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Smectic liquid crystals are fluids, and in most rheological situations they behave as such.
Nevertheless, when thin freely floating films of smectic A or smectic C materials are compressed
quickly in-plane, they resist such stress by buckling similar to solid membranes under lateral stress.
We report experimental observations of wrinkling and bulging of finite domains within the films,
so-called islands, and give a qualitative explanation of different observed patterns. Depending on
the external stress and the island dimensions, they can expel a specifically shaped bulge in their
center, form radial wrinkles or develop target-like wrinkle structures. When the external stress is
relaxed, these patterns disappear reversibly.

I. INTRODUCTION

A. Thin fluid films

Surface tension is the driving force of the shape
relaxation of many fluid-fluid interfaces. It drives the
relaxation of undulations or the retraction of deformed
droplets to a spherical shape of minimal energy. This
also applies to the shape relaxation of thin liquid films
separating two fluids. A simple and well-known example
are colorful soap bubbles, which enjoy grown-up humans
often just as much as children. Their shape relaxation
is in many respects similar to that of incompressible
droplets (e.g. described in Refs. [1–6]). In contrast to
droplets, neither the enclosed nor the surrounding fluid
can be neglected in soap bubbles [7]. As long as the
bubbles are large enough, the mass and inertia of the
film are negligible, but the most important property of
the thin liquid films is its viscosity that leads to an
increased damping of bubble oscillations [7]. However,
when the bubbles become small enough and the film mass
is comparable to the enclosed air mass, the inertia of the
fluid film must be taken into account [8, 9].

Flow of the inner and outer fluid will always couple to a
redistribution of material in the film. The bubble shape
relaxation is always coupled to flow in the separating
film and thus a re-distribution of film material. In soap
films of several square centimeters surface area, viscous
effects or the redistribution of surfactant on the film
surfaces can often be neglected. In smectic liquid crystal
films, such a redistribution of film material is significantly
hindered by the internal layer structure that inhibits
thickness changes of the films. The latter involves
a reorganization of the smectic layer structure. This
process strongly affects the relaxation dynamics [10–14],
both the shape changes of the relaxing bubbles and
the surface area relaxation rates. The relaxation rate
decreases both with increasing film thickness and with
increasing homogeneity of the smectic film (decreasing
number of layer steps present in the film) [12, 13]. The
time scale of smectic layer reorganization sets the time
scale of relaxation. Regarding rapid shape changes,

such smectic bubbles possess an effectively zero dynamic
surface tension, and the bending stiffness of the smectic
layers for large-scale deformations is similarly low. Thus,
the shape dynamics are reminiscent of lipid membranes
and vesicles. External forcing can cause, e.g., wrinkling
or bulging instabilities of these bubbles [10, 11, 14].

Rheological properties which strikingly alter the
dynamic behaviour of thin films in rapid processes,
i.e. during changes which occur much faster than
the relaxation time scale of the films, have also been
observed in rupture events: In soap films with immobile
surfactants [15] or extremely thin (Newton black)
films [16], sudden cracks appear around the growing
hole in the film, and retraction slows down. Collapsing
bubbles of very viscous liquids wrinkle under the action
of gravity [17]. When a viscous drop creates a thin
spread-out film in a crater during impact on a liquid pool,
such films can wrinkle transiently [18]. This phenomenon
is reminiscent of elastic sheets under external stress.
Note that sufficiently visco-elastic fluid filaments can
also exhibit dynamic buckling upon compression or
rupture [19, 20]. As extreme cases, one may consider
deformations of lipid or cell membranes or vesicles,
whose dynamics on short time scales is dominated by
bending rigidity instead of surface tension [21]. This can
cause wrinkling or the extrusion of tubuli upon lateral
membrane compression [22–25]. All these structures are
transient, the relevant parameter is the separation of
time scales of film or filament relaxation compared to
that of the external stresses acting on the membrane.
Here, we identify, analyze and describe patterns in local
regions with excess smectic layers (so-called islands) in
smectic films. They can develop shape instabilities under
compression even while the surrounding film still remains
plane. We show that this is related to the line tension of
the islands. Their morphologies closely resemble similar
patterns described in thin solid sheets, as detailed in the
following section.



B. Wrinkling of solid sheets

The classical, and most investigated system exhibiting
wrinkles consists of joint solid multilayers with
incommensurate elastic properties under lateral stress.
This is encountered, e.g. in drying fruit [26], but also in
oxidized surface layers of PDMS, or thin incommensurate
crystalline structures [27]. A second scenario is stress
response in thin elastic membranes (without elastic
substrate): This includes, e.g., stretched clamped or
poked sheets [26, 28], thin elastic sheets on a liquid
surface [29, 30], or the response of an elastic sheet that
has an excess size compared to the shape enforced by
external constraints. Wrinkled curtains [31], or wrapping
problems where a planar sheet is externally forced into a
curved shape have been described [32–34]. In contrast to
the dynamic wrinkling instabilities in fluids as mentioned
in the introduction, most of these patterns in elastic
layers concern static wrinkling and buckling. There is no
relevant relaxation in the structures. The deformations
resemble equilibrium structures. Wrinkling caused by
highly dynamic external forcing can occur as well, but is
less investigated. A recent study models wrinkles caused
by a particle impacting onto thin elastic sheets floating
on a water bath [35].

Different wrinkle morphologies are observed depending
on the stress and excess area of the membrane. Chung et
al. [36] crosslinked the surface of thin polystyrene films
and swelled the remaining non-crosslinked part of these
films with toluene afterwards. Near local impurities or
defects in the solid surface layer, they observed two types
of radially expanding wrinkling patterns, one with radial
undulations, the second one with circular ones. They
identified different crosslinking times as the cause for the
appearance of these different wrinkling morphologies.

