

A southern refugium for temperate tree species in the Mediterranean mountains of El Port massif (NE Iberia): Charcoal analysis at Cova Del Vidre

Marta Alcolea, Lucie Chabal, Josep Bosch-Arguilagós, Raquel Piqué

► To cite this version:

Marta Alcolea, Lucie Chabal, Josep Bosch-Arguilagós, Raquel Piqué. A southern refugium for temperate tree species in the Mediterranean mountains of El Port massif (NE Iberia): Charcoal analysis at Cova Del Vidre. The Holocene, 2022, 32 (8), pp.794-806. 10.1177/09596836221095992 . hal-03711299

HAL Id: hal-03711299 https://cnrs.hal.science/hal-03711299

Submitted on 1 Jul2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A SOUTHERN REFUGIUM FOR TEMPERATE TREE SPECIES IN THE MEDITERRANEAN MOUNTAINS OF EL PORT MASSIF (NE IBERIA): CHARCOAL ANALYSIS AT COVA DEL VIDRE

Marta Alcolea^a, Lucie Chabal^c, Josep Bosch^b, Raquel Piqué^a

^a Departament de Prehistòria. Universitat Autònoma de Barcelona. Plaza Cívica. 08193 Bellaterra,
 Cerdanyola del Vallès, Barcelona, Spain. Email: Marta.Alcolea@uab.cat; Raquel.Pique@uab.cat

8 ^bMuseo de Gavà. Plaza de Dolors Clua, 13-14, 08850, Gavà, Barcelona, Spain. Email: <u>jbosch@gava.cat</u>

9 ^c ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France. Email: <u>chabal@univ-montp2.fr</u>

10 Corresponding author: Marta Alcolea (martaalcoleagracia@gmail.com)

Keywords: charcoal analysis, late hunter-gatherers, first farmers, Younger Dryas, Early
Holocene, *Taxus baccata*, *Fagus sylvatica*.

14 Abstract

This study focuses on the analysis of wood charcoal from Cova del Vidre (Roquetes, Tarragona, Spain). This cave, located at an altitude of 1,000 m a.s.l., is a key site for understanding the transition from hunting and gathering to farming in a mountainous region of north-eastern Iberia so far unexplored by archaeobotany. The anthracological study is based on four archaeological levels from the Epipalaeolithic to the Early Neolithic dated between 12.9 and 6.8 kyr cal BP, i.e. from the Late Glacial period to the Middle Holocene. During the Younger Dryas, the record is dominated by a little varied spectrum of cryophilous pines (*Pinus* tp. sylvestris) and thorny shrubs revealing an open landscape where *Prunus* may prefigure the spread of temperate taxa. In the Early Holocene, a significant change in temperature and precipitation is evidenced, which promoted successional changes in plant communities, with a decline of pine and the sudden rise of temperate/Mediterranean taxa, such as Prunus and Quercus coccifera/ilex. During the Middle Holocene, other temperate taxa appear, such as *Quercus* deciduous, Buxus sempervirens and Taxus baccata, with yew finally dominating the anthracological record. The appearance and early development of temperate or Mediterranean species as early as the Younger Dryas and the Early Holocene periods, in a mountain context that had long been favourable for Scots pine, allows us to argue the local existence of a glacial refugium. Differences with the nearby sites in the lowlands demonstrate that altitudinal differences in vegetation were already established in the Holocene. Furthermore, the site helps to define the palaeodistribution of Taxus baccata and Fagus sylvatica in southern Europe.

1. INTRODUCTION

A gradual succession of plant communities occurred in the western Mediterranean during the Late Glacial period and Early to Middle Holocene. The global warming trend had a significant impact on vegetation cover, increasing biodiversity and affecting the geographical distribution of existing species. Pollen records from lakes and peat bogs generally provide a regional view of plant landscape transformations (Miras et al., 2007; Vegas et al., 2009; Ejarque et al., 2010; Pérez-Obiol et al., 2012; Cunill et al., 2013; Pérez-Sanz et al., 2013; Aranbarri et al., 2014; Revelles et al., 2015). Wood charcoal analyses at archaeological sites supply good local indicators, as wood was collected in the vicinity of the settlements, providing evidence of the woody species and plant communities present in their surroundings (Chabal, 1997; Heinz and Thiébault, 1998; Chabal et al., 1999; Piqué, 1999; Allué, 2002; Chabal and Heinz, 2021). Furthermore, the implementation of wood charcoal analysis in archaeological sequences provides diachronic information on forest management by prehistoric groups. The archaeological record at Cova del Vidre, containing successive Epipalaeolithic, Mesolithic and Neolithic occupations, allows us to understand the local evolution of the vegetal landscape and its human exploitation in the southern mountains of north-eastern Iberia. It reveals the importance of this montane environment as a key region for understanding the southern limit of the palaeodistribution of some important European forest species such as yew (Taxus baccata) and beech (Fagus sylvatica).

2. ARCHAEOLOGICAL AND BIOGEOGRAPHICAL CONTEXT

2.1. Archaeological background

The Ebro valley is a key region for understanding the Epipalaeolithic-Neolithic transition in north-eastern Iberia. South of the Ebro River, human settlements extended from the coast and inland plains of the Ebro Delta and the Bajo Aragón to the Maestrazgo and El Port mountains (Bosch, 1989; 2001; 2015; Mazo and Montes, 1992; Bosch et al., 1996; Utrilla et al., 2009; 2017; Utrilla and Bea Martínez, 2012; Laborda 2019) (Figure 1). This location allowed the management of different biotopes: forests for hunting, gathering, and wood supply, and the plains for agriculture and livestock breeding since the beginning of the Neolithic.

The late hunter-gatherers of the western Mediterranean benefited from abundant, reliable, and seasonal resources derived from climate improvement at the end of the Last Glacial Period (Gramsch, 1981; Thévenin, 1981). Indeed, the beginning of the Neolithic in north-eastern Iberia around 7.8-7.5 cal kyr BP brought about a radical change in the relationship between human groups and the environment, due to new needs related to the stability of settlements linked to crops and livestock management (Antolín et al., 2015; 2018; Revelles, 2017), as well as the beginning of the anthropic disturbance of the Mediterranean ecosystems (Roberts et al., 2011).

91 2.2. Biogeographical setting

The Cova del Vidre cave (Roquetes, Tarragona) is a habitat located around 1,000 m a.s.l. in El Port massif (Tortosa-Beceite), a mountain environment in the southern Catalan Pre-Coastal Ranges connected to the Iberian Range (NE Iberia). Rugged Mesozoic limestone lithology results in steep local relief with pronounced slopes and deep ravines. The highest altitude is reached in the Caro Mountain (1,447 m a.s.l.) while the Mediterranean Sea is located less than 50 km from the site. The mouth of the cave, facing east-northeast, offers a wide panoramic view including the Lower Ebro Basin and the Ebro Delta (Bosch, 2015; 2016).

5 101

> The current vegetation in this massif is unique, as if it were an island of vegetation. The high diversity of ecosystems and biotopes results from the transition between the Mediterranean coastal and continental mountain climates, shaped by the complexity of the orography (Senar Lluch, 2011). Above 1,000 m a.s.l., a sub-humid or even humid climate enables the presence of Supramediterranean forests mainly formed by Scots (Pinus sylvestris L.) and Salzmann pines (Pinus nigra subsp. salzmannii (Dunal) Franco) and Portuguese (Quercus faginea Lam.) and Pyrenean oaks (Quercus pyrenaica Willd.), occasionally accompanied by yew (*Taxus baccata* L.), holly (*Ilex aquifolium* L.) and even beech (Fagus sylvatica L.).

> Patches of Mediterranean yew trees grow in isolation in search of shady places in ravines and valleys and inside forests of pine, beech and holm oak (Costa et al., 2001). Locally the yew can dominate dense understorey layers of boxwood (Buxus sempervirens L.), as in the case of some calcareous cliffs in the Maestrazgo (Camprodon et al., 2014). Small beech forests grow in the Vallcaneres ravine around 1,200 m a.s.l., interspersed with pine forests, occupying the shady areas at the foot of the cliffs and the stream banks, where the water deficit of the Mediterranean climate is balanced. They grow besides Mesomediterranean or Supramediterranean shrubs such as boxwood and various Rosaceae such as Amelanchier ovalis Medik., Crataegus monogyna Jacq., Rosa canina L. and Rubus ulmifolius Schott (Costa et al., 2001). These small populations constitute the southernmost beech forest in Europe, representing the climatic tolerance limit of the European beech.

2.3. Site description

Cova del Vidre consists of a main cave with a surface area of 43x30 m and 14 m high,
and a smaller chamber next to it, to the north, 15x11 m in size and 2 m high. The entrances
of both caves face east-northeast (Figure 1). In the main cave, longitudinal joints are
frequent, including a zenithal one that allows water to enter the cave without flooding it,
thus contributing to its habitability (Bosch, 2001; 2015; 2016).

The presence of prehistoric occupations at Cova del Vidre has been known since the 19th century. Archaeological work undertaken in the 1940s revealed the existence of a stratified archaeological sequence ranging from the late Upper Palaeolithic to the Early Neolithic. More recent archaeological excavations, conducted by J. Bosch's team in 1992, accomplished the absolute radiocarbon dating of the occupations in the cave (Bosch,

HOLOCENE

138 2001). Systematic sampling of archaeozoological, archaeobotanical and sedimentary
139 materials was also performed at the site to obtain palaeoenvironmental and
140 palaeoeconomic information. Two main excavation areas were sampled in the large cave.
141 The inner area (named *int*) in the deepest part of the cave and the central area (named
142 *cent*) in the middle part (very close to the small cave) provided two complementary
143 stratigraphic sequences (Bosch, 2015; 2016).

