
HAL Id: hal-03709864
https://hal.science/hal-03709864v1

Preprint submitted on 30 Jun 2022 (v1), last revised 30 Mar 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Electron Paramagnetic Resonance Image Reconstruction
with Total Variation Regularization

Rémy Abergel, Mehdi Boussâa, Sylvain Durand, Yves-Michel Frapart

To cite this version:
Rémy Abergel, Mehdi Boussâa, Sylvain Durand, Yves-Michel Frapart. Electron Paramagnetic Reso-
nance Image Reconstruction with Total Variation Regularization. 2022. �hal-03709864v1�

https://hal.science/hal-03709864v1
https://hal.archives-ouvertes.fr


Electron Paramagnetic Resonance Image Reconstruction

with Total Variation Regularization
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1 Université Paris Cité, CNRS, MAP5, F-75006 Paris, France
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Abstract

This work focuses on the reconstruction of two and three dimensional images of the concentration
of paramagnetic species from electron paramagnetic resonance (EPR) measurements. A direct
operator, modeling how the measurements are related to the paramagnetic sample to be imaged,
is derived in the continuous framework taking into account the physical phenomena at work
during the acquisition process. Then, this direct operator is discretized to closely take into
account the discrete nature of the measurements and provide an explicit link between them
and the discrete image to be reconstructed. A variational inverse problem with total variation
regularization is formulated and an efficient resolvant scheme is implemented. The setting of
the reconstruction parameters is thoroughly studied and facilitated thanks to the introduction
of appropriate normalization factors. Moreover, an a contrario algorithm is proposed to derive
the optimal resolution at which the data should be acquired. Finally, an in-depth experimental
study over real EPR datasets is done to illustrate the potential and limitations of the presented
image reconstruction model.

Source Code

This article has been submitted for peer-review to a scientific journal with a source code in
Matlab R© language, including documentation, graphical user interface (compatible with Mat-
lab version 2019b or later versions), example EPR dataset, demonstration scripts, and scripts
specifically dedicated to the reproduction of all experimental results discussed in this article.
This additional content will be released soon.

Keywords: electron paramagnetic resonance imaging, total variation, variational mod-
els, inverse problems, Shannon Sampling Theory.
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1 Introduction

Electron Paramagnetic Resonance is a powerful method for exploring paramagnetic species. It is
based on the property of single electrons to absorb the energy of electromagnetic radiation when
placed in a magnetic field. This process of absorption of energy is characteristic of the observed
species. The acquired spectral signatures allow therefore to discriminate between different param-
agnetic species. As in Nuclear Magnetic Resonance (NMR), the EPR phenomenon can be used for
imaging purposes. By adding to the homogeneous magnetic field a field gradient whose orientation
evolves in a plane (2D imaging) or in space (3D imaging), a sinogram is generated. His formation can
be mathematically modeled by the convolution between the Radon transform of the concentration of
the present paramagnetic species and its spectral signature. The reconstruction of the concentration
image from the sinogram is an ill-posed inverse problem which is the main focus of this article.

The standard method of reconstruction is made on two steps: a Wiener-like inverse filtering
followed by a back projection. This approach, that is taken by Xepr c© [4] (a commercial software
distributed by Bruker R©), has however several drawbacks, including the well known ”star effect” of
the back-projection when there are too few projections. Moreover, the two-step processing leads to
accumulating errors and involves the tuning of many parameters.

Several variational methods have been reported. As the sinogram is corrupted by an additive
Gaussian white noise, they mostly consist in least squares with various regularizations such as en-
tropy [19] or Tikhonov [41]. Other considered priors are built on the total variation (TV) as it allows
to obtain images with sharp edges. In [20], the prior is the sum of the L1-norm and the TV of the
sought image. The minimization is done by a double-loop algorithm whose fixed point fails however
to be the sought minimizer. This model is generalized in [2] where the gradient in TV is changed
into a linear operator. The data fidelity is moreover expressed by a hard constraint. However, the
numeral scheme is not given. In [36], a hard constraint is also used on the data fidelity, but for a
noiseless model only. TV is smoothed as in [42] in order to perform a Steepest Descent.

Great improvements have been made in the minimization of functions involving TV thanks to the
introduction of a fully proximal primal-dual algorithm by Chambolle and Pock [6]. It is applied to TV-
reguralized least-squares in the context of EPR imaging in [11]. The inf-convolution of TV and the
L1-norm of weighted curvelet coefficients is also used as an alternative prior in order to obtain images
with fine textures and sharp edges. To avoid a recursive use of the computationally expensive Radon
transform and thus further speed up the algorithm, a Toeplitz hypermatrix structure is designed
for the data fidelity as is done in [26] for Computed Tomography. Chambolle-Pock Algorithm is
also used in [34, 35] where the data fidelity or the TV-prior is expressed under a hard constraint.
This hard constraint on the data fidelity eases the choice of the parameter that controls the balance
between data fidelity and regularization when the standard deviation of the noise is known. But it
does not allow to make use of the Toeplitz structure alluded to above which is very useful to obtain
a fast algorithm and thus efficiently process 3D images. This problem of 3D images is addressed
in [25] where an algebraic method is developed to quickly reconstruct images from a large number of
projections.

This article focuses on the method developed in [11]. In addition to making accessible the
algorithm introduced therein, we propose several improvements. First, we give its 3D extension.
As there is no curvelet transform for 3D images, only the TV-prior is considered. But an optional
Huber-TV-prior is proposed to process textured images. Moreover, in order not to change the
Toeplitz hypermatrix into a circulant Hypermatrix, the primal-dual algorithm of [6] is changed into
its forward-backward version introduced in [8]. At last, an a contrario method is introduced to find
the optimal step at which the sinogram must be sampled and thus speed up the acquisition process.
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2 Continuous modeling of the EPR acquisition system

2.1 Spectroscopy by EPR

The most widespread application of EPR is spectroscopy. The aim of EPR spectroscopy is to analyze
the electronic structure of the paramagnetic chemical species contained in a sample through the
microwave absorption occurring when the sample is exposed to a magnetic field. By applying a so-
called homogeneous magnetic field with increasing intensity t 7→ B(t) in the cavity of the acquisition
system, we excite the single electrons of the paramagnetic species present in the cavity. When the
microwave energy applied to the sample equals the energy gap between the spin state energy levels
of the single electrons, the latter change their levels of energies. This phenomenon is called electron
resonance and comes with an absorption by the single electrons of the incident microwave energy. We
denote by t 7→ Eabs(B(t)) the energy absorption profile, or also, by dropping the temporal variable,

B 7→ Eabs(B) .

The levels of energies of the single electrons, as well as the energy absorption profile Eabs involved
by the electron resonance phenomenon, are intrinsically linked to the electronic organization of the
paramagnetic species and can be used to characterize them. In practice we are able to measure
the first derivative of the energy absorption profile Eabs, this function S : B 7→ E ′abs(B) is called a
spectrum. Each paramagnetic component X has its own spectral response, denoted by hX and called
the reference spectrum of X. In presence of an amount QX of a paramagnetic component X in the
cavity, the measured spectrum S is proportional to hX , and we simply have

∀B ∈ R+ , S(B) = QX · hX(B) . (1)

In Figure 1, we display the measured spectra of two paramagnetic species, the Tetrathiatriarylmethyl
(TAM) and the 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4OH-TEMPO). By visual inspection,
and potentially with the help of EPR simulation algorithms (such as [39]), EPR spectroscopists
are able to recognize a paramagnetic component, to estimate its amounts QX , and sometimes to
measure some features related to the paramagnetic species interactions within the whole molecular
environment (such as oxygen concentration, molecule rotation speed,. . . ) [13, 14, 30, 40].

2.2 Spatialization of the EPR measurements for imaging applications

The acquisition of EPR spectra like (1) makes the analysis of the paramagnetic species contained in
a sample possible. However, such kind of signals do not provide any information about the spatial
repartition of the different species within the sample. Indeed, at any given time t of the acquisition,
the intensity of the homogeneous magnetic field B(t) is the same within the whole cavity. Therefore,
no spatial information is embedded within the measurement t 7→ S(B(t)). Interestingly enough, the
EPR measurements can be spatialized in a simple but yet ingenious way. Let us denote by Ωc ⊂ R3

the cavity domain, let (θ, ϕ) ∈ [0, π] × [0, 2π] denote a couple of polar and azimuthal angles in
the spherical coordinate system, and let e(θ,ϕ) = (cos θ sinϕ, sin θ sinϕ, cosϕ)t (see Figure 2). Using
magnetic coils, we can add to the homogeneous magnetic field a field gradient in the direction e(θ,ϕ)

which is an oriented magnetic field with linearly increasing intensity. Thanks to this field gradient,
the intensity of the magnetic field in the cavity at the spatial location x ∈ Ωc and time t ≥ 0 is given
by

Bµ,θ,ϕ(x, t) = B(t) + 〈µ e(θ,ϕ) , x〉 , (2)

where 〈·, ·〉 denotes the Euclidean inner product and µ > 0 represents the intensity of the field
gradient. Therefore, in presence of a single paramagnetic specie X in the cavity, denoting by UX(x)

3



(a) spectrum of a solution of TAM (b) spectrum of solid sample soaked with 4OH-TEMPO

Figure 1: EPR spectra of TAM and 4OH-TEMPO. Left (a): measured EPR spectrum of a sample
containing an aqueous solution of TAM. This paramagnetic component is dominated by carbon-12. Its
spectrum is mainly made of one line (the central peak in (a)) with very short linewidth (0.2 G, as indicated
in red in (a)). We can also resolve small lines due to the coupling with carbon-13 (see arrows in (a)), those
lines have small amplitude due to the small natural abundance of 13C (around 1% of natural abundance).
Right (b): measured EPR spectrum of a solid sample soaked with 4OH-TEMPO. This paramagnetic com-
ponent is characteristic of the nitroxide class of radicals, its reference spectrum exhibits three main lines
which are due to the coupling of the nitrogen-14 (14N) nuclear spin with the electronic spin. The three lines
of 4OH-TEMPO molecules in fluid sample should have the same shape (same amplitude and linewidth). In
practice, they exhibit important variation of shapes according to the rotation speed of the molecule within
the sample. A fluid sample, allowing fast molecule rotation (with rotation period less than the nanosecond)
leads to three identical lines, while slower rotation speed in solid samples (as here, with a rotation period
close to the microsecond) leads to distorted lines with different shapes.

the quantity of X at any location x ∈ Ωc and by integrating over the whole cavity domain, we obtain
the measurement

∀t ≥ 0 , Sθ,ϕ(B(t)) =

∫
Ωc

UX(x)hX(B(t) + 〈µ e(θ,ϕ) , x〉) dx , (3)

or, by dropping again the temporal variable,

∀B ∈ R+ , Sθ,ϕ(B) =

∫
Ωc

UX(x)hX(B + 〈µ e(θ,ϕ) , x〉) dx . (4)

The function B 7→ Sθ,ϕ(B) is called the projection in the direction (θ, ϕ). We remark that whatever
the value of (θ, ϕ), in absence of field gradient (i.e. when µ = 0), the projection (4) boils down to (1)
since we have QX =

∫
Ωc
UX(x) dx. In this situation, the estimation of UX is hopeless because the

problem is too ill-posed. However, when µ 6= 0, the estimation of UX becomes possible provided that
enough measurements (Sθ,ϕ(B))B,θ,ϕ are available [32].

By extending hX (over R \ R+) and UX (over R3 \ Ωc) by zero and decomposing the space R3

as the sum of the monodimensional space Span(e(θ,ϕ)) and its supplementary orthogonal hyperplane
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(a) polar and azimuthal angles θ and ϕ (b) example of EPR sinogram

Figure 2: Spherical coordinate system and example of EPR sinogram. We represent in (a) the
polar and azimuthal angle (θ, ϕ) that we use to define the orientation of the field gradient (this orientation
is represented by the blue unit vector e(θ,ϕ)). By construction in (2), at any acquisition time t ≥ 0, the
intensity of the magnetic field in the cavity is constant over any affine hyperplane orthogonal to e(θ,ϕ) and
its value evolves linearly along the e(θ,ϕ) axis. We display in (b) an example of 3D sinogram acquired using
our EPR imaging system.

Hθ,ϕ := Span(e⊥(θ,ϕ)), we can write (4) as

∀B ∈ R , Sθ,ϕ(B) =

∫
R

∫
Hθ,ϕ

UX(r e(θ,ϕ) + s)hX(B + µr) ds dr

=

∫
R

(∫
Hθ,ϕ

UX(r e(θ,ϕ) + s) ds

)
hX(B + µr) dr

=

∫
R
Rθ,ϕ(UX)(r)hX(B + µr) dr ,

where Rθ,ϕ(UX) = r 7→
∫
Hθ,ϕ UX(r e(θ,ϕ) + s) ds is the so-called Radon transform of the signal UX in

the direction (θ, ϕ). Then, setting hµX(s) = hX(−µs) for all s ∈ R, we finally get

∀B ∈ R , Sθ,ϕ(B) =
(
hµX ∗Rθ,ϕ(UX)

)
(−B/µ) , (5)

so the projection Sθ,ϕ is modeled as the convolution between the dilated reference spectrum hµX and
the Radon transform of UX in the direction (θ, ϕ). The 3D signal (B, θ, ϕ) 7→ Sθ,ϕ(B) made of all
the projections is called a 3D sinogram. An example of 3D sinogram is displayed in Figure 2 (b).

2.3 The 2D EPR imaging framework

The acquisition of a 3D sinogram like that displayed in Figure 2 (b) can be too long (several minutes
per projection, i.e., per value of (θ, ϕ)) with respect to the targeted application. This is particularly
the case for in-vivo imaging or for the study of species or chemical reactions with fast kinetic. In
such situation, we may be interested in computing a 2D sinogram by keeping one angle (θ or ϕ)
constant and letting the other vary. For sake of clarity, let us assume that we take ϕ = π

2
and keep θ

variable. In this situation, the field gradient direction e(θ,π/2) = (cos θ, sin θ, 0)t lies in the XY-plane
(see Figure 2). Therefore, the measured projections Sθ := B 7→ Sθ,π/2(B) satisfy, for all B ∈ R and
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(a) From 3D sample to 2D imaging (b) 2D sinogram Sπ/2 (synthetic)

Figure 3: From the 3D to the 2D setting. We represent in gray colors in (a) the 3D repartition
UX of a single specie, the TAM, present in the cavity of the acquisition system at different concentra-
tions (one concentration per ellipsoid). We also represent, in false colors, the 2D signal VX obtained
by summing UX along the Z-axis (see (6)). In such situation, the acquisition of the 3D sinogram
for a single azimuthal orientation of the field gradient, here ϕ = π/2, yields a 2D sinogram such as
that displayed in (b). Each projection (or column) of this 2D sinogram is linked to the image VX
through (7) and 2D EPR imaging consists in reconstructing VX from (b) by inversion. Notice that
the image VX does not correspond to any particular slice of UX (due to the summation along the
vertical axis). In this regard, 2D EPR imaging differs with computed tomography imaging systems
that provide slice by slice image reconstruction capability.

all θ ∈ [0, π] ,

Sθ(B) =

∫
R3

UX(x, y, z)hX(B + 〈µ e(θ,π/2) , (x, y, z)t 〉) dx dy dz

=

∫
R2

VX(x, y)hX(B + 〈µ eθ , (x, y)t 〉) dx dy

denoting by eθ = (cos θ, sin θ)t the direction of the field gradient in the XY-plane and

VX(x, y) =

∫
R
UX(x, y, z) dz . (6)

Then, with the same methodology as in the 3D case, we show that

∀B ∈ R , ∀θ ∈ [0, π] , Sθ(B) =
(
hµX ∗Rθ(VX)

)
(−B/µ) , (7)

denoting by Rθ(VX) = r 7→
∫

Span(e⊥θ )
VX(reθ + s) ds the Radon transform in the direction θ of the 2D

signal VX . Instead of estimating the 3D signal UX , the goal of 2D EPR imaging is to estimate the
2D signal VX from the 2D sinogram (B, θ) 7→ Sθ(B), as illustrated in Figure 3.

