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Centroidal Trajectory Generation and Stabilization
based on Preview Control for Humanoid

Multi-contact Motion
Masaki Murooka, Mitsuharu Morisawa and Fumio Kanehiro

Abstract—Multi-contact motion is important for humanoid
robots to work in various environments. We propose a cen-
troidal online trajectory generation and stabilization control for
humanoid dynamic multi-contact motion. The proposed method
features the drastic reduction of the computational cost by using
preview control instead of the conventional model predictive
control that considers the constraints of all sample times. By
combining preview control with centroidal state feedback for
robustness to disturbances and wrench distribution for satisfying
contact constraints, we show that the robot can stably perform a
variety of multi-contact motions through simulation experiments.

Index Terms—Humanoid and Bipedal Locomotion; Multi-
Contact Whole-Body Motion Planning and Control.

I. INTRODUCTION

HUMANOID robots can perform locomotion and manip-
ulation that maximize the potential of the high-degree-

of-freedom body through multi-contact motion using not only
the feet but also the hands. The planning and control of such
multi-contact motion have been studied extensively in the last
decade. In particular, many studies have focused on the robot
centroidal dynamics [1] instead of the full dynamics, thereby
reducing the dimensionality and computational cost [2], [3],
[4]. However, even focusing on the centroidal dynamics, it is
still non-trivial to realize receding horizon control that can be
executed on the order of submillisecond due to its nonlinearity
and contact constraints.

In this paper, we propose the centroidal online trajectory
generation method based on preview control and the stabiliza-
tion control method to compensate for the error of the cen-
troidal state. The proposed method takes a new approach that is
entirely different from model predictive control (MPC), which
explicitly considers time series constraints [5], [6], [7], [8], [9],
and has the advantage of significantly lowering computational
costs. In the simulation experiments of humanoid multi-contact
motion, our method can sequentially generate the centroidal
trajectory with stabilization control within 1 ms, considering
the reference input of the horizon of 2 s (400 sample points); to
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the best of our knowledge, this is one of the fastest centroidal
trajectory generation and control methods that can handle
general multi-contact motion without relying on the biped-
specific dynamics. The effectiveness of the proposed method
is demonstrated through simulation experiments in which a
humanoid robot performs various challenging dynamic multi-
contact motions.

A. Related Works

1) Centroidal Online Trajectory Generation: By generat-
ing a centroidal trajectory with the receding horizon control
scheme, the robot can robustly respond to environmental
changes and tracking errors by flexibly modifying the po-
sition and timing of contact transitions [10]. MPC, which
is formulated as a quadratic programming (QP) problem,
has been widely used for the receding horizon control of
legged robots [5], [6], [7], [8], [9]. In MPC, equality and
inequality constraints including contact force constraints are
imposed on all input / state variables of sampling times in
the horizon. Therefore, the dimensionality of the constraints
tends to be large, and it is not easy to solve it on the order of
submillisecond, even with state-of-the-art QP solvers.

In this paper, we propose an application of preview con-
trol [11], which does not explicitly consider these constraints.
Since the preview control requires only a single matrix multi-
plication at runtime and does not require an iterative computa-
tion, it is considerably faster than MPC, which requires solving
a QP. We show that even though the constraints are omitted in
the preview control, a realistic reference trajectory (but a fairly
rough one that is discontinuous and non-differentiable) and
post-processing wrench projection can generate feasible robot
motions. We note that differential dynamic programming,
which has recently been used for robot motion generation [12],
can also be applied to fast unconstrained receding horizon
control.

2) Balance Stabilization Control: Our proposed centroidal
stabilization control is similar to the balance control [13]
since it provides feedback on the centroidal position and
orientation. However, our method differs in that the resultant
wrench obtained from online trajectory generation is used
for feedforward. While some stabilization control methods
for multi-contact motion target specific tasks (e.g., ladder
climbing [14] or whole-body pushing [15]), our method can
handle various multi-contact motions including locomotion on
flat ground, handrail stairs, and vertical ladders.
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For bipedal walking, stabilization control based on the
divergent component of motion (DCM) has been widely
proposed [16], [17]. Although this is a powerful method, it
relies on the linear inverted pendulum mode (LIPM) [18],
which assumes bipedal dynamics, and is difficult to extend to
general multi-contact motion. In this paper, we show that the
proposed centroidal control for multi-contact motion includes
the proportional control of DCM for bipedal walking as a
particular case, and derive the relationship between the gain
parameters of the two controls.