145 2.4. Archaeological sequence

At Cova del Vidre, four main human occupations have been documented (Bosh, 2001, 2015; 2016) in accordance with the cultural processes known in the region (Soto et al., 2015; Oms et al., 2018). Three of them are related to late Pleistocene and early Holocene hunter-gatherer occupation (Epipaleolithic-Mesolithic). The oldest occupation (layer 2 int) belongs to the Microlaminar Epipaleolithic tradition. Radiocarbon dating situates it during the Younger Dryas (Table 1). Above it, layer 1 int, with some geometric microliths, belongs to the Early Holocene Sauveterroid tradition in the Mediterranean region. The most recent hunter-gatherer occupation (layer 4 cent) belongs to the Geometric Mesolithic. Radiocarbon dating places it at the onset of the Middle Holocene, around the 8.2 kyr event (Rasmussen et al., 2006; Thomas et al., 2007). The Neolithic occupation (layer 2 cent) offers the most abundant and varied material, attributed to the Early Neolithic Cardial culture. Radiocarbon dating supports its belonging to the Middle Holocene (Table 1) (Bosh, 2001; 2015; 2016).

160161 3. MATERIALS AND METHODS

163 3.1. Materials.

All the analysed samples came from the archaeological excavation in 1992. Hand-picking of charcoal fragments was favoured for radiocarbon dating, while a systematic sampling strategy was carried out for anthracology (Bosch, 2001, 2015; 2016). 947 charcoal fragments, covering the whole described archaeological sequence, have been analysed (Table 2). Most of the charcoal belongs to materials scattered in the sediment (n = 649). The synthetic nature of these deposits makes them good records of the vegetation in the surroundings of the site during its successive human occupations (Chabal et al., 1999; Piqué, 1999; Badal et al., 2003; Chabal and Heinz, 2021). The contents of a large combustion structure (n = 298) from the Early Neolithic occupation (in layer 2 cent) were also studied, providing a snapshot of its last use and enabling a palaeoeconomic interpretation (Théry-Parisot et al., 2010).

¹⁷⁶ 177 3.2. Methods.

177 3.2

Each charcoal fragment was observed in the three anatomical sections (transverse, longitudinal tangential, and longitudinal radial) using a metallographic dark/bright field incident-light microscope, allowing magnification factors from x50 to x1000.
Comparisons with current charred wood samples and wood anatomy atlases made it possible to identify taxa (Greguss, 1955; Jacquiot et al., 1973; Schweingruber, 1990; Vernet et al., 2001; García Esteban et al., 2003). The nomenclature used follows the

guidelines in *Flora iberica* (Castroviejo, 1986-2012). The relative frequencies of the
determined taxa are represented in the form of an anthracological diagram with the data
from the layers (Figure 2), made with the software Tilia 2.6.1¹.

Photographs of the most interesting taxa (Figure 3) were taken with an Environmental Scanning Electron Microscope (ESEM)². Maps showing site locations and taxa distribution have been developed in Quantum GIS software v.3.4.13 Madeira. Chorological maps for the main European woody species are developed by Caudullo et al., 2017. Digital Elevation Models are available from the Spanish National Geographic Institute (IGN MDT200). Modern distribution maps and regions of provenance of European species have been provided by the CIFOR-INIA Department of Forest Ecology and Genetics of the Spanish Government (Alía et al., 2009).

198 4. RESULTS

4.1. Quantifications

Out of the 947 charcoal fragments studied, 13 taxa were determined, of which four belong to conifers and nine to hardwoods, both trees and shrubs (Table 2). The anthracological diagram shows the diachronic evolution of the landscape exploited by the inhabitants of Cova del Vidre (Figure 2). Taxon richness increases significantly from the Late Glacial period (Microlaminar Epipalaeolithic) to the early Atlantic (Early Neolithic), in correlation with climate warming. Conifers adapted to cold or temperate climates constantly predominate, with a decreasing participation of *Pinus* tp. sylvestris in favour of *Taxus baccata*, which co-dominates at the end of the sequence. The appearance and progressive diversification of hardwoods mainly involves species of the deciduous oak forest. Weak representations of Abies alba at the beginning, and of Fagus sylvatica at the end of the sequence are observed, in accordance with the altitudinal conditions.

The differences between the contents of the large combustion structure and the scattered charcoal from the contemporary level (layer 2 int) are mainly quantitative, due to a more random or short-lived deposition in the hearths. An over-representation of yew and underrepresentation of Scots pine type and boxwood are observed in the combustion structure, as well as the presence of the only fragment of Vitis vinifera at the site. These differences, which do not allow the use of the fire structure to interpret the environment, are consistent with the 'snapshot' character usually observed in such deposits and may signify either a random use of wood or an unknown intentionality (Kabukcu and Chabal, 2021).

¹ License belonging to the Archeobotanical Laboratory of the Autonomous University of Barcelona.

² Electron Microscopy Service of Biological Systems of the Research Support Service of the University of Zaragoza.

1		
2		
5 4	228	
5	229	5. DISCUSSION
6	230	
7	231	5.1. Stages in the vegetation dynamics at Cova del Vidre
8	232	
9 10	233	5.1.1. The Pleistocene hunter-gatherer environment
10	234	
12	235	At Cova del Vidre, the layer 2 int reveals that during the
13	236	Epipalaeolithic occupation) Pinus tp. sylvestris was the
14	237	surroundings of the site. Scots pine (<i>Pinus sylvestris</i> L.)
15	238	basis of wood anatomy from Black pine (<i>Pinus nigra</i> Arm
10 17	239	these cold-climate pines abounded in the surroundings of
18	240	the Younger Dryas is a period of severe climate cooling
19	240	cold climate is the most likely nine species in this
20	241	subspecies are drought resistant and competitive in the ab
21	242	subspecies are drought resistant and competitive in the ac
22	243	wegetation. Saizinann pine, <i>Finus nigra</i> subsp. saizman
23 24	244	subspecies, among Black pines, attested in the mad
25	245	travertines of Beicete (Teruei) (Martinez-Tuleda et al.
26	246	currently present in mixed stands with Scots pine in nort
27	247	it should be considered in the present study.
28	248	
29 30	249	Other trees and shrubs are very scarcely represented by o
31	250	including Abies alba and Juniperus sp. and a single h
32	251	genus includes a large number of trees and shrubs (whose
33	252	in open forest under cool and dry conditions. It may signal
34 25	253	taxa at the site, in a refugium situation. Conifers, esp
35 36	254	junipers, are the dominant taxa in anthracological rec
37	255	during the 13th millennium cal BP, often associated with
38	256	2017). Some sites, such as the Molí del Salt, the Font V
39	257	2002), also reveal an open landscape, where pines formed
40	258	shrubs well-adapted to the dry and cold climate that pre
41 42	259	Glacial period.
42 43	260	
44	261	5.1.2 The Holocene hunter-gatherer environment
45	262	5.1.2. The Holocene numer guillerer environment
46	202	At the start of the Early Holocene (Preboreal) Pinus
47	205	predominant in layer <i>Lint</i> testifying to a vegetal environ
48 ⊿0	204	predominant in layer 1 mi, testinying to a vegetar environ
50	265	previous occupation. However, pines are decreasing sign
51	200	remarkable frequency of flearly 20% in the fector. The in
52	267	period, especially given the altitude of the site, is the ap
53	268	as early as in the plains and middle altitudes (Badal et al.,
54 55	269	high frequency of <i>Prunus</i> , this is an indicator of the milde
56	270	onset of the Holocene (Preboreal). The early and rapid
57	271	reflects their previous presence in the area. Kermes/holm
58	272	records at this time. It can occasionally be found at coasta
59	273	al., 2007), and Pre-Pyrenean sites, such as El Parco (Allu
60	27/	(Alcolea et al. 2021) until becoming widespread from

idre, the layer 2 int reveals that during the Younger Dryas (Microlaminar occupation) Pinus tp. sylvestris was the most abundant species in the of the site. Scots pine (*Pinus sylvestris* L.) cannot be differentiated on the anatomy from Black pine (Pinus nigra Arnold.). In any case, one or two of ate pines abounded in the surroundings of the site during this period. Since ryas is a period of severe climate cooling, Scots pine, better adapted to a is the most likely pine species in this area. Nevertheless, Black pine drought resistant and competitive in the absence of dense hardwood forest zmann pine, *Pinus nigra* subsp. salzmannii (Dunal) Franco, is the only nong Black pines, attested in the macro-remains from the Eemian Beicete (Teruel) (Martínez-Tuleda et al., 1986) and also the only one nt in mixed stands with Scots pine in north-eastern Spain; for this reason nsidered in the present study.

shrubs are very scarcely represented by one charcoal fragment per taxon, es alba and Juniperus sp. and a single hardwood, Prunus sp. This last a large number of trees and shrubs (whose fruits may be edible) that grow inder cool and dry conditions. It may signal the early presence of temperate e, in a refugium situation. Conifers, especially cryophilous pines and he dominant taxa in anthracological records from north-eastern Iberia n millennium cal BP, often associated with Prunus (Allué, 2002; Alcolea, ites, such as the Molí del Salt, the Font Voltada, and the Filador (Allué, eal an open landscape, where pines formed the tree cover accompanied by apted to the dry and cold climate that prevailed in Iberia during the Late

ocene hunter-gatherer environment

f the Early Holocene (Preboreal), Pinus tp. sylvestris continues to be layer 1 int, testifying to a vegetal environment quite similar to during the pation. However, pines are decreasing significantly and *Prunus* acquires a quency of nearly 20% in the record. The most noticeable feature about this Illy given the altitude of the site, is the appearance of evergreen Quercus ne plains and middle altitudes (Badal et al., 2017). Together with the fairly of *Prunus*, this is an indicator of the milder climatic conditions during the olocene (Preboreal). The early and rapid rise of these species probably revious presence in the area. Kermes/holm oak is scarce in anthracological time. It can occasionally be found at coastal, such as La Cativera (Allué et Pre-Pyrenean sites, such as El Parco (Allué et al., 2013) and El Esplugón (Alcolea et al., 2021), until becoming widespread from the 9th millennium cal BP, in

association with other Mediterranean taxa in the lowlands of the Ebro valley and incoastal Catalonia.

