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Abstract

We consider reaction-diffusion equations ∂tu = ∆u + f(u) in the whole space RN
and we are interested in the large-time dynamics of solutions ranging in the interval
[0, 1], with general unbounded initial support. Under the hypothesis of the existence
of a traveling front connecting 0 and 1 with a positive speed, we discuss the existence
of spreading speeds and spreading sets, which describe the large-time global shape of
the level sets of the solutions. The spreading speed in any direction is expressed as a
Freidlin-Gärtner type formula. This formula holds under general assumptions on the
reaction and for solutions emanating from initial conditions with general unbounded
support, whereas most of earlier results were concerned with more specific reactions
and compactly supported or almost-planar initial conditions. We then investigate
the local properties of the level sets at large time. Some flattening properties of
the level sets of the solutions, if initially supported on subgraphs, will be presented.
We also investigate the special case of asymptotically conical-shaped initial condi-
tions. For Fisher-KPP equations, we state some asymptotic local one-dimensional
and monotonicity symmetry properties for the elements of the Ω-limit set of the solu-
tions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn
equations. Lastly, we present some logarithmic-in-time estimates of the lag of the
position of the solutions with respect to that of a planar front with minimal speed,
for initial conditions which are supported on subgraphs with logarithmic growth at
infinity. Some related conjectures and open problems are also listed.

1 Framework and two main questions

We consider solutions of the reaction-diffusion equation

∂tu = ∆u+ f(u), t > 0, x ∈ RN , (1)
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French “Investissements d’Avenir” programme, and from the French ANR RESISTE (ANR-18-CE45-0019)
project. The first author acknowledges support of the Institut Henri Poincaré (UAR 839 CNRS-Sorbonne
Université), LabEx CARMIN (ANR-10-LABX-59-01), and Università degli Studi di Roma La Sapienza,
where he was Sapienza Visiting Professor and where part of this work was done.
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with N ≥ 2 and initial conditions u0 having unbounded support. More precisely, the
reaction term f : [0, 1] → R is of class C1([0, 1]) with f(0) = f(1) = 0, and the initial
conditions u0 are assumed to be characteristic functions 1U of sets U , i.e.

u0(x) =

{
1 if x ∈ U,
0 if x ∈ RN \U,

(2)

where the initial support U is an unbounded measurable subset of RN (we use the term
“initial support”, with an abuse of notation, to refer to the set U in the definition of u0).
The Cauchy problem is well posed and, given u0, there is a unique bounded classical
solution u of (1) such that u(t, ·) → u0 as t → 0+ in L1

loc(RN). More general initial
conditions 0 ≤ u0 ≤ 1 for which the upper level set {x ∈ RN : u0(x) ≥ θ} is at bounded
Hausdorff distance from the support of u0, where θ ∈ (0, 1) is a suitable value depending
on f , could be envisioned, at the expense of some further assumptions on the reaction
term f . For the sake of simplicity of the presentation, we focus on initial conditions u0 of
the type (2).

Due to diffusion, the solution u of (1)-(2) is smooth at positive times and satisfies

0 < u < 1 in (0,+∞)× RN

from the strong parabolic maximum principle, provided the Lebesgue measures of U
and RN \ U are positive. However, from parabolic estimates, at each finite time, u stays
close to 1 or 0 in subregions of U or RN \ U which are far away from ∂U . One first goal
is to describe the shape at large time of the regions where u stays close to 1 or 0. How do
these regions move and possibly spread in any direction? A fundamental issue is to under-
stand whether and how the solution keeps a memory at large time of its initial support U .
A basic question is the following:

Question 1. For a given vector e ∈ RN with Euclidean norm equal to 1, is there a
spreading speed w(e) such that{

u(t, cte)→ 1 as t→ +∞ for every 0 ≤ c < w(e),

u(t, cte)→ 0 as t→ +∞ for every c > w(e).
(3)

Can one find a formula for w(e) and, if any, how does w(e) depend on e and the ini-
tial support U? Is there a uniformity with respect to e in (3) and are there spreading sets
which describe the global shape of the level sets of u at large time?