2.4 Filtering of the projections by the acquisition system

In practice, sinograms are acquired sequentially, projection by projection. During the acquisition of
a projection, a low-pass filtering inherent to the EPR measurement system is done. This low-pass
filtering operation can be modeled as a convolution with a low-pass filter which is characteristic of
the acquisition system and the acquisition parameters (it may model for instance time integration
operation). In the following, we will assume that this low pass filter is a perfect band-cut filter with
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bandwidth
[
−π
ν
, π
ν

]
(where ν > 0). More precisely, denoting by F the Fourier transform in L1(Rn),

i.e.,

∀f ∈ L1(Rn) , ∀ξ ∈ Rn , F (f)(ξ) =

∫
Rn
f(x) e−i〈x,ξ〉 dx ,

and 1X the indicator function of the set X (that takes the value 1 over X and zero outside), we
assume from now that the low-pass filter is the function gν , denoting

∀s > 0, ∀t ∈ R , gs(t) = F−1
(
1[−πs ,

π
s ]

)
(t) . (8)

Therefore, in the 2D setting, the acquired projection in a direction θ ∈ [0, π] is the signal S̃θ given
by

∀B ∈ R , S̃θ(B) = (gν ∗ Sθ) (B) =

(
gδ ∗ hµX ∗Rθ(VX)

)
(−B/µ) , (9)

denoting δ = ν/µ (as we shall see in the following this parameter δ plays an important role in practical
experiments). Similarly, in the 3D setting, the acquired projection in a direction (θ, ϕ) ∈ [0, π]×[0, 2π]

is the signal S̃θ,ϕ given by

∀B ∈ R , S̃θ,ϕ(B) = (gν ∗ Sθ,ϕ) (B) =

(
gδ ∗ hµX ∗Rθ,ϕ(UX)

)
(−B/µ) . (10)

We can study further the effect of such filtering operation thanks to Central Slice Theorem which
provides, for instance in 2D (a similar formulation holds in the 3D setting), an interesting relationship
between the Fourier transform of Rθ(VX) and that of VX .

Theorem 1 (Central Slice Theorem, 2D setting). For any signal V ∈ L1(R2) and any θ ∈ R, we
have

∀ξ ∈ R , F (Rθ(V ))(ξ) = F (V )(ξ cos θ, ξ sin θ) . (11)

Proof. See Appendix A.

Corollary 1. Denoting by B2d(0, π/δ) the 2D centered ball with radius π/δ and fδ = F−1
(
1B2d(0,π/δ)

)
,

for all B ∈ R and all θ ∈ [0, π], we have

S̃θ(B) =
(
h̃µX ∗Rθ(ṼX)

)
(−B/µ) where h̃µX = gδ ∗ hµX and ṼX = fδ ∗ VX . (12)

Proof. Let θ ∈ [0, π] and ξ ∈ R, we have F (gδ)(ξ) = F (fδ)(ξ cos θ, ξ sin θ). Therefore, from Central

Slice Theorem, we get F (gδ ∗ Rθ(VX))(ξ) = F (fδ ∗ VX)(ξ cos θ, ξ sin θ) = F (Rθ(ṼX))(ξ), showing

that gδ ∗ Rθ(VX) = Rθ(ṼX). It follows that h̃µX ∗ Rθ(ṼX) = gδ ∗ hµX ∗ gδ ∗ Rθ(VX). Then, using
gδ = gδ ∗ gδ and the commutativity of the convolution product, we obtain the announced result.

Interestingly enough, the proof of Corollary 1 points out that filtering by gδ the Radon transform
of the image VX amounts to computing the Radon transform of the filtered image ṼX which is
bandlimited. As we shall see in the next section, this property provides a natural discretization
scheme for the Radon transform operator.

3 Discretization of the operators and the measurements

During the acquisition of an EPR projection, the intensity B of the homogeneous magnetic field is
discretized into a finite number of nodes. In most situations, those nodes are regularly sampled, as
we shall describe now.
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3.1 Measurement sampling grids

Let NB ∈ N and let us denote by INB and INB the two sets of NB consecutive integers defined by

INB =

[
−NB

2
,
NB

2

)
∩ Z and INB =

(
−NB

2
,
NB

2

]
∩ Z .

In particular, when NB is odd, say NB = 2n + 1, we have INB = INB = {−n,−n + 1, . . . , n− 1, n}.
We assume that the intensity of the homogeneous magnetic field B is regularly sampled over a set
Bcf +

[
−Bsw

2
, Bsw

2

]
using

∀m ∈ INB , Bm = Bcf +mδB where δB =
Bsw

NB

. (13)

The quantities Bcf and Bsw involved above are usually called center field and sweep width (e.g. in
Bruker instruments and XEPR software [18], see also [16]).

From (2), for all orientation (θ, ϕ) of the field gradient, the intensity of the magnetic field at
a given time t of any point x located in the intersection of the cavity with the affine hyperplane
r e(θ,ϕ) +Hθ,ϕ (with radial distance r = 〈x, e(θ,ϕ)〉 from the cavity center) is

Bµ,θ,ϕ(x, t) = B(t) + µ r .

Therefore, if electron resonance occurs in the cavity, by increasing by step δB the intensity of the
homogeneous magnetic field, we decrease by step δr = δB/µ the radial positions of the affine hy-
perplanes where this resonance phenomenon occurs. Thus, sampling with step δB the homogeneous
magnetic field intensity boils down to spatially sampling the cavity along the direction e(θ,ϕ) with
radial step δB/µ, leading to the radial sampling nodes

∀m ∈ INB , rm = mδr where δr =
δB
µ

=
Bsw

µNB

. (14)

In the 2D setting, using (13) and (14) into (12), yields the the sampled measurements

∀m ∈ INB , S̃θ(B−m) =
(
h̃µX ∗Rθ(ṼX)

)
(−Bcf/µ+mδr) . (15)

We call field of view (FOV) the ball delimiting the area covered by the radial measurements.
This ball is centered on the cavity center and its diameter Dfov is given by

Dfov = NB δr =
Bsw

µ
.

In practice the FOV may be smaller than the cavity itself but the setting of the sweep width Bbw is
done to ensure that Dfov is large enough so that the totality of the paramagnetic sample present in
the cavity is contained in the FOV. Once Bsw is set, the setting of NB (and thus, that of the sampling
steps δB and δr) is guided by Shannon Sampling Theorem that we recall below in dimension n ≥ 1.

Theorem 2 (Shannon Sampling Theorem [38]). Consider a positive real number ∆ > 0 and an
absolutely integrable function f : Rn → R whose Fourier transform is supported in

[
− π

∆
, π

∆

]n
, i.e.,

∀ξ 6∈
[
− π

∆
,
π

∆

]n
, F (f)(ξ) = 0 .

Then, f is continuous and uniquely determined by its values on ∆Zn, as

∀x ∈ Rn , f(x) =
∑
k∈Zn

f(k∆) sinc
( x

∆
− k
)
,
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where the cardinal sine function is defined in Rn by

sinc(x) =
n∏
i=1

sin(πxi)

πxi
,

with the continuity preserving convention sin(0)
0

= 1.

From (9), we see that the signal r 7→ (h̃µX ∗Rθ(ṼX))(−Bcf/µ+ r) involved in (15) has its Fourier
transform supported in the set [−π

δ
, π
δ
]. Therefore, Shannon Sampling Theorem ensures that no

loss of information occurs when sampling this signal on δr Z using a radial sampling step δr ≤ δ.
From (14), this condition amounts to set NB ≥ M := Bsw/(µ δ) and we assume that this condition
is fulfilled in the following. For commodity, we will also assume that M is an integer (i.e., δ/δr is the
rational number NB/M). To simplify the study, the reader may consider δr = δ (and M = NB) but
this is not a requirement that we impose in our model and algorithms (the reason for this choice will
be discussed in Section 6).

3.2 Discretization of the two-dimensional operators

Let θ ∈ [0, π]. From Theorem 1, we have

∀ξ ∈ R , F
(
Rθ(ṼX)

)
(ξ) = F (ṼX)(ξ cos θ, ξ sin θ) . (16)

Besides, from ṼX = fδ∗VX with fδ = F−1
(
1B2d(0,π/δ)

)
, we see that F (ṼX) is supported in B2d(0, π/δ)

which is a subset of
[
−π
δ
, π
δ

]2
. Thus, according to Theorem 2, we have

∀(x, y) ∈ R2 , ṼX(x, y) =
∑

(k,`)∈Z2

ṼX(kδ, `δ) sinc
(x
δ
− k
)

sinc
(y
δ
− `
)
. (17)

Then, using F
(
(x, y) 7→ sinc((x

δ
, y
δ
)− (k, `))

)
(ξ1, ξ2) = δ2 e−i(kδξ1+`δξ2) · 1

[−πδ ,
π
δ ]

2(ξ1, ξ2), we get

∀ξ ∈ R , F (ṼX)(ξ cos θ, ξ sin θ) =

 δ2
∑

(k,`)∈Z2

ṼX(kδ, `δ) e−iξ(kδ cos θ+`δ sin θ) if |ξ| ≤ π
δ

0 otherwise .

(18)

Equations (17) and (18) involve an infinite number of samples ṼX(kδ, `δ) that we cannot handle in
practical implementations. Let Ω2d = IM×IM and ṽX : Ω2d → R denote the discrete image obtained
by sampling ṼX with step δ in the FOV domain, i.e.,

∀(k, `) ∈ Ω2d , ṽX(k, `) = ṼX(kδ, `δ) .

By taking ξ ∈ 2πZ/(Mδ) and neglecting the terms ṼX(kδ, `δ) outside the FOV in (18), we obtain

∀α ∈ Z , F (ṼX)
(

2πα cos θ
Mδ

, 2πα sin θ
Mδ

)
≈

 δ2
∑

(k,`)∈Ω2d

ṽX(k, `) e−2iπ α
M

(k cos θ+` sin θ) if |α| ≤ M
2

0 otherwise

(19)

where the sum in the right-hand side corresponds to the Nonequispaced Discrete Fourier Transform
(NDFT) of the discrete image ṽX at the frequency

(
α
M

cos θ, α
M

sin θ
)

and can be efficiently evaluated
using Nonequispaced Fast Fourier Transform algorithms (NFFT) such as for instance that proposed
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in [22]. The Fourier transform of Rθ(ṼX) being supported in [− π
δr
, π
δr

] (since δr ≤ δ), the same
methodology yields the approximation

∀α ∈ INB , F (Rθ(ṼX))
(

2πα
NBδr

)
≈ δr

∑
m∈INB

Rθ(ṼX)(mδr) e
−2iπ αm

NB , (20)

where the right-hand side sum corresponds, up to the multiplicative factor δr, to the Discrete Fourier
Transform (DFT) of the discrete signal m ∈ INB 7→ Rθ(ṼX)(mδr) at the (discrete) frequency α.
Since M δ = NB δr, we have 2πα

Mδ
= 2πα

NBδr
and thanks to Theorem 1, the left-hand side terms of (19)

and (20) are equal for any α ∈ INB . Then, using δ/δr = NB/M , we get for all α ∈ INB ,

DFT
(
m 7→ Rθ(ṼX)(mδr)

)
(α) ≈

 δ · NB

M
·
∑

(k,`)∈Ω2d

ṽX(k, `) e−2iπ α
M

(k cos θ+` sin θ) if |α| ≤ M
2

0 otherwise.

(21)

One can see that (21) provides an explicit relation between the discrete image ṽX and the (continuous)

Radon transform coefficients Rθ(ṼX)(mδr). In the particular case δr = δ (and NB = M), this yields
the following discretization scheme for the Radon tranform operator.

Definition 1 (2D discrete Radon transform). Let v : IM × IM → R be a discrete image with size
M ×M , and let θ ∈ [0, π]. We call the discrete Radon transform of v in the direction θ the discrete

signal Rd
θv : IM → R whose DFT, denoted by R̂d

θv, satisfies

∀α ∈ IM , R̂d
θv(α) = ε(α/M) ·

∑
(k,`)∈IM×IM

v(k, `) e−2iπ(k αM cos θ+` α
M

sin θ) , (22)

denoting ε = 1(− 1
2
, 1
2) (i.e., ε(x) = 1 if |x| < 1/2 and ε(x) = 0 otherwise).

Remark. For |α| < M/2, we have ε(α/M) = 1 and we can see that R̂d
θv(α) and R̂d

θv(−α) are
conjugate to each other. When α = −M/2 (which can only happen when M is even), we have

ε(α/M) = 0 and thus R̂d
θv(−M/2) = 0 = R̂d

θv(M/2) by M-periodicity of R̂d
θv. The role of the term

ε(α/M) in (22) is to ensures hermitian symmetry for R̂d
θv whatever the parity of M , so that the

signal Rd
θv is real valued.

When δr = δ (and NB = M), taking the inverse discrete Fourier transform (IDFT) of (21) yields
an explicit relation between the discrete and continuous Radon coefficients,

∀m ∈ IM , Rθ(ṼX)(mδ) ≈ δRd
θ ṽX(m) . (23)

When the radial sampling step δr is strictly less than δ, taking the IDFT of (21) yields

∀m ∈ INB , Rθ(ṼX)(mδr) ≈ δ ZrRd
θ ṽX(m) . (24)

denoting by ZrRd
θ ṽX : INB → R the signal whose DFT coefficients ̂ZrRd

θ ṽX(α) are given by

∀α ∈ INB , ̂ZrRd
θ ṽX(α) =

{
NB
M
R̂d
θ ṽX(α) if α ∈ IM
0 otherwise.

(25)

Now, using (15) and remarking that the Fourier transforms of the signals r 7→ h̃µX(−Bcf/µ + r)

and r 7→ (h̃µX ∗ Rθ(ṼX))(−Bcf/µ + r) are both supported in the set
[
− π
δr
, π
δr

]
, we can derive with
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Algorithm 1: compute the 2D discrete sinogram Av from a 2D discrete image v.

Inputs: a 2D discrete image v : Ω2d → R with discrete domain Ω2d = IM × IM , the discrete
spectrum hd

X : INB → R with size NB ≥M , a sequence containing Nθ polar angles (θp)1≤p≤Nθ .

Optional input: the radial sampling step δr = δB
µ

(if not provided, set δr = 1).

Output: the 2D discrete sinogram s = Av : INB × {1, 2, . . . , Nθ} → R whose p-th column,
denoted by sp, corresponds to the discrete projection of v in the direction θp.

Core of the module:

δ ← δr · NBM // image sampling step (pixel size), same unit as δr
forall the p ∈ {1, 2, . . . , Nθ} do

set r̂p : IM → C the discrete signal 1 defined by

∀α ∈ IM , r̂p(α) =
∑

(k,`)∈Ω2d

v(k, `) e−2iπ(k αM cos θp+` α
M

sin θp) ;

set ŵp : INB → C the discrete signal defined by

∀α ∈ INB , ŵp(α) =

{
DFT(hd

X)(α) · r̂p(α) if |α| < M/2
0 otherwise ;

for all m ∈ INB set sp(m) = δ2 · IDFT(ŵp)(m)

return the 2D discrete sinogram s = Av.

