≤ t ≤ t ǫ ≈ exp [ǫ -δ 1 ] → ∞, µ = ǫ → 0+ (27) 
i.e. the deterministic strict walk without step reversals emerges for any finite time t. We point out that the strict walk [START_REF] Goldstein | On diffusion by discontinuous movements and the telegraph equation[END_REF] does not coincide with [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF] for µ = 0+ where the latter is reduced by a factor of 1/2. We will consider this issue closely. We can choose ǫ sufficiently small that for any finite fixed time t < exp (ǫ -δ 1 ) the squirrel is trapped in state |+ making solely steps in σ0 -direction. The GF of ( 27) is σ 0 u/(1u) 2 and corresponds to the (forbidden) value µ = 0 by setting the (forbidden) waiting-time GF ψ(u) = 0 in [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF].

On the other hand a further time scale exists where t is chosen sufficiently large that t ǫ ≫ 1 for any given 0 < ǫ ≪ 1, where the survival probability is considerably reduced and many reversals of step directions have occurred. Clearly this holds true for times t > exp (ǫ -δ 2 ) → ∞ with δ 2 > 1 when ǫ → 0+. In this time range the expected position then turns into the large time power-law [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF], namely

X t ∼ σ0 2 t 1-ǫ , t > exp [ǫ -δ 2 ] ≫ exp [ǫ -δ 1 ] → ∞, δ 2 > 1, µ = ǫ → 0+ (28) 
where Γ(2ǫ) → 1. The smaller µ the longer it takes for the squirrel to reach the large time power-law [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF] and it takes infinitely long in the frozen limit µ → 0+.

With a similar consideration one can see for geometrically distributed waiting times (see [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF] for details) that the deterministic walk (frozen regime) ( 27) emerges for p → 0+ (p Bernoulli probability of step reversal at instant t)

for 0 ≤ t < p -δ 1 → ∞ (δ 1 ∈ (0, 1)) where the Bernoulli PDF ψ B (t) = p(1 -p) t-1 ∼ p(1 -p) p -δ 1 ∼ p → 0+ and the survival probability is close to one (1 -p) t > (1 -p) p -δ 1 ∼ exp [ -p (1-δ 1 )
] → 1-. We consider the 'Bernoulli SRW' thoroughly in Section 4.

Propagator and related generating functions

In this section we derive GFs defining the propagator of the SRW, i.e. the probabilities that the squirrel at time instant t ∈ N 0 is present on site x ∈ Z. We use in the following and throughout the paper for expected values the notation

f (∆t) = ∞ r=1 ψ(r)f (r) (29) 
for the averaging over ∆t j being IID copies of ∆t ∈ N with PDF ψ(t) defined in (4). A simple example for [START_REF] Orsingher | Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws[END_REF] is the expected value of the Kronecker symbol δ k,∆t = ψ(k) recovering the waiting-time PDF. For our convenience we introduce the following discrete step function defined on integers

Θ(a, r, b) = Θ(r -a) -Θ(r -b) = 1 for a ≤ r ≤ b -1 0 else a < b, (a, b, r ∈ N 0 ) (30) 
where we used the discrete Heaviside function

Θ(k) = 1, k ≥ 0 0, k < 0 (k ∈ Z). (31) 
Note that Θ(0) = 1. The convenience of the step function [START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF] for our evaluations is that Θ(J n , t, J n+1 ) = 1 only for the ∆t n+1 time instants

J n ≤ t ≤ J n+1 -1, i.e. when N (t) = n and Θ(J n , t, J n+1 ) = 0 for N (t) = n. Now, consider f (t, τ, ζ 1 , . . . , ζ n ) = Θ(J n , t, J n+1 )δ τ,t-Jn ζ ∆t 1 1 . . . ζ ∆tn n , (0 < |ζ j | ≤ 1, τ, t ∈ N 0 ) (32) 
and evaluate its double GF (t ↔ u, τ ↔ w)

f (u, w, ζ 1 , . . . , ζ n ) = ∞ k=0 ∞ τ =0 f (s, k, ζ 1 , . . . , ζ n )w k u s , which yields f (u, w, ζ 1 , . . . , ζ n ) = ζ ∆t 1 1 . . . ζ ∆tn n w -Jn J n+1 -1 s=Jn u s w s = (uζ 1 ) ∆t 1 . . . (uζ 1 ) ∆tn 1 -(uw) ∆t n+1 1 -uw = ψ(uζ 1 ) . . . ψ(uζ n ) 1 -ψ(uw) 1 -uw ( 33 
)
where we used the IID feature of the ∆t j and for n = 0 the empty product has to be read as equal to one. Clearly, for ζ ℓ = 1 and w = 1 this recovers GF ( 16) of the state probabilities

P(N (t) = n) = Θ(J n , t, J n+1 ) .
Now consider a generalization of the SRW [START_REF] Sandev | From Continuous Time Random Walks to the Generalized Diffusion Equation[END_REF] with directed steps of prescribed sizes a n (instead of unit steps) for the ∆t n time instants within t ∈

[J n-1 , J n -1] (n ≥ 1)
. The SRW we have considered so far is a special case with a n = (-1) n-1 σ0 . A sample path of the generalized SRW is

(X t ) {a ℓ } = a 1 (∆t 1 -1) + a 2 ∆t 2 + . . . + a n ∆t n + a n+1 (t -J n + 1), (n = N (t)) (34) 
with (X 0 ) {a ℓ } = 0. The characteristic function of this walk e -iκ(Xt) {a ℓ } can be derived from the expected value

g(t, ζ 1 , ζ 2 , . . . , ζ n ; ζ n+1 ) = Θ(J n , t, J n+1 )ζ ∆t 1 -1 1 . . . ζ ∆tn n ζ t-Jn+1 n+1 = ζ -1 1 ζ n+1 Θ(J n , t, J n+1 )ζ ∆t 1 1 . . . ζ ∆tn n ζ t-Jn n+1 ( 35 
)
for ζ j = e -iκa j . Its GF yields

ḡ(u, ζ 1 , . . . , ζ n ; ζ n+1 ) = ζ -1 1 ζ n+1 f (u, w, ζ 1 , . . . , ζ n ) w=ζ n+1 = ζ -1 1 ζ n+1 1 -ψ(uζ n+1 ) 1 -uζ n+1 ψ(uζ 1 ) . . . ψ(uζ n ), n = 1, 2, . . . ( 36 
)
and for n = 0 we have ḡ(u; 

ζ 1 ) = 1-ψ(uζ
ζ 2ℓ = ζ 2 = e iκσ 0 (a 2 = -σ 0 ) and ζ 2ℓ+1 = ζ 1 = e -iκσ 0 (a 1 = σ0 ). Then (36) yields ḡn (u, ζ 1 , ζ 2 ) =              1 -ψ(uζ 1 ) 1 -uζ 1 ψ(uζ 1 ) ψ(uζ 2 ) ℓ , n = 2ℓ ζ -1 1 ζ 2 1 -ψ(uζ 2 ) 1 -uζ 2 ψ(uζ 1 ) ψ(uζ 1 ) ψ(uζ 2 ) ℓ , n = 2ℓ + 1.
(ℓ = 0, 1, 2, . . .) [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF] Summing over n takes us to the GF of the characteristic function [START_REF] Wang | Fractional Advection-Diffusion-Asymmetry Equation[END_REF]:

ḡ(u, ζ 1 , ζ 2 ) = ∞ ℓ=0 [ḡ 2ℓ (u, ζ 1 , ζ 2 ) + ḡ2ℓ+1 (u, ζ 1 , ζ 2 )] = 1 1 -ψ(uζ 1 ) ψ(uζ 2 ) 1 -ψ(uζ 1 ) 1 -uζ 1 + ζ -1 1 ζ 2 1 -ψ(uζ 2 ) 1 -uζ 2 ψ(uζ 1 ) . ( 38 
)
Further,

Pκ (u) = ∞ t=0 u t e -iκXt = ḡ(u, e -iκσ 0 , e iκσ 0 ), κ ∈ (-π, π). ( 39 
)
For u real Pκ (u) ∈ C, which means that the SRW is in general biased. Let us now briefly check some necessary properties. For u = 0 we observe ḡ(0,

ζ 1 , ζ 2 ) = 1 to fulfill in (20) the initial condition P (x, 0) = δ x,0 . Then, for ζ 1 = ζ 2 = ζ we have g(t, ζ, ζ) = ζ t = ζ t in agreement with (38) to yield ḡ(u, ζ, ζ) = 1 1 -ζu , ( 40 
)
thus confirming for ζ = 1 the normalization of the propagator.

It is worthy of mention that ( 36)-( 39) have a rich field of applications. For instance, the propagators of the sojourn times ('occupation times') σ0 X ± t in the states |± can be easily derived:

P + κ (u) = ∞ t=0 u t e -iκX + t = ḡ(u, e -iκσ 0 , 1) P - κ (u) = ∞ t=0 u t e -iκX - t = ḡ(u, 1, e iκσ 0 ). (41) 
More complex cases of generalized SRW type (34) can be analyzed with this approach.

We prove now the following important feature:

∂ ∂ζ 1 - ∂ ∂ζ 2 H(t, ζ 1 , ζ 2 ) ζ 1 =ζ 2 =1 = t r=0 P(-1, r) = t r=0 (-1) N (r) = 1 + σ0 X + t -X - t ( 42 
)
(with the state polynomial P(v, r) defined in ( 10)) where we introduced

H(t, ζ 1 , ζ 2 ) = ζ 1 g(t, ζ 1 , ζ 2 ) ( 43 
)
corresponding to the auxiliary walk σ0 X t + 1 with a step in positive direction at the (uneventful) initial time t = 0 (a.s.). Now, with H(u,

ζ 1 , ζ 2 ) = ζ 1 ḡ(u, ζ 1 , ζ 2 ) we arrive at ∂ ∂ζ 1 - ∂ ∂ζ 2 H(u, ζ 1 , ζ 2 ) ζ 1 =ζ 2 =1 = 1 1 + ψ(u) u 1 -u d ψ(u) du + d dζ ζ 1 -ψ(uζ) 1 -uζ ζ=1 = 1 -ψ(u) (1 -u) 2 [1 + ψ(u)] = P(-1, u) 1 -u ( 44 
)
which indeed is the GF of ( 42), concluding the proof. It is only a little step to establish the connection with the GF of the expected position

σ0 X(1) (u) = ∂ ∂ζ 1 - ∂ ∂ζ 2 H(u, ζ 1 , ζ 2 ) ζ 1 ζ 1 =ζ 2 =1 = P(-1, u) 1 -u -H(u, 1, 1) = P(-1, u) 1 -u - 1 1 -u (45)
in agreement with [START_REF] Michelitsch | Generalized Fractional Poisson Process and Related Stochastic Dynamics[END_REF], [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF].