B. Contributions of this Paper

The contributions of our work are threefold: (i) online
generation method of robot centroidal trajectory with very low
computational cost based on preview control, (ii) a control
system that can handle humanoid bipedal walking and multi-
contact motion including hand contacts without changing the
parameters, (iii) showing that a humanoid robot can perform
various challenging multi-contact motions such as handrail
stairs and vertical ladders in simulation.

II. METHOD OVERVIEW

Fig. 1 shows the proposed control system for humanoid
multi-contact motion. The control system consists mainly
of centroidal online trajectory generation and stabilization
control. These two modules are introduced in Sections III
and IV, respectively, followed by simulation experiments in
Section V.

We assume that the robot is joint position controlled. The
sequence of contact positions Cd of the hands and feet
is assumed to be determined by a global planner [19], or
manually.

III. CENTROIDAL ONLINE TRAJECTORY GENERATION

A. 6-DoF Centroidal Preview Control

1) Approximated Centroidal Dynamics: The centroidal dy-
namics of a humanoid robot are governed by the Newton-Euler
equation [20]:

mc̈ = f −mg (1a)

L̇ = n− c× f (1b)

m ∈ R is the robot mass. c ∈ R3 is the robot CoM.
L ∈ R3 is the centroidal angular momentum around the CoM.
g = [0 0 g]T is the (vertical upward) gravitational acceleration
vector. f ,n ∈ R3 are the force and moment from the contacts
between the robot and the environment, represented in world
coordinates. Especially, n is the moment around the world
origin.

We introduce the resultant force and moment, which com-
bines the effects of contacts and gravity, as follows:

f̄ = f −mg (2a)
n̄ = n− c× f (2b)

In the following, the symbols with bar denote the resultant
force and moment combined with gravity.

2) State Equation for Preview Control: The linear com-
ponents of centroidal dynamics (1a) are represented by the
following state equations:

ẋL∗ =

0 1 0
0 0 1
0 0 0

xL∗ +

00
1

uL∗ (3a)

yL∗ =

[
1 0 0
0 0 m

]
xL∗ (3b)

where xL∗ =
[
c∗ ċ∗ c̈∗

]T
uL∗ =

...
c ∗

yL∗ =
[
c∗ f̄∗

]T
∗ ∈ {x, y, z}

c∗ and f̄∗ (∗ ∈ {x, y, z}) represent the axis components of c
and f̄ , respectively. The states consist of the CoM position,
velocity, and acceleration. The input is the CoM jerk. The
outputs consist of the CoM and the resultant force.

Compared to the preview control for bipedal walking by
Kajita et al. [21], the definitions of states and input are the
same, but the definition of output is different. In bipedal
walking [21], the ZMP is regarded as an output to follow
the reference ZMP trajectory, whereas in our method, the
CoM and the force are regarded as outputs to support general
multi-contact motion. We chose this output definition from
the consideration that the ZMP in bipedal walking has force
information as the center of pressure and also has CoM
information based on the CoM-ZMP relationship. One of the
main contributions of this paper is that preview control with
this output definition works effectively to generate general
multi-contact motions.

3) Optimal Input Calculation: Given reference trajectories
for the robot CoM and resultant force, the following objective
function is minimized:

JL∗ =

∞∑
i=k

(∥∥yL∗[i]− yref
L∗ [i]

∥∥2
QL

+ ∥uL∗[i]∥2
RL

)
(4a)

=

∞∑
i=k

∥∥∥∥[c∗[i]− cref∗ [i]
f̄∗[i]− f̄ ref

∗ [i]

]∥∥∥∥2
QL

+ ∥...
c ∗[i]∥2

RL

 (4b)

QL and RL are the objective weights of output and input,
respectively. For a general vector x, ∥x∥2

W represents xTWx
where W is QL or RL. k is the control step index. We
always set the reference force to zero. The reference CoM
trajectory was determined by simple rules such as the center
of the contact points. See Section V for examples.