Similar structures have been found in numerous other
experiments when a thin solid membrane is exposed to
in-plane stress by viscous flow, deformations of attached
layers of elastic material, indention or other methods.
Zhao et al. covered a shape-memory polymer with a thin
gold layer and described different wrinkle morphologies
upon temperature changes as a consequence of thermal
expansion mismatches between the gold and polymer
layers [37]. This and similar reports are interesting in
the context of the present study because of the close
resemblance of the structures described there and the
patterns we observe in islands of freely floating smectic
bubbles. Figure 1 shows in the top row two images of
the polymer/gold film stack after shape recovery of the
polymer material. In the left image, the polymer was
treated such that it forms a protrusion after thermal
recovery, and a radial ray-like pattern is produced. In the
right image, the gold film wrinkles in a circular target-like
pattern. The bottom row shows selected smectic islands
on a freely floating bubble subject to rapid external
forcing.

C. Wrinkling of smectic freely floating films

In the present study, we describe deformations of
freely floating bubbles whose membrane consists of
fluid material in a smectic C liquid crystalline phase.
The layered structure of the films inhibits a fast
reduction of the film area and consequently a fast shape
relaxation of non-spherical bubbles. This can increase
the typical relaxation time from tens to several hundreds
of milliseconds [10–13]. While surface tension drives the
global bubble shape relaxation, it is practically irrelevant
for shape changes on short time scales. Recently,
regular film undulations as a consequence of local
in-plane compression of the films by external forcing were
reported [12, 14, 38] and their morphology was described.
This phenomenon was explained with a simple model
as a transient dynamic buckling instability [14]. The
growth rates of unstable undulation modes determine
the wavelength selection. Short wavelength modes are
suppressed by the elastic forces related to deformations
of the smectic layers, while long wavelengths grow
slower because they require the redistribution of the
outer fluid (air) over longer distances. The relation
between wrinkle wavelength and film thickness under
isotropic compression was recently measured employing
the geometry of collapsing catenoids with a film in the
waist [38]. In freely floating smectic bubbles, converging
flow of the surrounding air was identified as the driving
external force compressing the local surface area [14],
but the actual compression rates are usually hard to
determine. In such bubbles, a second scenario of stress
relaxation was observed, viz. the bulging of thicker
patches (islands) on the bubble surface [11, 12, 14], as
well as the extrusion of tubuli and a constriction of
buds [10, 11]. Their formation has been qualitatively
explained by the presence of the well-known line tension
due to the layer dislocations around the perimeter of
the island, but neither the origin of their characteristic
shapes nor quantitative measurements of the instability
have been addressed yet.

In addition to the analysis of bulge shapes, we discuss
certain wrinkling patterns which appear exclusively
within islands in freely floating smectic films subject
to lateral compression by external forces. The bottom
row in Fig. 1 shows two examples. These localized
undulations exhibit striking similarities to patterns
formed in thin elastic sheets [35–37, 39]. We adapt a
model initially developed for wrinkling instabilities of
freely-floating bubbles with uniform thickness [14] to
localized instabilities of smectic islands. The island size
and thickness as well as the line tension of its border are
key parameters for the pattern formation and wavelength
selection.



Figure 1. Top: Images of gold coated shape memory
polymers after shape recovery of a locally indented sample.
a) Radial pattern above a protrusion of the shape-recovered
polymer, b) Ring pattern above a pre-indented area. Images
(a,b) are reproduced from Zhao et al. [37] with permission,
copyright IOP Publishing. Bottom: Wrinkling structures
observed in smectic islands. c) radial undulations around
a tubulus formed perpendicular to the film, d) tangential
undulations of a nearly flat island.

II. MATERIALS AND METHODS

Here, we report observations in microgravity on
freely floating smectic C bubbles made of a mixture
of equal volumes of 5-n-octyl-2- [4-(n-hexyloxy)
phenyl]pyrimidine and 5-n-decyl-2- [4-(n-octyloxy)
phenyl]pyrimidine (both commercially available from
Synthon Chemicals). This mixture exhibits a smectic
C phase at room temperature up to 52◦ C, followed
upon heating by smectic A phase (TCA = 52◦) and a
nematic phase (TAN = 68◦) before the isotropic phase is
reached (TNI = 72◦). The mixture has a surface tension
of 22.45 mN/m at room temperature [10].

Freely floating bubbles were created by a technique
described in earlier works [10, 40], as sketched in Fig. 2: A
small amount of about 1 mg of the smectic material was
introduced between two coaxial circular metallic rings
(Rring = 25 mm inner radius), which were thereafter
brought into contact. Using a stepper motor, the rings
were then slowly separated from each other, so that a
catenoid-shaped smectic film formed. Above a critical
separation between the rings, Dcrit ≈ 1.3254 Rring, the
catenoid-shaped film collapses. Mainly because of its
inertia, some of the air inside the catenoid is trapped
between the two pinch-off points, and an elongated
bubble is formed [41]. The bubble oscillates for a few
dozen milliseconds until it reaches the stable spherical
shape with minimal film surface.

The equilibrium radii of these bubbles are of the order
of R ≈ 3 mm. The exact radius in individual experiments
depends slightly on film thickness, temperature and

other parameters [10]. In addition to this bubble,
there are often two oscillating films remaining in the
catenoid rings, whose oscillations cause motion in the air
surrounding the bubble and generate an external force on
the relaxing bubble [11]. Alternatively, the bubble can
also be submitted to external forces with acoustic waves
generated by two loudspeakers implemented behind the
catenoid support rings. Then, one has the advantage to
control the excitation phases and frequencies.

We study the fast dynamics of islands on the bubbles
during the comparably slow phase of shape relaxation
after the pinch-off, before the bubbles reach their
spherical equilibrium shape. As soon as the sphere shape
is reached, neither the oscillating remnant films nor the
loudspeakers included in our setup are able to cause
noticeable shape changes of the bubble.

Figure 2. Sketch of the procedure to prepare freely floating
smectic bubbles using catenoid collapse.