In layer 4 cent during the middle Holocene (at least 2000 years after layer 1 int), Scots pine type remains the dominant taxon associated with a significant proportion of yew (Taxus baccata) and a small percentage of such Supramediterranean taxa as boxwood (Buxus sempervirens) and deciduous oak (Quercus deciduous). The appearance of new temperate taxa indicates climate amelioration, certainly associated with the beginning of the Atlantic period. The frequency of yew of almost 20% (Taxus baccata) in layer 4 cent (further increasing in layer 2 cent) testifies an increase in humidity at least from the end of the 9th millennium to the end of the 8th millennium cal BP. In this mountain area, around the 8.2 kyr cold event, there was thus no lack of moisture; this situation contrasts with the Central Ebro Basin where at the same time populations deserted the sites during a crisis of aridity (González-Sampériz et al., 2009). This difference highlights a spatial shift in climate. Besides, at the end of the 10th millennium *Pinus* tp. sylvestris forest was already rare in the anthracological records at coastal sites in Catalonia (e.g. at La Cativera, 65 m a.s.l.) and absent from the 12th millennium further south at medium altitudes, (e.g. at Santa Maira, 650 m a.s.l.) being replaced by thermophilous or mesothermophilous taxa, such as *Pinus halepensis* or deciduous and evergreen *Quercus* (Allué 2002; Allué et al. 2012; Buxó and Piqué 2008; Badal et al. 2017) reflecting altitudinal and latitudinal dependence of climate.

5.1.3. The first farmers' environment

In layer 2 cent, i.e. the Early Neolithic occupation, new changes occur in the anthracological record. The surroundings of the cave were still dominated by conifer forests. Taxus baccata reached its highest values, in the scattered charcoal as well as in the large combustion structure, sharing prominence with Pinus tp. sylvestris, which remains suitable due to the altitude, while Juniperus maintains a discrete presence in the record. However, the taxonomic diversity of hardwoods, such as Acer, Ouercus deciduous, Buxus sempervirens and the Rosaceae Maloideae, must be highlighted. The abundance of yew indicates a significant increase in rainfall and soil moisture, but the temperate and Supramediterranean trees and shrubs reflect the improvement in the climate during the Middle Holocene. Vitis vinifera, the wild grapevine, may have grown in oak groves or in riparian areas. The discrete presence of Mesomediterranean taxa, such as Quercus coccifera/ilex and Ericaceae, suggest the persistence, since the Early Holocene, of favourable areas for their growth near the site. These thermophilous species also exist at lower altitudes, as documented in the Bajo Aragón (Alcolea, 2017; 2018), and the Ebro Delta (Bosch, 1989; Ros, 1996). The large combustion structure reflects the same pattern of fuel procurement, with quantitative differences of no environmental significance (which may be due to one-off or intentional collection of yew wood in the last fire events before the structure was abandoned) (see 5.3).

318 5.2. The abundance of *Taxus baccata*

Solution
 Solution<

in Europe and the Iberian Peninsula is limited due to the impact of human action and climate change that has led to its replacement by more competitive plants. Yew is common in northern Iberia under an Atlantic climate (Figure 4) although the species has been exploited for its wood throughout history. For instance, in the Montseny Mountains in the northeast of the Iberian Peninsula, the genetics of current yew populations can be explained by the long-term exploitation of forest species for firewood and charcoal production, during the 15th-19th centuries (Dubreuil et al., 2010). It is also present in more southern mountain ranges such as in the El Port massif, and is not rare around the site. Mediterranean yew trees, probably isolated during the last Glacial period (Carrión et al., 2003) and currently in decline, grow in small, isolated populations. In Mediterranean environments yew finds adequate moisture above 1,000 m a.s.l. In lower areas, it prefers the protection of shaded valleys, ravines and cliffs. As long as it finds moisture, it can withstand high temperatures (Costa et al., 2001).

Taxus baccata must have had a wide distribution in Europe in the past. The spread of yew throughout the Iberian Peninsula since the beginning of the Holocene, in parallel with the deciduous forest colonization, has been highlighted by several authors (Martin and Thiébault, 2010; Pérez-Díaz et al., 2013; Uzquiano et al., 2014; Vidal-Matutano, 2015). Due to the low preservation of yew in Holocene pollen records, contrasting with its abundance in charcoal, anthracology is key to understanding its past distribution. During the Early-Middle Holocene, yew appears sporadically in the anthracological records of north-eastern Iberia, rarely exceeding 5% of the remains, such as at Plansallosa, Cova 120, Cova de l'Avellaner (Ros, 1995, 1996), La Prunera (Ferré and Piqué, 2000), La Draga (Caruso and Piqué, 2014), Cova del Frare (Ros, 1996), Balma Margineda (Heinz and Vernet, 1995) and the Moncayo natural park (Aranbarri et al., 2018). Only three sites, Cova de la Guineu (Allué et al., 2009), Camp del Colomer (Piqué, 2016), and Cova del Vidre (this article), record high yew frequencies.

At Cova del Vidre, yew appears for the first time (layer 4 cent) around 8.2-7.9 kyr cal BP. During the Early Neolithic occupation (layer 2 cent), it reaches almost 40% of the studied remains, becoming the plant most used as fuel in the site and certainly a very widespread taxon in the surroundings. As mentioned in section 2.2, this conifer still grows in the El Port massif (Tortosa-Beceite) today (Figure 4) (Costa et al., 2001; Senar Lluch, 2011; Camprodon et al., 2014). Its importance in the territory was probably much greater during the Neolithic.

If we consider the large combustion structure contemporary with the 2 cent layer, showing its last use or uses, the percentage rises to 86%. Random use cannot be ruled out, but it is also possible that yew was voluntarily sourced for specific uses. Among these, uses as fuel and fodder or for sanitary purposes in sheepfolds have been mentioned. The leaves, despite their known toxicity due to the presence of an alkaloid (particularly harmful to horses) are still occasionally used as fodder for livestock (Costa et al., 2001). These practices have been considered in archaeological sites in Mediterranean mountainous areas, in cases when the taxon is abundant among the charcoal (Delhon et al., 2008; Allué et al., 2009; Martin and Thiébault, 2010; Martin et al., 2012, Piqué et al 2018). At Cova del Vidre, Neolithic leaf-foddering of livestock may have taken advantage of the natural abundance of this species. Its wood was then reused as fuel for fire.

5.3. New data about the early presence of *Fagus sylvatica* in the eastern Iberian Range The presence of beech (Fagus sylvatica) is also noteworthy, although it is a minority taxon in the record. The European beech (Fagus sylvatica) is currently one of the most important forest trees in Europe. However, its presence in this territory is relatively recent according to palaeobotanical data (Magri et al., 2006). Charcoal fragments, seeds, fruits, and leaves are parts of plants with a limited dispersion which were probably collected in the immediate vicinity. Hence, when investigating the location of glacial refugia and species migration, macrofossils are the most useful records reflecting local vegetation. Palaeobotanical data suggest a late and rapid migration of beech forests in central, eastern, and northern Europe from the Carpathians Mountains only after 4.5 kyr cal BP (Huntley and Birks, 1983). Nevertheless, the history of beech begins long before the establishment of the beech forests in Europe. Some beech trees, which require wet summers and mild winters, survived during the last glacial period and the Early-Mid Holocene in glacial refugia (Carrión et al., 2003). Most of the glacial refugia were in mountainous territories of the southern peninsulas (Iberian, Italian and Balkan), where the residual populations could find sheltered and humid places to survive (Magri et al., 2006), avoiding continental areas, plains, and valleys. Macrofossil evidence suggests that relict beech populations existed in the Iberian Peninsula since the last glacial period, in the western Pyrenees-Cantabrian Mountains (Ruíz-Alonso et al., 2018) and the north-western Iberian Range (López-Merino et al., 2008). In the eastern Pyrenees the evidence is very scarce (Vernet, 1980; Ros, 1992; Allué, 2002). Its presence had not been documented until now in the Iberian Peninsula below 41° N latitude (Figure 5 and 6). The archaeobotanical record at Cova del Vidre shifts the southern limit of the European beech to the east of the Iberian Range, confirming the existence of a vegetation refugium in El Port massif (Tortosa-Beceite), at least from 7.3 kyr cal BP. The site is currently very close to small relict beech forests (Figure 6). The topography generates a particular environmental situation that may have been favourable for the maintenance of beech patches accompanied by boxwood (Buxus sempervirens) (Costa et al., 2001; Alía et al., 2009), like the Pyrenean beech forests. According to genetic data and accepted migration routes, Mediterranean refugia are thought to have contributed to the colonization of central and northern Europe (Magri et al., 2006; Bradshaw et al., 2010; Giesecke and Brewer, 2018). This attestation of the presence of the beech so far south is thus an interesting new element. 5.4. The mountain palaeobotanical record at Cova del Vidre: a Late Glacial refugium? The anthracological sequence at Cova del Vidre between the 13th and 6th millennia cal BP shows a vegetation dynamic that fits into the regional framework proposed on the basis of pollen records in the NE Iberian Peninsula, with fairly large spatial differences due to elevation and latitude (Riera and Esteban, 1994; Follieri et al., 2000; Pérez Obiol, 2007; Burjachs et al., 2016). These data reflect the regional response of vegetation during

HOLOCENE

the transition from the Late Glacial period to the Early Holocene, global warming, and
the effects of human activity. At the more local geographic scale of the El Port massif and
its surroundings, anthracology shows the existence of conifers adapted to the cold within
the predominance of Supramediterranean vegetation, characteristic of montane
environments in Mediterranean Iberia.