1All coefficients r̂p(α) can be computed efficiently at once by evaluating the NDFT of the discrete image v at the
irregularly spaced frequency nodes

{(
α
M cos θp,

α
M sin θp

)
, α ∈ IM , 1 ≤ p ≤ Nθ

}
using a NFFT algorithm such as that

proposed in [22]. Thank to this remark, we can efficiently compute all coefficients ŵp(α) and afterward the sinogram
samples {sp(m), m ∈ INB

, 1 ≤ p ≤ Nθ} using the (monodimensional) FFT Algorithm [15].

the same methodology an explicit relation between the projection samples S̃θ(B−m) and the discrete
image ṽX , we end up with

∀m ∈ INB , S̃θ(B−m) ≈ δ2 M

NB

·
(
hd
X ~ ZrRd

θ ṽX
)

(m) , (26)

where hd
X : INB → R denotes the discrete signal defined by

∀m ∈ INB , hd
X(m) := (gν ∗ hX) (B−m) =

(when µ6=0)
h̃µX(−Bcf/µ+mδr) , (27)

and u ~ v := IDFT (DFT(u) ·DFT(v)) denotes the circular convolution between the two discrete
signals u : INB → R and v : INB → R. Details about the approximation (26) are given in Appendix B.

Given a sequence (θp)1≤p≤Nθ made of Nθ polar angles in [0, π] and denoting ω2d = INB ×
{1, 2, . . . , Nθ}, let us consider the 2D discrete sinogram s2d : (m, p) ∈ ω2d 7→ Sθp(B−m). Thanks
to (26) we have

∀(m, p) ∈ ω2d , s2d(m, p) ≈ AṽX(m, p) := δ2 M

NB

·
(
hd
X ~ ZrRd

θp ṽX

)
(m) , (28)

where the linear operator A : RΩ2d 7→ Rω2d models, up to the approximation errors we made in
this section, the link between the discrete image ṽX and the measured 2D discrete sinogram s2d.
For sake of completeness, we summarize in Algorithm 1 how the 2D discrete sinogram AṽX can be

11



simulated from the discrete image ṽX , although we are more interested in the reciprocal operation,
i.e., reconstructing the image ṽX from the 2D discrete sinogram s2d. The inversion of A with a
regularized least-squares strategy will be addressed in the next section. For that purpose, we will
need to evaluate A∗, the adjoint of A. As the for direct operator A, the computation of the adjoint
operator A∗ can be done efficiently using the NFFT library [22], as we describe in Algorithm 2.

Algorithm 2: efficient evaluation of A∗s
Inputs: a 2D discrete sinogram s : INB × {1, 2, . . . , Nθ} → R with size NB ×Nθ, the discrete
spectrum hd

X : INB → R with size NB, the sequence containing the Nθ polar angles (θp)1≤p≤Nθ ,
and a positive integer M ≤ NB corresponding to the width (also equal to the height) of the
output 2D discrete signal (with domain Ω2d = IM × IM).

Optional input: the radial sampling step δr = δB
µ

(if not provided, set δr = 1).

Output: the 2D discrete signal A∗s : Ω2d → R .

Core of the module:

δ ← δr · NBM // image sampling step (pixel size), same unit as δr
For all p ∈ {1, 2, . . . , Nθ}, denote by sp the p-th column of s, i.e., the discrete signal defined by

∀m ∈ INB , sp(m) = s(m, p) ,

and set ŵp : INB → C the signal defined by

∀α ∈ INB , ŵp(α) = DFT(hd
X)(α) ·DFT(sp)(α) ,

denoting by z the complex conjugate of z ∈ C.

For all (k, `) ∈ Ω2d, set 2

A∗s(k, `) =
δ2

NB

·
∑

α∈Z, |α|<M/2
p∈{1,2,...,Nθ}

ŵp(α) e2iπ(k αM cos θp+` α
M

sin θp) . (29)

return the 2D discrete signal A∗s.
2All coefficients A∗s(k, `) can be computed at once by evaluating the adjoint NDFT of the discrete signal (α, p) 7→
ŵp(α) for {α ∈ Z , |α| < M/2 , 1 ≤ p ≤ Nθ}, associating each sample ŵp(α) to the frequency node

(
α
M cos θp,

α
M sin θp

)
.

Such computation can be done efficiently using an adjoint NFFT algorithm such as that proposed in [22].

3.3 Discretization of the three-dimensional operators

In the 3D setting, one can show that the measured projections S̃θ,ϕ given by (10) can be linked to

the filtered signal ŨX := F−1(1B3D(0,π/δ)) ∗ UX (denoting by B3D(0, π/δ) the centered 3D ball with
radius π/δ) through the relation

∀B ∈ R , S̃θ,ϕ(B) =
(
h̃µX ∗Rθ,ϕ(ŨX)

)
(−B/µ) . (30)

With the same methodology as in the 2D setting, one can derive the following discretization scheme
for the 3D Radon transform operator.

Definition 2 (3D discrete Radon transform). Let u : Ω3d → R be a discrete image with discrete
domain Ω3d = IM ×IM ×IM , and let (θ, ϕ) ∈ [0, π]× [0, 2π]. We call the discrete Radon transform of

12



Algorithm 3: compute the 3D discrete sinogram Bu from the 3D discrete image u.

Inputs: a 3D discrete image u : Ω3d → R with discrete domain Ω3d = IM × IM × IM , the
discrete spectrum hd

X : INB → R with size NB ≥M , a sequence containing Nθ polar angles
(θp)1≤p≤Nθ and a sequence containing Nϕ azimuthal angles (ϕq)1≤q≤Nϕ.

Optional input: the radial sampling step δr = δB
µ

(if not provided, set δr = 1).

Output: the 3D discrete sinogram s = Bu : INB × {1, 2, . . . , Nθ} × {1, 2, . . . , Nϕ} → R.

Core of the module:

δ ← δr · NBM // image sampling step (pixel size), same unit as δr
forall the (p, q) ∈ {1, 2, . . . , Nθ} × {1, 2, . . . , Nϕ} do

set r̂p,q : IM → C the discrete signal defined by

∀α ∈ IM , r̂p,q(α) =
∑

(k,`,m)∈Ω3d

u(k, `,m) e−2iπ(k αM cos θp sinϕq+`
α
M

sin θp sinϕq+m
α
M

cosϕq) ;

set ŵp,q : INB → C the discrete signal defined by

∀α ∈ INB , ŵp,q(α) =

{
DFT(hd

X)(α) · r̂p,q(α) if |α| < M/2
0 otherwise ;

for all m ∈ INB set s(m, p, q) = δ3 · IDFT(ŵp,q)(m)

return the 3D discrete sinogram s = Bu.

u in the direction (θ, ϕ) the discrete signal Rd
θ,ϕu : IM → R whose DFT, denoted by R̂d

θ,ϕu, satisfies

∀α ∈ IM , R̂d
θ,ϕu(α) = ε(α/M) ·

∑
(k,`,m)∈Ω3d

u(k, `,m) e−2iπ α
M

(k cos θ sinϕ+` sin θ sinϕ+m cosϕ) .

Let ũX : Ω3d → R be the discrete 3D image obtained by sampling ŨX regularly with step δ along
each dimension, more precisely, the discrete signal defined by

∀(k, `,m) ∈ Ω3d , ũX(k, `,m) = ŨX(kδ, `δ,mδ) .

Then, one can link the discrete Radon transform of ũX to the continuous Radon transform of ŨX
through the approximation

∀m ∈ INB , Rθ,ϕ(ŨX)(mδr) ≈ δ2 · ZrRd
θ,ϕũX(m) ,

denoting by ZrRd
θ,ϕũX : INB → R the discrete signal whose DFT coefficients ̂ZrRd

θ,ϕũX are given by

∀α ∈ INB , ̂ZrRd
θ,ϕũX(α) = ε(α/M) · NB

M
·

∑
(k,`,m)∈Ω3d

ũX(k, `,m) e−2iπ α
M

(k cos θ sinϕ+` sin θ sinϕ+m cosϕ) .

Eventually, given a sequence of polar and azimuthal angles (θp, ϕq) (for 1 ≤ p ≤ Nθ, and 1 ≤ q ≤ Nϕ),
we can link the measured samples to the discrete image ũX through the relation

∀m ∈ INB , ∀p ∈ {1, 2, . . . , Nθ} , ∀q ∈ {1, 2, . . . , Nϕ}

s(m, p, q) := S̃θp,ϕq(B−m) ≈ B ũX(m, p, q) := δ3 M

NB

·
(
hd
X ~ ZrRd

θp,ϕq ũX

)
(m) . (31)
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Algorithm 4: efficient evaluation of B∗s
Inputs: a 3D discrete sinogram s : INB × {1, 2, . . . , Nθ} × ×{1, 2, . . . , Nφ} → R with size
NB ×Nθ ×Nϕ, the discrete spectrum hd

X : INB → R with size NB ≥M , the sequences
containing the Nθ polar angles (θp)1≤p≤Nθ and the Nϕ azimuthal angles (ϕq)1≤q≤Nϕ, a positive
integer M ≤ NB corresponding to the width (also equal to the height and depth) of the output
3D discrete signal (with domain Ω3d = IM × IM × IM).

Optional input: the radial sampling step δr = δB
µ

(if not provided, set δr = 1).

Output: the 3D discrete signal B∗s : Ω3d → R .

Core of the module:

δ ← δr · NBM // image sampling step (pixel size), same unit as δr
For all (p, q) ∈ {1, 2, . . . , Nθ} × {1, 2, . . . , Nϕ}, denote by sp,q : INB → R the discrete signal
defined by

∀m ∈ INB , sp,q(m) = s(m, p, q) ,

and set ŵp,q : INB → C the signal defined by

∀α ∈ INB , ŵp,q(α) = DFT(hd
X)(α) ·DFT(sp,q)(α) .

For all (k, `,m) ∈ Ω3d, set

B∗s(k, `,m) =
δ3

NB

·
∑

α∈Z, |α|<M/2
p∈{1,2,...,Nθ}
q∈{1,2,...,Nϕ}

ŵp,q(α) e2iπ(k αM cos θp sinϕq+`
α
M

sin θp sinϕq+m
α
M

cosϕq) .

return the 3D discrete signal B∗s.

The simulation of the 3D discrete sinogram B ũX from the 3D discrete image ũX can be done using
Algorithm 3, while the adjoint operation can be computed efficiently using Algorithm 4.

4 A total variation based image reconstruction model

We derived in Section 3 some relations between the measurements ((θ,m) 7→ S̃θ(B−m) in the 2D

setting, or (θ, ϕ,m) 7→ S̃θ,ϕ(B−m) in the 3D setting) and a discrete image (ṽX or ũX). We can
address now the problem of the reconstruction of the discrete image from those measurements. We
focus first on the 2D setting.

4.1 Two-dimensional image reconstruction

As done in [11], we address the reconstruction of ṽX from s2d using a total variation (TV) regularized
least-squares strategy. For λ > 0, we aim to compute an image

vλ ∈ argmin
v∈RΩ2d

J2d
λ (v) :=

1

2
‖Av − s2d‖2

2 + λTV(v) , (32)

where the TV of the discrete image v ∈ RΩ2d is defined as

TV(v) =
∑

(k,`)∈Ω2d

‖∇2dv(k, `)‖2 , (33)
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denoting by ∇2d : RΩ2d → RΩ2d × RΩ2d the classical forward 2D discrete finite differences scheme
defined by ∇2dv = (∇2d

x v,∇2d
y v) with, for all (k, `) ∈ Ω2d,

∇2d
x v(k, `) =

{
v(k + 1, `)− v(k, `) if (k + 1, `) ∈ Ω2d

0 otherwise,

∇2d
y v(k, `) =

{
v(k, `+ 1)− v(k, `) if (k, `+ 1) ∈ Ω2d

0 otherwise.

The parameter λ in (32) can be used to control the relative weight of the penalty term HTVα(v)
with respect to the data-fidelity term 1

2
‖Av − s2d‖2

2 in the energy J2d
λ (v). The practical tuning of λ

is closely related to the EPR acquisition parameters and will be discussed in Section 6.4.
Modern convex analysis tools based on Legendre-Fenchel duality [12, 37] allowed the develop-

ment of many iterative algorithms able to efficiently handle the minimization of convex but non-
differentiable energies like J2d

λ in the two last decades [6, 8, 10]. Recently, a class of algorithms
particularly well suited to (32) was proposed in [8] (see also [43]) and was further studied and gen-
eralized in [7]. Those algorithms are able to efficiently take advantage of the presence of a Lipschitz
differentiable (i.e. differentiable with Lipschitz-continuous gradient) term in the energy to minimize.
Indeed, the data-fidelity term f : v 7→ 1

2
‖Av − s2d‖2

2 involved in (32) is differentiable over RΩ2d with
gradient ∇f given by

∀v ∈ RΩ2d , ∇f(v) = A∗Av −A∗s2d . (34)

Since ∇f is an affine operator, it is also Lipschitz-continuous with Lipschitz constant Lf ≤ |||A∗A|||
(denoting by |||A∗A||| the ` 2-induced norm of the operator A∗A). Then, applying to (32) the
Euclidean non-ergodic non-linear primal-dual algorithm proposed in [7] boils down to the following
numerical scheme. Given v0 ∈ RΩ2d , p0 ∈ RΩ2d ×RΩ2d and two positive parameters (τ, σ), set v0 = v0

and iterate for n ≥ 0 
pn+1 = ΠB2d (pn + σλ∇2dv

n)

vn+1 = vn − τ
(
∇f(vn)− λ div2d (pn+1)

)
vn+1 = 2 vn+1 − vn

(35a)

(35b)

(35c)

where div2d = −∇∗2d denotes the opposite adjoint of the 2D forward finite differences operator
∇2d (see Appendix C) and ΠB2d denotes the orthogonal projection over the closed and convex set
B2d := {p ∈ RΩ2d × RΩ2d , ∀(k, `) ∈ Ω2d , ‖p(k, `)‖2 ≤ 1} which is more explicitly given by

∀p0 ∈ RΩ2d × RΩ2d , ∀(k, `) ∈ Ω2d , ΠB2d(p0)(k, `) =
p0(k, `)

max(1, ‖p0(k, `)‖2)
. (36)

Besides, since we have the upper bound |||∇2d||| ≤
√

8, Theorem 1 established in [7] ensures the
convergence of the sequence (vn)n∈N toward a minimizer of J2d

λ when the time-step parameters τ and
σ satisfy (

1

τ
− |||A∗A|||

)
1

σ
≥ 8λ2 . (37)

Remark (adding constraints in (32)). One can restrict the minimization of J2d
λ to any convex set

C ⊂ RΩ2d simply by replacing (35b) by

vn+1 = ΠC

(
vn − τ

(
∇f(vn)− λ div2d(pn+1)

))
,

denoting by ΠC : RΩ2d → C the orthogonal projection over C . In particular, we remarked that using
C = RΩ2d

+ in order to restrict the minimization of J2d
λ to the set of nonnegatively-valued images may
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increase the convergence rate of the scheme (35). Such nonnegativity constraint makes sense because,
if ṽX may assume some negative values, the latter are due to the oscillations involved by the filtering
of VX (which is nonnegatively valued) into ṼX = VX ∗gδ (which may assume negative values), and we
usually want to avoid such oscillatory patterns in the reconstruction. However, in our experiments
over real EPR data, we remarked that not imposing the positivity constraint and taking the positive
part of the reconstructed image at the end of the process yielded visually more satisfactory results.