The smectic catenoid is back-illuminated by either
white or monochromatic parallel light using white and
blue (wavelength 460 nm) LEDs. The catenoid collapse
takes place within less than a few milliseconds (see,
e.g., Ref. [38]). We use a high speed camera (Phantom
VEO 710) equipped with a commercial Canon lens.
The typical recording speed is 7500 fps with a spatial
resolution of approximately 5 µm/pixel. It is focused
onto the film of the bubble facing the camera (front
side) with high magnification to ensure that details
of the island dynamics can be acquired. However,
it is not possible to observe the global shape of the
bubble and the details of the surface dynamics with
sufficient resolution on the same images. Thus, a GoPro
Hero action camera at a recording speed of 120 fps is
implemented at 90◦ with respect to the Phantom camera
and to the catenoid symmetry axis in order to acquire
the global view of the bubble during the oscillation. The
thickness of the background film (the uniformly thick
film around potential islands) equals that of the catenoid
from which the bubble was generated. For simplicity,
we usually determine the film thickness in the moment
of the catenoid collapse when the central part assumes
a roughly cylindrical shape. Images are normalized
by the background prior to extraction of transmission
intensity values. We average over several profiles at equal
radius in order to reduce noise. Subsequently, the film
thickness is determined by fitting background-corrected
intensity profiles [42] assuming an effective refractive
index of 1.53 of the smectic material. This value is
known for homologues of our mixtures. The approximate



thickness of selected islands was determined from their
transmission intensity, considering their position and the
background film thickness of the bubble [43]. Typical
background film thicknesses are around 20 nm, islands
can be significantly thicker. The thickness of individual
smectic layers is approximately 2.7 nm at 25 ◦C [44].

Under normal gravity conditions, the initial shape of
the bubble just after pinch-off is asymmetric [10]. It often
pinches off at the upper end first , and this, in turn,
influences the oscillation behavior. In addition, since it
is a freely floating bubble, it is difficult to keep it in
focus; it quickly moves out of the focal plane and can even
leave the observation window of the optical microscope
prior to reaching the sphere shape. Hence, it is difficult
to study island dynamics in normal gravity experiments.
For this reason, most of the experiments were performed
under microgravity conditions during the VP148 CNES
parabolic flight campaign at NOVESPACE (Bordeaux,
France), and previous DLR campaigns with the same
provider.

III. FILM AREA REDUCTION

Due to the incompressibility of the smectic liquid, a
lateral compression of the smectic film in general requires
a local increase of the film thickness. A stress-induced
reduction of the tilt angle of the SmC phase [45] can
only transiently compensate a small fraction of the
required surface area reduction. Islands typically form
already during catenoid collapse. During bubble shape
relaxation, these islands grow and accommodate the
excess material from the background film during the
reduction of the surface area of the smectic bubble [10,
11]. They act as reservoir of material, similar to the
meniscus in frame-supported films. The island growth is
achieved by excess smectic material from the surrounding
film that is adsorbed at the island circumference. After
the bubble shape relaxation, the rapid growth of islands
ceases, and only long-term equilibration processes such
as coalescence and Ostwald-ripening on the bubble will
take place [46].

The islands are surrounded by layer dislocations. The
geometry of such an island on a smectic bubble is
sketched (much exaggerated) in Fig. 3b. One cannot see
the dislocation loops directly in an optical microscope as
their size is well below the resolution limit. What is seen
is the boundary between regions of different thickness,
which in general have different optical transmission
intensities and are identified by their optical contrast. In
Fig. 3, islands can be identified as darker spots. Their
brightness is directly related to the local film thickness
which finally allows for their thickness determination
[14, 40, 42].

On average, some 30 to 40 islands formed on each
bubble. They can interact with each other and in some
cases, the islands can even merge when they get in
contact. Despite its importance and a general interest

Figure 3. (a) Islands (darker regions) on a freely floating
smectic bubble. The equilibrium radius of the bubble is R
≈ 2.7 mm. The black square on the sketch of the bubble in the
bottom-left corner indicates the field of view of the camera.
The white bar represents 1 mm. The axis of symmetry of the
catenoid is indicated by the white arrow. (b) Sketch of a cut
through a smectic bubble. The smectic layers are indicated
by dashed lines. In the upper part, the cut through an island
is shown, with the layer dislocations marked by red dots.

in the coalescence phenomenon [47–49], this feature will
not be analyzed here. We have chosen islands that
are isolated and sufficiently far from neighboring ones
to avoid coalescence during the analysis of dynamics.
Depending on their position and orientation on the
bubble surface respective to the optical axis of the camera
lens, any island that lies in a plane forming an angle
other than 90◦ to the optic axis appears deformed in the
perspective view. For the interpretation of measurements
of the islands dynamics, we assume that the islands
remain nearly circular. Then, the long axis of the
projected ellipse represents the actual island radius r.

The dynamics was studied in about 80 smectic islands
in 70 shape-relaxing bubbles. The relaxation of the
bubble is associated with a slow decrease of the film
surface area, thus we observe a systematic increase of
effective island areas, i.e. the projection of the surface of
the island onto the plane of the surrounding film, until
the spherical equilibrium shape of the bubble is reached.
Thicker islands grow more slowly than thinner ones. This
is in agreement with previous results [10, 11].

However, for 25 out of 80 investigated islands, we found
an unexpected behavior: The island radius temporarily
ceases to grow to finally join back the initial growth
curve after some time, as exemplarily shown in Fig. 4a,b.
Fig. 4a shows an island during the axial compression
and dilation of the bubble induced by the films in the
holder rings that oscillate in anti-phase with a frequency
of approximately 16 Hz. The sudden change of island
projection growth occurs during the compression period.
Fig. 4c,d show that during this period, the island forms
a bulge first, and a tubulus later during the maximum



compression. The formation of bulge and tubulus reduces
the effective island area as seen in the graph. When the
compression period has finished, the island returns to its
original flat shape (Fig. 4e). The observation that the
island radius evolution joins back to the initial growth
curve in Fig. 4a indicates that during this reversible
deformation, the actual surface area of the island grew
continuously, and it continues to grow further until the
bubble reaches the spherical shape.