The anthracological record from Cova del Vidre has many distinctive features compared to other sites in different environmental contexts in north-eastern Iberia, despite their geographical proximity, i.e. the Bajo Aragón, the Ebro Delta, and the Maestrazgo sites (Figure 1). In the nearby mountainous sites of the Maestrazgo in the Iberian Range, cold-climate pines dominate during the whole period and Supramediterranean elements are almost absent (Alcolea, 2017). In the lowlands, thermo-Mediterranean vegetation dominates the anthracological records. In the Ebro Delta, a typically Mediterranean maquis shrubland is highlighted by the predominance of olive tree (Olea europaea), holm/kermes oak (Quercus coccifera/ilex) and heather (Ericaceae) (Bosch, 1989; Ros, 1996). In the Bajo Aragón, continental conditions are evidenced by the presence of drought-resistant conifers such as Aleppo pine (Pinus halepensis) and junipers, also accompanied by Quercus coccifera/ilex (Alcolea, 2018; Aranbarri et al., 2020).

Therefore, a comparison of Cova del Vidre (this paper) with nearby sites (Ros, 1996;
Bosch, 1989; Alcolea, 2017; 2018) shows the existence of rather different plant
communities. The local differences in forest composition emphasize the importance of
altitudinal factors and the Mediterranean influence. These differences only become
noticeable at the beginning of the Holocene and are already well-established by the Early
Neolithic.

These observations show that the global climate that determined vegetation prior to the Holocene shaped the plant communities of these nearby sites roughly equally. From the Holocene onwards, differences in local conditions become decisive, such as (i) differences in precipitation and temperature due to orography, (ii) differences in water and heat retention due to geological features, (iii) Mediterranean influences due to the proximity to the sea and (iv) finally, differential human activities that have completed the shaping of the landscapes.

El Port massif currently has the appearance of an island of vegetation containing forest species that probably originated during the Last Glacial period. Indeed, at Cova del Vidre, the presence of Prunus during the Younger Dryas, followed by its abrupt increase in the Early Holocene, accompanied by Quercus coccifera/ilex, and later during the Middle Holocene by other temperate species, like Quercus deciduous, Buxus sempervirens and Fagus sylvatica, echoes the presence of the same taxa today, at more than 1,000 m a.s.l., under limiting conditions for these species. We believe that during the Late Glacial, these taxa found suitable local thermal conditions that allowed them to resist and to restart rapidly in the Early Holocene. Then, during the Middle Holocene, precipitation conditions were favourable for their maintenance until today.

According to Carrión et al (2003), there is a common misapprehension that Iberian glacial
 refugia were confined to southernmost parts of the peninsula, as palaeobiological and

463 genetics information shows that numerous viable Quaternary refugia did exist for
464 woodland species in the mountain ranges, both in continental central Spain and northern
465 Spain. Thus, even if the main refugia for deciduous trees lay further east in the Italian and
466 Balkan Peninsulas, the Iberian Peninsula may have retained sclerophyllous and some
467 broad-leaved species.

According to the suggestions of Bennett et al. (1991), in southern Europe trees that survived in mid-altitude refugia during cold stages probably also persisted during warm Quaternary stages, constituting long-term refugia with a suitable climate. Trees could easily have survived at densities too low to escape detection in the pollen record of any site so far analysed.

Based on the very early Holocene dynamics of deciduous trees and the current
maintenance of thermophilic taxa in the El Port massif, the surroundings of Cova del
Vidre seem to be a very good candidate as a refuge during the Last Glacial period.

6. CONCLUSIONS

The present study fills an important gap in palaeobotanical information on medium-high altitudes in the eastern Iberian Range. Until now, the available records were limited to the Mediterranean lowlands of the Bajo Aragón and the Ebro Delta. Conclusions have been drawn regarding (i) the vegetation dynamics in Mediterranean mountain environments. (ii) the uses of forest resources by the last hunter-gatherers and the first farmers, (iii) the beginning of local differences in vegetation as a function of altitude-dependent factors, and (iv) the palaeodistribution of some European trees. The most important points of these findings are summarized below:

- The Cova del Vidre data cover a period between the 13th and 6th millennia (i) cal BP. During the Late Glacial and Early Holocene, the anthracological record is dominated by a spectrum of cold-climate pines and thorny shrubs, with a diversification of taxa underway. They suggest an open landscape formed by pioneering, opportunistic, fast-growing, and well-dispersed plants. During the Atlantic period, an important shift in temperature and precipitation regime promoted successional changes in plant communities on a long-term scale. The Scots type pine never disappeared given the altitude of the site but acquired a secondary role with the gradual establishment of a mixed deciduous forest, increasing in biodiversity over time, reflecting the consolidation of climatic improvement that began in the Early Holocene.
- Firewood was supplied mainly from the surroundings of the cave. Changes in (ii) fuel use reflect the evolution of vegetation cover. During the hunter-gatherer occupations, cold-climate pines persistently dominated the anthracological spectrum, as in the case of Ebro valley records at that time. The extensive use of yew by the last hunter-gatherers and early farmers reflects an increase in humidity that favoured the species. In the context of an environment poor in hardwood species until the end of the sequence, we cannot rule out a preferential use of this species for livestock feed, with the remaining wood then being burnt.

A comparison with archaeobotanical data from nearby sites in the lowlands (iii) suggests that altitudinal differences in vegetation were already well-established by the late Mesolithic (Early Atlantic). While cold-climate conifers and Supramediterranean vegetation predominated in the mountains, Mediterranean trees and shrubs were already dominant in the plains. Local differences occurred within a small geographical area due to altitudinal factors and Mediterranean influence. Soil aridity appears to be one of the main factors limiting vegetation in the Mediterranean mountains.

519(iv)Macrofossil evidence of yew and beech provides new data about the southern520limit of their range. A Holocene refugium of temperate and Mediterranean521taxa is identified in the 7th millennium cal BP in El Port massif (Tortosa-522Beceite), where relict populations of these taxa still exist today. Their presence523is relevant for the reconstruction of the palaeodistribution of these species and524sheds light on the influence of human impact on their current distribution.

526 ACKNOWLEDGEMENTS

This study is in line with the objectives of the project PID2019-109254GB-C21 «Paleoambiente, modelización del paisajes y análisis del uso de plantas en la transición a la agricultura en el noreste de la Península Ibérica» funded by the Ministry of Science and Innovation (Spain). M. Alcolea is supported by the program Juan de la Cierva Formación (FJC2018-037919-I) from the Ministry of Science and Innovation (Spain) and Post-Doc Grant Plan funded by the Xunta de Galicia (Ref. ED481B 2018/016). This research has been carried out in the framework of the Laboratory of Archaeobotany of the Autonomous University of Barcelona (Spain) and the Institute of Evolutionary Sciences of Montpellier (France). The author thanks to Peter Smith for the English edition of the text.

538 REFERENCES

Alcolea M (2017) El paisaje vegetal y la explotación del combustible: estudio
antracológico del Arenal de la Fonseca (Ladruñán, Teruel). In: Utrilla P, Domingo R and
Bea M (eds) El Arenal de la Fonseca (Ladruñán-Castellote, Teruel). Ocupaciones
prehistóricas del Gravetiense al Neolítico. Monografías Arqueológicas 52. Zaragoza:
Prensas Universitarias de la Universidad de Zaragoza, pp. 167-176.

Alcolea M (2018) Donde hubo fuego: estudio de la gestión humana de la madera como
recurso en el valle del Ebro entre el Tardiglaciar y el Holoceno Medio. Monografías
Arqueológicas 53. Zaragoza: Prensas de la Universidad de Zaragoza.

Alcolea M, Domingo R, Piqué R and Montes L (2017) Landscape and firewood at
Espantalobos Mesolithic site (Huesca, Spain). First results. Quaternary International 457:
198-210.

Alcolea M, Dufraisse A, Royo M, Mazo C, de Luis M, Longares LA, Utrilla P and
Fábregas R (2021) Dendro-anthracological tools applied to Scots type pine forests
exploitation as fuel during the Mesolithic-Neolithic transition in the southern central prePyrenees (Spain). Quaternary International 593-594: 332-345.