Bernoulli SRW

We consider now in more detail the SRW where step directions turn at arrival times of a Bernoulli counting process N B (t) thus inheriting the Markov property. We call this walk 'Bernoulli SRW'. Let p be the probability of a success (event or arrival) in a Bernoulli trial and recall its geometrically distributed waiting time density: ψ B (t, p) = pq t-1 (t ∈ N, p ∈ (0, 1], q = 1p). The value p should be strictly positive otherwise the probability mass is concentrated at infinity.

The Bernoulli SRW has the following interpretation: at each integer time instant the squirrel turns the step direction with probability p and maintains it with complementary probability q = 1p. The GF ( 14) of the expected steps has then the form

σB (u) = σ0 (1 -2p)u 1 -u(1 -2p) (46)
with the expected value of the increment

σ t B = σ0 (-1) N B (t) -δ t0 = σ0 (1 -2p) t -δ t0 , t = 0, 1, 2, . . . ( 47 
)
fulfilling the initial condition σ 0 B = 0 and where σ 1 B = σ0 (qp) for the first step. In the limit p → 0+ no event occurs and the walk becomes deterministic with σ B (t) = σ0 where the steps do not change the direction. The case with p = 1 recovers the deterministic trivial counting process N B (t) = t where the squirrel changes (a.s.) at each time increment its step direction with oscillatory behavior σ B (t) = (-1) t σ0 (t > 0). For p = 1 2 the walk is unbiased with σ B (t) = 0

where the squirrel in the average remains on the departure site. The Markov property of the Bernoulli SRW is reflected by the following feature:

σ t 1 +t 2 B = σ t 1 B σ t 2 B , t j = 1, 2, . . . ( 48 
)
For later use we consider the GF of the expected position

X(1) B (u) = σB (u) 1 -u = σ0 (1 -2p)u (1 -u)[1 -u(1 -2p)] , ( 49 
)
which yields straight-forwardly

X t B = σ0 1 -2p 2p [1 -(1 -2p) t ], t = 0, 1, 2, . . . ( 50 
)
and is consistent with the general asymptotic relation for light-tailed waiting time densities [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF] (identify with A 1 = 1 p , the expected waiting time). For large t, the squirrel is localized approaching geometrically the value X t→∞ B = σB (u) u=1 = σ0 1-2p 2p which is located for p < 1 2 on the same side as σ0 and for p > 1 2 on the opposite side. For p = 1 2 the SRW is unbiased and, in the average, the squirrel turns the direction at any second time instant and hence its expected position remains localized on the departure site X 0 = 0. It is straight-forward to see that the only counting process which generates X t = σ t = 0 for all t is the symmetric Bernoulli process. Putting the GF [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF] equal to zero defines a condition for ψ(u) which yields the symmetric Bernoulli generating function ψB

(u) = u/(2[1 -u 2 ]
). As said, if p = 1 (ψ B (t) = δ t1 ) the trivial (deterministic) counting process N (t) = t is recovered with the deterministic oscillatory motion X t = σ0 2 [(-1) t -1]. On the other hand, in the limit p → 0+ (no arrival N (t) = 0 a.s. corresponding to the frozen limit considered in Section 2.3) the squirrel maintains the direction of the initial step σ0 . This limit is contained in (50) by applying de L'Hôpital's rule

X t ∼ σ0 d dξ [1 -(1 -ξ) t ] ξ=0 = σ0 t. ( 51 
)
This deterministic limit (where the waiting time between step reversals becomes infinite) represents the fastest possible escape from the departure site with | X t | = t.

We can directly evaluate the mean square displacement [START_REF] Singh | General approach to stochastic resetting[END_REF] and see Eqs. (158), (159) for the GF of K B (t). To obtain this result directly it is convenient to use the Markovian property of Bernoulli, i.e. for k ≥ r the quantity N B (t) -N B (r) = N B (tr) (t ≥ r) is itself an independent Bernoulli counting variable without the effect of 'aging' which we consider extensively in the Appendices. Now with (-1) N B (k) = (1 -2p) k (see Eq. ( 47)) we arrive at

X 2 t B = t r=1 t k=1 σ k σ r = -t + 2K B (t) = -t + 2 t r=1 t k=r (-1) N B (k-r) = -t + 2σ 0 1 -2p t r=1 X r B (t = 1, 2, . . .)
X 2 t B = -t + 1 p t r=1 [1 -(1 -2p) r ] = 1 -p p t - 1 -2p 2p 2 1 -(1 -2p) t = (1 -p) p t - σ0 p X t B t = 1, 2, . . . ( 53 
)
with X 2 0 B = 0 reflecting the initial condition. For t = 1 (53) necessarily yields

X 2 1 B = σ 2 1 = 1.
Then we get for the variance

V B (t) = X 2 t B -( X t B ) 2 = (1 -p) p t - σ0 p X t B -( X t B ) 2 , p = 0 (54)
where for large times we have linear

(normal diffusive) behavior V B (t) ∼ X 2 t B ∼ (1-p) p t. For p < 1 2 the linear increase is faster (1-p) p > 1 than for p > 1 2 with (1-p) p < 1.
For p = 1 we have an oscillatory (non-fluctuating) deterministic motion X t = σ0 2 ((-1) t -1) with V(t) = 0 without linear increase of the variance. The mean square position remains bounded by 53) in rescaled units for Bernoulli probability p = 0.01.

the oscillating behavior X 2 t B = 1 2
(1 -(-1) t ) (being null for even t including t = 0 and +1 for t odd). In the other deterministic limit p → 0+ with X t = σ0 t we get by expanding ( 53) with respect to p (where some divergent terms cancel each other)

X 2 t B = t 2 , (p → 0+). (55) 
Therefore, we get in this limit V(x) = t 2 -(σ 0 t) 2 → 0 corresponding to the deterministic (nonfluctuating) motion without step reversals. We depict the mean square displacement for a small

Bernoulli probability p = 0.01 (rare change of step directions) in Fig. 1. For small t the behavior is nearby quadratic and close to the deterministic limit p = 0+ (upper dotted curve). For larger times the linear asymptotics (lower dotted line) is geometrically approached.

Finally for p = 1 2 the walk is unbiased with X t = 0. Thus we have V B (x) = X 2 t B = t, corresponding to symmetric normal diffusion.

Continuum limits of SRW

Rescaled SRW

In this part we consider the combined continuous space-time limit by simultaneously rescaling time and space units. In the rescaled SRW the directed steps ∆x = v 0 h (v 0 = |v 0 |σ 0 indicates the directed velocity independent of the time increment h) are performed at time instants t ∈ {0, h, 2h, . . .} ∈ hN 0 . A sample path of the rescaled SRW is represented by (see [START_REF] Sandev | From Continuous Time Random Walks to the Generalized Diffusion Equation[END_REF])

(X t ) hv 0 = v 0 -h + ∆t 1 -∆t 2 + . . . + (-1) N h (t)-1 ∆t N h (t) + (-1) N h (t) (t -J N h (t) + h) (56)
with IID interarrival intervals ∆t j = {h, 2h, . . .} ∈ hN of the rescaled counting process N h (t) = max[n ∈ N 0 : J n (h) ≤ t ∈ hN 0 ] where J n (h) ∈ hN 0 represents the rescaled renewal chain. In order to obtain an existing diffusive limit it is necessary to rescale the time scale parameter in the waiting time density (consult [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Biased Continuous-Time Random Walks with Mittag-Leffler Jumps[END_REF] for extensive outlines and applications of 'well-scaled' limits). Whether the squirrel occupies a certain position on the lattice x ∈ h|v 0 |Z can be expressed by the Kronecker symbol δ

x h|v 0 | , (X t ) hv 0 ) |v 0 |h
. Therefore, considering [START_REF] Montroll | Random walks on lattices II[END_REF], the propagator writes

P h (x, t, v 0 ) = 1 |v 0 |h δ x h|v 0 | , (X t ) hv 0 |v 0 |h = 1 2πh|v 0 | π -π e iκ (x-(X t ) hv 0 ) h|v 0 | dκ = 1 2π π h|v 0 | -π h|v 0 | e ik(x-(Xt) hv 0 ) dk (57)
where P h (x, t, v 0 )h|v 0 | denotes the probability to find the squirrel at time t on site x. The multiplier 1/(|v 0 |h) comes into play as P h (x, t, v 0 ) is a spatial density (having units cm -1 ) attributed to interval [x, x + |v 0 |h). The rescaled propagator (57) is normalized as

∞ r=-∞ P h (rh|v 0 |, t, v 0 )h|v 0 | = ∞ r=-∞ δ r, (X t ) hv 0 /(|v 0 |h) = 1. ( 58 
)
For h → dt (h|v 0 | → dx) the scaled SRW converges to the continuum limit:

(X t ) hv 0 → X (c) v 0 ,t ∈ R (t ∈ R + ) with propagator P h (x, t, v 0 ) → P c (x, t, v 0 ) = δ(x -X (c) v 0 ,t ) (t ∈ R + and x, X (c) v 0 ,t ∈ R) where δ(x -x ′ ) indicates infinite space Dirac's δ-distribution.
In what follows we extensively use the features of Laplace transforms of causal functions and distributions (see Appendix A.3 and [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF] for some details).