Figure 4 b shows an island during the repeated axial
compression and dilation of the bubble by means of an
acoustic excitation with two loudspeakers placed behind
the film holders. The loudspeakers work in antiphase at
a frequency of 120 Hz, so that the bubble is repeatedly
compressed in axial direction every 8.33 ms. Figures 4f-h
depict the bulged island during the first compression, the
flat island during axial dilation of the bubble and the
repeated bulging during the next compression phase. The
effective island area is consequently decreasing twice in
the graph.

IV. BULGING OF SMECTIC ISLANDS

As is seen in Fig. 4, an effective reduction of the
lateral island extension can be achieved with the very
simple extrusion of protuberances of different shapes
out of the film plane. One might naively assume first
that these protuberances are bell or dome shaped. In
fact, we observe bulges of very different shapes, but in
most cases they have very characteristic appearances.
Some examples are shown in Fig. 5 a,b. There is a
simple reason for the selection of these shapes: sphere
caps, cones, cylinders capped with a hemisphere and
other, more complex geometries. These shapes have one
property in common: they are composed of cylindrical,
conical and circular segments (Fig.5 c). A characteristic
feature of these shapes is that they locally preserve the
smectic layer spacing. Distortions of the film shape
that involve local changes of the smectic layer spacing
(e.g. sine undulations that are discussed in the next
section) are inhibited by the comparably large smectic
layer compression modulus B. The elastic energy needed
for layer compression grows with the fourth power of
undulation amplitudes and the fourth power of the
wave number of undulation modes. Therefore, dilation
has an influence particularly for deformations on small
scales. For large deformation amplitudes, avoiding
layer dilation or compression is an important aspect
of energy minimization. Elastically driven spontaneous
layer undulations in smectic C menisci [50–52] can be
explained following a similar shape selection of circular
arc segments [53].

Even though we do not expect to find equilibrium
shapes during the dynamical evolution of the
protuberances within the islands, they grow slowly
enough to avoid deformations which lead to a local
compression or dilation of the smectic layers: Thus,

Figure 4. Growth of the effective island area (plane area
surrounded by the island border) as a function of time in two
examples (a,b). The sharp drops are indicated by the black
dashed squares. The solid red line is a quadratic fit. See
text for more explanation. These islands form protrusions,
which can effectively expel smectic material out of the film
plane. Images (c-e) and (f-h) show the shapes of the islands in
different phases of compression for the island of graph (a) and
(b), respectively. Time stamps refer to the start of recording.
Image sizes are 350 µm ×350 µm.

the protuberances have their characteristic shapes. For
example, the cylinder-shaped protrusion shown in Fig. 6
that has formed during the lateral compression phase
of the film relaxes during the subsequent expansion of
the local film region by only reducing its length, keeping
the tube diameter constant at about 45 µm (see the
3rd scheme on Fig. 5c). It is located in some terraced
smectic island which is larger than the image shown and
remains flat otherwise. At its maximum extension, the



Figure 5. a,b) Bulges of different shapes growing within
smectic islands during a local lateral film compression. Scale
bars mark 0.2 mm. c) Sketches of cross sections of some
typical shapes of protrusions where the smectic layers of
constant period are seen.

protrusion is 0.23 mm long and contains a film area of
roughly 0.03 mm2, this is about 5 % of the surrounding
island area.

When the compression phase persists long enough
(several milliseconds), long tubes can exhibit some
kind of Rayleigh-Plateau instability and develop axial
modulations of their radii. They may then irreversibly
transform into spherical partitions (see Fig. 5b and first
scheme on Fig. 5c).

Figure 6. A single tube-shaped protrusion relaxes after the
film region is dilated again. The scale bar marks 0.2 mm.

V. WRINKLING OF SMECTIC ISLANDS

The reversible sudden drop of the effective island area
may not only be related to bulges as seen in Fig. 4, but
also to wrinkles inside the islands. Fig. 7a shows optical
images of the gradual formation of circular wrinkles
within an island during the identified drop of the effective
island area (Fig. 7d). These wrinkles are film undulations
that represent an alternative way for decreasing the
effective island area under lateral compression (see Fig.
11 below). Figure 7b presents the intensity profiles of
these images measured along a line drawn across the
island (see red dashed line in Fig. 7a). The wrinkles
are characterized by the selection of a wavelength λ. For
this exemplary island, the wavelength is λ ≈ 40 ± 5 µm
at t = 72.5 ms.

Figure 7c shows the space-time plot measured along
a material-fixed equatorial line drawn across the island.

Figure 7. (a) Formation of ring-shaped wrinkles within an
island. (b) Wrinkle intensity profile plot along the red line as
a function of time. (c) Space-time plot showing the dynamic
behavior of wrinkles with time. Wrinkles appear near the
island center first, then new undulations gradually appear
at the outside, seen as dark and bright lines parallel to the
time-axis. (d) Radius of the island shown in Fig. 7(a) as
a function of time. The red dots are a linear extrapolation
of the radius r0(t). (e) Side view of the same island before
it leaves the field of view. The deformation has reached an
amplitude of ≈ 70 µm. White bars in (a) and (e) represent
100 µm.

Note that the dark lines parallel to the radial coordinate
axis at about t = 70 ms are artifacts of a crease of the
film at the rear side of the bubble, see Fig. 8. The
wrinkles typically form near the center of the island first.
Afterwards, new wrinkles appear further away from the
center as shown by the dark and bright lines parallel to
the time axis starting one after the other. This process
is accompanied by a simultaneous small reduction of the
wavelength, λ, of approximately 15% between t = 49 ms
and t = 72 ms. The actual surface area of the film inside
the island continues to grow during the formation of the
wrinkles. This is evident from the wrinkles increasing
of their amplitudes and also from new undulations being
formed. This observation is qualitatively consistent with



the increasing optical contrast in Fig. 7b. Between t =
48.4 ms and t = 72.5 ms, the contrast modulations almost
double.