According to the preview control theory [11], the optimal
input can be obtained as follows:

uopt
L∗ [k] = −KfbxL∗[k] +

Nh∑
i=1

Kff [i] y
ref
L∗ [k + i] (5)

Nh is the number of time-steps of the preview window. Since
the state equation (3) depends only on the robot mass, the gains
Kfb and Kff are fixed as long as the robot mass is constant.
See [11] and [21] for the derivation of these gain matrices.
The equation (5) requires only matrix multiplication, which is
considerably less computationally expensive than conventional
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Fig. 1. Overall components of the control system for humanoid multi-contact motion.

multi-contact motion generation methods [19] such as MPC
with constraints [5] or trajectory optimization [2]. Although
our preview control does not consider constraints on contact
forces, we show in Section V that a realistic reference trajec-
tory (but a fairly rough one) and post-processing can produce
feasible robot motions.

4) 6-DoF Trajectory Generation: We approximate the cen-
troidal angular momentum in (1b) as follows:

L = Iall q̇ ≈ Ibase ω ≈ Iω (6)

q̇ ∈ RNq̇ is the joint velocity vector including the 6-DoF
virtual joint velocity for the robot base link. Iall ∈ R3×Nq̇

is the angular part of the centroidal momentum matrix [1].
ω ∈ R3 is the angular velocity of the base link. Ibase ∈ R3×3

is the block matrix of Iall corresponding to the base link
angular velocity. I ∈ R3×3 is a constant and diagonal
approximation of Ibase. The approximation in equation (6)
assumes that (i) the angular momentum due to joint velocity
is negligible, (ii) Ibase is independent of joint position and
base link orientation, and (iii) off-diagonal elements of Ibase

are negligible. The validity of these strong assumptions in
humanoid multi-contact motion is evaluated in Section V-F.

Similar to the linear components, the angular components
of centroidal dynamics (1b), under the approximation (6), are
represented by the following state equations:

ẋA∗ =

0 1 0
0 0 1
0 0 0

xA∗ +

00
1

uA∗ (7a)

yA∗ =

[
1 0 0
0 0 I∗

]
xA∗ (7b)

where xA∗ =
[
α∗ α̇∗ α̈∗

]T
uA∗ =

...
α∗

yA∗ =
[
α∗ n̄∗

]T
∗ ∈ {x, y, z}

α ∈ R3 is the Euler angle representing the base link orienta-
tion. α∗ and n̄∗ (∗ ∈ {x, y, z}) represent the axis components
of α and n̄, respectively. I∗ is the diagonal element of
I . Although the relation ω = KEuler(α) α̇ holds, KEuler

is ignored in (7). Its validity is evaluated in Section V-F.
Compared to the preview control for bipedal walking [21],
the proposed method’s prominent feature is generating a 6-
DoF centroidal trajectory, including position and orientation.

The optimal inputs uopt
A∗ for the same objective function as

Fig. 2. Contact constraints in wrench distribution.

(4) can be obtained by preview control in the same way as
(5).

From the optimal inputs
...
copt,

...
αopt, we obtain the planned

centroidal state rp = [cpT αpT]T and the planned resultant
wrench w̄p = [f̄

pT
, n̄pT]T by state equations (3) and (7),

respectively.

B. Resultant Wrench Projection

1) Wrench Distribution Formulation: The resultant wrench
w̄p planned by preview control is not always feasible because
the forces the robot receives from the environment are subject
to contact constraints. We modify the resultant wrench to be
feasible by projecting it onto the constraint manifold defined
by the contacts.