Continuum limit of Bernoulli SRW to the telegraph process

We now explore a 'well-scaled' continuum limit for the Bernoulli SRW. To this end we rescale the Bernoulli probability as p = ξ 0 h with the new time-scale constant ξ 0 > 0 of units sec -1 and independent of the time increment h. The waiting time PDF of rescaled Bernoulli then is h

-1 ψ B (t/h, ξ 0 h) = ξ 0 (1 -ξ 0 h) t/h-1 → ξ 0 e -ξ 0 t (t ∈ hN 0 → R + )
and converging to the continuoustime exponential waiting-time density of the Poisson process. This reflects the fact that the Bernoulli process is a discrete version of the Poisson process both standing out by the Markov property. Consider now the scaling limit of ( 38), [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF] for the scaled Bernoulli SRW with ζ 1 = e -ihkv 0 , ζ 2 = e ihkv 0 , u = e -hs , and identify s with the Laplace variable (with

k = κ/(|v 0 |h) ∈ ( -π/(|v 0 |h), π/(|v 0 |h) ) → (-∞, ∞), v 0 = σ0 |v 0 |). This yields the Fourier-Laplace transform 3 χ1 (s, k) = lim h→0 ψB [e -h(s+iv 0 k) , hξ 0 ] = lim h→0 ξ 0 he h(s+ikv 0 ) e h(s+ikv 0 ) -1 + hξ 0 = ξ 0 ξ 0 + s + ikv 0 (59)
and ψB (uζ 2 ) → χ2 (k, s) = ξ 0 ξ 0 +s-ikv 0 . The characteristic function [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF] converges with these scaling assumptions to the Fourier-Laplace transform of the continuum-limit propagator

Pc (k, s, v 0 ) = lim h→0 h ḡ(e -sh , e -ikv 0 h , e ikv 0 h ) = 1 1 -χ1 (k, s) χ2 (k, s) 1 -χ1 (k, s) s + ikv 0 + 1 -χ2 (k, s) s -ikv 0 χ1 (k, s) = s + 2ξ 0 -ikv 0 s(s + 2ξ 0 ) + k 2 v 2 0 . ( 60 
)
The property Pc (0, s, v 0 ) = 1/s shows the normalization of the propagator. The drift term ∝ -ik generates bias and contains the Laplace transform of the expected position i

∂ P ∂k (k, s) k=0 = v 0 s(s+2ξ 0 ) which has the Laplace inverse X (c) v 0 ,t = v 0 t 0 (-1) M P (τ ) dτ = v 0 t 0 dτ ∞ n=0 e -ξ 0 τ (ξ 0 τ ) n n! (-1) n = v 0 2ξ 0 (1 -e -2ξ 0 t ) (61) 
where M P (t) ∈ N 0 stands for the Poisson counting variable. Indeed (61) is in agreement with the definition of the classical telegraph process [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF][START_REF] Orsingher | Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws[END_REF][START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF] defined by the random variable

X (c) v 0 ,t = v 0 t 0 (-1) M P (τ ) dτ , i.
e. the velocity is reversed at the instants of Poisson events. From (60)

we read off the partial differential equation governing in the space-Laplace domain

v 0 d 2 dx 2 Pc (x, s, v 0 ) - s(s + 2ξ 0 ) v 0 Pc (x, s, v 0 ) + s + 2ξ 0 v 0 δ(x) - d dx δ(x) = 0 (62) 
where Dirac's δ-distribution δ(x) = P c (x, 0, v 0 ) is the presumed initial condition. Eq. ( 62) is a telegrapher's type equation with drift term -d dx δ(x). Kac in his 1974 paper considers the symmetric combination (See [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF], Eqs. ( 26), [START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF]) with the propagator

P tele (x, t) = 1 2 δ(x -X (c) v 0 ,t ) + δ(x -X (c) -v 0 ,t ) = 1 2 [P c (x, t, v 0 ) + P c (x, t, -v 0 )] (63) 
which is an unbiased walk. The Fourier-Laplace transform then takes (canceling out the drift term)

Ptele (k, s) = s + 2ξ 0 s(s + 2ξ 0 ) + k 2 v 2 0 (64)
which is the result reported by Kac [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF]. This is an even function in k and solves the classical telegrapher's equation (extensively studied in the literature [START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF], and see the references therein) and writes in space-Laplace domain ( [START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF], Eqs. ( 45), ( 46))

v 0 d 2 dx 2 Ptele (x, s) - s(s + 2ξ 0 ) v 0 Ptele (x, s) + s + 2ξ 0 v 0 δ(x) = 0 (65) 
with initial condition P tele (x, t, v 0 ) t=0 = δ(x). To depict the general structure of the propagators consider the causal auxiliary Green's function G(x, t) of the telegrapher's equation defined by

∂ 2 ∂t 2 + 2ξ 0 ∂ ∂t -v 2 0 ∂ 2 ∂x 2 G(x, t) = δ(x)δ(t) (66)
which has in Fourier-Laplace-space the representation Ĝ(k, s) = 1

s 2 + 2sξ 0 + v 2 0 k 2 = 1 Λ 1 (k) -Λ 2 (k) 1 s -Λ 1 (k) - 1 s -Λ 2 (k) where Λ 1,2 (k) = -ξ 0 ± ξ 2 0 -v 2 0 k 2 . Laplace inversion yields in the k-t-space G(k, t) = e -ξ 0 t sinh t ξ 2 0 -v 2 0 k 2 ξ 2 0 -v 2 0 k 2 (67) 
where we observe that v 0 G(k, t) k=0 = X (c) v 0 ,t yields the expected position (61). Causality of G(x, t) is ensured by ξ 0 > 0 where Eq. (66) in the k-t-space defines the response of a damped harmonic oscillator with spring constant v 2 0 k 2 on an external forcing pulse. The propagator (Fourier-Laplace inverse of (60)) has the representation

P c (x, t, v 0 ) = ∂ ∂t -v 0 ∂ ∂x + 2ξ 0 G(x, t), t > 0 (68)
with drift term -v 0

∂G(x,t) ∂x

and P tele (x, t) = ∂ ∂t + 2ξ 0 G(x, t). We notice that auxiliary Green's function G(x, t) is not a PDF, but the propagators Pc (x, t, v 0 ), P tele (x, t) are which is confirmed by Pc (k, t, v 0 ) k=0 = Ptele (k, t) k=0 = 1. For further details we refer to the vast literature [START_REF] Goldstein | On diffusion by discontinuous movements and the telegraph equation[END_REF][START_REF] Kac | A stochastic model related to the telegrapher's equation[END_REF][START_REF] Orsingher | Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws[END_REF][START_REF] Beghin | Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations[END_REF] (and see also the references therein).

Fractional Bernoulli SRW and its continuum limit

In this part we derive the space-time continuum limit for fat-tailed (FT) waiting densities taking us to a fractional generalization of the classical telegraph process. Consult [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Biased Continuous-Time Random Walks with Mittag-Leffler Jumps[END_REF] for an outline of 'well-scaled' continuum limits. Fat tailed waiting time density GFs have asymptotic representation [START_REF] Riascos | Random walks on weighted networks: a survey of local and non-local dynamics[END_REF] with µ ∈ (0, 1). More specifically we consider

ψµ (u, λ) = u λ(1 -u) µ + 1 , µ ∈ (0, 1), λ = 1 -p p > 0 (69) 
which refers to the 'fractional Bernoulli process' as a generalization of standard Bernoulli which is contained for µ = 1. The waiting time PDF which corresponds to (69) is the 'discrete-time Mittag-Leffler distribution' (of so-called 'type A') and a discrete version of the Mittag-Leffler density introduced recently [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF]. The fractional Bernoulli process indeed is a discrete-time version of the fractional Poisson point process which was introduced by several authors [START_REF] Scalas | Uncoupled continuous-time random walks: solution and limiting behavior of the master equation[END_REF][START_REF] Mainardi | A fractional generalization of the Poisson processes[END_REF][START_REF] Laskin | Fractional Poisson process[END_REF][START_REF] Gorenflo | On the fractional poisson process and the discretized stable subordinator[END_REF][START_REF] Beghin | Fractional Poisson processes and related planar random motions[END_REF].

The SRW associated to fractional Bernoulli (which we refer to as 'Fractional Bernoulli SRW') yields with [START_REF] Meerschaert | The fractional Poisson process and the inverse stable subordinator[END_REF] the GF of the average step σµ,λ,σ 0 (u

) = σ0 1 + λ(1 -u) µ-1 λ(1 -u) µ + u + 1 -1 . ( 70 
)
For µ = 1 this recovers relation [START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF] of the Bernoulli SRW. We can directly verify that the squirrel for t → ∞ escapes to infinity by the direction of σ0 from the relation X µ (t) t→∞ σ0 = σ0 σµ (u) u→1 → ∞ since (1-u) µ-1 is weakly singular at u = 1 leading to the large time asymptotics with power-law escape [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF]. Consider now the continuum limit yielding the expected velocity

σ(t) = d dt X(t) in Laplace space σ(s) = lim h→0 hv 0 1 + h -µ ξ -1 0 (1 -e -hs ) µ-1 h -µ ξ -1 0 (1 -e -hs ) µ + e -hs + 1 -1 = v 0 s µ-1 s µ + 2ξ 0 (71)
where we have in (70) rescaled the constants in such a way that the limit h → 0 exists, namely λ(h) = h -µ ξ -1 0 , and the step size |v 0 |h, with new constants ξ 0 > 0 (of units sec -µ ), and the directed velocity v 0 = σ0 |v 0 | independent of h. The Laplace transform of the expected position then yields

X(1) (s) = σ(s) s = v 0 s µ-2 s µ + 2ξ 0 . ( 72 
)
In this scaling limit, (69) converges to the Laplace transform of the Mittag-Leffler density

lim h→0 ψµ [e -hs , (ξ 0 h µ ) -1 ] = lim h→0 e -hs ξ -1 0 h -µ (1 -e -hs ) µ + 1 = ξ 0 ξ 0 + s µ .
(73)