Black symbols in Fig. 7d show the time-dependent
radius of the island of Fig. 7a, r(t). It increases
monotonously with time before wrinkles form. At
approximately t = 60 ms, well-defined regular circular
wrinkles appear within the island and the growth of the
outer island radius, r(t), is reversed. Without wrinkles,
the true radius r0(t) of the island would follow the
extrapolated previous trend, sketched by the red dots in
Fig. 7d. The difference between the actual radius r of the
island and the extrapolated in-plane radius r0 provides a
compression rate defined as Γ = d(r(t) − r0(t))/dt. The
linear fit in Fig. 7d for data after 60 ms, shows that Γ
remains on average constant over time, with a mean value
of about 2±0.3 µm/ms. We note that the wrinkles in this
particular island slowly coarsen to form a kind of sphere
cap (Fig. 7e at t = 113 ms) before the island left the field
of view. The background film plane has slowly rotated
in this bubble region so that the image shows almost the
side view of this bulge.

The fact that the wrinkle patterns appear with
a certain delay and not just after pinch-off can be
attributed to the fact that the bubble is axially
compressed by two remnant films in the ring holders
which oscillate in antiphase (with a frequency of about
16 Hz). Harth et al. [14] have demonstrated that the
surrounding airflow generated by these films can induce
an axial compression of the bubble. This external forcing
is the main reason for wrinkling of the smectic satellite
bubble itself [14]. External disturbances are often
associated with complex shapes that smectic bubbles can
acquire during the oscillation phase. Figure 8 sketches
the region where the island studied in Fig. 7 is observed
(indicated by the black arrow). This particular island
was found close to a complex invagination of the bubble
appearing at its top. When such complex regions appear,
they can cause a local compression of the film area, which
in this case induces not only wrinkles within the island
but also in the surrounding film region (indicated by the
circle in Fig. 8).

Fig. 9 shows a typical image sequence of a contracting
section of a relaxing bubble, randomly speckled with
islands. In order to visualize the axial contraction of the
bubble, we marked two islands (at t = 27 ms) by solid
arrows. In the following two images, we show the shift of
their instantaneous positions (open arrows) with respect
to the initial one (solid arrows). The difference between
the solid and open arrows indicates an axial contraction
of the bubble section. The local area of the displayed
region remained nearly constant.

The bubble section of Fig. 9 shows that islands of
similar thickness react to lateral compression in different
ways: While the large island (marked in blue) grows
without developing any visible wrinkles, the intermediate
(marked in black) and small island (marked in red) are
both affected by the compression. The intermediate

Figure 8. Complex shape acquired by the freely floating
bubble during the oscillation regime. Film wrinkles formed
close to the deformed region of the film shown by the black
circle. The arrow points at the island studied in Fig. 7.
The white bar represents 1 mm. The symmetry axis of the
catenoid is indicated by the white double-arrow. The black
square on the sketch of the bubble in the left image indicates
the field of view of the camera.

island develops ring-shaped wrinkles similar to the
pattern observed in Fig. 7. The wrinkles in that island
appear around t = 35 ms, and a preferred wavelength
is selected. The small island forms a single bulge at
the center approximately 8 ms before the medium island
becomes unstable. We conclude that the size of the island
is an important parameter for wrinkle formation.

We note that radial wrinkles can be observed as well.
They are systematically connected with the presence of
a small bulge in the island center. Figure 10 shows a
typical example of star-shaped wrinkles, where radial
undulations are formed within the island surface. This
scenario begins with the formation of a central bulge,
approximately 25 ms after pinch-off. This bulge grows
slowly under the action of a continuous compression. The
relatively constant base diameter of this bulge of about
45 µm is maintained because the island contained an
even thicker central plateau. After about 53 ms, radial
wrinkles appear. They reach their maximum between
58 ms and 67 ms. Then, the wrinkling pattern flattens
again within 3 ms after the compression phase ended.
The bulge persists for another 65 ms, slowly shrinking,
until the island is flat again.

VI. WRINKLING ISLAND MODEL

The spontaneous undulation of layers in liquid crystal
samples has been known since about 50 years. Originally,
the model was developed for cholesteric samples distorted
by external electric or magnetic fields by Helfrich [54]
and Hurault [55], the deformation is thus known as
Helfrich-Hurault instability. Delaye et al. [56] first



Figure 9. Size-dependence of the response in similarly thick islands to external compression: The solid green arrows mark the
initial position of two islands near the side of the bubble, and are copied to images at later times. The current position of these
islands is marked by empty arrows. The difference indicates the axial compression. While the background film and the large
island (marked by the blue square) remain flat, a medium-sized island (black square) wrinkles and a smaller island bulges (red
square). Time counts from the beginning of the recording, which started few milliseconds before pinch-off of the bubble. The
black bar represents 1 mm. Bubble thickness ≈ (18 ± 3) nm.

Figure 10. Formation of a tubulus in the center of an island.
The detachment of such a tubule creates a stress that causes
the island to wrinkle as shown at t = 57 ms. Time counts from
the beginning of recording, which started few milliseconds
before pinch-off. The white bar represents 200 µm.

described this undulation in a smectic A cell with
homeotropic boundary conditions (layers in the cell
plane) under dilational stress normal to the cell plane.

A review of this instability has been published by Blanc
et al. [57]. In Delaye’s experiment, the cell plates were
displaced so that the cell thickness was slightly enlarged.
The smectic layers develop undulations to compensate
the cell thickening, seeking a compromise between elastic
energies for splay deformations and layer dilation.

The situation is quite different from our geometry
because the top and bottom layers in the cell are
assumed to remain flat, while in the present freely
floating films the undulations are uniform across the
film. Menisci of SmC and (partially) SmA films can also
display spontaneous layer undulations [50–52] originating
from elastic interactions between local orientations and
curvature of the layers [53]. In that model, the
undulations consist of circular arc segments, avoiding
layer dilation or compression. Thin free-standing films
are usually flat because of the action of the surface
tension. For the wrinkles in smectic films under rapid
compression [14, 38], i.e. the situation considered here,
surface tension can be neglected.