The contact wrench at the i-th limb end wi = [fT
i nT

i ]
T is

represented as follows [19]:

wi = Giλi (8)

where Gi =

[
· · · ρi,j,k · · ·
· · · pi,j×ρi,j,k · · ·

]

λi =


...

λi,j,k

...

 , λi ≥ 0

pi,j ∈ R3(j = 1, · · · , J(i)) is the j-th vertex of the contact
polygon. ρi,j,k ∈ R3(k = 1, · · · ,K(i, j)) is the k-th ridge
vector of the friction pyramid at the j-th vertex. Fig. 2
illustrates an example of these variables. All variables are
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represented in world coordinates. The grasping contacts (e.g.,
the hand contacts in Fig. 4 (C)) are represented by placing the
friction pyramids facing each other.

2) Wrench Projection: The contact wrench required to
achieve the resultant wrench closest to the planned resultant
wrench can be obtained by solving the following QP problem1:

min
λ

∥Gλ−wp∥2 s.t. λ ≥ 0 (9)

where G =
[
· · · Gi · · ·

]
λ =

[
· · · λT

i · · ·
]T

wp = w̄p +

[
mg

cp × fp

]
G is calculated from the target contact state Cd, which is
treated as given, including the contact polygons and friction
coefficients.

With λopt as the optimal variable in (9), the planned
resultant wrench projected onto the contact constraint manifold
is calculated as follows:

w̄p′
= Gλopt −

[
mg

cp × fp

]
(10)

By inputting w̄p′
and integrating (1) for one control period,

the desired centroidal state of the next control loop rd =

[cd
T
αdT]T is obtained.

IV. CENTROIDAL STABILIZATION CONTROL

A. Centroidal Feedback Control

The stabilizer is responsible for reducing the error between
the desired centroidal state rd and the actual centroidal state ra

based on sensor measurements. We determine the modification
amount of the resultant wrench by PD control of the centroidal
state as follows:

∆w̄d = KP(r
d − ra) +KD(ṙ

d − ṙa) (11a)

=

[
KPL(c

d − ca) +KDL(ċ
d − ċa)

KPA
log
(
RdRaT

)
+KDA

(α̇d − α̇a)

]
(11b)

Rd and Ra are the rotation matrices corresponding to αd and
αa, respectively. log(R) ∈ R3 is a function that converts the
rotation matrix R to an equivalent axis-angle vector. Then, the
desired resultant wrench is calculated as follows:

w̄d = w̄p′
+∆w̄d (12)

KP,KD ∈ R6×6 are the diagonal matrices of the feedback
gains. We describe the similarity between this control and the
bipedal walking control based on the DCM in Appendix-A.

B. Resultant Wrench Distribution

The desired resultant wrench is distributed to the contact
wrenches at the limb ends by solving the following QP

1To direct the contact force away from the friction cone boundary, a penalty
term weighted in the local contact coordinates can be added to the objective
function [22].

problem:

min
λ

∥Gλ−wd∥2 s.t. λ ≥ 0 (13)

where wd = w̄d +

[
mg

ca × fd

]
The definitions of G and λ are the same as in (9). From the
experimental results in the simulation, it was confirmed that
the stability performance is improved by using ca instead of
cd.

With λopt as the optimal variable in (13), the desired contact
wrench of the i-th limb end is calculated as follows:

wd
i = Giλ

opt
i (14)

C. Damping Control for Limb Ends

Damping control [23] is applied to achieve the desired
contact wrench wd

i of each limb end.
Let pd

i ∈ R3 and Rd
i ∈ R3×3 represent the desired pose of

the limb end determined from the given target contact position,
and pc

i and Rc
i represent the compliance pose of the limb end.

In damping control, the compliance pose is updated to satisfy
the following relationship:

Kd∆ṙci +Ks∆rci = Kf(w
a
i −wd

i ) (15)

where ∆rci =

[
∆rci,L
∆rci,A

]
=

[
pc
i − pd

i

log
(
Rc

iR
d
i

T
)]

wa
i is the measured contact wrench at the i-th limb end.