In the continuum limit the velocity is reversed at the instants of fractional Poisson events which we reconfirm subsequently. Now with above scaling assumptions we have ψµ (uζ 1,2 , λ) → ξ 0 ξ 0 +(s±ikv 0 ) µ (and see [START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF], [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF]) which yields for the Fourier-Laplace transform of the propagator

Pµ (k, s, v 0 ) = lim h→0 hḡ(e -hs , e -ikv 0 , e ikv 0 ) = (s + ikv 0 ) µ-1 [ξ 0 + (s -ikv 0 ) µ ] + ξ 0 (s -ikv 0 ) µ-1 [s 2 + k 2 v 2 0 ] µ + ξ 0 (s + ikv 0 ) µ + ξ 0 (s -ikv 0 ) µ (74)
where necessarily Pµ (0, s, v 0 ) = 1/s (normalization of the propagator). For µ = 1 this expression recovers (60). We observe that (for real s) Pµ (k, s, v 0 ) ∈ C indicating a biased motion. This result shows that the continuum limit propagator solves a partial space-time fractional differential equation generalizing the 'biased telegrapher's equation' (62). We introduce the Green's function of the 'fractional telegrapher's equation'

[D v 0 D -v 0 ] µ + ξ 0 (D µ v 0 + D µ -v 0 ) G µ (x, t) = δ(t)δ(x) (75) with D v 0 = ∂ ∂t + v 0 ∂ ∂x .
The continuum limit propagator P µ (x, t, v 0 ) then is represented by

P µ (x, t, v 0 ) = D µ-1 v 0 (ξ 0 + D µ -v 0 ) + ξ 0 D µ-1 -v 0 G µ (x, t). ( 76 
)
The Green's function G µ (x, t) and the resulting propagator (76) of the 'fractional telegraph process' indeed merits further thorough analytical investigation. However, this is beyond the scope of the present paper. Instead we confine ourselves here to elaborate a few aspects and asymptotic features.

We confirm that i d dk Pµ (k, s, v 0 ) k=0 = X(1) (s) = s 2µ-2 Ĝµ (k, s) k=0 yields (72) and recovers for µ = 1 the corresponding relation of the telegraph process of previous section. For |s| small X(1) (s) ∼ v 0 2ξ 0 s µ-2 the large time asymptotics for the FT case ( 26) is recovered (with rescaled constants)

X(t) ∼ v 0 2ξ 0 t 1-µ Γ(2 -µ) , (t → ∞). (77) 
The squirrel escapes for µ ∈ (0, 1) by a sublinear t 1-µ -power law into the direction of v 0 (same direction as σ0 ). For µ = 1 it recovers large time asymptotics v 0 2ξ 0 of the Poisson case (61) of the classical telegraph process. Laplace inversion of relation (71) then yields

d dt X(t) = v 0 E µ (-2ξ 0 t µ ), t > 0 (78)
where E µ (z) indicates the (standard) Mittag-Leffler function (116). Therefore, we get (Laplace inversion of (72))

X(t) = v 0 t 0 E µ (-2ξ 0 τ µ )dτ = v 0 tE µ,2 (-2ξ 0 t µ ) (79)
fulfilling the initial condition X(0) = 0 where the two-parameter Mittag-Leffler function

E α,β (z) = ∞ m=0 z m Γ(αm + β) (80)
comes into play. Clearly relation (79) is a fractional generalization of the telegraph process (61) where the velocity directions change at arrival times of the fractional Poisson process which we show hereafter. Taking into account the fractional Poisson state probabilities (probabilities of n arrivals within [0, t]) [START_REF] Laskin | Fractional Poisson process[END_REF] 

P[M µ (t) = n] = (ξ 0 t µ ) n n! d n dy n E µ (y) y=-ξ 0 t µ (81)
where M µ (t) ∈ N 0 stands for the fractional Poisson counting variable. Thus (-1)

Mµ(t) = ∞ n=0 P[M µ (t) = n](-1) n = E µ (-2ξ 0 t µ ) yields the expected position (79) X(t) = t 0 (-1) Mµ(τ ) dτ = v 0 t 0 E µ (-2ξ 0 τ µ )dτ (82) 
with initial condition X(t) t=0 = 0 and d dt X(t) t=0 = v 0 . For µ = 1 all expressions turn into the Poisson counterparts of the classical telegraph process.

6 Anomalous diffusion

The aging effect

In this section we investigate the anomalous diffusive features of the SRW for an arbitrary non-Markovian discrete-time renewal process N (t) (t ∈ N 0 ) defined in [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]. Recall the definition of anomalous diffusion [START_REF] Metzler | The random walk's guide to anomalous diffusion : A fractional dynamics approach[END_REF]: in a wide range of systems the mean square displacement scales with a power law X 2 t ∼ D β t β (where the displacement refers to the initial position with X 0 = 0) and D β indicates the generalized diffusion coefficient (having units cm 2 sec -β ). Then for 0 < β < 1 the motion is subdiffusive, for β = 1 normal diffusive and β > 1 refers to superdiffusion where β = 2 corresponds to ballistic superdiffusion and β > 2 to hyperballistic superdiffusion. We especially focus on the variance

V(t) = (X t -X t ) 2 = X 2 t -X t 2 (83)
with the mean square displacement

X 2 t = t k=1 t r=1 (-1) N (k)-N (r) = -t + 2K(t) (84) 
where we introduced the auxiliary quantity

K(t) = t r=1 t-r k=0 (-1) Nr (k) . ( 85 
)
In this expression appears the integer counting variable N r (τ ) ∈ N 0 defined by

N τ (t) = N (t + τ ) -N (τ ), t, τ = 0, 1, 2, , . . . ( 86 
)
with initial condition N τ (t) t=0 = 0. The quantity in (86) is the discrete-time version of the so called 'aging renewal process' and is different from the original renewal process N (t) of ( 2) if the latter is non-Markovian. For continuous times the aging renewal process was to our knowledge first introduced in [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF] and for CTRW models based on aging renewal theory we refer to the references [START_REF] Barkai | Aging in Subdiffusion Generated by a Deterministic Dynamical System[END_REF][START_REF] Barkai | Aging Continuous-Time Random Walks[END_REF][START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF]. We refer the counting process (86) to as 'discrete-time aging renewal process' (DTARP) and call the (integer) variable τ 'aging parameter'. Clearly N τ =0 (t) = N (t) recovers the original renewal process. Intuitively, we infer that the events N τ (t) > 1 are drawn from waiting-time density ψ t of the original renewal process N (t), however the density of the first event is different from ψ t and modifies (in the general non-Markovian case) the statistics.

We invite the reader to consult Appendices A.1, A.2 for detailed derivations and discussions of pertinent DTARP distributions and the related GFs which we employ extensively in the following.

Sibuya SRW

As a prototypical example of a non-Markovian SRW with strong aging effect we explore here the diffusive features of the 'Sibuya SRW', i.e. the walk where the waiting times between the step reversals follow the Sibuya distribution. The Sibuya PDF has the GF

ψµ (u) = 1 -(1 -u) µ , µ ∈ (0, 1). (87) 
The Sibuya waiting-time PDF has the form [START_REF] Pachon | On discrete-time semi-Markov processes[END_REF] ψ

µ (t) = (-1) t-1 t! µ(µ -1) . . . (µ -t + 1) = µΓ(t -µ) Γ(1 -µ)Γ(t + 1) (88)
and is fat-tailed (FT), i.e. the expected waiting time is infinite, 156) with (157) the GF of auxiliary quantity (85) yields

d du ψµ (u) u=1 → ∞, since ψ µ (t) ∼ µt -µ-1 /Γ(1 -µ) (t → ∞). Using Eqs. (
Kµ (u) = (1 -u) -3 1 - uµ 1 -1 2 (1 -u) µ - 1 2 (1 -u) µ-2 1 -1 2 (1 -u) µ = (1 -u) -3 -2µ p1 µ,µ+2 (2, u) + 2µ p1 µ,µ+3 (2, u) + p1 µ,2 (2, u) ∼ (1 -µ)(1 -u) -3 + o[(1 -u) -3 ] (u → 1-) (89) 
where we introduced the GF of the discrete-time Prabhakar kernel [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF] (see Appendix A.4 for some details):

pγ µ,ν (λ, u) = (1 -u) -ν (1 -λ(1 -u) -µ ) γ . ( 90 
)
The continuous-time version of the Prabhakar kernel was first introduced by Giusti [START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF][START_REF] Giusti | A practical guide to Prabhakar fractional calculus[END_REF] (and see the references therein). Representation (166) of the Prabhakar kernel allows us to invert (89) to arrive at the exact formula (we employ the notation p µ,ν (λ, t) = p 1 µ,ν (λ, t))

K µ (t) = (t + 1)(t + 2) 2 + 2µ p µ,µ+3 (2, t) -2µ p µ,µ+2 (2, t) + p µ,2 (2, t). ( 91 
)
Figure 2: Numerical evaluation of X 2 µ (t) of Eq. ( 92) as a function of t for µ = 0.1, 0.2, . . . , 0.9 codified in the colorbar. The dashed line represents the asymptotic power-law scaling X 2 µ (t) ∝ t 2 .