Harth et al. [14] have developed a one-dimensional
model to describe the wrinkle structures in freely floating
smectic bubbles and to estimate the value of the selected
wavelength. This model can be adapted to the case
of circular islands, taking into account the line tension
of the surrounding dislocations. The surface area of
the island is considered to be compressed by external

compressive forces, ~Fs, considered as dispersed along
the island perimeter (Fig. 11). The corresponding
mechanical work, Ws, in the radial configuration of the



wrinkling island is therefore:

Ws = 2πr(r0 − r)Fs, (1)

with Fs the force per unit of length. The response of the
film is the formation of wrinkles with initial wavelength
λ0 and amplitude a(t). The initial wave number is q0 =
2π/λ0. We approximate the wavelength, λ, to be fixed
during the wavelength selection process, and q ≈ q0. The
temporal variation in the experiments is indeed only of
about 15 %.

Figure 11. Sketch of a wrinkling circular island showing
the applied forces. The red circles indicate the dislocation
lines surrounding the island. λ is the wrinkles characteristic
wavelength.

The circular geometry of the island and the presence
of a ridge in the center of the island, as shown in Fig. 7,
strictly does not allow to describe the radial deformation
by harmonic functions. An ansatz with Bessel functions
would be more consistent. However, for a simplified
model, one may approximate the radial deformation of
the undulated island by a linear ansatz: u(r) = a cos qr,
with q = 2π/λ. The surface area of the island in
the absence of wrinkles is: A = πr20. In the presence
of wrinkles, the surface area can be obtained in the
cylindrical coordinate system as

A = 2π

∫ r

0

√
1 + u′2ρdρ ≈ πr2(1 +

a2q2

4
) (2)

where the integral is over the radial coordinate ρ relative
to the island center. Thus, we obtain

r0 ≈
√

1 +
a2q2

4
r ≈ (1 +

a2q2

8
) r, (3)

for weak undulations. Therefore, the mechanical work
performed by the compressive force, Ws, can be written
as

Ws = fs
πr2

4
a2q2. (4)

In the experiments shown above, where islands are
speckled on the bubble surface, wrinkles appear inside

these islands but not on the background film of the
bubble itself. The island diameter is an important
parameter. We thus assume that the line tension of
the dislocations in the island border supplies a crucial
contribution to the compressive stress which finally
triggers the instability.

The line tension of the island border with dislocations,
γ, plays a role similar to Fs, with a positive work when
the island perimeter decreases. Its mechanical work can
be written as: Wd = 2π(r − r0)γ, therefore

Wd = γ
πr

4
a2q2. (5)

Naively, we assume for now that γ is the static line
tension that can be measured in experiments [47, 48,
58, 59]. This issue will be discussed in detail below. It
is related to the line tension of a single dislocation, γs,
and the number of layer steps at the island boundary, by
γ = Nγs

The bending of smectic membranes induced by
the wrinkles leads to an elastic free energy density
contribution of the form [14]

wb ≈ welastic =
K11

2
a2q4 cos2 qr, (6)

with the constant K11 for splay deformations of the
director ~n. It should be noted that this model is strictly
valid for films in the smectic A phase. Here, we consider
it applicable as well because it has been demonstrated
earlier [45] that a quick lateral shrinkage of thin smectic
C films induces a transition into smectic A. We assume
that the tilt angle is reduced by the lateral compression
so that a smectic A model is appropriate.

The mechanical work associated with the bend of the
smectic layers can be derived similarly to the model by
Harth et al. [14], with the average cos2 qr = 1/2, as

Wb =
K11πr

2h

4
a2q4, (7)

where h is the island thickness.
Another possible elastic energy contribution

mentioned already in the previous section is related to
the smectic layer compression in an undulated film. In
a purely sinusoidal model with small amplitudes, this
compression is (1 − cosϕ) with ϕ = aq sin qx being the
angle of the layer plane respective to the undistorted
film.

The energy density corresponding to layer compression
or dilation can be obtained as

wc =
1

2
B(1− cosϕ)2, (8)

where B is the smectic layer compression modulus.
Expanding the cosine function as cos z ≈ 1− z2/2 yields

wc ≈
B

8
ϕ4 =

B

8
a4q4 sin4 qr. (9)



Applying the spatial average 〈sin4 qr〉 = 3/8, we obtain

Wc +Wb ≈ πr2h
(

3

64
Ba4q4 +

1

4
K11a

2q4
)

(10)

The contributions of both terms, Wc and Wb, relate as

β =
Wc

Wb
=

3B

16K11
a2. (11)

Which of them is important depends upon the magnitude
of a, and we use the rough estimate K11/B ≈ d20 that
relates the ratio of the two elastic constants to the order
of magnitude of the smectic layer thickness d0, thus

β ≈ 3 a2

16 d20
. (12)

When one considers initial fluctuations with the thermal
energy kT ≈ 4 · 10−21J , it can be seen that the layer
compression term (scaling with a4) is negligible in our
model. Thus, we can safely rely on the model in Ref.
[14] and Eq. (11) and disregard the layer compression
term in the wavelength selection process. When the
amplitude of the film undulation increases, the layer
compression term prevents a further growth of strictly
sinusoidal undulations. Then, the film deformation with
period 2π/q becomes slightly more complex and has to be
calculated by solving the Euler-Lagrange equation that
minimizes the combined contributions of the K11 and B
terms. We refrain from this calculation which is of little
relevance here but mention that the limiting case where
the layer compression term is completely avoided is a
deformation where the film bends in alternating arcs with
radii of curvature R = ±π2/(8aq2). For small amplitudes
a, this function is quite similar to a sine shape. The
splay elastic energy contribution of such a deformation
would change to 32π−4a2q4 ≈ 0.328 a2q4 compared to
the 0.25 a2q4 of the sine deformation of same periodicity
and amplitude. Thus, we can tacitly ignore the layer
compression term in our approximate model. It adds
but a small numerical correction.