We assume that the limb end is equipped with a 6-axis
force sensor. Kd,Ks,Kf ∈ R6×6 are diagonal matrices
representing damper parameter, spring parameter, and wrench
gain, respectively.

For discrete-time control, (15) is implemented as follows:

∆rci,L[k + 1] = ∆rci,L[k] + ∆t∆ṙci,L[k] (16a)

∆rci,A[k + 1] = log
(
exp

(
∆t∆ṙci,A[k]×

)
exp

(
∆rci,A[k]×

))
(16b)

where ∆ṙci [k] = −Ks

Kd
∆rci [k] +

Kf

Kd
(wa

i [k]−wd
i [k])

exp(a×) ∈ R3×3 is a function that converts the axis-angle
vector a to an equivalent rotation matrix. Since Kd,Ks,Kf

are diagonal matrices, their division implies element-wise
computation.

V. SIMULATION EXPERIMENTS

A. Robot Controller Implementation

1) Software Framework: The proposed control system is
implemented in C++ within a real-time robot control frame-
work mc_rtc [24]. QLD [25] is used as the QP solver for
wrench distribution. For the preview control, we only need to
implement (5), and no external library is required.

Kinematics commands, such as the CoM position and base
link orientation rd and the limb end position and orientation
pc
i ,R

c
i , are passed to the acceleration-based whole-body in-

verse kinematics (IK) calculation. A low stiffness task for
nominal joint position is also imposed in IK, so that the joints
of the limb without contact approach to the nominal position.
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TABLE I
PARAMETERS FOR PREVIEW CONTROL IN (4) (5)

QL RL QA RA ∆τ [s] Nh

diag(2× 102, 5× 10−4) diag(1× 10−8) diag(1× 102, 5× 10−3) diag(1× 10−8) 0.005 400(= 2.0/∆τ)

∆τ is the discretization period of the horizon. diag denotes the diagonal matrix.

TABLE II
PARAMETERS FOR DAMPING CONTROL IN (15)

Kd Ks Kf

Contact phase diag(10000, 10000, 10000, 100, 100, 100) diag(0, 0, 0, 0, 0, 2000) diag(1, 1, 1, 1, 1, 0)

Non-contact phase diag(300, 300, 300, 40, 40, 40) diag(2250, 2250, 2250, 400, 400, 400) diag(0, 0, 0, 0, 0, 0)

When Kf is zero, the compliance displacement ∆rc
i converges linearly to zero from (16). When a single limb end is in contact, the

parameters of the linear component (the first three elements) of the contacting limb end are set to the parameter values for the non-contact
phase. For the linear component of Kd in the contact phase of the hands, different parameter values are used for some motions; 1000
for walking with hands on the wall, and 50000 for climbing a vertical ladder in Fig. 4. The parameter values are different because they
are determined to be as compliant as possible within the range of non-vibration, and the hand contact forces, which differ significantly for
each motion, affect the ease of vibration.

TABLE III
PARAMETERS FOR CENTROIDAL FEEDBACK CONTROL IN (11)

KP KD

diag(2000, 2000, 2000, 0, 0, 0) diag(666, 666, 666, 0, 0, 0)

For climbing a vertical ladder in Fig. 4, the following parameters
are used:
KP = diag(3000, 3000, 3000, 1000, 1000, 1000)
KD = diag(1000, 1000, 1000, 333, 333, 333)

The calculated joint angles are commanded to the low-level
joint position PD controller. As sensor measurements, the
proposed control system uses the joint angles from the joint
encoders, the contact wrench from the 6-axis force sensors
mounted on the hands and feet, and the link orientation from
the inertial measurement unit (IMU) sensor mounted on the
trunk link.

2) Controller Parameters: Tables I, II, and III show the
control parameters. For these parameters, the same values are
used for bipedal walking and various multi-contact motions
presented in this section, except for Kd of hand damping
control shown in Table II.