We can see that the computation of ∇f(vn) = A∗Avn − A∗s2d is needed at each iteration
n ≥ 0 of the scheme in (35b). The term A∗s2d never changes and can be computed once and for
all using Algorithm 2. The term A∗Avn could be computed by using successively Algorithm 1 and
Algorithm 2, however, this computation is rather costly since NFFTs are involved in both algorithms.
In fact, the terms A∗Avn can be evaluated in a more efficient way thanks to Proposition 1.

Proposition 1. Let v ∈ RΩ2d and denote by Zv and ϕ the two-dimensional discrete signals defined
over the augmented domain Υ2d = I2M × I2M by,

∀(k, `) ∈ Υ2d , Zv(k, `) =

{
v(k, `) if (k, `) ∈ Ω2d

0 otherwise,
(38)

and ϕ(k, `) =
δ4

NB

·
∑

α∈Z, |α|<M/2
p∈{1,2,...,Nθ}

DFT(hd
X)(α) ·DFT(hd

X)(α) · e2iπ(k αM cos θp+` α
M

sin θp) . (39)

Then, A∗Av corresponds to the restriction of ϕ~ Zv to Ω2d, i.e., we have

∀(k, `) ∈ Ω2d , A∗Av(k, `) = (ϕ~ Zv) (k, `) . (40)

Proof. See Appendix D.

In other words, the hypermatrix of A∗A has a Toeplitz structure and A∗Avn can be computed
using two sequential FFTs. This property was first used for Computer Tomography in [26] and
for EPR imaging in [11]. It therefore allows to quickly compute the gradient of the data fidelity
u 7→ 1

2
‖Au − s2d‖2

2. Notice that the proximity operator of the latter can also be computed using
Proposition 1 provided we can quickly invert A∗A + I (where I denotes the identity operator). For
this purpose, A∗A is approximated by a circulant hypermatrix in [11]. In this article, we have instead
chosen to carry out a forward gradient descent on the primal variable or, in other words, change the
algorithm of [6] into that of [8, 43, 7].

Corollary 2. We have the upper bound |||A∗A||| ≤ L′f := ‖DFT(ϕ)‖∞ . Then, setting τ = 1/(2L′f )
and σ = L′f/(8λ

2) ensures that (37) is fulfilled.

Proof. Thanks to Proposition 1, for any v ∈ RΩ2d , we have ‖A∗Av‖2
2 ≤ ‖ϕ~Zv‖2

2. Then, Parseval’s
identity yields ‖ϕ~Zv‖2

2 = 1
4M2

∑
(α,β)∈Υ2d

|DFT(ϕ)(α, β) ·DFT(Zv)(α, β)|2 ≤ L′f
2‖Zv‖2

2 = L′f
2‖v‖2

2,

from which the announced upper-bound |||A∗A||| ≤ L′f follows.

From the kernel ϕ and using Corollary 2, we are able to compute an explicit bound for |||A∗A|||,
which yields an explicit setting of the time-step parameters (τ, σ) that ensures the convergence of
the scheme toward a minimizer of J2d

λ . The computation of the kernel ϕ can be done using NFFT
and since this kernel does not change during the scheme iterations, it can be computed once and
systematically used to evaluate A∗Avn at each iteration of the scheme using (40). Finally, the
whole procedure for the reconstruction of an image vλ by minimization of J2d

λ over the constraint set
C = RΩ2d

+ or C = RΩ2d is summarized in Algorithm 5.
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Algorithm 5: 2D discrete image reconstruction from a 2D discrete sinogram.

Inputs: a 2D discrete sinogram s2d : INB × {1, 2, . . . , Nθ} → R with size NB ×Nθ, the
associated discrete spectrum hd

X : INB → R with size NB, the associated sequence containing
the Nθ polar angles (θp)1≤p≤Nθ , a positive integer M ≤ NB corresponding to the desired width
(also equal to the height) for the output image (with domain Ω2d = IM × IM), a regularity
parameter λ > 0, and a number of iterations N ≥ 0 for the numerical scheme (35).

Optional inputs: a flag specifying whether we aim to minimize J2d
λ over the set C = RΩ2d

(unconstrained minimization) or over the set C = RΩ2d
+ (nonnegativity constraint), an initial

guess v0 ∈ RΩ2d for the looked for image (if not provided, use v0 = 0Ω2d = the zero-valued
image in RΩ2d), the radial sampling step δr = δB

µ
(if not provided, set δr = 1).

Outputs: a numerical estimate of a minimizer vλ of J2d
λ over C .

Core of the module:

// precompute A∗s2d and the kernel ϕ, initialize other variables

Astar s← A∗s2d // using Algorithm 2 with δr as optional input

phi← ϕ // using (39) with δ = δr · NBM and a NFFT algorithm like [22]

dft phi← DFT(phi) // using the FFT Algoritm [15]

L′f ← max(α,β)∈Υ2d |dft phi(α, β)|
τ ← 1/(2L′f)

σ ← L′f/(8λ
2)

(v, v, v prev)← (v0, v0, v0)
p← (0Ω2d ,0Ω2d)

// main loop (iterations of the scheme (35))

for 1 ≤ n ≤ N do

// compute ∇f(v) = A∗Av −A∗s2d

dft Zv← DFT(Zv) // where Zv is obtained from v using (38)

dft w← dft phi · dft Zv // we have dft w = DFT(ϕ~ Zv)

AstarA v← the restriction of IDFT(dft w) to Ω2d

gradf v← AstarA v− Astar s

// perform one scheme iteration

p← ΠB2d (p + σλ∇2dv) // using (36)

v← v− τ · (gradf v− λ div2d(p)) // using (68)

if C = RΩ2d
+ then v← max (0Ω2d , v) // projection into C by taking the positive part

v← 2v− v prev

v prev← v

return the 2D discrete image v // sampling step (or pixel size) is δ = δr · NBM (same unit as δr)

4.2 Three-dimensional image reconstruction

In the 3D setting, we adopt the same methodology. Given the observed 3D sinogram s3d ≈ BũX
and a regularity parameter λ > 0, we address the TV-regularized (constrained of unconstrained)
least-squares problem

uλ ∈ argmin
u∈C ′

J3d
λ (u) :=

1

2
‖Bu− s3d‖2

2 + λTV(u) , (41)
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where C ′ = RΩ3d (unconstrained case) or C ′ = RΩ3d
+ (nonnegatively constrained case), and where

∀u ∈ RΩ3d , TV(u) =
∑

(k,`,m)∈Ω3d

‖∇3du(k, `,m)‖2 ,

denoting by ∇3du = (∇3d
x u,∇3d

y u,∇3d
z u) the 3D forward differences scheme defined by, for all

(k, `,m) ∈ Ω3d,

∇3d
x u(k, `,m) =

{
u(k + 1, `,m)− u(k, `,m) if (k + 1, `,m) ∈ Ω3d

0 otherwise;

∇3d
y u(k, `,m) =

{
u(k, `+ 1,m)− u(k, `,m) if (k, `+ 1,m) ∈ Ω3d

0 otherwise;

∇3d
z u(k, `,m) =

{
u(k, `,m+ 1)− u(k, `,m) if (k, `,m+ 1) ∈ Ω3d

0 otherwise.

We denote by div3d = −∇∗3d the opposite adjoint of ∇3d (see Appendix C) and f ′ : u 7→ 1
2
‖Bu−s3d‖2

2

the data fidelity term involved in (41). The Euclidean non-ergodic non-linear primal-dual algorithm
proposed in [7] yields the following resolvant scheme for (41). Given u0 ∈ RΩ3d , p0 ∈ RΩ3d×RΩ3d×RΩ3d

and two positive parameters (τ, σ), set u0 = u0 and iterate for n ≥ 0
pn+1 = ΠB3d (p+ σλ∇3du

n)

un+1 = ΠC ′
(
u− τ

(
∇f ′(un)− λ div3d(pn+1)

))
un+1 = 2un+1 − un

(42a)

(42b)

(42c)

denoting by ΠC ′ the orthogonal projection into C ′ and ΠB′ the orthogonal projection into the dual
ball B3d := {p ∈ RΩ3d × RΩ3d × RΩ3d , ∀(k, `,m) ∈ Ω3d , ‖p(k, `,m)‖2 ≤ 1}, i.e.,

∀p0 ∈ RΩ3d × RΩ3d × RΩ3d , ∀(k, `,m) ∈ Ω3d , ΠB3d(p0)(k, `,m) =
p0(k, `,m)

max (1, ‖p0(k, `,m)‖2)
. (43)

The gradient ∇f ′ of the data-fidelity term f ′ involved in (42b) satisfies

∀u ∈ RΩ3d , ∇f ′(u) = B∗Bu− B∗s3d . (44)

The constant term B∗s3d can be computed once using Algorithm 4 and used along all the iterations
of the scheme (42) as it keeps unchanged. The terms B∗Bun involved in (42b) through the term
∇f ′(un) can be efficiently computed using a circular convolution as we can show that

∀u ∈ RΩ3d , ∀(k, `,m) ∈ Ω3d , B∗Bu(k, `,m) = (ψ ~ Zu) (k, `,m) , (45)

where ψ and Zu are the discrete signals defined over the augmented domain Υ3d := I2M × I2M × I2M

by

∀(k, `,m) ∈ Υ3d , Zu(k, `,m) =

{
u(k, `,m) if (k, `,m) ∈ Ω3d

0 otherwise
(46)

and ψ(k, `,m) =
δ6

NB

·
∑

α∈Z |α|<M/2
p∈{1,2,...,Nθ}
q∈{1,2,...,Nϕ}

ŵ(α) · e2iπ(k αm cos θp sinϕq+`
α
M

sin θp sinϕq+m
α
M

cosϕq) . (47)

denoting ŵ(α) = DFT(hdX)(α) · DFT(hdX)(α). Last, using the upper-bounds |||∇3d||| ≤
√

12 and
|||B∗B||| ≤ L′f ′ := ‖DFT(ψ)‖∞, the convergence of the scheme (42) is ensured for τ = 1/(2L′f ′) and
σ = L′f ′/(12λ2). Finally, the reconstruction of a 3D image uλ from the 3D sinogram s3d can be done
using Algorithm 6.
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Algorithm 6: 3D discrete image reconstruction from a 3D discrete sinogram.

Inputs: a 3D discrete sinogram s3d : INB × {1, 2, . . . , Nθ} × {1, 2, . . . , Nϕ} → R with size
NB ×Nθ ×Nϕ, the associated discrete spectrum hd

X : INB → R with size NB, the associated
sequences containing the Nθ polar angles (θp)1≤p≤Nθ and the Nϕ azimuthal angles (ϕq)1≤q≤Nϕ,
a positive integer M ≤ NB corresponding to the desired width (also equal to the height and
depth) for the output image (with domain Ω3d = IM × IM × IM), a regularity parameter λ > 0,
and a number of iterations N ≥ 0 for the numerical scheme.

Optional inputs: a flag specifying whether we aim to minimize J3d
λ over the set C ′ = RΩ3d

(unconstrained minimization) or over the set C ′ = RΩ3d
+ (nonnegativity constraint), an initial

guess u0 ∈ RΩ3d for the looked for image (if not provided, use u0 = 0Ω3d = the zero-valued
image in RΩ3d), the radial sampling step δr = δB

µ
(if not provided, use δr = 1).

Outputs: a numerical estimate of a minimizer uλ of J3d
λ over C ′.

Core of the module:

// precompute B∗s3d and the kernel ψ, initialize other variables

Bstar s← B∗s3d // using Algorithm 4 with δr as optional input

psi← ψ // using (47) with δ = δr · NBM and a NFFT algorithm like [22]

dft psi← DFT(psi) // using the 3D FFT Algoritm [15]

L′fprime ← max(α,β,γ)∈Υ3d |dft psi(α, β, γ)|
τ ← 1/(2L′fprime)

σ ← L′fprime/(12λ2)

(u, u, u prev)← (u0, u0, u0)
p← (0Ω3d ,0Ω3d ,0Ω3d)

// main loop (iterations of the scheme (42))

for 1 ≤ n ≤ N do

// compute ∇f ′(u) = B∗Bv − B∗s3d

dft Zu← DFT(Zu) // where Zv is obtained from v using (46)

dft w← dft psi · dft Zu // we have dft w = DFT(ψ ~ Zu)

BstarB u← the restriction of IDFT(dft w) to Ω3d

gradfprime u← BstarB u− Bstar s

// perform one scheme iteration

p← ΠB3d (p + σλ∇3du) // using (43)

u← u− τ · (gradfprime u− λ div3d(p)) // using (69)

if C ′ = RΩ3d
+ then u← max (0Ω3d , u) // projection into C ′ by taking the positive part

u← 2u− u prev

u prev← u

return the 3D discrete image u // sampling step (or pixel size) is δ = δr · NBM (same unit as δr)

5 Extension to Huber total variation regularization

A classical issue encountered with the minimization of TV regularized energies like J2d
λ (see (32)) or

J3d
λ (see (41)) is the so called staircasing artifact which corresponds to the creation of piecewise con-

stant regions with artificial boundaries in the reconstructed image. The latter is due to the excessive
promotion of piecewise constant images by the TV regularity term in the minimization process. The
staircasing issue has been reported and addressed in many different ways in the literature. A popular
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strategy consists in introducing in the energy to minimize some higher order terms [5, 3], or tex-
ture promoting terms based on wavelets or curvelets [31, 11]. A quite elegant (but computationally
expensive) strategy to avoid staircasing was proposed in [27, 28] and is based on the computation
of the posterior mean of a TV-based distribution. A very interesting and computationally efficient
variant of this latter approach was also proposed in [29] but remains, to this date, restricted to image
denoising. In this section, we would like to briefly focus on a very simple variant of TV, called the
Huber TV, which can be used to avoid staircasing and generate more natural images than those
obtained with the classical TV [6]. In the 2D framework, the Huber TV of a discrete image v ∈ RΩ2d

is defined as

HTVα(v) =
∑

(k,`)∈Ω2d

H2d
α (∇2dv(k, `)) , (48)

where α ≥ 0 is a smoothing parameter and H2d
α : R2 → R is the two-dimensional Huber function

defined by

∀z ∈ R2 , H2d
α (z) =

{ ‖z‖22
2α

if ‖z‖2 < α
‖z‖2 − α

2
otherwise.

(49)

Function H2d
α corresponds to a smooth approximation of the `2 norm in R2 (more precisely, to the

Moreau-Yoshida envelope with parameter α of the `2 norm). Notice that for α = 0, (49) yields
H0 = ‖ · ‖2, and thus, HTV0 = TV. When α > 0, we can simply handle the minimization of the
Huber-TV regularized energy

J2d
λ,α : v 7→ 1

2
‖A(v)− s2d‖2

2 + λHTVα(v) (50)

using the numerical scheme (35) provided that we replace the dual update (35a) by

pn+1 = ΠB2d

(
pn + σλ∇2dv

n

1 + λασ

)
. (51)

Consequently, the minimization of J2d
λ,α can be done using Algorithm 5 provided that we replace the

update p← ΠB2d (p + σλ∇2dv) by p← ΠB2d

(
p+σλ∇2dv

1+λασ

)
. The same extension can be done in the 3D

framework by replacing the update p← ΠB3d (p + σλ∇3du) by p← ΠB3d

(
p+σλ∇3du

1+λασ

)
in Algorithm 6.

TV and Huber-TV image reconstruction models will be compared in Section 7.2.2.