The growth rate of the wrinkle must be related
to the surrounding airflow, from the crests to the
valleys of the undulation, and consequently to the
pressure profile along the island p(r). Again, we
approximate the airflow with a linear ansatz, neglecting
the circular geometry, since we are primarily interested
in a qualitative description of the instability mechanism.
The pressure profile above the film inside the island may
be approximated by p(r) = p0 sin qr. Therefore, the
dissipated energy Wf in the radial geometry of the island
may be assumed to be

Wf =
πr2

2Cq2
aȧ, (13)

where ȧ = da/dt The balance between the works, Ws +
Wd = Wf +Wb, would lead to the dispersion relation

ȧ =
([

(Fs + (γ/r))q4 −K11hq
6
]
a
) C

2
, (14)

where we have omitted the layer compression term on the
basis of the considerations above.

Since we are interested in a qualitative description of
the instability mechanism, the radius r is approximated
by a fixed value rc ≈ 10−4 m corresponding to the
experimental island radius at the onset of wrinkling. Eq.
(14) describes the growth of a mode band between q = 0

and qc =
√

(Fs + (γ/rc))/(K11h). The fastest growing
mode expected to select the wavelength value is found to
be

qmax =

√
(Fs + (γ/rc))

2K11h
. (15)

VII. DISCUSSION

First, we establish a relation between the amplitude
growth rate ȧ and the island radius shrinkage rate Γ,
using Eq. (3) and the experimental result of Fig. 7d
through the relation

−Γ =
d(r0 − r)

dt
≈ d

dt

a2q2maxr

8
=
aπ2r

λ2
ȧ.

With the experimental value r/λ ≈ 2 at onset (Fig. 7b),
and an estimated amplitude a ≈ 0.1λ at the threshold of
optical visibility of the patterns, one obtains ȧ ≈ |Γ/2| ≈
1 µm/ms at the time when the wrinkles become visible.
Once the pattern is well established, the amplitude a
of the wrinkles can be estimated from the ratio of the
observed island radius r and the extrapolated r0, using
the data in Fig. 7 at 80 ms, as an example

a ≈
√

8(r0 − r)
4π2r

λ ≈ 0.3λ.

which corresponds to amplitudes a of the order of 10 µm.
In view of the optically well-recognized patterns, this
result appears reasonable.

However, our model leads to a dilemma: In order to
demonstrate this, let us estimate the value of Fs + γ/r
from Eq. 15 where for simplicity, we use an approximated
fixed value of the island radius r ≈ rc = 10−4 m. We
transform this equation and use the relations h = Nd0
(neglecting the background film thickness), γ = Nγs for
N dislocations, and obtain

γs = q2max · 2K11d0rc − Fsrc/N. (16)

Substitution of the known values yields

γs = 8.6 · 10−14 N− Fsrc/N (17)

Including a background film with a thickness of the same
order of magnitude as the surplus island layers may
increase the first term by a factor of about 2, but won’t
change its order of magnitude. The problem with this
result is that γs has been measured by Géminard et al.



[59] for the smectic A material 4n-Octyl-4-cyanobiphenyl
(8CB), from the distortion of thin regions in a vertical
smectic film under gravitation. Their experiment is
a 2D equivalent of the pendant drop method for the
measurement of surface tensions. The line tension of the
border around a region of reduced film thickness (’hole’)
is proportional to the Burgers vector of the dislocation.
For a single dislocation, the line tension was found to be
γs ≈ 10−11 N. Independent measurements of γs [48, 58]
in different experimental configurations confirmed this
value. It is more than two orders of magnitude larger
than the first term on the right side of our estimate of
Eq. (17). The second, negative term even increases this
discrepancy.

In addition, if Fs was negligible compared to γ/rc in
Eq. (15), wrinkles within islands would be expected even
without external bubble perturbations. This contradicts
the experiment where a large number of islands display
neither wrinkles nor bulges during the bubble shape
relaxation.

We thus need to answer two questions. (I) How
to reconcile the literature values of γs, which we have
confirmed in independent experiments to be of the same
order of magnitude for the present material [43], and
the value of (Fs + γ/rc) derived from the measurements
of the pattern wavelength and our modified wavelength
selection model? (II) Why do islands in general remain
flat if the system can gain energy by bulging the film
inside, shortening the dislocations at practically constant
surface area?

The answer to question (II) is easier. Most experiments
with smectic freely suspended films have been carried
out in fixed frames so far. In that situation, bulging
of an island that shortens the island border requires
the creation of additional film area outside the island.
This process is inhibited by the surface tension of the
material, which tends to preserve or reduce the film
surface. Forces related to surface tension are in general
much stronger than those mediated by the dislocations
around islands. Thus, in all geometries with films that
represent minimal surfaces in a fixed frame, islands
remain flat. The same applies to spherical smectic
bubbles on a capillary support, and to freely floating
spherical bubbles. Wrinkling or bulging inside an island
can occur only if the island can shrink without increasing
the surface of the remaining film. That’s why the
phenomenon was so far only found in freely floating
bubbles that have not yet reached their equilibrium
sphere shape. The same can in principle be expected
in a freely floating film of arbitrary shape with a free
edge. Figure 12 demonstrates this in an example of an
equilibrium spherical film and an adjacent freely floating
film rag. This rag has a free border and thus it is rapidly
shrinking to finally form a single droplet. Because of
the free edges, islands on this non-equilibrium structure
can form bulges and more complex protrusions without
increasing the total film area. In contrast, islands on the
bubble keep their flat shape.