3) Simulation Environments: We verified various multi-
contact motions of the humanoid robot HRP-5P [26], which is
developed by the authors’ group, on the dynamics simulator
Choreonoid [27]. The control processes shown in Fig. 1 are
executed every 2 ms on a single thread with an Intel Core
i7-9750H CPU (2.60 GHz) and 32 GB 2667 MHz RAM. We
also confirmed that some of the motions can be executed on
the dynamics simulator MuJoCo [28] and on other humanoid
robots in the HRP series, in order to verify the robustness of
the simulation engines and robot models. See the supplemental
video for all the experiments.

B. Bipedal Walking

First, the robot performed bipedal walking on uneven floors,
stairs, and ramps. Fig. 3 shows the graphs of CoM and ZMP
when walking straight on a flat ground with a stride length of
300 mm. The ZMP is not used in the control but is calculated
from the resultant wrench for verification only. The reference
CoM trajectory is determined by a simple rule; the horizontal
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Fig. 3. Results of bipedal walking.
(A) The reference, planned, and actual CoMs correspond to rref , rp, and
ra in Fig. 1, respectively. (B) The planned, desired, and actual ZMPs are
calculated from w̄p′

, wd
i , and wa

i in Fig. 1, respectively. The gray shaded
region indicates the support region. The wrench distribution uses contact
polygon vertices with inner margins, and the black dashed lines indicate their
boundaries.

position is the center of the supporting foot in the single
support phase, the center of both feet in the double support
phase, and the vertical position is constant. The planned CoM
trajectory shown in Fig. 3 (A) is similar to the CoM trajectories
planned by the conventional bipedal walking methods [21],
although ZMP tracking is not explicitly considered in the
proposed method. Fig. 3 (B) shows that the planned ZMP
falls within the foot support region, and the ZMP modified by
the feedback is tracked by the simulated robot.

C. Multi-contact Motion
We applied the proposed control methods to the five types

of multi-contact motions shown in Fig. 4. As shown in the
supplemental video, various motions with different contact
transition orders, hand forces, and contact forms (i.e., unilat-
eral contact or grasping contact) are stably performed. Figs. 5,
6, and 7 show the graphs of the motion results of Fig. 4 (A),
(B), and (C), respectively. It can be observed that the desired
contact wrenches distributed to the limb ends are tracked
by the damping control, and the simulated robot tracks the
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(A) Walking with hands
on the wall

(B) Climbing handrail stairs (C) Climbing a vertical
ladder

(D) Moving with both hands
supporting the body

(E) Contact with moving
floors and walls

Fig. 4. Simulation of multi-contact motion.
The friction coefficient is set to 0.6 for all environments. (A) Stepping on scaffold boards with 25 degree incline while keeping the hand on a vertical wall.

(B) Climbing four steps of 150 mm height with handrails. (C) Climbing a vertical ladder with 200 mm steps. The depth of the ladder rungs is 75 mm, which
is less than half the depth of the robot’s sole. (D) With both hands on the support surfaces at the height of 500 mm, moving forward by swinging both
feet simultaneously. (E) Balancing on the floors and walls, which move periodically in translation and rotation with an amplitude of 20 mm and 2 degrees.
Damping control allows feet and hands to adapt to floor and wall movements.
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Fig. 5. Results of walking with hands on the wall in Fig. 4 (A).
The CoM and resultant wrench are represented in the world coordinates, and

the contact forces are represented in the coordinates at each limb end (see
Fig. 2). (B) The reference, planned, desired, and actual resultant forces are
calculated from f̄ ref

∗ , w̄p′
, wd

i , and wa
i , respectively. (C) The desired and

actual forces correspond to wd
i and wa

i , respectively. (D) Contact forces of
the left hand (1-6 s) and right hand (6-10 s).

planned CoM trajectory. The reference CoM trajectories are
represented by piecewise-constant functions synchronized with
the contact switching as Figs. 5, 6, and 7 show. Specifically,
in the motions of Fig. 4 (A) and (B), the reference CoM
position is determined by the same rule as in bipedal walking
described in the previous section. In the motion of Fig. 4 (B),
the CoM lateral position in the single support phase is offset
inward by 50 mm so that the hands support part of the
robot’s weight. In the motion of Fig. 4 (C), the reference CoM
position is set 0.4 m behind the center of the ladder, but offset
forward by 0.1 m to reduce the pitch moment during the hand
contact transitions. In all motions, the CoM vertical position
is determined by adding a constant offset to the mean of the
foot contact positions. The reference base link orientations are
all set to zero.