Anomalous diffusion of SRWs with broad and narrow waiting time densities

To complement this part consider now the large time behavior for µ = 1 with expansion [START_REF] Barabási | Network science[END_REF]. In this case, relation (156) has the asymptotic expansion (u → 1-)

K(u) =              1 (1 -u) 2 + (λ -1)B λ A 1 (1 -u) λ-4 + o[(1 -u) -2 ], 1 < λ < 2 1 (1 -u) 2 1 + B 2 A 1 - A 1 2 + o (1 -u) -2 , λ = 2 (102)
where the second line is consistent with the Bernoulli case (see Eq. ( 158) for u → 1-). This takes us to the large time behavior

X 2 t = 2K(t) -t ∼              2(λ -1)B λ A 1 t 3-λ Γ(4 -λ) , 1 < λ < 2 1 -A 1 + 2 B 2 A 1 t, λ = 2. ( 103 
)
For Bernoulli the last line yields X 2 t ∼ t(1p)/p in agreement with our previous results (see [START_REF] Gel'fand | Generalized Functions[END_REF]). Generally, for λ = 2 this becomes a linear relation corresponding to normal diffusion whereas for broad waiting time densities (λ ∈ (1, 2)) this is a superdiffusive law with a scaling exponent 1 < 3λ < 2.

The SRW time-changed with a renewal process

Here we introduce a class of continuous-time walks by time-changing the SRW with an independent renewal process M(t) ∈ N 0 , t ∈ R + (i.e. an independent continuous-time counting process with IID interarrival times). This defines a biased continuous-time random walk which we call "continuous-time squirrel random walk" (CTSRW). The position of the squirrel in a CTSRW can be represented by the random variable Y (t) ∈ Z such that

Y (t) = X M(t) = X M(t)-1 + σ M(t) , t ∈ R + (104)
with initial condition Y (t) t=0 = X 0 = 0 and the increment

σ M(t) = σ0 (-1) N [M(t)] -δ M(t),0
where X m∈N 0 is the SRW (1). In the CTSRW, the directed unit steps on Z are performed only at the arrival time instants of the point process M(t) ∈ N 0 (t ∈ R + ) defining a random clock (the operational time of the walk) and t is the (continuous) chronological time. In this timechange construction the step directions are reversed at the arrival times of the composed process N [M(t)] ∈ N 0 which also is a point process defined on t ∈ R + . We will see that the CTSRW is a different class to the class of continuous-time walks emerging by the continuum limits in the SRW, as considered in Section 5. On the contrary to the latter where the squirrel never waits, in the CTSRW the squirrel does not move during the inter-arrival time intervals of the point process M(t). Consider now a PDF f (r) supported on integers r = 0, 1, 2, . . . and its GF f

(u) = ∞ r=0 f (r)u r (|u| ∈ [0, 1]). Its time-changed counterpart f [M(t)] has the mean F (t) = f [M(t)] = ∞ m=0 P[M(t) = m]f (m), t ∈ R + (105) 
which depends on the continuous time t. In this relation, the state probabilities P m (t) = P[M(t) = m] (probabilities for m = 0, 1, 2, . . . arrivals within the continuous time interval [0, t]) come into play. Let η(s) denote the Laplace transform of the interarrival time density η(t) of the point process M(t). Then, from conditioning arguments we have

Pm (s) = ∞ 0 e -st P[M(t) = m]dt = 1 -η(s) s [η(s)] m . ( 106 
)
Thus, the Laplace transform of (105) yields

F (s) = 1 -η(s) s ∞ m=0 f (m)[η(s)] m = 1 -η(s) s f [η(s)] (107) 
where f [η(s)] is the GF with argument u = η(s). Eq. (107) relates the GFs of functions defined on integer times with the Laplace transforms of their time-changed means. By using this general result we can represent the propagator of the CTSRW (see [START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF], ( 39)) in Fourier-Laplace space as

Q(κ, s) = 1 -η(s) s ḡ[η(s), e -iκσ 0 , e iκσ 0 ], κ ∈ (-π, π) ( 108 
)
where normalization of the propagator is confirmed Q(0, s) = 1 s by using ψ[η(s)] s=0 = ψ(1) = 1.

Expression (108) may serve as a point of departure for a wide field of applications of the CTSRW model.

As a useful example for the following consider the Laplace transform of the mean of the timechanged discrete Prabhakar kernel (see ( 164)

) ∞ 0 e -st p µ,ν (λ, M(t) dt = 1 -η(s) s pµ,ν (λ, η(s)) = 1 s [1 -η(s)] 1-ν 1 -λ[1 -η(s)] -µ = 1 s pµ,ν-1 [λ, η(s)]. (109) 
We can see here directly the long-time asymptotics. Consider a FT density with expansion (118).

Then (109) behaves for s → 0 as

1 s pµ,ν-1 [λ, η(s)] ∼ - b 1+µ-ν λ s -α(ν-µ-1)-1 (110) 
and therefore

p µ,ν [λ, M(t)] ∼ - b 1+µ-ν λ t α(ν-µ-1) Γ(α[ν -µ -1] + 1) , (t → ∞). ( 111 
)
This expression is the time changed version of the large time asymptotics (168) and both coincide for LT case α = 1 (when b = 1). For α ∈ (0, 1) the t α(ν-µ-1) -Prabhakar power-law is slowing down the ballistic diffusive Sibuya SRW scaling (99), i.e. when we subordinate the Sibuya SRW to a renewal process with fat-tailed waiting time density (see ( 118)). This slowdown is a consequence of the long waiting intervals where the squirrel does not move. We consider this issue in more detail subsequently (relation ( 121)).

With these remarks we can write for the expected CTSRW position

Y (t) = ∞ m=0 P[M(t) = m] X m , t ∈ R + (112) 
which has then the Laplace transform (see [START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF])

Ŷ (1) (s) = 1 -η(s) s X(1) [η(s)] = 1 s σ[η(s)] = σ0 s 1 -ψ[η(s)] [1 -η(s)](1 + ψ[η(s)]) - 1 . 
(

We point out that ψ[η(s)] is the Laplace transform of the waiting-time density of the composed counting process N [M(t)] (see [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF][START_REF] Orsingher | Compositions, Random Sums and Continued Random Fractions of Poisson and Fractional Poisson Processes[END_REF][START_REF] Orsingher | The space-fractional Poisson process[END_REF] for details). In order to explore how the time change affects anomalous diffusion we consider subsequently the Laplace transform Ŷ (2) (s) of the CT-SRW mean square displacement which takes the form (see ( 107) and ( 156) with (157))

Ŷ (2) (s) = 1 s 2[1 -η(s)] K[η(s)] - η(s) 1 -η(s)
.

(114)

Bernoulli SRW time-changed with an arbitrary renewal process

As an example consider the Bernoulli SRW subordinated to an independent arbitrary renewal process. Using (113) with [START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF] we can write the Laplace transform of the expected position as

Ŷ (1) p (s) = σ0 1 -2p 2ps 2pη(s) [1 -η(s)(1 -2p)] . ( 115 
)
Note that the part ĝp (s) =

2pη(s) [1-η(s)(1-2p)]
is the Laplace transform of a density g p (t) as ĝ(s) s=0 = 1 and in the expression (115) the Laplace transform ĝp (s)/s of its cumulative distribution G p (t) = t 0 g p (τ )dτ is contained. As a proto-typical example for long waiting times with fat-tailed waiting time density we consider the time fractional Poisson process with ηα,ξ (s) = ξ ξ+s α (ξ > 0), thus the density g p (t) can then be identified with a Mittag-Leffler density and G p (t) = 1 -E α (-2pξt α ) 

E α (z) = ∞ m=0 z m Γ(αm + 1)
.

(

) 116 
Notice that E 1 (z) = e z , which reflects the fact that for α = 1 all relations turn into the SRW time-changed with the standard Poisson. The expected position takes the form

Y p (t) = σ0 1 -2p 2p G p (t) (117) 
where for t → ∞ we have G p (t) → 1 in agreement with the subsequent asymptotic relation (120) for µ = 1 with A 1 = 1/p.

Large time asymptotics of the CTSRW

For the large time behavior of the diffusive features we consider the Laplace transform of the waiting-time PDF which has the expansion

ηα (s) ∼ 1 -bs α + o(s α ), α ∈ (0, 1], (s → 0) (118) 
with b > 0 and for α ∈ (0, 1) the density η α (t) is fat-tailed and for α = 1 we confine us here to the case of narrow (light-tailed) waiting time densities η(t) of the point process. Expanding (113) for thus the large time asymptotics Y α (t) Ber ∼ 1-2p 2p is constant independent of α and identical with the discrete-time case. Therefore

V α (t) Ber ∼ Y 2 α (t) Ber ∼ 1 -p pb t α Γ(α + 1) , (t → ∞) (124) 
and is the time-changed version of the (linear) large-time asymptotics of [START_REF] Gel'fand | Generalized Functions[END_REF]. We see that the effect of the time change is here a subdiffusive power-law as consequence of long waiting times between the events of the point process.

Frozen limit p → 0+, µ → 0+

Let us consider the p → 0+, µ → 0+, respectively (see again Section 2.2) where the squirrel is trapped for an infinitely long waiting time in the frozen regime. In the time changed case this refers to the strict walk Y (t) = σ0 M(t) without step reversals for finite t. Therefore,

Y 2 α,p=0+ (t) = Y 2 α,µ=0+ (t) = 2 b 2 t 2α
Γ(2α+1) which is the time-changed version of (55)). The variance then is

V α,p=0+ (t) = V α,µ=0+ (t) = [M(t)] 2 -M(t) 2 ∼ C α b 2 t 2α , (t → ∞) (125) with C α = 2 Γ(2α+1) - 1 (Γ(α+1)) 2
where this relation holds for frozen limits of both Bernoulli and Sibuya CTSRW. Contrary to the frozen limit in the SRW, the time changed version is not deterministic with a non-vanishing variance as its operational time is M(t). In Fig. 4, we show the numerical values of the asymptotic limit of the variance V α,p=0+ (t) in Eq. ( 125) for different values of α showing the power-law scaling of the variance for large t. We also depict the α-dependence of the multiplier C α which is approaching zero for α → 1. This result reflects the vanishing variance of the deterministic SRW for p, µ → 0+ which occurs here in the large-time limit.