6 Acquisition process and parameters setting

6.1 Acquisition of the reference spectrum

An EPR experiment usually starts with the acquisition of the signal hd
X defined in (27). This signal

corresponds to the filtered and sampled reference spectrum of the specie X. It can be obtained (up to
a multiplicative factor corresponding to the total amount QX of substance X present in the cavity)
by running an EPR acquisition in presence of the homogeneous magnetic field and without any
field gradient (i.e., using µ = 0, as in the spectroscopy framework). The acquired signal can be
renormalized afterward to get rid of the multiplicative factor QX , but we will ignore this step as
we do not focus on quantitative image reconstruction (e.g. concentration estimation) and it has no
impact on the final image quality. The acquisition of the signal hd

X requires from the operator to
adjust the center field Bcf, the sweep width Bsw and the number of sampling points NB. For that
purpose, the operator tunes the acquisition range Bcf +

[
−Bsw

2
, Bsw

2

]
so that all the signal of interest

(i.e., all the rays of the reference spectrum) is captured, as displayed in Figure 4 (a). During the
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(a) filtered and sampled reference spectrum hd
X (b) DFT amplitude of hd

X and support estimation

Figure 4: Acquisition of the filtered reference spectrum and frequency support estimation.
we display in (a) the spectrum acquisition hd

X of an irradiated distal phalanx that will be presented and
studied in more details in Section 7.2. The spectrum hd

X was sampled using NB = 2000 points and a sweep
width Bsw equal to 719.44 G, leading to a sampling step δB = Bsw

NB
≈ 0.36 G. We display in (b) the DFT

amplitude of hd
X . We can see that the amplitude of the DFT coefficients of hd

X rapidly drop below the noise
level so that we can consider that they vanish outside from the estimated DFT support delimited by the
red dashed lines. The size of estimated DFT support is M = 500 which represents a proportion of M

NB
= 1

4

of the total number of samples. This means that the signal hd
X was oversampled with a factor four and

that another acquisition of this signal with four times less samples (i.e., using δB = Bsw
M ≈ 1.44 G) should

theoretically not cause any loss of relevant information compared to the oversampled acquisition (a).

first acquisition attempts, the number of sampling points NB must be set large enough to capture
the signal oscillations. At this step of the acquisition process, we recommend to the operator to set
a voluntary too large value for NB (i.e., to perform an oversampled acquisition) as we will explain
how this parameter can be tuned from hd

X afterward. As mentioned earlier, during this adjustment
step, care should be taken to ensure that once the field gradient is applied, the totality of the sample
remains included in the FOV (recall that the FOV diameter is Dfov = Bsw/µ). Also, it must be
noted that the acquired signal is corrupted by noise. In practice, several other parameters that we
did not explicitly take into account in our model (such as, for instance, time integration parameters,
amplitude and frequency modulation parameters, etc.) may strongly influence the signal to noise
ratio (SNR) of the acquired signal hd

X .

6.2 Optimal number of samples and sinogram acquisition

At this time of the acquisition process, we performed the acquisition of hd
X with a voluntary too large

number of samples NB. Although, in general, the acquisition of the spectrum hd
X can be done in a

reasonably short time despite the too large setting of NB, this is usually not the case for the upcoming
sinogram acquisition. Indeed, with NB (and all other acquisition parameters) kept unchanged, the
sinogram acquisition time roughly corresponds to the time necessary to acquire hd

X multiplied by
the number of projections (typically several tens to several hundred). As the acquisition time is
often a limiting factor for EPR imaging applications, the setting of NB must be optimized before
starting the sinogram acquisition. On the one hand, the number of sampling points NB must be set
large enough to ensure that the sampling step δB = Bsw/NB is small enough to perform a correct
sampling of the signal (more precisely δB must be below the critical sampling step ν imposed by the
acquisition system cut-band filtering gν described in Section 2.4). On the other hand, NB must also
be kept small enough to avoid too long acquisition time for the sinogram. Besides, too large values
for NB yield a subcritical sampling step δB < ν and correspond to oversampling situations where
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the acquired signal hd
X does not contain more information than the signal acquired using δB = ν

(see Theorem (2)). Therefore, a somehow optimal setting for NB corresponds to the situation where
δB = ν, i.e.,

δB =
Bsw

NB

= ν ⇔ NB =
Bsw

ν
=

for any µ6=0

Bsw

µ δ
= M (52)

since δ = ν/µ (see Section 2.4). Finally we see that the optimal value for NB is simply equal to M
(which is not surprising since M = NB corresponds to the critical sampling situation). However,
with our EPR acquisition system, the actual value of ν used during the acquisition is unknown (we
believe this is also the case for other EPR setups), so that we cannot directly compute the actual
value of M . Thankfully, it can be estimated from the signal hd

X (acquired with NB > M). Indeed,
thanks to (27), in the Fourier domain, we have

∀α ∈ INB ,
1

δB
·DFT(hd

X)(α) ≈ F (gν ∗ hX)

(
2πα

δBNB

)
=

{
F (hX)

(
2πα
δBNB

)
if
∣∣∣ 2πα
δBNB

∣∣∣ ≤ π
ν

0 otherwise.

Since
∣∣∣ 2πα
δBNB

∣∣∣ ≤ π
ν

is equivalent to |α| ≤ M/2, we can estimate M (and thus ν) by finding the

boundaries of the support of DFT(hd
X). In practice, due to the presence of noise corrupting the

signal hd
X , its DFT coefficients do not vanish. Therefore, we suggest to consider that the support of

DFT(hd
X) corresponds to the positions α ∈ INB such as DFT(hd

X)(α) is significantly above the noise
level, as illustrated in Figure 4 (b). This can be done by visual inspection of the signal |DFT(hd

X)|,
but we also provide an automatic frequency support detection algorithm for that purpose. The latter
is based on the a contrario methodology [9] and is described in Appendix E. Once M is known, we
can set NB = M and run the sinogram acquisition. Notice that since the estimated value of M is
dependent from the noise level, it is important to keep the same noise level as for hd

X during the
sinogram acquisition (i.e., except for the number of samples, all the acquisition parameters must
be kept unchanged). Regarding the filtered reference spectrum hd

X , it can be acquired again with
NB = M , or computed from the oversampled acquisition by mean of a frequency cutoff.

6.3 Optimal resolution for the image reconstruction

The value of M corresponds to the number of pixels along each direction of the discrete images ṽX
(in the 2D setting) and ũX (in the 3D setting) obtained by sampling the bandlimited ṼX and ŨX
over the FOV domain using the critical sampling step δ. The value of the critical sampling step δ
can be easily derived from M using (52), or equivalently, using

δ = δr
NB

M
with δr =

Bsw

µNB

, (53)

as we already mentioned before. As we will check experimentally, there is no valuable reason for
computing an image with spatial sampling step δ′ < δ since such image cannot contain more details
than the critically sampled one. On the contrary, computing an image with spatial sampling step δ′ >
δ yields in general a less detailed image than the critically sampled one. In practice, in Algorithm 5
and Algorithm 6, we let to the user the ability to select the image reconstruction size M ′ (and thus
the image sampling step δ′ = δr

NB
M ′ ) for the following reasons:

(i) Most of our EPR acquisitions were done in oversampled situations (with oversampling factor
up to 4, as in Figure 4), leaving door for the setting of a reconstruction size M ′ > M . We want
to be able to deal with such oversampled acquisitions and check that the reconstruction of an
image with sampling step δ′ < δ does not yield a better level of details compared to the image
obtained using M ′ = M (and sampling step δ′ = δ).
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(ii) On the contrary, setting an image reconstruction size M ′ < M amounts to select a sub-optimal
sampling step δ′ > δ which may lead to a degraded level of details for the computed image.
However, such situation also yields a faster reconstruction, leaving door for efficient multiscale
image reconstruction schemes. In practice, the fast reconstruction of a coarse scaled image is
helpful to tune the regularity parameter λ before refining the processing at finer scales.

(iii) The actual optimal level of details that we can obtain in the reconstructed image actually
depends on other acquisition parameters (such as the number of projections) that are not taken
into account here. Thus, the reconstruction size M corresponds in practice to an upper bound
from the actual optimal reconstruction size.

We believe that offering to the user an accurate estimate of the optimal reconstruction size M
from an oversampled spectrum acquisition like that displayed in Figure 4 (a) is an important step
forward regarding the optimization of the acquisition and reconstruction process. From the optimal
value of M , the value of the radial sampling step δr and the value of the field gradient intensity µ,
the user is able to compute the value of the critical sampling step δ which can be roughly interpreted
as the smallest detail size that we can hope to observe in the reconstructed image and which is often
a crucial information for the EPR imagist. Besides, knowing the optimal value for M is also helpful
to avoid spending unnecessary large computation time in the reconstruction of an image with too
large dimensions.

6.4 Tuning of the regularity parameter

The reconstruction of a 2D image using Algorithm 5 (respectively of a 3D image using Algorithm 6)
requires the setting of the regularity parameter λ involved in the energy J2d

λ defined in (32) (respec-
tively in the energy J3d

λ defined in (41)). This parameter controls the relative importance of the
least-squares data-fidelity term with respect to the TV regularity term in the energy minimization
process. In general, the range of appropriate values for λ (that is, leading to satisfactory image
reconstructions) strongly depends on the amounts of noise corrupting the data, but also on modeling
errors, on the content of the (unknown) image to reconstruct, and also on more complex factor such
as some user needs regarding the reconstruction. Therefore, deriving an automatic setting for this
parameter is a complex task that we will not address here. However, we believe that the tuning of λ
can be drastically eased provided that we apply an appropriate rescaling of the energy to minimize.

Let us focus first on the 2D setting. We assume that the polar angle grid (θp)1≤p≤Nθ associated
to the 2D sinogram s2d is regularly spaced with sampling step δθ. This assumption is not manda-
tory but simplifies the discussion and corresponds to the classical acquisition setting using Bruker R©

instruments. Then, instead of tuning λ, we suggest to set

λ = 105 λ
′δ

δBδθ
(54)

and let to the user the task of tuning λ′. The reason for this choice is that, minimizing J2d
λ with λ

satisfying (54) is equivalent to minimize the normalized energy J̃λ′ defined by

∀v ∈ Ω2d , J̃2d
λ′ (v) =

δBδθ
2 · 105

‖Av − s2d‖2
2 + λ′δTV(v) (55)

where the normalized least-squares term δBδθ
2
‖Av − s2d‖2

2 and the normalized regularity term
δTV(v) are less dependent on the sampling steps δ, δB and δθ than the unnormalized least-squares
term 1

2
‖Av − s2d‖2

2 and the unnormalized regularity term TV(v). Practically speaking, this means
that an appropriate tuning of the normalized regularity parameter λ′ can be used almost unchanged
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for reconstructions at different sampling steps δ from the same sinogram s2d, or from a sinogram
acquisition to another with different sampling steps δB and δθ. Notice that the multiplicative factor
105 in (54) has no physical meaning and was introduced to reduce the amplitude of the appropriate
settings for λ′ over our own EPR acquisitions.

In the 3D setting, we add the assumption that the azimuth angle grid (ϕq)1≤q≤Nϕ is regularly
spaced with sampling step δϕ. Then, we set

λ = 108 λ′δ2

δB δθδϕ
(56)

so that minimizing J3d
λ with λ satisfying (56) is equivalent to minimizing the normalized energy J̃3d

λ′

defined by

∀u ∈ Ω3d , J̃3d
λ′ (u) =

δBδθδϕ
2 · 108

‖Bu− s3d‖2
2 + λ′δ2 TV(u) , (57)

and provides the same practical advantages as those presented in the 2D setting in terms of invariance
of the tuning of the normalized parameter λ′ with respect to the sampling steps δ, δB, δθ and δϕ.

6.5 Huber smoothing parameter

Using Huber TV image reconstruction model described in Section 5 requires the setting of the Huber-
smoothing parameter α. As the λ parameter, α is unnormalized in the sense that its influence on
the visual aspect of the reconstructed image strongly depends on the value of the spatial sampling
step δ used for the reconstruction. Such dependence complicates the parameter tuning process when
reconstructions with different sampling steps must be done. To avoid this phenomenon, we introduce
the rescaling

α = α′δ with α′ ≥ 0, (58)

letting to the user the task of setting the value of the normalized parameter α′. Combining the
rescaling operations (54) and (58) in (50) provides, for a given choice of (λ′, α′), images with similar
dynamic and comparable visual aspect for a large range of values for the spatial sampling δ.

7 Experiments over real EPR data

7.1 EPR acquisition systems

In Figure 5, we display the pictures the two EPR spectrometers (and imaging systems) that we used
to perform the acquisition of all datasets studied in this section. In both instruments, the resonance
cavity is surrounded by two large primary coils generating the homogeneous magnetic field inside
the cavity. Secondary coils are placed in between the primary coils and are used to generate the
magnetic field gradient needed for EPR imaging purpose. A microwave bridge is used to apply
an electromagnetic wave to the sample and detect energy absorption caused by electron resonance.
The spectrometer displayed in Figure 5 (a) is operated in X-Band, meaning that a microwave with
frequency of roughly 10 GHz is applied to the sample, yielding a single electron resonance magnetic
field characteristic value of around 3500 G. The EPR acquisition system displayed in Figure 5 (b) is
operated in L-band, with a microwave around 1 GHz, leading to a characteristic resonance magnetic
field of around 350 G. Due to dielectric losses, the penetration of the microwave in sample containing
water is around 1 mm at X-Band and few cm at L-band. The L-band spectrometers are used for
in vivo experiments and samples with large dimensions, while X-band ones are used for in vitro
experiments in flat cells and capillary tubes.
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(a) X-band EPR 2D imaging system (b) L-band EPR 2D and 3D imaging system

Figure 5: EPR spectrometers and imaging systems installed at Université Paris Cité. We display
some pictures of the X-band (a) and L-band (b) spectrometers hosted at LCBPT. In (a), the primary coils
generating the homogeneous magnetic field are indicated with green arrows. Secondary coils (two pairs
packaged together are indicated with blue arrows) can be used to apply a planar magnetic field gradient
with intensity up to 175 G/cm in the cavity for EPR imaging purposes. As we shall see, such large field
gradient intensity allows for high resolution image reconstruction. However, the space in between the primary
coils is insufficient to stand the third pair of gradient coils needed to achieve non-planar 3D field gradient
orientations. Therefore the X-band device (a) is restricted to 2D imaging. The L-band spectrometer (b) is
equipped with three pairs of gradient coils and can be used for 3D EPR imaging acquisitions. However, the
signal intensity in L-band spectrometer is a magnitude lower than the one in X-band system because the
lower homogeneous magnetic field generated by its primary coils (up to only 0.05 T = 500 G) leads to lower
separation of the energy levels of the single electrons. Besides, the field gradient intensity cannot be larger
than 45 G/cm on this L-band instrument. In general, EPR images reconstructed from L-band acquisition
are less resolved than those obtained with X-band.

7.2 2D image reconstruction of an irradiated phalanx

In this section, we focus on 2D image reconstruction of an irradiated distal phalanx (see Figure 6 (a)).
Irradiations generate paramagnetic damages of the bone lattice microarchitecture that can be ob-
served using EPR imaging [24, 11]. The spectrum displayed in Figure 4 (a) corresponds to a real
X-band EPR acquisition obtained from this phalanx sample and a 2D sinogram acquisition is also
displayed in Figure 6 (b). A non exhaustive list and values (or range of values) of the acquisition
parameters that we used in our experiments is displayed in Table 1. The exact setting for the pa-
rameters µ, NB and δr = Bsw

µNB
will be precised for each experiment. As regard the reconstruction

parameters, we will provide for each experiment the value of the spatial sampling step δ and the value
of the normalized regularity parameter λ′. The effective value of the (unnormalized) parameter λ can
be obtained using (54) (with δB expressed in Gauss unit, δθ in radian unit and δ in millimeter unit).
Notice that all images displayed in this section correspond to the positive part of those returned by
Algorithm 5.
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name description value (or range) unit

µ field gradient intensity 42 ∼ 168 G/cm
NB number of samples per projection 500 ∼ 2000 –
δr radial sampling step 21.4 ∼ 85.6 µm
Bcf center field 3428.20 G
Bsw sweep width µNB δr · 10−4 G

δB homogeneous magnetic field intensity sampling step Bsw
NB

G

Nθ number of projections 113 –
δθ angular sampling step 1.6 degree
τc time constant 163 ms
– conversion time same as τc ms
– microwave frequency 9.56 GHz
– microwave power 9.99 mW
– power attenuation 33 dB
– amplitude modulation 3 G
– frequency modulation 100 kHz

Table 1: Main acquisition parameters used with the phalanx sample (X-band). We provide
here the values (or range of values) of the acquisition parameters that we used to perform spectra and 2D
sinogram acquisitions presented in this section. The first height parameters (µ,NB, δr, Bcf, Bsw, δB, Nθ, δθ)
were explicitly taken into account in the mathematical models described in this work. This is not the
case for the remaining parameters although they are in practice important to the EPR spectroscopists.
Their accurate tuning strongly impacts the measurements quality, and thus, indirectly, the overall image
reconstruction.