D. Motion to Change the Base Link Orientation
The proposed CoM trajectory generation was applied to a

cartwheel motion with a large change in base link orienta-
tion, as shown in Fig. 8. From a rough reference centroidal

TABLE IV
COMPUTATION TIME [µS]

(A) (B) (C)
Total control 124 186 409

Calculate reference 22 (18 %) 22 (12 %) 22 (5 %)
Preview control 9 (7 %) 10 (5 %) 9 (2 %)
Project planned wrench 29 (24 %) 56 (30 %) 165 (40 %)
Distribute desired wrench 28 (22 %) 56 (30 %) 162 (40 %)

The computation time per control cycle for the motions (A), (B), and
(C) in Fig. 4 is shown. In the computational time measurements, only
the proposed centroidal control is included, not the whole-body inverse
kinematics. The higher the number of robot contacts, the more time is
required for wrench projection and distribution, but the time for the other
processes remains almost unchanged.

trajectory and given contact positions, a dynamically feasible
centroidal trajectory and contact wrenches are planned such
that the base link makes one revolution while moving laterally.
Since mapping this centroidal motion to the motion in the joint
configuration space is difficult for a simple whole-body inverse
kinematics calculation, this paper only verifies the centroidal
trajectory generation, and its execution on the robot is out of
scope.

E. Computation Time

Table IV shows the computation time of the proposed
control method for the multi-contact motions in Fig. 4. It takes
0.1-0.4 ms for one control update, depending on the number
of robot contacts. The MPC-based methods take 20 ms for a
3 s horizon (20 sample points) [5] and 1 ms for a 0.5 s horizon
(10 sample points) [6] for each control update, whereas our
method takes 0.4 ms for a 2 s horizon (400 sample points).
This shows that our method reduces the computation time to
about half or less while increasing the number of sample points
in the horizon by about 20 times.

F. Validation of Rotational Motion Approximation

1) Approximation of Angular Momentum: To validate the
approximation of the centroidal angular momentum, we cal-
culated the errors between Iall q̇, Ibase ω, and Iω in (6) for
the motions of bipedal walking and climbing handrail stairs.
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(C) Hand contact wrenches

Fig. 6. Results of climbing handrail stairs in Fig. 4 (B).
Vertical forces of about 50-100 N are applied to the hands. The error in the

Z position of the actual CoM is because the result of the whole-body inverse
kinematics cannot follow the desired CoM due to the limitation of kinematics
reachability.
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(C) Hand contact wrenches

Fig. 7. Results of climbing a vertical ladder in Fig. 4 (C).
Pulling forces of about 200 N are applied to the hands. Since the foot is in

contact with the ladder rung only at the toes, the foot exerts a large contact
moment around the Y-axis.
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(A) Outline of centroidal trajectory (B) Base link orientation

Fig. 8. Centroidal trajectory generation of cartwheel motion.
(A) The translucent markers represent the reference, and the non-translucent

markers represent the planned centroidal states, respectively. Green rectangles
represent the contact positions of the hands and feet.

The mean error was 0.044 kg m2/s for ∥Ibase ω − Iω∥ and
3.1 kg m2/s for ∥Iall q̇ − Iω∥. Since the robot did not fall
over in the simulation, these errors were not enough to break
the motion feasibility. Furthermore, by adding the angular
momentum task [1] to the whole-body IK, the mean error
was reduced to 0.011 kg m2/s for ∥Iall q̇ − Iω∥.

2) Approximation of Angular Velocity: In (7), the angu-
lar velocity of the base link is approximated to the time
derivative of the Euler angle. To validate this approximation,
we calculated the error between Iω and Iα̇. The mean
error for the same two motions as in the previous section
was 0.0051 kg m2/s. The small error was due to the small
inclination of the base link during the motions. Additionally,
the error was small even in the cartwheel motion because
KEuler was not affected by rotation around the X-axis in the
ZYX Euler angle used in our implementation.