Conclusions

We have introduced a semi-Markovian discrete-time generalization of the telegraph process, the 'squirrel random walk'. Except for the Bernoulli SRW with geometric waiting times this walk is non-Markovian. We have derived an exact formula for the GF of the SRW characteristic function which determines uniquely the propagator (Eqs. [START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF], [START_REF] Michelitsch | Asymmetric random walks with bias generated by discrete-time counting processes[END_REF]). We analyzed the diffusive limits to continuous space and time. For the Bernoulli SRW this leads to the standard telegraph process where the propagator is governed by a telegrapher's equation with drift.

We considered also a non-Markovian generalization, the fractional Bernoulli SRW. In this case the diffusive limit yields a fractional generalization of the telegraph process where the propagator is governed by the 'fractional telegrapher's equation' (see ( 75), ( 76)). This motion and propagator calls for further analytical investigation. By taking into account the 'aging effect' which naturally comes into play in non-Markovian SRWs, we explored the discrete-time counterpart N τ (t) of the so called 'aging renewal process' (Eq. ( 126)). We derived explicit formulae for the mean square displacement and variance for the Sibuya SRW in terms of discrete-time Prabhakar kernels. For the large-time limit we obtained a ballistic superdiffusive t 2 -law as a hallmark of fat-tailed waiting time densities.

For SRWs governed by broad waiting-time PDFs (see ( 103)) we obtained superdiffusive large time scaling which turns into normal diffusion for narrow waiting time PDFs. We also introduced time changed versions of the SRW (i.e. the SRW subordinated to independent point renewal processes) defining a class, the 'continuous-time squirrel random walk' and analyzed some large time asymptotic features. Pertinent candidates for future research include SRWs involving renewal processes being generalizations of fractional Poisson such as Prabhakar generalizations which have attracted recently a lot of interest [START_REF] Cahoy | Renewal processes based on generalized Mittag-Leffler waiting times[END_REF][START_REF] Michelitsch | Generalized Fractional Poisson Process and Related Stochastic Dynamics[END_REF][START_REF] Michelitsch | Continuous time random walk and diffusion with generalized fractional Poisson process[END_REF][START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF][START_REF] Giusti | A practical guide to Prabhakar fractional calculus[END_REF][START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF]. Generally the SRW model has a rich potential of applications and generalizations. For instance it may be generalized to multiple spatial dimensions or applied to random motions in graphs where at event instants of a renewal process a random choice is made among a certain set of possible states or positions (for models related to the latter, see [START_REF] Riascos | Random walks on networks with stochastic resetting[END_REF][START_REF] Singh | General approach to stochastic resetting[END_REF]). Finally, discrete time versions of aging renewal processes including variants with multivariate aging parameters and applications to random walks are interesting research directions as well.

A Appendix

A.1 Discrete-time aging renewal process

For continuous-times the 'aging renewal process' was introduced and analyzed in [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF] and for related aging continuous-time random walk models consult [START_REF] Barkai | Aging in Subdiffusion Generated by a Deterministic Dynamical System[END_REF][START_REF] Barkai | Aging Continuous-Time Random Walks[END_REF][START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF]. We introduce the 'discretetime aging renewal process (DTARP)' as

N τ (t) = N (t + τ ) -N (τ ), t, τ = {0, 1, 2, . . .} ∈ N 0 (126) 
where N (t) is the counting process (2) and initial condition N τ (t) t=0 = 0. The counting process N τ (t) represents the number of events occurring in the time interval {τ + 1, . . . , τ + t} and for τ = 0 it recovers N 0 (t) = N (t). Let {J n } be the renewal chain [START_REF] Spitzer | Principles of Random Walk[END_REF]. Following [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF], we define the 'forward recurrence time' E n,τ = min(J n+1 ∈ N 0 : J n+1τ > 0) as the time interval from τ to the first event occurring later than τ . We call the integer time τ 'aging parameter'. Consider now for a fixed n ∈ N 0 (J n ≤ τ ) the probability that E has a certain value E n,τ = J n+1τ = t, i.e. the probability for the first arrival occurring later than τ given that n arrivals are observed up to τ with J n ≤ τ < J n+1 . Denoting with P(A|B) the probability of A conditional to B, this probability is defined as

f E (τ, t, n) = P[E n,τ = t|N (τ ) = n], τ, t, n ∈ N 0 = Θ(J n , τ, J n+1 )δ t,J n+1 -τ (127) 
where δ i,j denotes the Kronecker symbol and with the step function Θ(a, r, b) defined in [START_REF] Bogachev | Occupation time distributions for the telegraph process[END_REF], i.e. Θ(J n , τ, J n+1 ) = 1 for τ ∈ [J n , J n+1 -1], i.e. when N (τ ) = n and Θ(J n , τ, J n+1 ) = 0 else. Then, the double GF of (127) is given by

fE (w, u, n) = ∞ r=0 w r Θ(J n , r, J n+1 ) ∞ s=0 u s δ s,J n+1 -r n ∈ N 0 = u J n+1 J n+1 -1 r=Jn u -r w r = u J n+1 -Jn w Jn J n+1 -Jn-1 r=0 w r u -r = w Jn u ∆t n+1 -w ∆t n+1 1 -w u = [ ψ(w)] n u u -w [ ψ(u) -ψ(w)] (128) 
with J n+1 -J n = ∆t n+1 (see [START_REF] Spitzer | Principles of Random Walk[END_REF]) and where the IID feature of the ∆t j with ( 5) is used (and keep in mind the conjugations u ↔ t and w ↔ τ ). We observe that fE (w, u, n

) u=0 = 0 = f E (τ, 0, n) reflecting N τ (0) = 0. Further it is noteworthy that fE (w, u, n) u=1 = [ ψ(w)] n 1 1 -w [1 -ψ(w)] (129) 
is the GF of the state probabilities of the original renewal process

∞ t=0 f E (τ, t, n) = Θ(J n , τ, J n+1 ) = Φ (n) (τ ) = P(N (τ ) = n).
Then, by conditioning arguments we can construct from (127) the discrete-time density for the first arrival E t = Jτ in the DTARP N τ (t) by summing up over all n to arrive at

f E (τ, t) = ∞ n=0 f E (τ, t, n). (130)
This summation stops at n = τ (as f E (τ, t, n) = 0 for n > τ ) and with the (double-) generating

function fE (w, u) = ∞ n=0 fE (w, u, n) = u u -w ψ(u) -ψ(w) 1 -ψ(w) (|u| ≤ 1, |w| < 1, u = w). ( 131 
)
It is worthy of mention that for w = 0 this recovers the GF of the waiting time density of the original process fE (0, u) = ψ(u) as well as N τ =0 (t) = N (t) recovers the original counting process.

For later use we need to consider the case w = u of this GF which is defined by

lim w→u ψ(u) -ψ(w) u -w = d ψ(u) du thus fE (u, u) = u d ψ(u) du 1 -ψ(u) (132) 
and in the same way all cases w = u are subsequently defined. We notice that u d ψ(u) du is the GF of tψ(t). In view of the (absolute) monotonicity of ψ(u) > ψ(w) for u > w we confirm that (131) and ( 132) are for w, u ∈ [0, 1) non-negative. Putting u = 1 yields fE (w, 1) = 1 1-w reflecting the normalization ∞ t=0 f E (τ, t) = 1, i.e. f E (τ, t) is a density on t [Remark: Eq. ( 131) is the discrete version of Eq. (6.2) in [START_REF] Godrèche | Statistics of the Occupation Time of Renewal Processes[END_REF]].

Consider for a moment the (memoryless) Bernoulli process N B (t) with ψBer (u) = pu/(1-qu). This yields for ( 131)

fE (w, u) Ber = ψ(u) B 1 -w = 1 1 -w pu 1 -qu (133)
corresponding to the unchanged geometric Bernoulli waiting-time PDF f (τ, t) Ber = pq t-1 , independent of the aging parameter τ due to the Markovian nature of the Bernoulli process.

To demonstrate the aging effect in a non-Markovian renewal process it appears instructive to consider (131) for Sibuya waiting times with ψµ (u) = 1 -(1u) µ (µ ∈ (0, 1)) and u, w → 1 to see the asymptotics for large t and τ using Tauberian arguments. Letting first w → 1leads with (131) to the asymptotics

fE (u, w) ∼ u 1 -ψ(u) 1 -u 1 1 -ψ(w) ∼ (1 -u) µ-1 (1 -w) -µ , ( 1 -w ≪ 1 -u → 0 ).
This yields, as leading contribution in τ , the scaling

f E,µ (t, τ ) ∼ Γ(t + 1 -µ) Γ(t + 1)Γ(1 -µ) Γ(τ + µ) Γ(τ + 1)Γ(µ) ∼ 1 Γ(1 -µ)Γ(µ) τ µ-1 t µ , (τ ≫ t → ∞) (134) 
which is the large time limit for strong aging τ ≫ t ≫ 1 in the density of the first event in the (Sibuya-) DTARP. This type of scaling holds in general when ψ(t) is fat-tailed. The aging effect decreases with a τ µ-1 power-law with the aging parameter. This relation is in agreement with the result reported by Barkai for continuous times ( [START_REF] Barkai | Aging in Subdiffusion Generated by a Deterministic Dynamical System[END_REF], Eq. ( 9)) for the strong aging (highly aged) limit t a ≫ t 1 (in his notation and identify t a = τ and t 1 = t) and use Euler's reflection formula Γ(µ)Γ(1µ) = π sin(πµ) . We refer also to the discussion in [START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF].

Let us continue to consider the general case. To obtain the state probabilities that P[N τ (t) = m],

we have to take into account that after the first event N τ (t) = 1 (governed by above density f E (τ, t)) the process is further developing with the IID waiting times of the original counting process. Therefore,

P[N τ (t) = m] = Φ (m) τ (t) = t r=0 f E (τ, r) Φ (m-1) (t -r), m = 1, 2, . . . ( 135 
)
where Φ (r) (k) = P[N (k) = r)] are the state probabilities of the original counting process (2). We observe the initial condition Φ (m)

τ (0) = δ m,0 reflecting N τ (0) = N (τ ) -N (τ ) = 0. Formula (135)
has the double generating function

Φ(m) w (u) = fE (w, u) Φm-1 (u) = fE (w, u)[ ψ(u)] m-1 1 -ψ(u) 1 -u , m = 1, 2, . . . ( 136 
)
For m = 0 we have the inversion of the double generating function 3), (4) in [START_REF] Schulz | Aging Renewal Theory and Application to Random Walks[END_REF]].