2		
3	558	
4	559	Alía R. Mancha JA. Sánchez de Ron D. Barba D. Climent J. García del Barrio JM. Notivol
5	560	N and Iglesias S (2009) Regiones de procedencia de especies forestales en España.
7	561	Madrid: Organismo Autónomo Parques Nacionales, pp 107-112.
8	562	
9	563	Allué E (2002) Dinámica de la vegetación y explotación del combustible leñoso durante
10	564	el Pleiistoceno Superior y el Holoceno del Noreste de la Península Ibérica a partir del
 12	565	análisis antracológico. PhD Thesis, Universitat Rovira i Virgili, Snain
12	505	anansis antracologico. Ende Encesis, Oniversitat Rovita Evingin, Opani.
14	500	Alluá E. Cacaros I. Eantanals M. Caroía M. Ollá A. Saladiá P. and Huguat P. (2007) La
15	507	Allue E, Caceles I, Folitaliais M, Galcia M, Olle A, Salaule F allu Huguel R (2007) La
16	568	Cativera (el Catilar, Tarragones). In: Jornades d'Arqueologia Comarques de Tarragona
17	569	(Tortosa 1999), Tarragona, Spain, pp. 29-45. Barcelona: Generalitat de Catalunya,
18	570	Departament de Cultura.
20	571	
21	572	Allué E, Vernet JL and Cebrià A (2009) Holocene vegetational landscapes of NE Iberia:
22	573	charcoal analysis from Cova de la Guineu, Barcelona, Spain. The Holocene 19(5): 765-
23	574	773.
24	575	
25 26	576	Allué E, Fullola JM, Mangado X, Petit MÀ, Bartrolí R and Tejero JM (2013) La séquence
20 27	577	anthracologique de la grotte du Parco (Alòs de Balaguer, Espagne): paysages et gestion
28	578	du combustible chez les derniers chasseurs-cueilleurs. L'Anthropologie 117(4): 420-435.
29	579	
30	580	Antolín F. Jacomet S and Buxó R (2015) The hard knock life. Archaeobotanical data on
31	500	farming practices during the Neolithic (5400-2300 cal BC) in the NE of the Iberian
32 33	501	Paning practices during the Neonthie (5400–2500 car DC) in the NE of the format
34	502	remisura. Journal of Archaeological Science 01. 30-104.
35	583	
36	584	Antolin F, Navarrete V, Sana M, Vinerta A and Gassiot E (2018) Herders in the
37	585	mountains and farmers in the plains? A comparative evaluation of the archaeobiological
38	586	record from Neolithic sites in the eastern Iberian Pyrenees and the southern lower lands.
39 40	587	Quaternary International 484: 75-93.
40 41	588	
42	589	Aranbarri J, González-Sampériz P, Valero-Garcés B, Moreno A, Gil-Romera G, Sevilla-
43	590	Callejo M, García-Prieto E, Di Rita F, Mata MP, Morellón M, Magri D, Rodríguez-
44	591	Lázaro J and Carrión JS (2014) Rapid climatic changes and resilient vegetation during
45	592	the Lateglacial and Holocene in a continental region of south-western Europe. Global and
40 47	593	Planetary Change 114: 50-65.
47	594	
49	595	Aranbarri J Bartolomé M Alcolea M Sancho C Celant A González-Sampériz P Arenas
50	596	C Magri D and Rodríguez-Lázaro I (2016) Palaeobotanical insights from early-mid
51	597	Holocene fluvial tufas in the Moncavo natural nark (Iberian range NF Spain): regional
52	500	appropriate and history and history in the indications. Paviaw of Dalasabatany and Dalynalogy
53 54	596	224, 21 42
55	599	234. 51-43.
56	600	
57	601	Aranbarri J, Alcolea M, Badal E, Vila S, Allué E, Iriarte-Chiapusso MJ, Sebastián M,
58	602	Magri D and González-Sampériz P (2020) Holocene history of Aleppo pine (Pinus
59	603	halepensis Mill.) woodlands in the Ebro Basin (NE Spain): Climate-biased or human-
60	604	induced? Review of Palaeobotany and Palynology 104240.

HOLOCENE

2		
3	605	
4	606	Auñón-García FJ, Alía R, Sánchez de Ron D, de Miguel J, García del Barrio JM (2011)
5	607	SIG-FOREST Visor SIG de especies forestales Foresta 51: 38-42
6 7	609	
/ 8	008	
9	609	Aura JE, Carrion Y, Estrelles E and Jorda GP (2005) Plant economy of hunter-gatherer
10	610	groups at the end of the last Ice Age: plant macroremains from the cave of Santa Maira
11	611	(Alacant, Spain) ca. 12000-9000 BP. Vegetation History and Archaeobotany 14(4): 542-
12	612	550.
13	613	
14	614	Badal E Carrión Y Rivera D and Uzquiano P (2003) La arqueobotánica en cuevas y
15	615	abrigo: objetivos v métodos de muestreo. In: Buxó R and Piqué R (dirs) I a recogida de
16	616	mustras en arguestationes: chietivos y propuestas metadológicas. La gestión de las
1/	610	indestras en arqueobotanica. Objetivos y propuestas inetodologicas. La gestion de los
10	61/	recursos vegetales y la transformación del paleopaisaje en el Mediterraneo occidental.
20	618	Barcelona: Museu d'Arqueologia de Catalunya, pp. 17-27.
21	619	
22	620	Badal E, Carrión Y, Chabal L, Figueiral I and Thiébault S (2017) Neolithic human
23	621	societies and woodlands in the North-Western Mediterranean region: wood and charcoal
24	622	analysis In García-Puchol O and Salazar-García DC (eds) Times of Neolithic Transition
25	623	along the Western Mediterranean Springer International Publishing np. 135-169
26	624	along the western weaterranean. Springer international rubinshing, pp. 155-169.
27	624	
28	625	Bennett KD, Tzedakis PC and Willis KJ (1991) Quaternary refugia of north European
30	626	trees. Journal of biogeography 18(1): 103-115.
31	627	
32	628	Bosch J (1989) Memòria de les excavacions 1989: el Molló de la Torre (Amposta,
33	629	Montsià). Report, Servei d'Arqueologia i Paleontologia, Generalitat de Catalunya.
34	630	
35	631	Bosch J (2001) Les ocupacions prehistòriques de cacadors recol·lectors a la Cova del
36	632	Vidre (Roquetes) Assentament i clima Recerca 5: 9-20
37 38	633	
39	624	Posch I (2015) La Cuava del Vidra (Paquetes, Paia Ebra) A sontemiento del Mesolítico
40	054	bosen J (2013) La Cueva del Vidre (Roquetes, Bajo Ebro). Asentamiento del Mesonico
41	635	y del Neolitico Antiguo en la Cordillera Costera Catalana meridional. In: Gonçaives V,
42	636	Diniz M and Sousa AC (eds) Actas del 5º Congresso do Neolítico peninsular, Faculdade
43	637	de Letras da Universidade de Lisboa, 7-9 abril 2011, pp. 182-189. Lisboa: UNIARQ.
44	638	
45	639	Bosch J (2016) La cerámica de la Cova del Vidre (Roquetes) y el Neolítico Cardial
40 47	640	Franco-Ibérico. In: Bonet H (ed) Del neolític a l'edat del bronze en el Mediterrani
47	641	occidental Estudis en Homenatge a Bernat Martí Oliver Valencia. Diputació de
49	6/2	València Museu de Prehistòria de València nn 109-116
50	612	valencia, museu de Freinstoffa de Valencia, pp. 107-110.
51	045	Dearth J. Franz dell T. and Millelle (MMA (1004) Fl "Demons de Febrelleren erstensionte de
52	644	Bosch J, Forcadell I, and Villaldi MM (1996) El Barranc de Fabra" un asentamiento de
53	645	inicios del IV milenio a.C. en el curso inferior del Ebro. Rubricatum 1(1): 391-396.
54	646	
55 56	647	Bradshaw RHW, Kito N and Giesecke T (2010) Factors influencing the Holocene history
57	648	of Fagus. Forest Ecology and Management 259(11): 2204-2212.
58	649	
59	650	Bronk Ramsey C and Lee S (2013) Recent and planned developments of the program
60	651	OxCal Radiocarbon 55(2/3): 720-730
	0.01	