(a) irradiated distal phalanx (b) example of measured 2D sinogram

Figure 6: Irradiated phalanx and a 2D sinogram acquisition. We display (a) a picture of the distal
phalanx and (b) a 2D sinogram acquisition obtained using NB = 2000 samples per projections, a field
gradient intensity µ = 168 G/cm and a radial sampling step δr = Bsw

µNB
≈ 21.4 µm. A filtered and sampled

reference spectrum (linewidth=3.8 G) associated to this 2D sinogram acquisition is displayed in Figure 4 (a).

7.2.1 Setting of the TV regularity parameter

As a first dataset, we consider the spectrum displayed in Figure 4 (a) and the sinogram displayed in
Figure 6 (b). This dataset was acquired using NB = 2000 samples per projection, a field gradient
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intensity µ = 168 G/cm and a radial sampling step δr ≈ 21.4 µm. In Figure 7, we display the
images reconstructed from this dataset for various values of normalized regularity parameter λ′.
This experiments illustrates the benefits (and limits) of TV regularization in the image reconstruction
process.

(a) λ′ = 1 (b) λ′ = 10 (c) λ′ = 50 (d) λ′ = 100

Figure 7: Setting of the regularity parameter. We used Algorithm 5 to process the spectrum and the
sinogram displayed in Figure 4 (a) and Figure 6 (b) for various values of λ′. All reconstructions were made
using M = 500 (which corresponds to a spatial sampling step δ = δr

NB
M ≈ 85.6 µm and is the recommended

setting for this dataset according to Section 6.3). One can see that the setting λ′ = 1 (see (a)) yields
an image with important residual noise due to a lack of regularization. Increasing λ′ yields images with
increasing regularity (see (b), (c), and (d)) but also involves a loss of details for too large values of λ′. In
the present experiment, the setting λ′ = 10 (see (b)) seems to achieve a correct tradeoff between image
regularity and detail preservation.

7.2.2 Huber-TV based image reconstruction

We explained in Section 5 how Algorithm 5 could be extended to handle the minimization of the
Huber-TV regularized energy (50). This model involves the tuning of another (normalized) parameter
α′ (see Section 6.5), and can be viewed as a generalization of (32) since both models are identical when
α′ = 0. In Figure 8, we used the same dataset as in Figure 7 to illustrate how the Huber smoothing
parameter may impact the visual aspect of the reconstruction. This experiment illustrates that, for
an appropriate setting of (λ′, α′), the Huber-TV generalization of the image reconstruction model can
lead to images with more natural aspect. However the improvements in terms of texture rendering
also come with two main drawbacks. First, the setting α′ > 0 yields more blurry images than the
setting α′ = 0. Second, the tuning of α′ is dependent from that of λ′ (and reciprocally), so that, in
practice, the joint tuning of (λ′, α′) is a more complicated task than the tuning of the single parameter
λ′ in the case α′ = 0. Besides, the value of the field gradient intensity (µ = 168 G/cm) used for
this dataset is close to the highest value allowed by the acquisition system. Most EPR acquisitions
are done with smaller values of field gradient, leading to less detailed images where micro-texture
rendering is not a relevant issue (this will be illustrated in Section 7.2.5). In practice, we believe that
one would probably prefer to set α′ = 0 rather than jointly tuning (λ′, α′) for processing most EPR
acquisitions.
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(a) λ′ = 10, α′ = 0 (b) λ′ = 10, α′ = 0.01 (c) λ′ = 10, α′ = 0.02 (d) λ′ = 10, α′ = 0.05

(e) λ′ = 100, α′ = 0 (f) λ′ = 100, α′ = 0.01 (g) λ′ = 100, α′ = 0.02 (h) λ′ = 100, α′ = 0.05

Figure 8: Huber-TV based image reconstruction. In this experiment, we considered the extension
of Algorithm 5 presented in Section 5, which addresses image reconstruction using a Huber-TV regularized
model. The latter relies on an additional parameter α = α′δ (see Section 6.5), with α′ ≥ 0 that must be
set by the user. The TV-regularized image reconstruction model corresponds to the setting α′ = 0 (since
HTV0 = TV), and leads to the images displayed in Figure 7. In the first row, we display the images obtained
from the same dataset for λ′ = 10 and several values of α′. The staircasing effect can be observed in (a),
almost no difference can be observed in (b) while we can see in (c) that the setting α′ = 0.02 yields a
slightly more textured image. However, for α′ ≥ 0.05, the Huber TV regularizer is not able to efficiently
deal with the noise (see (d)). Better handling of the noise remains possible by increasing the value of λ′,
as illustrated in the second row. This time, the setting α′ ∈ {0.01, 0.02} allows to get rid of the strong
staircasing effect observed in (e). For α′ = 0.05 (see (h)), the large regularization weight (λ′ = 100) avoids
the noise amplification observed in (d) and yields a somehow more natural image than (a) or (e), but also
a more blurry reconstruction. Notice that this dataset was acquired using a strong field gradient (µ = 168
G/cm) to allow for high resolution reconstruction of this highly textured phalanx sample. This makes the
staircasing artifacts especially visible in the reconstruction.
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7.2.3 Setting of the reconstruction resolution

As in the previous section, we consider the dataset made of the spectrum displayed in Figure 4 (a)
and the sinogram displayed in Figure 6 (b), acquired using NB = 2000 samples per projections, a
field gradient intensity µ = 168 G/cm and a radial sampling step δr ≈ 21.4 µm. In Figure 9, we
display images reconstructed from this dataset using Algorithm 5 with various settings of the image
reconstruction size M , corresponding to various settings for the spatial sampling step δ = δr

NB
M

.
This experiment illustrates that the optimal reconstruction size for this dataset is close to M = 500
(which corresponds to a spatial sampling step δ ≈ 85.6 µm), as predicted in Figure 4 (b) using the
methodology presented in Section 6.3. In particular, it must be noted that image reconstruction using
M > 500 is computationally expensive and does not lead to a more detailed reconstruction at the end
of the process. Note also that the reconstructions with different sizes and sampling steps displayed
in Figure 9 were obtained using the common setting λ′ = 10 for the normalized regularity parameter
leading to images with very similar dynamics and SNR. In practice, and as announced in Section 6.4,
this means that the user can tune the value of λ′ at a coarse resolution scale (taking benefit from
fast computations) before performing the reconstruction of an image with finer resolution keeping λ′

unchanged.

(a) δ = 340 µm (M=126) (b) δ = 171 µm (M=250) (c) δ = 85.6 µm (M=500) (d) δ = 42.8 µm (M=1000)

Figure 9: Reconstructions at different resolutions from the same sinogram acquisition. We
used Algorithm 5 to process the discrete spectrum hd

X displayed in Figure 4 (a) and the 2D sinogram s2d

displayed in Figure 6 (b). The reconstruction was done for various image reconstruction sizes M using
the same setting λ′ = 10 for the normalized regularity parameter and α′ = 0 for the normalized Huber
smoothing parameter. The spatial sampling step δ associated to each reconstructed image is δ = δr

NB
M .

According to Section 6.3 and Figure 4 (b), the recommended reconstruction size for this dataset is M = 500
(which corresponds to δ ≈ 85.6 µm). Comparing (a) to (b) and (c) we can see that the level of details in
the reconstructed images increases as δ decreases. However, we observe no perceptual improvements in (d)
compared to (c), as predicted in Figure 4 (b).

7.2.4 Tuning of the number of samples for the sinogram acquisition

In Section 6.2, we claimed that the value of M estimated from the oversampled spectrum acquisition
also corresponds to the optimal value for NB (the number of samples per projection). Typically, the
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acquisition of the sinogram with NB = 2000 samples per projection displayed in Figure 6 (b) lasted
in around 11 hours. Running the acquisition with NB = 500 instead of NB = 2000 and keeping
all the other acquisition parameters unchanged yields a four time faster acquisition (≈ 2.75 hours).
In Figure 10, we put this claim to the test and show that, although we did not expect a sinogram
acquisition made with NB > 500 samples per projection to contain more relevant information than a
fast acquisition done using NB = M = 500 samples per projection, in practice, a slight degradation
is observed in the reconstruction obtained from the fast acquisition. Possible explanations for this
phenomenon are proposed in Figure 11. Fortunately enough, the image degradation observed in the
image reconstructed from the fast sinogram acquisition seems quite moderate and we believe that the
fast acquisition remains competitive regarding the reduction of the acquisition time (by a factor 4)
that it offers.

(a) NB=2000 samples/proj. (b) NB=500 samples/proj.
acquisition time ≈ 11 h acquisition time ≈ 2.75 h

Figure 10: Optimization of the number of samples per projection. We considered two datasets,
both acquired using µ = 168 G/cm and Bsw = 719.44 G. The first dataset was acquired using NB = 2000
samples per projection (leading to δr = Bsw

µNB
≈ 21.4 µm) while NB = 500 samples per projection (δr ≈ 85.6

µm) were used for the second one. We used Algorithm 5 to reconstruct an image with size M = 500 (and
spatial sampling step δ ≈ 85.6 µm) from each dataset using λ′ = 10 and α′ = 0. Resulting images are
displayed in (a) (first dataset) and (b) (second dataset). From Section 6.2, we expected two reconstructions
with indiscernible quality. In practice, we observe that (b) seems slightly less detailed than (a) and exhibits
a larger amounts of residual noise than (a). Possible explanations for this phenomenon are proposed in
Figure 11. Nevertheless, the quality degradation observed in (b) compared to (a) remains moderate and
the reduction (by a factor 4) of the acquisition time for the second dataset can be greatly appreciated in
practice.

7.2.5 Influence of other acquisition parameters

In this section, we study the how several acquisition parameters, such as the number of projections
Nθ, the magnetic field gradient intensity µ or the integration time constant τc may impact the quality
of the reconstruction.

In Figure 12, we compare reconstructions obtains from sinograms with various number of pro-
jections Nθ. As expected, the diminution of the number of projection deteriorates the quality of the
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Figure 11: Reference spectrum acquisitions with different sampling steps. We display the reference
spectra hd

1 and hd
2 associated to the two datasets considered in Figure 10. The spectrum hd

1 corresponds to
the same acquisition as that displayed in Figure 4 (a) and was acquired using a sampling step δB ≈ 0.36 G
which is, according to Figure 4 (b), roughly four time below the estimated critical sampling step ν ≈
1.4 G. Subsampling hd

1 with a factor four and resampling (using zero-padding Shannon interpolation) this
subsampled signal yields the blue dotted line signal that almost perfectly fits with hd

1 samples. This confirms
that an acquisition with δB = 1.4 G contains as much information as hd

1 . However, running an acquisition
using δB = 1.4 G (and keeping all other acquisition parameters unchanged) yielded the signal hd

2 which
significantly misfits with hd

1 . The most likely explanation for this phenomenon is that a signal attenuation
due to filtering occurred during the acquisition of hd

2 (yielding orange circle samples with incorrect positions
along the Y-axis of the graph). Another explanation could be that the sampling rate is too fast for the
instrument, yielding inaccurate sampling positions (i.e. orange circle samples with incorrect positions along
the X-axis of the graph). As a matter of fact, the setting NB = 500 yields an acquisition with reduced SNR
compared to the setting NB = 2000 which explains the image degradation observed in Figure 10.

reconstruction. Interestingly enough, we can see that the characteristic size of the thin structures
becomes significantly larger than 85.6µm as Nθ decreases. This illustrates that the estimate value
δ = 85.6µm obtained from the reference spectrum (common to all reconstructions displayed in Fig-
ure 12) is a lower bound on the actual details size that we can hope to observe in the reconstructed
image. This lower bound may not be attained, In particular, when Nθ is not large enough.

In Figure 13, we display reconstructions obtained from acquisitions with different integration
time constant parameter τc. This parameter impacts the acquisition time as well as the level of
noise in the acquired signal. Decreasing τc yields reduced acquisition time but also smaller SNR
and, consequently, degraded image reconstructions (with degraded level of details). However, the τc
parameter does not only affect the SNR of the sinogram acquisition but also that of the reference
spectrum acquisition. Consequently, it impacts the value of δ computed from the reference spectrum
using the methodology described in Section 6.3. We observe that δ increases as τc decreases and
provides a realistic estimation of the smallest detail size that we can observe in the reconstructed
image.

In Figure 14, we study the influence of the field gradient intensity µ on the reconstruction. This
parameter strongly impacts the resolution since it is linked to the radial and spatial sampling steps
through the relations δr = δB

µ
and δ = δB

µ
· NB
M

. The field gradient parameter µ is not involved in the

acquisition of the reference spectrum (which is always done without field gradient, or equivalently,
using µ = 0). However, in Figure 14, by imposing the same FOV for all sinogram acquisitions, and
since the FOV diameter satisfies Dfov = Bsw

µ
, the sweep-width parameter Bsw and the homogeneous
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(a) 10 projections (b) 13 projections (c) 19 projections (d) 23 projections

(e) 29 projections (f) 38 projections (g) 57 projections (h) 113 projections

Figure 12: Influence of the number of projections. In this experiment, we used the sinogram
s2d made of Nθ = 113 projections displayed in Figure 6 (b). By removing one out of k columns (for
k ∈ {1, 2, 3, 4, 5, 6, 9, 12}) from s2d, we generate sinogram acquisitions with lower number of projections (and
associated angular sampling step δθ ≈ 1.6 k degree). We processed each 2D sinogram using Algorithm 5
taking as reference spectrum that displayed in Figure 4 (a), and setting M = 500 (i.e., δ ≈ 85.6 µm)
and λ′ = 10. We can see that the image quality is severely impacted by the diminution of the number
of projections. In (a), the phalanx shape is barely reconstructed, then, the level of details progressively
increases with Nθ. Since all datasets share the same reference spectrum from which we estimated δ ≈ 85.6
µm as optimal spatial sampling step, all reconstructions were done using this recommended setting for δ.
In practice, we see that details with typical size at best equal to 0.2 mm can be recovered when Nθ ≤ 38
so that the estimated value 85.6 µm only corresponds to a lower bound on the actual minimal size of the
details that we can hope to reconstruct. The actual optimal value for δ depends on many parameters (Nθ

being obviously one of those) that are not involved in the spectrum acquisition alone.
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(a) τc=10.24 ms (λ′=500) (b) τc=20.48 ms (λ′=250) (c) τc=40.96 ms (λ′=100) (d) τc=81.92 ms (λ′=50)
M = 344, δ ≈ 125µm M = 374, δ ≈ 115µm M = 388, δ ≈ 110µm M = 398, δ ≈ 108µm

Figure 13: Influence of the time constant parameter. The time constant parameter τc of the
Bruker spectrometer roughly corresponds to integration time between two sample acquisitions. Increasing
τc improves the SNR of the acquired signal but also increases the acquisition time. We performed dataset (one
reference spectrum and one sinogram) acquisitions using NB = 500 samples per projection, µ = 168 G/cm,
δr ≈ 85.6 µm and different τc values. Then, we reconstructed an image for each dataset computing δ as
detailed in Section 6.3 and tuning λ′ by visual inspection. Unsurprisingly, the value of τc impacts the quality
of the reconstruction as well as the thinness of the details that we can observe in the image.