Φ(0) w (u) = 1 (1 -u)(1 -w) - fE (w, u) 1 -u , m = 0 ( 
Relations ( 136) and (137) can also be derived by the following considerations. Consider the conditional probability that N τ (t) = m given N (τ ) = n:

P[N τ (t) = m|N (τ ) = n] = Φ m,n τ (t) = Θ(J n τ, J n+1 )Θ(J n+m -τ, t, J n+m+1 -τ ) , m = 1, 2, . . . . ( 138 
)
Then consider separately the case N τ (t) = 0 when N (τ ) = n which writes

P[N τ (t) = 0|N (τ ) = n] = Φ 0,n τ (t) = Θ(J n τ, J n+1 )Θ(J n+1 -1 -τ -t) ( 139 
)
where Θ(J n+1 -1τt) = 1 when J n+1 > t + τ . Then in the same way as above we compute the double generating functions of the last two probabilities (nota bene τ ↔ w and t ↔ u) to arrive at

Φm,n w (u) = ψ(w) n u u -w [ ψ(u) -ψ(w)] ψ(u) m-1 1 -ψ(u) 1 -u , m = 1, 2, . . . ( 140 
)
and for m = 0 we have

Φ0,n w (u) = ψ(w) n (1 -u) 1 -ψ(w) 1 -w - u u -w ( ψ(u) -ψ(w)) (141) 
where the summation over n of Φm,n w (u) indeed yields double GFs (136) and (137), respectively, of the state probabilities P[N τ (t) = m] of the DTARP. This reflects the conditional relation

P[N τ (t) = m] = ∞ n=0 P[N τ (t) = m|N (τ ) = n] (142)
where this series breaks at n = τ (as N (τ ) ≤ τ ). With the above GFs one can straight-forwardly also show that P

[N (τ ) = n] = t m=0 P[N τ (t) = m|N (τ ) = n],
recovering the state probabilities of the original counting process.

A.2 Some pertinent DTARP generating functions

Of interest for the evaluation of the mean square displacement (84) are averages of the type

g v (τ, t) = v Nτ (t) = ∞ m=0 P[N τ (t) = m]v m , |v| ≤ 1 (143) 
for a DTARP (126). For v = 1 (143) yields unity (normalization)

g 1 (τ, t) = ∞ m=0 P[N τ (t) = m] = 1.
These series stop at m = t with P[N τ (t) = m] = 0 for m > t since N τ (t) ≤ t (reflected by the feature Φ(m) w (u) = O(u m )). Therefore, g v (τ, t) is a polynomial of degree t in v ('state polynomial of the DTARP'). We also mention that

g -1 (τ, t) = (-1) N (t+τ )-N (τ ) = (-1) N (t+τ )+N (τ ) = σ t+τ σ τ , t, τ > 0 (144) 
is the auto-correlation function of the steps for non-zero t, τ . We will come back to these properties by means of generating functions. Noteworthy is that g v (τ, t) τ =0 = v N 0 (t) = P(v, t) recovers the state polynomial of the original counting process N 0 (t) = N (t). We are interested in the triple generating function

ḡv (w, u) = ∞ τ =0 ∞ t=0 w τ u t v Nτ (t) , |w|, |u| < 1, |v| ≤ 1 = ∞ m=0 ∞ τ =0 ∞ t=0 v m w τ u t P[N τ (t) = m], u = w = ∞ m=0 Φ(m) w (u)v m = 1 (1 -w)(1 -u) - (1 -v)u (1 -u)(u -w)[1 -v ψ(u)] [ ψ(u) -ψ(w)] [1 -ψ(w)] = 1 (1 -w)(1 -u) - (1 -v) fE (w, u) (1 -u)[1 -v ψ(u)] (145) 
where we used (136) and ( 137) with (131). We directly confirm ḡv (w, u) v=1 = 1 (1-w)(1-u) reflecting g 1 (τ, t) = 1. For v = -1, formula (145) is the GF of the expected value g -1 (τ, t) = (-1) Nτ (t) for the DTARP. Note that formula (145) for w = 0 yields the GF of the state polynomial of the original process (as N τ =0 (t) = N (t)): ḡv (0, u) = P(v, u) = (148) and hence g -1 (τ, t) Ber = (1-2p) t = (-1) N B (t) which is our result of Section 4 and is independent of the aging parameter τ , reflecting the Markovian nature of the Bernoulli process.

In order to evaluate the mean square displacement (84) we need to consider the double GFs of functions of the form h(τ, t) = t-τ k=0 g(τ, k) (t ≥ τ ), namely 

h(w, u) = ∞ t=0 u t ∞ τ =0 w τ Θ(t -τ ) t-τ k=0 g(τ, k) = ∞ t=0 u t H w (t) = ∞ τ =0 ( 
(breaking at τ = t). Next, we focus on g(τ, t) = g v (τ, t) = v Nτ (t) . Using (143), ( 145) with (149) we get for the double GF of h v (τ, t) = t-τ k=0 v Nτ (k) the expression

hv (w, u) = ∞ τ =0 ∞ t=0 w τ u t Θ(t -τ ) t-τ k=0 v Nτ (k) = ḡv (uw, u) 1 -u = 1 (1 -wu)(1 -u) 2 - (1 -v) fE (wu, u) (1 -u) 2 [1 -v ψ(wu)] = 1 (1 -wu)(1 -u) 2 - (1 -v)[ ψ(u) -ψ(uw)] (1 -w)(1 -u) 2 [1 -v ψ(u)][1 -ψ(uw)] . ( 151 
)
For the following evaluation it is useful to take into account that f (u)/(1uw) is the double GF of Θ(tτ )f (tτ ). This double GF contains for w = 1 the GF of t k=0 f (k). Therefore,

h-1 (1, u) = ∞ t=0 u t t τ =0 t-τ k=0 (-1) Nτ (k) = 1 (1 -u) 3 - 2u d ψ(u) du (1 -u) 2 (1 -[ ψ(u)] 2 ) (152)
where in order to evaluate (151) for w = 1 we accounted for (132), i.e. essential features of their discrete-time versions, the discrete-time Prabhakar kernels. We introduced the discrete-time versions recently [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF]. The discrete-time Prabkakar kernel which we denote with p γ µ,ν (λ, t) is defined by its GF (90)

p γ µ,ν (λ, u) = (1 -u) -ν (1 -λ(1 -u) -µ ) γ , |u| < 1. 
(

) 164 
Here it is sufficient to consider the range µ ∈ (0, 1] with ν > 0, λ > 0 and γ = 1 where we write p1 µ,ν (λ, u) = pµ,ν (λ, u). Then we have pµ,ν (λ, u)

=                ∞ m=0 λ m (1 -u) -(ν+mµ) , λ|1 -u| -µ < 1 - ∞ m=1 λ -m (1 -u) µm-ν , λ|1 -u| -µ > 1 (165) 
(where λ(1u) -µ = 1). Thus we get for the Prabhakar kernel the expansion (where we write p µ,ν (λ, t) = p 1 µ,ν (λ, t)) and for k = 0 we have (c) 0 = 1 and especially (0) 0 = 1. For t = 0 we verify p µ,ν (λ, 0) = pµ,ν (λ, 0) = 1/(1λ). For the exploration of the case λ > 1 (relevant in our evaluation where λ = 2), it may be convenient to implement the product representation (-1) t Γ(µmν + 1) Γ(µmν + 1t) = (νmµ) t = Γ(ν-mµ+t) Γ(ν-mµ) .

p µ,ν (λ, t) = 1 t! d t du t pµ,ν (λ, u) u=0 =                1 t! ∞ m=0 λ m Γ(ν + mµ + t) Γ(ν + mµ) , |λ| < 1 (-1) t+1 t! ∞ m=1 λ -m Γ(µm -ν + 1) Γ(µm -ν + 1 -t) , |λ| > 1 t ∈ N 0 (166) 
(167)

Evoking Tauberian arguments and accounting for (c) t /t! = Γ(c + t)/Γ(t + 1) ∼ t c-1 (t → ∞) we have

(-1) t+1 t! λ -m Γ(µm -ν + 1) Γ(µm -ν + 1 -t) = -λ -m Γ(t + ν -mµ) Γ(ν -mµ)Γ(t + 1) ∼ -λ -m t ν-mµ-1 Γ(ν -mµ) , (t → ∞)
where the term for m = 1 is the dominant. We can extract it from (165) (with u → 1-) and is identical with the limit λ ≫ 1:

p µ,ν (λ, t) ∼ - 1 λ t ν-µ-1 Γ(ν -µ) , (ν = µ, t → ∞). (168) 
For ν = µ the term m = 1 yields -λ -1 δ t0 , thus the tail is dominated by the next term (m = 2), namely p µ,µ (λ, t) ∼ -

1 λ 2 Γ(t -µ) Γ(-µ)Γ(t + 1) ∼ - 1 λ 2 t -µ-1 Γ(-µ) , (t → ∞). (169) 
Be reminded that for r ∈ N, expressions of the form t -r-1 Γ(-r) are defined in the Gel'fand-Shilov sense [START_REF] Gel'fand | Generalized Functions[END_REF] as t -r-1 Γ(-r) = d r dt r δ(t) = 0 (being strictly null for large times). Thus, in (91) the Prabhakar kernels then have the large time asymptotics: 

p µ,
It is worthy of mention that the following scaling limit exists [START_REF] Michelitsch | On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics[END_REF][START_REF] Michelitsch | Prabhakar discrete-time generalization of the timefractional Poisson process and related random walks[END_REF] e 1 µ,ν (λ 0 , t) = lim h→0 h ν-1 p µ,ν (λ 0 h µ , t h

) = t ν-1 ∞ m=0 (λ 0 t µ ) m Γ(ν + mµ) = t ν-1 E µ,ν (λ 0 t µ ), (t ∈ hN → R + ) (171) 
where e γ=1 µ,ν (λ 0 , t) is the continuous-time Prabhakar kernel [START_REF] Giusti | A practical guide to Prabhakar fractional calculus[END_REF][START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF]. In (171) we use the expansion (166) for λ = λ 0 h µ < 1. This scaling limit contains the two parameter Mittag-Leffler function (80) and a new parameter λ 0 > 0 (of physical dimension sec -µ and independent of h). Therefore, indeed (166) is a discrete-time approximation of the (Prabhakar-) kernel (171). The Laplace transform of the continuous-time Prabakar kernel (171) is connected with (90) by the scaling limit lim h→0 h ν pµ,ν (λ 0 h µ , e -hs ) = s -ν /(1λ 0 s -µ ) = ê1 µ,ν (λ 0 , s).
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 1 Figure 1: Different curves Y as a function of t. Mean square displacement Y = X 2 t B (solid black
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 3 Figure 3: Large time asymptotic scaling of Y α,µ (t) in Eq. (120) for the expected position with α = 0.8, A µ = 1, b = 1 for different values of µ.
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 4 Figure 4: Asymptotic limit of the variance V α,p=0+ (t) in Eq. (125) as a function of t for different values of α and b = 1. The inset shows C α versus α.