2		
3	652	
4	653	Burjachs F. Jones SE. Giralt S and Fernández-López de Pablo J (2016) Lateglacial to
5	654	Early Holocene recursive aridity events in the SE Mediterranean Iberian Peninsula. The
0 7	655	Salines playa lake case study. Quaternary International 403: 187-200
, 8	655	Sumes playa lake case study. Quaternary memational 405. 107 200.
9	030	Duvé B and Digué B (2008) Anguachatérica. Las usas de las rientas an la renérgula
10	657	Buxo R and Pique R (2008) Arqueobotanica. Los usos de las plantas en la península
11	658	Iberica. Barcelona: Ariel Prehistoria.
12	659	
13	660	Camprodon J, Casals P, Cariati A, Guixé D, Rios AI, Buquera X, Reverte J, Sánchez S,
14 15	661	Argerichi G and García-Martí X (2014) Life TAXUS, proyecto para la conservación del
16	662	habitat del tejo en Catalunya. Objetivos, metodologias y primeros resultados. In:
17	663	Proceedings IV International Yew Workshop. Management, conservation and culture of
18	664	the vew forests in the Mediterrenean forest ecosystems, pp. 13-148. Lleida: Centre
19	665	Tecnològic Forestal de Catalunya
20	666	
21	667	Carrién IS VII EL Walker ML Legaz AL Chain C and Lénez A (2003) Glacial refugia
22	007	Carrier JS, THEI, Walker WJ, Legaz AJ, Chain C and Lopez A (2005) Glacial religia
23	668	of temperate, Mediterranean and Ibero-North African flora in south-eastern Spain. new
25	669	evidence from cave pollen at two Neanderthal man sites. Global Ecology and
26	670	Biogeography 12(2): 119-129.
27	671	
28	672	Carrión Y (1999) Datos preliminares del antracoanálisis de l'Abric de la Falguera (Alcoi,
29	673	Alacant). Sagvntvm Extra 2: 37-43.
30 31	674	
32	675	Caruso L and Piqué R (2014) Landscape and forest exploitation at the ancient Neolithic
33	676	site of La Draga (Banyoles, Spain). The Holocene 24(3): 266-273.
34	677	
35	678	Castrovieio S (coord gen) (1986-2012) Flora iberica 1-8, 10-15, 17-18, 21, Madrid: Real
36	679	Jardín Botánico, CSIC
3/	690	Jardin Dotanico, Corc.
30 30	000	Caudulle C. Welly E. and San Miguel Asiana I. (2017) Charalaginal mana for the main
40	681	Caudulio G, weik E, and San Miguel-Ayanz J (2017) Chorological maps for the main
41	682	European woody species. Data in Brief 12: 662-666. doi: 10.1016/j.dib.2017.05.007.
42	683	
43	684	Chabal L (1997) Forêts et sociétés en Languedoc (Néolithique final, Antiquité tardive) :
44	685	l'anthracologie, méthode et paléoécologie. Documents d'Archéologie Française 63. Paris:
45 46	686	Éditions de la Maison des sciences de l'homme.
40 47	687	
48	688	Chabal L, Fabre L, Terral JF and Théry-Parisot I (1999). L'anthracologie. In: Fédière A
49	689	(ed) La botanique, Paris: Errance, pp. 43-104.
50	690	
51	691	Chabal I and Heinz C (2021) Reconstructing the heterogeneity of past woodlands in
52	602	anthracology using the spatial distribution of charcoals in archaeological layers: applied
53 54	092	to the next legisl ecouption of the Abauradar cause (Uérquit) in the couth of France
55	693	Oustemany International 502 504: 10.25
56	694	Qualemary International 393-394: 19-35.
57	695	
58	696	Costa M, Morla C and Sainz H (2001) Los bosques ibéricos. Una interpretación
59	697	geobotánica. Madrid: Planeta.
60	698	

HOLOCENE

2		
3	699	Cunill R, Soriano JM, Bal MC, Pèlachs A, Rodríguez JM and Pérez-Obiol R (2013)
4	700	Holocene high-altitude vegetation dynamics in the Pyrenees: a pedoanthracology
5	701	contribution to an interdisciplinary approach Quaternary International 289: 60-70
0	702	contribution to un interensciplinary approach. Quaternary international 209: 00 70.
/ 0	702	
0	703	Delhon C, Martin L, Argant J and Thiebault S (2008) Shepherds and plants in the Alps:
10	704	multi-proxy archaeobotanical analysis of Neolithic dung from "La Grande Rivoire"
10	705	(Isère, France). Journal of Archaeological Science 35(11): 2937-2952.
12	706	
13	707	Dubreuil M Riba M González-Martínez SC Vendramin GG Sebastiani F and Mavol M
14	707	(2010) Canatia affecta of almonia habitat fragmantation revisited, strong consticution the
15	708	(2010) Genetic effects of chrome nabitat fragmentation revisited. strong genetic structure
16	709	in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. American
17	710	Journal of Botany 97(2): 303–310.
18	711	
19	712	Eiarque A Miras Y Riera S Palet JM Orengo HA (2010) Testing micro-regional
20	712	variability in the Holocene shaning of high mountain cultural landscapes: a
21	713	variability in the Holocene shaping of high mountain cultural landscapes, a
22	/14	palaeoenvironmental case-study in the eastern Pyrenees. Journal of Archaeologiical
23	715	Science 37: 1468-1479.
24	716	
25	717	Ferré M and Piqué R (2002) Explotació del paisatge forestal al Neolític Final: Resultats
20	718	preliminars de l'estudi antracològic de la Prunera (Olot) In: Pirineus i veïns al 3er
27	710	mil lenni AC De la fi del Neolítica l'edat del Bronze entre l'Ebre i la Garona no. 235-
20	719	242 Mail Deissand's Institut d'Esta dis Constant
30	720	243. Mola-Pulgcerda: Institut d Estudis Ceretans.
31	721	
32	722	Follieri M, Roure JM, Giardini M, Magri D, Narcisi B, Pantaleón-Cano J, Pérez-Olbiol
33	723	R, Sadori L and Yll EI (2000) Desertification trends in Spain and Italy based on pollen
34	724	analysis In Balabanis P Peter D Ghazi A and Tsogas M (eds) Mediterranean
35	725	desertification Research results and policy implications. Proceedings of the International
36	725	Conference 20 October to 1 Nevember 1006 nr 22.44 Crete: Crease European
37	726	Conference 29 October to 1 November 1996, pp. 33-44. Crete. Greece European
38	727	Commission.
39	728	
40	729	García Esteban L, Guindeo Casasus A, Peraza Oramas C and De Palacios P (2003) La
41	730	madera y su anatomía. Anomalías y defectos, estructura microscópica de coníferas y
4Z //3	731	frondosas identificación de maderas descrinción de especies y pared celular Madrid:
44	701	Mundi Branza
45	/32	iviunui-riensa.
46	733	
47	734	Giesecke T and Brewer S (2018) Notes on the postglacial spread of abundant European
48	735	tree taxa. Vegetation History and Archaeobotany 27(2): 337-349.
49	736	
50	737	González-Sampériz P. Utrilla P. Mazo C. Valero B. Sopena MC. Morellón M. Sebastián
51	720	M. Marana A and Martínaz Paa M (2000) Patterns of human accumation during the early
52	/50	W, Moreno A and Martinez-Dea M (2009) Fatterns of numan occupation during the early
53	/39	Holocene in the Central Ebro Basin (NE Spain) in response to the 8.2 ka climatic event.
54	740	Quaternary Research 71(2): 121-132.
55	741	
50 57	742	Gramsch B (ed) (1981) Mesolithikum in Europe. Veröffentlichungen des Museum für
57 58	743	Urund Frühgeschichte Postdam Berlin: Deutscher
59	7//	Stand Trangesentente, I obtamin Dernin. Deutorion.
60	/44	

2		
3	745	Greguss P (1955) Identification of Living Gymnosperms on the Basis of Xylotomy.
4	746	Budapest: Akadémiai Kiado.
5	747	F
0 7	7/18	Heinz C and Thiébault S (1998) Characterization and nalaeoecological significance of
, 8	740	archaeological charged assemblages during late and past classical phases in southern
9	749	archaeological charcoal assemblages during fate and post-glacial phases in southern Γ_{rense} Obstantian Descent $50(1)$, $50(2)$
10	750	France. Quaternary Research 50(1): 56-68.
11	751	
12	752	Huntley B and Birks HJB (1983) An atlas of past and present pollen maps for Europe, 0-
13	753	13,000 years ago. Cambridge: Cambridge University Press.
14	754	
15	755	Jacquiot C, Trenard Y and Dirol D (1973) Atlas d'anatomie des bois des angiospermes
17	756	(Essences feuillues). Paris: Centre de Technologie du Bois.
18	757	
19	758	Kabukeu C and Chabal I (2021) Sampling and quantitative analysis methods in
20	750	anthropology from archaeological contexts: Achievements and prospects. Quaternary
21	759	antifiacology from archaeological contexts. Achievements and prospects. Quaternary
22	760	International 593-594: 6-10.
23	761	
24 25	762	Laborda R (2019) El Neolítico antiguo en el Valle Medio del Ebro. Una visión desde la
26	763	cerámica y las dataciones radiocarbónicas. Monografías Arqueológicas 55. Zaragoza:
27	764	Prensas de la Universidad de Zaragoza.
28	765	
29	766	López-Merino L, López-Sáez JA, Ruíz-Zapata MB and Gil-García MJ (2008)
30	767	Reconstructing the history of beech (Fagus sylvatica L) in the north-western Iberian
31	768	Range (Spain): from Late-Glacial refugia to the Holocene anthronic-induced forests
32 33	760	Range (Spain). Non Late-Glacial religia to the Holocene anthropie-induced forests. Review of Palaeobotany and Palynology 152(1-2): 58-65
34	709	Review of Talacobolarity and Talyhology $152(1-2)$. $56-65$.
35	//0	
36	//1	Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gomory D, Latałowa M,
37	772	Litt T, Paule L, Roure JM, Tantau I, Van Der Knaap WO, Petit RJ and De Beaulieu JL
38	773	(2006) A new scenario for the Quaternary history of European beech populations:
39	774	palaeobotanical evidence and genetic consequences. New phytologist 171(1): 199-221.
40	775	
41 47	776	Martin L and Thiébault S (2010) L'if (Taxus baccata L.) : histoire et usage d'un arbre
43	777	durant la Préhistoire récente. L'exemple du domaine alpin et circum-alpin. Des hommes
44	778	et des plantes · exploitation du milieu et gestion des ressources végétales de la Préhistoire
45	779	à nos jours Actes des XXXèmes rencontres internationales d'archéologie et d'histoire
46	700	d'Antibes nn 1 20 Antibes : APDCA
47	700	d Antibes, pp. 1-20. Antibes . AFDCA.
48	/81	
49 50	782	Martin L, Delhon C, Thiebault S and Pelletier D (2012) Plant exploitation and diet in
51	783	altitude during Mesolithic and Neolithic: Archaeobotanical analysis from a hunting camp
52	784	in the Chartreuse massif (l'Aulp-du-Seuil, Isère, France). Review of Palaeobotany and
53	785	Palynology 185: 26-34.
54	786	
55	787	Martínez-Tuleda A, Robles-Cuenca F, Santisteban-Bové C, Grün R and Hentzsch B
56	788	(1986) Los travertinos del rio Matarraña Beceite (Teruel) como indicadores
5/ 50	789	naleoclimaticos del Cuaternario. In: Lónez-Vera F (ed) Quaternary climate in Western
50 50	700	Mediterranean nn 307-324 Madrid: Universidad Autonoma de Madrid
60	790	meenenancan, pp. 507-524. maana. Omversidad Autonoma de maana.
	791	