G. Comparison with Constrained MPC

The proposed centroidal trajectory generation consists of
unconstrained preview control and post-processing wrench
projection. This greatly reduces computational cost, but the
generated trajectory may be far from the global optimum. We
therefore compared the centroidal trajectories generated by the
proposed method and the linear MPC-based method [5] for the
motions of climbing handrail stairs and climbing a vertical
ladder. The mean projection errors of the planned resultant
wrench onto the contact constraint manifold (i.e., ∥w̄p−w̄p′∥)
were 2.2 N and 4.4 Nm for climbing handrail stairs and zero
for climbing a vertical ladder in the proposed method. These
projection errors were zero in the MPC-based method because
the trajectories consistent with the constraints were planned.
The mean projection errors of the desired resultant wrench
w̄d were as follows; for climbing handrail stairs, 3.7 N and
4.7 Nm in the proposed method and 0.42 N and 0.52 Nm in the
MPC-based method; and for climbing a vertical ladder, 9.0 N
and 8.7 Nm in the proposed method and 9.3 N and 9.1 Nm in
the MPC-based method. No significant differences were found
in the scale of feedback wrench (11), CoM acceleration, and
angular momentum. Based on the above, we conclude that
there is no significant difference between the two methods
for motions incorporating feedback. Note that the MPC-based
method took more than twice as long as the motion duration.

VI. CONCLUSION

In this paper, we proposed a centroidal online trajectory gen-
eration and stabilization control for humanoid dynamic multi-
contact motion. The controller combines preview control,
which does not explicitly consider constraints, with wrench
distribution to satisfy contact constraints, and rapidly gener-
ates feasible robot motions. Simulation experiments showed
that various motions such as bipedal walking and climbing
handrail stairs and vertical ladders can be achieved stably by
a humanoid robot. The proposed method can update the robot
centroidal state in a shorter period for a more finely sampled
control horizon than previous methods.

Future works include the online trajectory generation in the
joint space in the form of a receding horizon to enhance the
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inverse kinematics calculation. This will enable the robot to
perform kinematically and dynamically challenging motions
such as cartwheels, for which the proposed method generated
the centroidal trajectory. Another future direction is to improve
the robustness and reliability using a hierarchical scheme that
executes the MPC at low periods and the proposed preview
control at high periods.

APPENDIX

A. Relationship with DCM-based Bipedal Control

The proportional control of DCM [16], [17] for bipedal
walking with constant CoM height and coplanar feet is ex-
pressed by the following equation:

zc = zd +Kξ(ξ
a − ξd) (17)

z ∈ R2 is the ZMP, and ξ ∈ R2 is the DCM. Kξ ∈ R2×2 is
the diagonal matrix of the feedback gain. The superscripts c,
d, and a stand for command, desired, and actual, respectively.
The command ZMP is converted to the command CoM accel-
eration and then to the command resultant force as follows:

c̈c = ω2(cd − zc) (18a)

= c̈d + ω2Kξ(ξ
d − ξa) (18b)

f c = mc̈c (18c)

= fd +mω2Kξ(c
d − ca) +mωKξ(ċ

d − ċa) (18d)

ω ∈ R is the LIPM frequency. The LIPM dynamics (c̈ =
ω2(c − z)) and the DCM definition (ξ= c+ 1

ω ċ) are used in
the equation transformations. (18d) has the same form as the
linear part of (11b). The correspondence of the coefficients is
as follows:

KPL
= mω2Kξ, KDL

= mωKξ (19)

This helps to estimate the feedback gains of (11) in
the proposed method. For the HRP-5P, m = 105, ω2 =
9.8/0.95 = 10.3,Kξ = diag(2, 2), and therefore KPL =
diag(2163, 2163),KDL

= diag(674, 674), which roughly
matches the values in Table III.
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