Question (I) regarding the heavily overestimated
contributions of line tension requires a new hypothesis.
The experiments which led to the measurement of line
tensions of dislocations are quasi-static. Géminard et al.
[59] studied the equilibrium shapes of film holes under
the combined actions of gravitation and line tensions of
dislocations. They determined the stationary value of γs.
The same applies to our unpublished measurements of γs
in the present material: The line tension was determined
from the final stage of coalescing islands on bubbles [43],
and this process is also sufficiently slow so that one can
use it as a good approximation for the static value of
γs. It also applies to the line tension measurement and
the corresponding model of the late stages of coalescence
of Nguyen et al. [48]. However, the very early stages
of island coalescence, where the local reduction rate of
dislocation lengths is large, display clear discrepancies
with the model based on an equilibrium line tension.
Recordings at high spatial and temporal resolution even
reveal an unexpected initial acceleration phase of the
neck velocity [48]. In such short periods, the dislocations
cannot contract quick enough because such longitudinal
contractions require the rapid reconstruction of the local
smectic layer structure. Nguyen et al. [48] suggested a
global permeation out of the dislocations along the island
perimeter. This resistance against a contraction of the
dislocations leads to an effective reduction of the line
tension, and vice versa it would result in an effectively
increased line tension when the dislocations are stretched.

This means that we have to assume that the γ term
introduced above is not the usual static line tension but
an effective, dynamic one. This hypothesis needs to be
tested in further experiments, but for now, it seems to
be the only reasonable explanation of our experimental
observations that (I) wrinkles and protrusions form in
smectic islands under strong lateral compression of the
local films, even if the surrounding film does not develop
undulations, and (II) without film compression, the
islands remain flat even if the bubbles have not yet
reached their equilibrium sphere shape.

We have shown in Fig. 9 that islands can react to the
local compression in different ways depending on their
size. The large island shown by the blue square has
the smallest value of γ/rc, and in agreement with this
it displays neither wrinkles nor a bulge. The smallest
island enclosed in the red square experiences the highest
stress of the three islands since γ/rc is the largest.
Such a small island, however, may not be suitable to
accommodate wrinkles because its radius is not larger
than the characteristic wavelength λ of wrinkles. Thus,
the island bulges out of the film plane instead, as
observed. This suggests that the selection of wrinkling
or bulging scenarios at comparable external compression
dynamics is dictated by the island size in comparison to
the most unstable wrinkle wavelength.

The two types of wrinkles, star and ring shaped
patterns, are structurally very similar to features
observed in experiments on the formation of wrinkling



Figure 12. Closed bubble and freely floating film sheet, not
in contact with each other. The islands in the bubble remain
undistorted, while those in the floating film form bulges under
comparable conditions. Image size 4 mm ×4 mm.

patterns atop shape memory polymers (Fig. 1) [37]. A
thin gold elastic sheet lying on a soft substrate develops
wrinkled patterns when subject to an external forcing
or as a result of geometric incompatibility. Formation
of similar wrinkling patterns has a quite different origin
in solid sheets and smectic films, but it seems that the
two phenomena have two features in common: First,
the wrinkling is the consequence of the shrinkage of
the circumference of the local patch, and second, the
morphology of the pattern is controlled by the existence
of a central protrusion. If such a protrusion exists,
radial patterns are preferentially formed, and in absence
of such protrusions the wrinkling pattern has a target
structure. In any case, the patches are flattened again
when the stress is relieved. A pronounced difference
between the solid sheets and the smectic films is that
for the solid sheets, the dynamics of the compression is
of little relevance, whereas for the smectic films, a rapid
compression is required. Otherwise, the films remain flat.

VIII. CONCLUSIONS

Dynamics of islands in freely floating smectic C
bubbles have been investigated by means of high-speed
video analysis, under zero-gravity conditions. It has
been demonstrated that smectic films can behave
similar to solid sheets under sufficiently fast and
strong lateral compression. Wrinkling patterns observed
within islands of larger film thickness are structurally
equivalent to those of, e. g., thin gold films on a
polymer substrate with incompatible thermal expansion
coefficients under temperature changes. In smectic
islands, these instabilities allow to compensate in-plane
shrinkage under lateral compression and to accommodate
in-plane compression stress with few surface reduction.
When the deformation ceases, the wrinkles disappear
and the island surface area remains approximately
unchanged. Depending on the presence of a central

protrusion in the island, the morphology of the wrinkles
can be either a radial ray pattern or a target pattern,
which is also similar to the observations in thin solid
films. Similar instabilities have not been observed in
conventional low-viscosity soap films because they do not
generate islands surrounded by dislocations, and because
they can instantaneously change their thickness and film
area under strong lateral compression.

A dynamic model developed for the description of
wrinkles in freely floating bubbles has been adapted to
describe the wavelength selection in wrinkling islands.
We discuss the role of the smectic layer compression
coefficient which was neglected in the earlier model
[14]. Layer compression can be avoided when the
films undulate in circular arc segments instead of a
sinusoidal shape. This leads only to a small numerical
correction factor in the dynamic equations, which does
not change the qualitative outcome noticeably. This layer
compression effect, however, has dramatic influences on
the shapes of protrusions that are formed in the centres
of islands. The shapes of these protrusions (see Fig. 5)
are composed of elements that contain cylindrical, conic,
spherical and other segments that preserve the local
smectic layer thickness. The protrusions prefer shapes
that avoid the compression of smectic layers. A more
detailed inspection of these patterns is desirable, but
it requires a different observation technique with higher
spatial resolution.

The model describing wrinkling islands suggests that
the probability of forming wrinkles increases with smaller
island radius as long as the most unstable wrinkle
wavelength is smaller than the island radius. It
also highlights the important role of the island line
tension associated with the presence of the dislocations
surrounding the islands. Comparison with experiments
suggests that the dynamic line tension is significantly
smaller than the static one.

Our observations may trigger further experiments
where flat films in a reconfigurable frame are rapidly
compressed by changing the frame area. This would
allow a more quantitative access to wrinkling dynamics
as a function of film thickness, island diameters and
compression speeds, because the film geometry can then
be adjusted before the compression experiment without
the need of a catenoid collapse. In the latter, one has
no control of the formation of islands or film thicknesses
and only limited control of the compression dynamics.
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