HOLOCENE

2		
3	792	Maz
4	793	de]
6	794	inte
7	795	Ferr
8	796	
9 10	797	Mir
10	798	la ve
12	799	l'ana
13	800	And
14	801	
15	802	Obe
17	803	Que
18	804	gath
19 20	805	de S
20 21	806	129-
22	807	
23	808	Om
24 25	809	the
25 26	810	Inte
27	811	
28	812	Pére
29	813	Hol
30 31	814	LAZ
32	815	
33	816	Pére
34 25	817	Iber
35 36	818	
37	819	Pére
38	820	dyn
39	821	Pyre
40 41	822	385
42	823	
43	824	Pére
44	825	Rie
45 46	826	Sev
47	827	and
48	828	Qua
49	829	
50 51	830	Piqu
52	831	Bar
53	832	
54	833	Piqu
55 56	834	anti
57	835	Aut
58	836	
59		
60		

Mazo C and Montes L (1992) La transición Epipaleolítico-Neolítico antiguo en el abrigo
de El Pontet (Maella, Zaragoza). In: Utrilla P (coord) Aragón/Litoral mediterráneo:
intercambios culturales durante la Prehistoria, pp. 243-254. Zaragoza: Institución
Fernando el Católico.

Miras Y, Ejarque A, Orengo HA, Riera S and Palet JM (2007) Dynamique holocène de
la végétation et occupation des Pyrénées andorranes depuis le Néolithique ancien, d'après
l'analyse pollinique de la tourbière de Bosc dels Estanyons (2180 m, Vall del Madriu,
Andorre). Comptes Rendus Palevol 6(4): 291-300.

802 Obea L, Celma M, Piqué R, Gassiot E, Martín-Seijo M, Salvador G, Rodríguez-Antón D,
803 Quesada M, Mazzuco N, García-Casas D, Díaz-Bonilla S, Clemente I (2021) Firewood804 gathering strategies in high mountain areas of the Parc Nacional d'Aigüestortes i Estany
805 de Sant Maurici (Central Pyrenees) during Prehistory. Quaternary International 593-594:
806 129-143.

808 Oms FX, Terradas X, Morell B and Gibaja JF (2018) Mesolithic-Neolithic transition in
809 the northeast of Iberia: Chronology and socioeconomic dynamics. Quaternary
810 International 470: 383-397.

Pérez Díaz S, López Sáez JA, Ruiz Alonso M, Zapata L and Abel Schaad D (2013)
Holocene history of Taxus baccata in the Basque Mountains (Northern Iberian Peninsula).
LAZAROA 34: 29-41.

816 Pérez-Obiol R (2007) Palynological evidence for climatic change along the eastern
817 Iberian Peninsula and Balearic Islands. Contributions to science 3(3): 415-419.

Pérez-Obiol R, Bal MC, Pèlachs A, Cunill R and Soriano JM (2012) Vegetation
dynamics and anthropogenically forced changes in the Estanilles peat bog (southern
Pyrenees) during the last seven millennia. Vegetation History and Archaeobotany 21:
385-396.

Pérez-Sanz A, González-Sampériz P, Moreno A, Valero-Garcés B, Gil-Romera G,
Rieradevall M, Tarrts P, Lasheras-Álvarez L, Morellón M, Belmonte A, Sancho C,
Sevilla-Callejo M and Navas A (2013) Holocene climate variability, vegetation dynamics
and fire regime in the central Pyrenees: the Basa de la Mora sequence (NE Spain).
Quaternary Sciences Review 73: 149-169.

830 Piqué R (1999) Producción y uso del combustible vegetal: una evaluación arqueológica.
831 Barcelona: CSIC Press.

Piqué R (2011) Paisatge i aprofitament de recursos vegetals en l'assentament neolític
antic de Camp de Colomer (Juberri, Andorra). Report, Dept. Prehistòria, Universitat
Autònoma de Barcelona.

Piqué, R.; Revelles, J.; Burjachs, F.; Caruso Fermé, L., Pérez-Obiol, R. 2018. Interdisciplinary approach to the landscape and firewood exploitation during the Holocene at La Garrotxa (Girona, NE Iberia). Quaternary International 463: 401-413. Rasmussen SO, Andersen KK, Svensson AM, Steffensen JP, Vinther BM, Clausen HB, Siggaard-Andersen SJ, Johnsen LB, Larsen D, Dahl-Jensen M, Bigler R, Röthlisberger H, Fischer K, Goto-Azuma ME and Hansson RU (2006) A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research: Atmospheres 111(D6). Revelles J (2017) Archaeoecology of Neolithisation. Human-environment interactions in the NE Iberian Peninsula during the Early Neolithic. Journal of Archaeological Science: Reports 15: 437-445. Revelles J, Cho S, Iriarte E, Burjachs F, Van Geel B, Palomo A, Piqué R, Peña-Chocarro L and Terradas X (2015) Mid-Holocene vegetation history and Neolithic land-use in Spain). Palaeogeography Palaeoclimatology theLake Banyoles area (Girona, Palaeoecology 435: 70-85. Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Bronk Ramsey, C.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; Grootes, P.M.; Guilderson, T.P.; Hajdas, I.; Heaton, T.J.; Hogg, A.G.; Hughen, K.A.; Kromer, B.; Manning, S.W.; Muscheler, R.; Palmer, J.G.; Pearson, C.; van der Plicht, J.; Reimer, R.W.; Richards, D.A.; Scott, E.M.; Southon, J.R.; Turney, C.S.M.; Wacker, L.; Adolphi, F.; Büntgen, U.; Capano, M.; Fahrni, S.M.; Fogtmann-Schulz, A.; Friedrich, R.; Köhler, P.; Kudsk, S.; Miyake, F.; Olsen, J.; Reinig, F.; Sakamoto, M.; Sookdeo, A.; Talamo, S. (2020): The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0-55 cal kBP). Radiocarbon 62: 725-757. Riera S and Esteban A (1994) Vegetation history and human activity during the last 6000 vears on the central Catalan coast (northeastern Iberian Peninsula). Vegetation History and Archaeobotany 3(1): 7-23. Roberts N, Eastwood WJ, Kuzucuoğlu C, Fiorentino G and Caracuta V (2011) Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene 21(1): 147-162. Ros MT (1992) Les apports de l'anthracologie à l'étude du paléoenvironment végétal en Catalogne (Espagne). Bulletin de la Societé Botanique de France, Actualités botaniques 139:483-493. Ros MT (1995) Estudi antracologic de tres jaciments de la vall de Llierca (Garrotxa, Catalunya). L"activitat humana i el medi vegetal des del Neolitic Antic al Bronze Final. X Col.logui intermancional d'arquelogia de Puigcerdà. Cultures i Medi de la Prehistoria a l'Edat Mitjana. Homenatje al Professor Guilaine, pp. 87-96. Puigcerdà: Institut d'Estudis Ceretans.

HOLOCENE

2		
3	884	Ros MT (1996) Datos antracológicos sobre la diversidad paisajistica de Catalunya en el
4 5	885	Neolítico. Rubricatum 1: 43-56.
6	886	
7	887	Ruiz-Alonso M, Pérez-Díaz S and López-Sáez JA (2019): From glacial refugia to the
8	888	current landscape configuration: permanence, expansion and forest management of Fagus
9	889	sylvatica L. in the Western Pyrenean Region (Northern Iberian Peninsula). Vegetation
10	890	History and Archaeobotany 28(5): 481-496.
12	891	
13	892	Schweingruber FH (1990) Anatomie europäischer Hölzer. Berna and Stuttgart: Haupt.
14	893	
15	894	Senar Lluch R (2011) Aportaciones botánicas para la comarca valenciana dels Ports. Flora
10	895	Montibérica 48: 102-107
18	896	
19	897	Soto A Alday A Montes L Utrilla P Perales U and Domingo R (2015) Epipalaeolithic
20	808	assemblages in the Western Ebro Basin (Spain): The difficult identification of cultural
21	800	entities Quaternary International 364: 144-152
22	000	entities. Quaternary international 504. 144-152.
24	900	Théry-Parisot I. Chabal I. and Chrzawzez I (2010) Anthracology and tanhonomy from
25	002	wood gathering to charcoal analysis A review of the tanhonomic processes modifying
26	902	abaraaal assemblagas, in archaaological contexts, Palaoogaagraphy, Palaooglimatology
27	905	Palaoooology 201(1): 142-152
28 29	904 005	ralaeoecology 291(1) . 142-135.
30	905	Thémanin A (1091) Le fin dell'animalé alithiana et les delauts du mégalithiana dans le nord
31	906	I nevenin A (1981) La fin d l'epipaleolitnique et les debuts du mesolitnique dans le nord
32	907	du Jura Irançais. În Gramsch B (ed) Mesolithikum în Europe. Veroffentiichungen des
33 34	908	Museum für Ur und Früngeschichte. Postdam, 14/15, pp. 25-32. Berlin: Deutscher.
35	909	
36	910	Thomas ER, Wolff EW, Mulvaney R, Steffensen JP, Johnsen SJ, Arrowsmith C, White
37	911	JWC, Vaughn B and Popp I (2007) The 8.2 ka event from Greenland ice cores.
38	912	Quaternary Science Reviews 26(1-2): 70-81.
39 40	913	
41	914	Utrilla P and Bea M (2012) El asentamiento neolítico del Plano del Pulido (Caspe,
42	915	Zaragoza). Rubricatum 5: 69-78.
43	916	
44	917	Utrilla P, Domingo R and Bea M (2017) El Arenal de Fonseca (Castellote, Teruel):
43 46	918	ocupaciones prehistóricas del Gravetiense al Neolítico. Monografías Arqueológicas 52.
47	919	Zaragoza: Prensas de la Universidad de Zaragoza.
48	920	
49	921	Utrilla P, Montes L, Mazo C, Martínez-Bea M and Domingo R (2009) El Mesolítico
50 51	922	Geométrico en Aragón. In: Utrilla P and Montes L (eds) El Mesolítico Geométrico en la
52	923	Península Ibérica. Monografías Arqueológicas 44, pp. 131-190. Zaragoza: Prensas de la
53	924	Universidad de Zaragoza.
54	925	
55	926	
оо 57	927	Uzquiano P, Allué E, Antolín F, Burjachs F, Picornell L, Piqué R and Zapata L (2015)
58	928	All about yew: on the trail of Taxus baccata in southwest Europe by means of integrated
59	929	palaeobotanical and archaeobotanical studies. Vegetation History and Archaeobotany
60	930	24(1): 229-247.