(a) µ = 42 G/cm (b) µ = 84 G/cm (c) µ = 126 G/cm (d) µ = 168 G/cm
M = 152, δ ≈ 282µm M = 230, δ ≈ 186µm M = 326, δ ≈ 132µm M = 410, δ ≈ 105µm

Figure 14: Reconstructions from acquisitions with different field gradient intensities. We per-
formed dataset acquisitions using different values of µ, NB = 500 samples per projection and δr = Bsw

µNB
≈

85.6 µm (by changing Bsw according to the value of µ). Image reconstruction was done for each dataset
computing δ as detailed in Section 6.3 and setting λ′ = 10. We see that, as µ increases, the estimated value
of δ decreases and the level of details increases in the reconstructed image. However, increasing µ (and
keeping the integration time τc unchanged) also yields more noise during the acquisition.
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magnetic field intensity sampling step δB = Bsw

NB
were set differently for each dataset acquisition, lead-

ing to different estimated values for δ. As expected, we see in Figure 14 that the image resolution
increases with µ. However, we can also remark that increasing µ yields reconstructions with larger
amount of residual noise (especially visible in the image background). Increasing τc jointly with µ
could be a way to keep the noise level constant. However, setting arbitrary large field gradient inten-
sity µ is not possible due to instrumental limitations (especially heating issues). Besides, for too large
values of µ, the physical modeling described in Section 2 is not valid anymore. Therefore, increasing
further the image resolution would involve important instrumental and modeling improvements.

7.2.6 Comparing EPR and CT-Scan reconstructions

To conclude our experiments on the phalanx sample, we investigate in Figure 15 how far the structures
that we reconstructed using Algorithm 5 are reliable. For that purpose, we performed a Computed
Tomography Scan (CT-Scan) of the phalanx. A CT-Scan acquisition consists in rotating a X-rays
beam around the sample and measuring, for different beam orientations, the X-rays attenuation. The
latter is proportional to the density of matter from which the X-rays pass through, and can be used
to reconstruct a 3D density image of the sample [21]. Since EPR is only sensitive to paramagnetic
species, images obtained from EPR and CT-Scan are usually different and not easily comparable.
However, in the particular case of irradiated bones, paramagnetic damages caused by irradiations
are more likely to occur in high density areas, making the images reconstructed with both EPR and
CT-Scan modalities surprisingly similar.

(a) TV (λ′ = 10) (b) Huber-TV (c) CT-Scan
(λ′ = 100, α′ = 0.05)

Figure 15: EPR and CT-Scan image reconstructions of the phalanx. We display in (a) and (b) two
EPR reconstructions of the phalanx obtained using Algorithm 5. We also performed a micro-CT imaging
of the phalanx sample using a Skyscan 1178 tomograph. The raw micro-CT images were processed using
the Skyscan software suite (Nrecon, CTAn) to compute a 3D image with spatial sampling step δct = 59µm.
Rotating appropriately this 3D image and summing along the third axis yields the 2D image (c) that can
be compared to the 2D EPR images (see the link between 3D and 2D in Section 2.3) displayed in (a)
and (b). We can see that most of the structures present in (a) and (b) are also visible in (c). The absence of
staircasing in (b) is also highly appreciable due to the large amount of texture in phalanx sample, making
the aspect of image (b) surprisingly close to that of the micro-CT image (c).
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7.3 Reconstruction of 3D images

In this section, we focus on the reconstruction of 3D EPR images using Algorithm 6. Notice that all
the phalanx 2D datasets studied in Section 7.2 were acquired with the X-band 2D EPR acquisition
system presented in Figure 5 (a). For 3D EPR imaging purpose, the L-band EPR imager presented
in Figure 5 (b) can be used. As mentioned earlier, this L-band EPR imager is able to provide
field gradient intensities up to 45 G/cm. With such setting, we cannot hope achieving as detailed
reconstructions as those obtained at X-band over the phalanx sample, making the 3D study of the
phalanx not so relevant anymore. In this section, we will illustrate the ability of Algorithm 6 to
perform 3D EPR image reconstruction using two different samples, one made of capillary tubes filled
with TAM and the second made of a fusillo pasta soaked with 4OH-TEMPO.

7.3.1 Capillary tubes filled with TAM

We filled some capillary tubes with an aqueous TAM solution with concentration 1 millimolaire
(1 mM = 10−3 mol.L-1). The tubes were sealed using wax sealed plate (Fischer scientific) and attached
together using masking tape. Some pictures and 3D visualizations (obtained from CT-Scan) of the
sample are displayed in Figure 16 and Figure 17.

(a) capillaries filled with TAM (b) 3D visualization (from CT-Scan)

Figure 16: Capillary tubes filled with TAM. We filled six tubes with a solution of TAM with concen-
tration 1 mM. The tubes, numbered from one to six, and their internal diameters (di)1≤i≤6, are visible in
(a) (left). The tubes were wrapped together using masking tape, as displayed in (a) (right). We performed
a CT-Scan acquisition of the sample, leading to the reconstruction of a 3D image of the wrapped tubes. An
isosurface of the 3D image is displayed in (b) under two different orientations, showing the tubes organiza-
tion inside the masking tape (the latter being transparent to X-rays). Some slices of the 3D image are also
displayed in Figure 17, where we can visualize the TAM solution contained inside the tubes.

We performed the acquisition of a dataset made of one reference spectrum and a 3D sinogram.
This dataset was acquired in L-band (with a microwave around 1.10 GHz) using NB = 360 samples
per projection, Bsw = 45.6 G and Bcf = 401.65 G, leading to δB = Bsw

NB
≈ 0.127 G for the sampling

step of the homogeneous magnetic field. We used µ = 20 G/cm as field gradient intensity during
the sinogram acquisition, leading to δr = δB

µ
≈ 63µm for the radial sampling step. The polar and

azimuthal angular position were discretized into 94 samples regularly spaced in [0◦, 180◦], leading to
Nθ = Nϕ = 94 and δθ = δϕ = 1.914◦, and a total number of Nθ × Nϕ = 8836 projections. The
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Figure 17: Several slices extracted from the CT-Scan 3D image. We display three slices of the 3D
image reconstructed from the CT-Scan acquisition (see also Figure 16 (b)). In those slice images, large pixel
values are represented in dark and low pixel values are represented in white. Darkest areas corresponds to
the walls of the tubes (that are the areas with highest matter density in the sample). The gray area inside
the tubes corresponds to the TAM solution. Note that we can see the meniscus of the TAM solution inside
tube (3) in the XZ (middle) and YZ (right) slices.

time constant parameter τc was set to 20.48 ms and the same value as τc was used for the conversion
time parameter. This leaded to an acquisition time of NB τc ≈ 7 second per projection and the
acquisition of the whole 3D sinogram lasted in around NθNϕNB τc ≈ 18 hours. The acquisition was
done using an amplitude modulation of 0.5 G, a frequency modulation of 100 KHz, a microwave power
of 1.005 mW with 26 dB of power attenuation. The reference spectrum and the 3D sinogram acquired
as detailed above are displayed in Figure 18. At the end of the dataset acquisition, we noticed that
tubes (1) and (6) where badly sealed. Tube (1) was partially empty (around one third of the solution
remained inside the tube thanks to the presence of an air bubble visible in Figure 16 (a)), and tube (6)
was totally empty. We used Algorithm 6 to reconstruct a 3D image from the dataset displayed in
Figure 18. An isosurface of the 3D reconstruction is displayed in Figure 19, where we can see the
content of the tubes, in particular, the meniscus of the TAM solution in tube (3), the remaining
amount of solution in tube (1), while no paramagnetic signal is reconstructed in tube (6).

Our reconstruction was done using MATLAB R© R2019b and a standard laptop operated under
Ubuntu 19.10 and equipped with an Intel R© CoreTM i7-7920HQ CPU (3.10 GHz × 4 cores) and
31.2 GB of RAM. The 3D image displayed in Figure 19 was reconstructed with a pixel sampling size
δ = 100µm (M = 228). Algorithm 6 was used to perform N = 1000 iterations of the scheme (42) and
the latter was initialized using the zero-valued 3D image 0Ω3d . The reconstruction at such resolution
lasted in almost one hour and involved the allocation of up to 25 GB of RAM. Note that most of
the RAM usage was due to the computation of Υ3d (which has size 2M × 2M × 2M and involves
3D NFFT computations). Once this kernel was computed, the amounts of RAM usage dropped
to around 7 GB). Notice that a reconstruction with coarser scale, δ = 285µm (M = 80), yields a
less detailed but still acceptable reconstruction (with well separated tube contents) and involves less
computational resources (up to 4 GB of RAM for the computation of Υ3d and less than two minutes
for a reconstruction using N = 1000 scheme iterations).
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(a) concatenation of 2D sinograms

(b) close-up view of (a) (c) reference spectrum

Figure 18: reference spectrum and 3D sinogram of the capillary tubes filled with TAM. The
3D sinogram acquisition consisted in the acquisition of Nϕ = 94 2D sinograms, each containing Nθ = 94
projections. We display in (a) the concatenation of all NθNϕ = 8836 projections, and a close-up view of a
single 2D sinogram is displayed in (b). The reference spectrum acquired together with the 3D sinogram is
displayed in (c). The whole acquisition process lasted in around 18 hours.

Figure 19: Reconstruction of 3D capillary tubes filled with TAM. Algorithm 6 was used with
λ′ = 2 (the value of the unnormalized parameter λ was computed using (18)) and M = 228 (leading to the
spatial sampling step δ = 100µm) to reconstruct a 3D image. An isosurface is displayed here under three
different orientations. As expected, only the TAM solution present inside the tubes is reconstructed. We
can observe that the solution meniscus inside tube (3) is nicely reconstructed. We can also observe that
tube (1) is partially empty and tube (6) is totally empty. Indeed liquid leaks occured during manipulations
prior to acquisition (see details above).
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7.3.2 Fusillo soaked with TEMPO

A fusillo (BarillaTM) with helical shape was put into a 4 mM aqueous solution of 4OH-TEMPO for
a night, then it was dried using paper and put inside the L-band EPR resonator. A 3D dataset was
acquired, setting Bsw = 132.5 G, Bcf = 399.7 G and NB = 500, leading to δB = Bsw

NB
≈ 0.265 G.

The sinogram acquisition was done using µ = 14 G/cm, leading to the radial sampling step δr =
δB
µ
≈ 189µm. The polar and azimuthal angles were discretized into Nθ = Nϕ = 31 values regularly

spaced in [0◦, 180◦], leading to δθ = δϕ = 5.806◦ and a total of Nθ ×Nϕ = 961 acquired projections.
The integration time constant parameter τc was set to 2.56 ms, leading to an acquisition time of
NθNϕNBτc ≈ 20 minutes. The amplitude modulation was set to 0.6 G, the frequency modulation
to 100 KHz, the microwave power to 20.05 mW with a power attenuation of 13 dB. A picture of the
Fusillo sample as well as the reference spectrum and the 3D sinogram composing the EPR dataset
are displayed in Figure 20.

(a) picture of the fusillo (b) acquired reference spectrum

(c) concatenation of 2D sinograms

Figure 20: Fusillo soaked with 4OH-TEMPO. We display in (a) a picture of the fusillo sample.
The latter was soaked with a solution of 4OH-TEMPO with concentration 4 mM. The EPR dataset
acquired over this sample is made of the reference spectrum displayed in (b) and the 3D sinogram
displayed in (c) as a concatenation of 2D sinograms separated by the yellow dotted lines. The whole
acquisition process lasted in around 20 minutes, which is rather fast for a 3D dataset. However, one
can see that the acquired projections are corrupted with a large amount of noise.

In our numerical simulations, we observed that the initialization of the numerical scheme (42)
by the zero-valued image 0Ω3d yielded very slow numerical convergence. This is probably due to
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Figure 21: Reconstruction of 3D fusillo soaked with 4OH-TEMPO. We display an isosurface (from
three different viewpoints) of the 3D image obtained using Algorihtm 6 over the fusillo dataset displayed in
Figure 20. The reconstruction was done using λ′ = 250 and M = 200 (leading to δ = 473.2µm). Despite the
noise corrupting the sinogram, we achieve the reconstruction of regular 3D image, where we can recognize
the helical shape of the fusillo.

the three-lines shape of the 4OH-TEMPO reference spectrum which makes the underlying decon-
volution problem numerically difficult to address. In order achieve a satisfactory 3D image recon-
struction within a reasonable computational time, we adopted a multiscale reconstruction strategy
to process this dataset. Algorithm 6 was run to achieve a very coarse scaled reconstruction, us-
ing M = 12 (δ ≈ 7.9 mm) and the zero-valued image as initial guess. The resulting image was
upscaled (using cubic spline interpolation) to a finer scale (M = 24, δ ≈ 3.9 mm) and used as ini-
tializer to perform another reconstruction at this new scale. This process was repeated at scales
M ∈ {12, 24, 50, 74, 100, 124, 150, 174, 200}, using 1000 to 5000 iterations depending on the scale, to
achieve the final reconstruction displayed in Figure 21.

8 Conclusion and perspectives

In conclusion, the TV regularized least squares method presented in this article enables to properly
reconstruct 2D and 3D EPR images. However, some avenues for improving its efficiency, as well as
possible extensions, have not yet been exploited and will be the subjects of future works.

- First, the mathematical model can be refined. In particular, the filtering profile gδ of the
acquisition system could be calibrated in order to fine-tune the a contrario estimate of the
optimal sampling step.

- The main drawback of the TV prior is the well-known staircase effect. Huber-TV prior allows to
remove it, but at the expense of a blurrier image. More sophisticated priors could be considered.
However, an efficient way to remove this artifact is to estimate the posterior expectation of the
TV model instead of maximizing the posterior probability. When introduced in [27], this
method was implemented in a computationally expensive algorithm, but later on, a very fast
algorithm was proposed for image denoising only [29]. An extension of this algorithm to EPR
imaging would be very useful.

- Another well-known drawback of TV-regularized least squares is a bias in grey level values
of restored images. The latter becomes a concern when trying to accurately quantify the
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concentration of paramagnetic species. A series of methods have been proposed to correct this
bias in line with [33] and could be applied to EPR imaging.

- At last, a slight change in the model allows to deal with cases where several paramagnetic
species are present in the cavity. Recently conducted experiments have led to encouraging
results and are the purpose of a forthcoming article. (See [23] for preliminary results.)
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A Proof of Theorem 1

Let V ∈ L1(R2), θ ∈ R and ξ ∈ R. We have

∀r ∈ R , Rθ(V )(r) =

∫
R
V (reθ + ρe⊥θ ) dρ =

∫
R
V (r cos θ − ρ sin θ, r sin θ + ρ cos θ) dρ .