  137) yields the survival probability P[N τ (t) = 0] [Remark: The last two Eqs. are the discrete-time counterparts of Eqs. (

  process we get for (145),ḡv (w, u) Ber = 1 (1w){1u(1 + p[v -1])} (147) thus ḡ-1 (w, u) Ber = 1 (1w)[1u(1 -2p)]

  performed summation over the new indices s = tτ and τ . Be reminded of our notation for double GFs ḡ(a, b) = ∞ r=0 ∞ s=0 a r b s g(r, s). We introduced in the first line of this relation the auxiliary quantityH w (t) = ∞ τ =0 w τ Θ(tτ ) t-τ k=0 g(τ, k)

  ψ(uw) = ψ[uu(1w)] = ψ(u)u(1w) d ψ(u) du + o(1w) thus hv (1, u) = 1 (1u) 3 -(1v)u (1u) 2 [1v ψ(u)][1 -ψ(u)] d ψ(u) du (153)

which converges absolutely for finite t and is divergent for λ = 1 .

 1 Note that the coefficients (Pochhammer symbol) (c) k = Γ(c + k)/Γ(c) = c(c + 1) . . . (c + k -1) (k ∈ N 0 ) fulfill (0) k = 0 for k ≥ 1)

We use the synonymous notations ψt = ψ(t) and employ the term 'probability density function' (PDF) or simply 'waiting time density' for both discrete and continuous time cases.

We use the synonymous notation δi,j = δij for the Kronecker symbol.

With Fourier-Laplace inverses χ1(t, x) = χ1(t, x, v0) = ξ0e -ξ 0 t δ(x -v0t) and χ2(t, x) = χ1(t, x, -v0).

The mean square displacement then yields X 2 µ (t) = 2K µ (t)t = (t + 1) 2 + 1 + 4µ p µ,µ+3 (2, t) -4µ p µ,µ+2 (2, t) + 2p µ,2 (2, t) (92)

where we verify that K µ (0) = 0 and X 2 µ (0) = 0 as p µ,ν (2, 0) = -1 and with p µ,ν (2, 1) = 2µν we further confirm that necessarily X 2 µ (1) = 1 (Appendix A.4). Then to compute the variance we need the expected position which we obtain as (see Eq. ( 18))

X µ (t) = -σ 0 (p µ,2 (2, t) + 1)

with initial condition X µ (0) = 0. The variance of the Sibuya SRW then writes

which is an exact formula where necessarily V µ (0) = 0. For the large-time asymptotics this yields (see ( 168) with (170))

and therefore

which corresponds to superdiffusive ballistic t 2 -scaling with generalized diffusion coefficient D µ = 1µ decreasing with increasing µ (i.e. for shorter waiting times between step reversals) where this holds for the FT range µ ∈ (0, 1). For large t (93) has the asymptotics

which is in agreement with Eq. ( 26) (with A µ = 1 for Sibuya). We have then

The large time asymptotics of the variance is therefore dominated by the mean square displacement (96), namely

In the large-time limit the Sibuya SRW is superdiffusive with a ballistic t 2 -law. This also holds true for the entire class of SRWs with fat-tailed waiting-time densities. The ballistic scaling can be seen in Figure 2 where we plot X 2 µ (t) . For µ = 1 the variance (99) is null where this limit corresponds to the trivial deterministic counting process N 1 (t) = t where the squirrel is trapped close to the departure site (this limit coincides with the limit p = 1 previously discussed for the Bernoulli SRW -see Section 4). The oscillating behavior can be extracted as the Sibuya GF then collapses to ψ1 (u) = u coinciding with Bernoulli for p = 1. Then (89) yields

and is in agreement with [START_REF] Gel'fand | Generalized Functions[END_REF]. Therefore, we have indeed V µ=1 (t) = V p=1 (t) Ber = 0.

Further important is the 'frozen limit' of infinite waiting times µ → 0+ which we already discussed in Section 2.2.

small |s| by accounting for ( 25) we arrive at

By Laplace inversion we get for t large

where A µ = 1 in the case of a time changed Sibuya SRW. For µ = 1 the same asymptotic value σ0

as in the discrete-time case is approached (see [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF]) by a t -α(λ-1) power law when α(λ -1) = 1, and at least exponentially for λ = 2, α = 1. In contrast, when µ < 1, the squirrel escapes with a power law to the same direction as σ0 whereas for µ = 1 it remains localized close to the departure site due to the oscillatory motion as in the discrete-time case (see [START_REF] Baur | Elephant Random Walks and their connection to Pólya-type urns[END_REF]). We depict the large time asymptotic power-law behavior for four values of µ and α = 0.8 in Fig. 3. One can see that for increasing µ where the squirrel more often changes the step directions the escape becomes slower. On the other hand, for small µ (long waiting times between the reversals of step directions) the squirrel escapes faster. Now we finally consider (114) and without loss of generality the Sibuya CTSRW, i.e. µ ∈ (0, 1) and α ∈ (0, 1] (A µ = 1). Then we get

We can obtain this result also directly by using (111) with (94). This relation is the time changed version of the ballistic Sibuya square law (99) and coincides with the large-time asymptotics of the mean square displacement. Taking into account (120

thus the variance asymptotically is dominated by the mean square displacement. Be aware that the asymptotic formula (121) is modified in the frozen limit for µ → 0+ considered at the end of this section. We identify two regimes of anomalous diffusion: For 0 < α < 1/2 the CTSRW is subdiffusive, for α = 1/2 it is normal-diffusive, and for 1/2 < α ≤ 1 superdiffusive. Be reminded that these regimes exist for 0 < µ < 1. For µ = 1 the large-time behavior is identical with the Bernoulli SRW subordinated to a renewal process (considered in the following).

Bernoulli CTSRW Considering (159) and (107), we have the relation

and therefore the mean square displacement scales as Y 2 α (t) Ber ∼ 1-p pb t α /Γ(α + 1). On the other hand the Laplace transform of the mean position writes (see [START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF] and ( 107))

and hv (1, 0) = 1.

For the Bernoulli process we have

(154) consistent with our previous results, namely

where

reflecting again the Markovian nature of Bernoulli.

In order to evaluate the mean square displacement (84) of the SRW we need to remove the term τ = 0 in (152) and define its GF (summation starting at τ = 1 and, considering (146), we take into account that N 0 (t) = N (t))

where the necessary property K(u) u=0 = K(t) t=0 = 0 is fulfilled. Now, to obtain the GF (which we denote by X(2) (u) = ∞ t=0 u t X 2 t ) of the mean square displacement we have to take into account that

For Bernoulli this yields

thus the GF of the mean square displacement (52) yields

in agreement with the results derived in Section 4. For the unbiased case p = 1 2 we have

= 0 (see Eq. ( 50)) thus we recover X 2

Let us check the deterministic limiting case p = 0+, which corresponds to the strictly increasing walk with X 2 t = t 2 . Formula (159) then becomes

Then, account for the GFs

With the last two GFs we recover the result of Eq. ( 55)

and hence we have, with (51),

corresponding to the deterministic walk with (a.s.) unit steps in σ0 -direction (see ( 51)).

Finally, for p = 1, formula (159) yields X(2) (u) Ber = u (1-u)(1+u) , corresponding to the deterministic oscillatory motion where the mean square displacement oscillates between zero and one with X(2) (u) Ber ∼ 1 2(1-u) as u → 1and yields the large time limit X 2 t B ∼ 1 2 (see Section 4).

A.3 Causal distributions and their Laplace transforms

We deal with causal functions and distributions Θ(t)f (t) (t ∈ R + and Θ(t) indicates the Heaviside step function with Θ(t) = 1 for t ≥ 0 and Θ(t) = 0 elsewhere). We introduce the Laplace transform as

with suitably chosen Laplace variable s. We mention that s m f (s) is the Laplace transform of

dt m [Θ(t)f (t)] as all boundary terms are vanishing at 0-. As a consequence Θ(0-) = 0.

A.4 Discrete-time Prabhakar kernel

We have represented some of our results in terms of discrete-time Prabhakar kernels. The name 'Prabhakar kernel' comes from the fact that these kernels involve 'Prabhakar functions' first introduced in [START_REF] Prabhakar | A singular integral equation with a generalized Mittag-Leffler function in the kernel[END_REF] as generalization of the Mittag-Leffler function. Consult [START_REF] Giusti | A practical guide to Prabhakar fractional calculus[END_REF][START_REF] Giusti | General fractional calculus and Prabhakar's theory[END_REF] for a general outline of Prabhakar fractional calculus and pertinent applications. We recall here some of the