2		
3	931	
4	932	Vegas J. Ruíz-Zapata B. Ortíz JE. Galán L. Torres T. García Cortés A. Gil-García MJ.
5	933	Pérez-González A and Galllardo Millán JL (2009) Identification of arid phases during
0 7	93/	the last 50-cal ka BP from the Fuentilleio mar-lacustrine record (Campo de Calatrava
, 8	025	Volcanic Field Spain) Journal of Quaternary Science 25: 1051-1062
9	955	Volcanic Field, Spain). Journal of Quaternary Science 25. 1051-1002.
10	936	
11	937	Vernet JL (1980) La végétation du bassin de l'Aude, entre Pyrénées et Massif Central, au
12	938	tardiglaciaire et au postglaciaire d'après l'analyse anthracologique. Review of
13	939	Palaeobotany and Palynology 30: 33-55.
14 1 <i>5</i>	940	
15 16	941	Vernet JL, Ogereau P, Figueiral I, Machado Yanes C and Uzquiano P (2001) Guide
10	942	d'identification des charbons de bois préhistoriques et récents Sud-Ouest de l'Europe
18	0/13	France Péninsule ibérique et iles Canaries Paris: CNRS Éditions
19	044	Trance, Tennisule Iberique et nes Canaries. Taris. CIVICS Editions.
20	944	
21	945	Vidal-Matutano P (2015) Evidencia de recol·leccio de teix (Taxus baccata L.). Recerques
22	946	del Museu d'Alcoi 24 7-20.
23	947	
24	948	TABLE AND FIGURE CAPTIONS
25 26	949	
20	950	Table 1. Radiocarbon dates available for the archaeological sequence in Cova del Vidre
28	951	(Bosch 2001 2015 2016) Material B. bone (Ovis) C. Charcoal Culture ME.
29	952	Microlaminar Eninalaeolithic GM: Geometric Mesolithic EN: Farly Neolithic
30	052	Calibrations with OxCal v4.4 Bronk Pansav (2017): r: 5 IntCal20 atmospheric aurue
31	953	Calibrations with OxCal v4.4. Bronk Ramsey (2017), 1. 5 Interactor atmospheric curve (D_{1}) (2017), 1. 5 Interactor atmospheric curve
32	954	(Reimer et al., 2020). Beta-58943 comes from the large structure in layer 2 cent.
33	955	
34 25	956	Table 2. Absolute and relative frequencies of the taxa identified in Cova del Vidre.
36	957	
37	958	Figure 1. Geographical setting and site location. Black star: Cova del Vidre. Black points
38	959	(nearby sites mentioned in the text): 1. Plano del Pulido, 2. El Pontet, 3. Arenal de
39	960	Fonseca, 4. Barranc d'en Fabra, 5. Molló de la Torre, Base: MDT200 IGN (Spanish
40	961	Government)
41	062	
42	062	Figure 2 Frequency diagram of anthracelegical remains from Cove del Vidro
43 44	905	Figure 2. Frequency diagram of antifiacological femalits from Cova del Vidre.
45	964	
46	965	Figure 3. ESEM images of selected taxa: A) Taxus baccata. Transverse section, B) Taxus
47	966	baccata. Radial section, C) Fagus sylvatica. Transverse section, D) Fagus sylvatica.
48	967	Radial section, E) Rosaceae Maloideae. Transverse section, F) Rosaceae Maloideae.
49	968	Radial section.
50	969	
51	970	Figure 4. Current distribution of <i>Taxus baccata</i> L, in El Port massif and Ebro Delta (NE
52 53	971	Iberia) (blue diamonds) Data from CIFOR-INIA (Auñón-García et al. 2011) Black star:
54	072	Cova del Vidre Black points (nearby sites mentioned in the text): 1 Arenal de Fonseca
55	572	2 Diano dol Dulido 2 El Dontot 4 Dorrono d'on Esbro 5 Molló do la Torro 6 Corros
56	9/3	2. FIAID del Fulldo, 5. El Follet, 4. Dallane d'ell Fabla, 5. Mollo de la Torre, 6. Coves
57	974	dei Fem. Black circles: distance from the site of 10, 20, 30, and 40 km. Base: MDT200
58	975	IGN (Spanish Government). Prepared by the authors.
59	976	
60		

HOLOCENE

977 Figure 5. Map of the modern and past distribution of beech (*Fagus sylvatica*) in Europe.
978 Striped area: modern distribution after Alía et al., 2009 CIFOR-INIA. Triangles:
979 geographical distribution of records containing macrofossil evidence (see references in
980 Magri et al., 2006 supplementary material). Black star: Cova del Vidre record. Prepared
981 by the authors.

Figure 6. Current distribution and seed zones of *Fagus sylvatica* L. in NE Iberia. Data
from CIFOR-INIA (www.inia.es/genfored.html) (Auñón-García et al. 2011). Black star:
Cova del Vidre within the area containing small relict forests of *Fagus sylvatica* L. in El
Port massif (*Buxo sempervirentis-Fagetum sylvaticae*) (Costa et al., 2001) Base:
MDT200 IGN (Spanish Government). Prepared by the authors.

Laye	Cultur	Date	+/-	Ref. lab.	Calibrated age BP	Materia	Reference
r	e	BP			(2 σ)	1	
2	EN	6,248	33	OxA-	7,259-7,021	В	Bosch,
cent				26065			2016
2	EN	6,181	35	OxA-	7,167-6,957	В	Bosch,
cent				26064			2016
2	EN	6,180	90	Beta-	7,272-6,801	С	Bosch,
cent				58934			2016
4	GM	7,290	70	UBAR-	8,311-7,966	С	Bosch,
cent				832			2015
2 int	ME	10,74	13	Beta-	12,690-12,471	C	Bosch,
		0	0	58933			2001

for per per per external

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
17	
10	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
16	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	

Culture	Microlamin		Sauveterro		Geometric		Early Neolithic				
	ar		ic	l	Mesolithic						
	Epipaleolith										
	ic										
Bioclimatic period	Lateg	lacial	Early		Middle		Middle Holocene				
			Holocene		Holocene						
	Younger		Preboreal		Early		Middle Atlantic				
	Dry	yas			Atla	Atlantic					
Layer	2 i	int	1 ii	nt	<i>4 c</i>	ent	2	cent	Large		
				I					struc	eture	
Таха	n	%	n	%	n	%	n	%	n	%	
Abies alba	1	1.2	-	-	-	-	-	-	-	-	
Acer sp.	-	-	-	-	-	-	1	0.3	2	0.7	
Buxus sempervirens	-	-	-	-	8	4.8	36	12.3	2	0.7	
Ericaceae	-	-	-	-	-	-	1	0.3	-	-	
Fagus sylvatica	-	-	-	-	-	-	1	0.3	2	0.7	
Juniperus sp.	1	1.2	-	-	-	-	7	2.4	-	-	
Pinus tp. sylvestris	79	96.3	78	78.	125	74.9	86	29.5	12	4.0	
				0							
Prunus sp.	1	1.2	18	18.	-	-	4	1.4	-	-	
				0							
Quercus	-		4	4.0	-	-	2	0.7	3	1.0	
coccifera/ilex											
Quercus deciduous	-	-	-	-	2	1.2	20	6.8	12	4.0	
Rosaceae Maloideae	-	-	_	-	3	1.8	18	6.1	7	2.3	
Taxus baccata	-	-	-	-	29	17.4	11	39.7	257	86.2	
							6				
Vitis vinifera	-	-	-	-	-	-	-	-	1	0.3	
Total determined	82		100		167		29		298		
							2				
Undeterminables	_		-		8		-		-		
Total fragments	82	100	100	10	175	100	29	100	298	100	
				0			2				
Total taxa	4		3		5		11		9		

http://mc.manuscriptcentral.com/holocene

254x190mm (96 x 96 DPI)

Figure 2. Frequency diagram of anthracological remains from Cova del Vidre.

254x338mm (96 x 96 DPI)

254x190mm (96 x 96 DPI)

754x533mm (118 x 118 DPI)

641x481mm (38 x 38 DPI)