Thus, taking the Fourier transform of Rθ(V ) at the point ξ yields

F (Rθ(V ))(ξ) =

∫
R
Rθ(V )(r) eirξ dr =

∫
R

∫
R
V (r cos θ − ρ sin θ, r sin θ + ρ cos θ) e−irξ dρ dr . (59)

Now, let us compute the Fourier transform of V at point (ξ cos θ, ξ sin θ). We have

F (V )(ξ cos θ, ξ sin θ) =

∫
R

∫
R
V (x, y) e−i(x cos θ+y sin θ)ξ dx dy . (60)

Using the variable change{
r = x cos θ + y sin θ
ρ = −x sin θ + y cos θ

⇔
{
x = r cos θ − ρ sin θ
y = r sin θ + ρ cos θ

with unitary Jacobian determinant, (60) becomes

F (V )(ξ cos θ, ξ sin θ) =

∫
R

∫
R
V (r cos θ − ρ sin θ, r sin θ + ρ cos θ) e−irξ dρ dr ,

which is equal to (59).
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B Details about approximation (26)

Let θ ∈ [0, π], let s̃θ : r 7→
(
h̃µX ∗Rθ(ṼX)

)
(−Bcf/µ+r) and let h̃ = r 7→ h̃µX(−Bcf/µ+r). From (12),

we have

∀r ∈ R , s̃θ(r) =
(
h̃ ∗Rθ(ṼX)

)
(r) and ∀ξ ∈ R , F (s̃θ)(ξ) = F (h̃)(ξ) · F (Rθ(ṼX))(ξ) . (61)

Since h̃µX = gδ ∗ hµX and δr ≤ δ, the Fourier transform of h̃µX is supported in [− π
δr
, π
δr

], and so as the

Fourier transform of h̃ (since for all ξ ∈ R, we have F (h̃)(ξ) = F (h̃µX)(ξ) · e−iξBcf/µ) and that of s̃θ
(thanks to (61)). Therefore, Theorem 2 yields

∀r ∈ R , s̃θ(r) =
∑
m∈Z

s̃θ(mδr) sinc

(
r

δr
−m

)
and h̃(r) =

∑
m∈Z

h̃(mδr) sinc

(
r

δr
−m

)
. (62)

Since F
(
r 7→ sinc( r

δr
−m)

)
(ξ) = δr · e−iξmδr ·1[− π

δr
, π
δr

](ξ), taking the Fourier transform of s̃θ in (62)

yields

∀ξ ∈ R , F (s̃θ)(ξ) =

 δr
∑
m∈Z

s̃θ(mδr) e
−iξmδr if |ξ| ≤ π/δr

0 otherwise.
(63)

Denoting s̃ d
θ : m ∈ INB 7→ s̃θ(mδr), by taking ξ ∈ 2πINB/(NBδr) and neglecting the terms s̃θ(mδr)

for m 6∈ INB in (63), we obtain the approximation

∀α ∈ INB , F (s̃θ)

(
2πα

NBδr

)
≈ δr ·DFT(s̃ d

θ )(α) . (64)

Proceeding similarly for h̃, and remarking that (27) yields h̃(mδr) = hd
X(m) for all m ∈ INB , we get

∀α ∈ INB , F (h̃)

(
2πα

NBδr

)
≈ δr ·DFT(hd

X)(α) . (65)

Besides, combining (20) with (24) and using δr/δ = M/NB yields

∀α ∈ INB , F (Rθ(ṼX))

(
2πα

NBδr

)
≈ δ2 M

NB

·DFT(ZrRd
θ ṽX)(α) . (66)

Then, using the approximations (64), (65) and (66) in (61) yields

∀α ∈ INB , DFT(s̃d
θ )(α) ≈ δ2 M

NB

·DFT(hd
X)(α) ·DFT(ZrRd

θ ṽX)(α) . (67)

Eventually, taking the IDFT of (67) and remarking that s̃ d
θ (m) = S̃θ(B−m) for all m ∈ INB leads

exactly to (26).

C Discrete divergence operator

In the 2D setting, the discrete divergence operator div2d = −∇∗2d satisfies

∀p = (px, py) ∈ RΩ2d × RΩ2d , div2d(p) = div2d
x (px) + div2d

y (py) , (68)
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where, for all (k, `) ∈ Ω2d,

div2d
x (px)(k, `) =


px(k, `) if k = −bM/2c

px(k, `)− px(k − 1, `) if − bM/2c < k < M − bM/2c − 1
−px(k − 1, `) if k = M − bM/2c − 1

div2d
y (py)(k, `) =


py(k, `) if ` = −bM/2c

py(k, `)− py(k, `− 1) if − bM/2c < ` < M − bM/2c − 1
−py(k, `− 1) if ` = M − bM/2c − 1

denoting by bxc the lower integer part of x. Similarly, in the 3D setting, the discrete divergence
operator div3d = −∇∗3d satisfies

∀p = (px, py, pz) ∈ RΩ3d × RΩ3d × RΩ3d , div3d(p) = div3d
x (px) + div3d

y (py) + div3d
z (pz) , (69)

where, for all (k, `,m) ∈ Ω3d,

div3d
x (px)(k, `,m) =


px(k, `,m) if k = −bM/2c

px(k, `,m)− px(k − 1, `,m) if − bM/2c < k < M − bM/2c − 1
−px(k − 1, `,m) if k = M − bM/2c − 1

div3d
y (py)(k, `,m) =


py(k, `,m) if ` = −bM/2c

py(k, `,m)− py(k, `− 1,m) if − bM/2c < ` < M − bM/2c − 1
−py(k, `− 1,m) if ` = M − bM/2c − 1

div3d
z (pz)(k, `,m) =


pz(k, `,m) if m = −bM/2c

pz(k, `,m)− pz(k, `,m− 1) if − bM/2c < m < M − bM/2c − 1
−pz(k, `,m− 1) if m = M − bM/2c − 1 .

D Proof of Proposition 1

Let v ∈ RΩ2d . For all p ∈ {1, 2, . . . , Nθ}, let us denote by Apv : INB → R the projection in the
direction θp, i.e.,

∀m ∈ INB , Apv(m) := Av(m, p) = δ2 M

NB

·
(
hd
X ~ ZrRd

θpv
)

(m) .

Then, from (29), for all (k, `) ∈ Ω2d, we have

A∗Av(k, `) =
δ2

NB

·
∑

α∈Z , |α|≤M/2
p∈{1,2,...,Nθ}

DFT(hd
X)(α) ·DFT(Apv)(α) · e2iπ(k αM cos θp+` α

M
sin θp) . (70)

Besides, for any α ∈ Z such as |α| < M/2, we have

DFT(Apv)(α) = δ2 M

NB

DFT(hd
X)(α) DFT(ZrRd

θpv)(α) = δ2 DFT(hd
X)(α) DFT(Rd

θpv)(α) , (71)

and from (22) we have

DFT(Rd
θpv)(α) =

∑
(k′,`′)∈Ω2d

v(k′, `′) e−2iπ(k′ αM cos θp+`′ α
M

sin θp) . (72)
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Using (71) and (72) into (70), we obtain

∀(k, `) ∈ Ω2d , A∗Av(k, `) =
∑

(k′,`′)∈Ω2d

v(k′, `′)ϕ(k − k′, `− `′) , (73)

where ϕ is the kernel defined in (39) over the augmented domain Υ2d = I2M × I2M . Now, let us
consider the circular convolution between ϕ and Zv, ϕ~Zv = IDFT(DFT(ϕ) ·DFT(Zv)). We have,

∀(k, `) ∈ Υ2d , (ϕ~ Zv) (k, `) =
∑

(k′,`′)∈Υ2d

Zv(k′, `′)ϕper(k − k′, `− `′) ,

where we have denoted by ϕper the Υ2d-periodical extension of ϕ to the domain Z2. Since Zv is zero
outside from Ω2d, we can restrict the latter sum to (k′, `′) ∈ Ω2d, leading to

∀(k, `) ∈ Υ2d , (ϕ~ Zv) (k, `) =
∑

(k′,`′)∈Ω2d

Zv(k′, `′)ϕper(k − k′, `− `′) .

Besides, when (k, `) lies in Ω2d, then, for all (k′, `′) ∈ Ω2d, we have (k − k′, ` − `′) ∈ Υ2d, and thus,
ϕper(k − k′, `− `′) = ϕ(k − k′, `− `′). Therefore, we have

∀(k, `) ∈ Ω2d , (ϕ~ Zv) (k, `) =
∑

(k′,`′)∈Ω2d

Zv(k′, `′)ϕ(k − k′, `− `′) ,

which corresponds to (73), showing that the restriction of ϕ ~ Zv to Ω2d is equal to A∗Av, as
announced.

E A contrario detection of frequency support

Assuming an additive Gaussian noise model for the reference spectrum acquisition, we have

∀k ∈ INB , hd
X(k) = h

d

X(k) + ε(k) , (74)

where h
d

X represents the noise-free reference spectrum and (ε(k))k∈INB are independent and identically

distributed realizations of a Gaussian random variable with zero mean and variance σ2. When the
value of σ is unknown, it can be empirically estimated from the values of hd

X near the boundaries

of INB . In oversampling situations, i.e., when NB > M , the DFT coefficients DFT(h
d

X)(α) vanish
for M/2 < |α| ≤ NB/2. Due to the presence of the noise in (74), this is not the case for the DFT
coefficients of the observed spectrum hd

X . In order to estimate the value of M from hd
X , we propose to

use the a contrario methodology [9]. The latter is based on Helmoltz principle for visual perception
which states that perceived structures are those that are unlikely to happen by chance in a random
configuration. The a contrario methodology can be viewed as a mathematical formulation of this
principle and consists in the design of detectors based on a rejection principle of randomness. An a
contrario detector relies on two main ingredients: (i) a random model H0 describing pure noise data
in which no structure must be found, (ii) a measurement function that highlight structures that are
unlikely to happen by chance in H0. In the present case, pure noise measurements correspond to

signals hd
X obtained when h

d

X ≡ 0 in (74). We define the H0 model exactly in this way.

Definition 3 (H0 model). We say that hd
X : INB → R follows H0, and we note hd

X ∼ H0, if and
only if {hd

X(k)}k∈INB is a family of independent random variables following a Gaussian distribution

with zero-mean and variance σ2.
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Now, let us design a measurement function able to highlight signals hd
X with frequency coefficients

with significantly higher intensity than expected when hd
X ∼ H0.

Proposition 2 (measurement function and its distribution in H0). Let hd
X : INB → R and let

Z : [1, NB
2

] ∩ Z→ R+ the measurement function associated to hd
X defined by

∀m ∈
[
1,
NB

2

]
∩ Z , Z(m) =

m−1∑
α=0

∣∣DFT(hd
X(α))

∣∣2
σ2NB

. (75)

Then, when hd
X ∼ H0, we have

∀m ∈
[
0,
NB

2

]
∩ Z , ∀z ≥ 0 , PH0 (Z(m) ≥ z) =

Γ(m, z)

Γ(m)
, (76)

where

Γ(m) =

∫ +∞

0

sm−1 e−s ds and Γ(m, z) =

∫ +∞

z

sm−1 e−s ds (77)

denote respectively the complete and (upper) incomplete Gamma integrals.

Proof. Let hd
X ∼ H0, and let Xα = Re

(
DFT(hd

X(α))
)

and Yα = Im
(
DFT(hd

X(α))
)
. Then, the set

{Xα, Yα}0≤α≤NB
2

is made of independent Gaussian random variables with zero mean and satisfying

E (X2
α) + E (Y 2

α ) = σ2NB (more precisely, we have E (X2
α) = E (Y 2

α ) = σ2NB
2

when 0 < α < NB
2

,

and we have E (Xα) = σ2NB and E (Y 2
α ) = 0 when α ∈

{
0, NB

2

}
). Therefore, the random variables

X2
α+Y 2

α

σ2NB
are independent and follow an exponential distribution with unitary mean. Consequently, for

all m ∈
[
1, NB

2

]
∩ Z, the random variable Z(m) =

∑m−1
α=0

X2
α+Y 2

α

σ2NB
follows a Gamma distribution with

shape m and unit scale, with complementary cumulative distribution function given by (76).

The measurement Z(m) defined in (75) consists in grouping together the m first DFT coefficients
of hd

X and computing (up to the normalization factor σ2NB) the sum of their intensities. The mea-
surement function Z is suited to discriminate pure noise signals following H0 from a real-life reference
spectrum like that displayed in Figure 4. Indeed, measurements Z(m) made on signals hd

X like in
Figure 4 (a) are significantly larger than those made on signals following H0. The complementary
cumulative distribution function (76) can be used to quantify the amounts of surprise associated to
the measurement Z(m) = z. Multiplying this quantity by NB/2 (which upper bounds the number
of tested groupings), we obtain a Number of False Alarms (NFA),

∀m ∈
[
1,
NB

2

]
∩ Z , NFA(m) =

NB

2
· Γ(m,Z(m))

Γ(m)
, (78)

and we say that the grouping made of the m first DFT coefficients of hd
X is ε-meaningful when

NFA(m) ≤ ε. Thanks to [17, Proposition 2], the NFA (78) satisfies the so-called NFA-property,

∀ε > 0 , EH0

[
#

{
m ∈

[
1,
NB

2

]
∩ Z , NFA(m) ≤ ε

}]
≤ ε , (79)

denoting by # the cardinality of the set in (79). The NFA property ensures that, when hd
X ∼ H0, in

average, we find less than ε groupings that are ε-meaningful. This means that, detecting ε-meaningful
groupings by thresholding the NFA with threshold ε yields (in average) less than ε false detections
when hd

X is a pure noise following H0. This gives a tangible sense to the detection threshold ε which
corresponds to the maximal number of (false) detections allowed in pure noise data. In particular, a
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Algorithm 7: support size estimation from a discrete reference spectrum

Inputs: a discrete reference spectrum hd
X : INB → R with size NB, the standard deviation σ of

the noise corrupting hd
X , the NFA thresholding parameter ε > 0 (default setting ε = 1).

Output: an estimate of the size M of the frequency support of hd
X .

Core of the module:

// compute NFA in logarithmic scale

for 1 ≤ m ≤ NB
2

do

Z(m)←
∑m

α=1
|DFT(hd

X)(α)|2
σ2NB

log nfa(m)← log
(
NB
2

)
+ log (Γ(m,Z(m)))− log (Γ(m))

// find the most meaningful grouping

m← argmin
1≤m≤NB

2

log nfa(m) // take highest value of m in case of multiple minimizers

// compute the size of the frequency support

if log nfa(m) ≤ log(ε) // meaningful frequency grouping detected

then
M ← 2 ·min

(⌊
NB
2

⌋
,m+ 1

)
// ensure M ≤ NB and even value for M

else M ← 0 // no meaningful frequency grouping detected

return M

common setting for this threshold parameter is ε = 1 so that, in average, at most one false detection
is allowed in H0. In practice, we are interested in the detection of the most meaningful grouping
(i.e., of the grouping with smallest NFA),

m = argmin
1≤m≤NB

2

NFA(m) . (80)

Then, when NFA(m) ≤ ε, extending the frequency grouping by hermitian symmetry yields the
detected frequency support α ∈ [−m,m] ∩ INB , with size M = min(NB, 2m + 1). Notice that the
NFFT implementation [22] is limited to signals with even dimensions, so that in practice, we set

M = 2 ·min

(⌊
NB

2

⌋
,m+ 1

)
, (81)

denoting by b·c the lower integer part. Note also that some particular care must be taken to avoid
underflow when evaluating NFA(m) using (78). Numerical underflow typically occurs when Z(m) is
large and leads to NFA(m) = 0 in standard double precision. This may happen for many values of
m and this is problematic to compute m using (80). Numerical underflow can be avoided using an
appropriate normalization for the upper incomplete Gamma function [1] (see also the scale optional
parameter of the gammainc function in Matlab language) allowing its evaluation in logarithmic scale.
Finally, the estimation of M is summarized in Algorithm 7.
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