Question 1 will be addressed in Theorems 7-10 below. Some conditions need to be
imposed on the initial support U , since otherwise the answer to Question 1 can be negative
in general (some counter-examples will be presented at the end of Section 3). We also
point out that, in (3), the speed w(e) can possibly be +∞ in some directions e, and this
actually occurs in the directions around which U is unbounded, in a sense that will be
made precise later.

Another question is concerned with the description of the profile of the solution around
its level sets at large time. With this respect, we investigate two classes of properties: the
flattening of the level sets, and the asymptotic one-dimensional symmetry of the solution.
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The latter is expressed in terms of the notion of Ω-limit set, which is defined as follows:
for a given bounded function u : R+ × RN → R, the set

Ω(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN) as n→ +∞,
for some sequences (tn)n∈N in R+ diverging to +∞ and (xn)n∈N in RN

} (4)

is called the Ω-limit set of u. Roughly speaking, the Ω-limit set contains all possible
asymptotic profiles of the function as t → +∞. For any bounded solution u of (1),
the set Ω(u) is not empty and is included in C2(RN), by standard parabolic estimates.
Motivated by some known results in the literature, the following question naturally arises.

Question 2. Let u be a solution to (1) emerging from an initial datum u0 = 1U .
Is it true that any function ψ ∈ Ω(u) is of the form

ψ(x) ≡ Ψ(x · e),

for some e ∈ SN−1 and Ψ : R→ R? If the answer to the question is positive, we then say
that u satisfies the asymptotic one-dimensional symmetry.

For the answer to Question 2 to possibly be affirmative, some conditions on f and U
need to be imposed, as shown by some counter-examples presented in Section 5. We
will also review in that section some known positive results which hold in the case where
the initial support U is bounded, or when it is at finite Hausdorff distance from a half-
space, under some assumptions on f . We will see how such results can be extended for a
nonlinearity f of the Fisher-KPP type, see condition (39) below, giving a positive answer
to Question 2 when U fulfills (in particular) a uniform interior ball condition and is convex,
or, more generally, is at bounded Hausdorff distance from a convex set, see Theorem 16
below. These conditions on U are actually a very particular instance of the geometric
hypotheses under which we derive our most general result about the asymptotic one-
dimensional symmetry, Theorem 17 below. Question 2 reclaims the De Giorgi conjecture
about solutions of the Allen-Cahn equation (that is, stationary solutions of the reaction-
diffusion equation ∆u+ u(1− u)(u− 1/2) = 0 in RN , obtained after a change of unknown
from the original Allen-Cahn equation), see [11].

The situation considered here can be viewed as a counterpart of many works devoted
to the large-time dynamics of solutions of (1) with initial conditions u0 that are compactly
supported or converge to 0 at infinity. We refer to e.g. [2, 12, 35, 41, 42, 60] for extinc-
tion/invasion results in terms of the size and/or the amplitude of the initial condition u0 for
various functions f , and to [12, 14, 39, 40, 45] for general local convergence and quasiconver-
gence results. For the invading solutions u (that is, those converging to 1 locally uniformly
in RN as t→ +∞) with localized initial conditions, further estimates on the location and
shape at large time of the level sets have been established in [15, 21, 32, 48, 52, 53, 56].

The case of general unbounded initial supports U has been much less investigated in
the literature. One immediately sees that, for general unbounded sets U , Question 1 is
much more intricate than in the case of bounded sets U , since the solutions u can spread
from all regions of the initial support U , that is, not only from a single bounded region.
The sets U themselves can be bounded in some directions and unbounded in others.

2 Two main hypotheses

In this section, we list some notations and hypotheses which are used in the various main re-
sults. The hypotheses are expressed in terms of the solutions of (1) with more general initial
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conditions than characteristic functions, or actually in terms of the reaction term f solely.
We then discuss the logical link between these hypotheses. We let “| |” and “ · ” denote
respectively the Euclidean norm and inner product in RN , Br(x) := {y ∈ RN : |y−x| < r}
be the open Euclidean ball of center x ∈ RN and radius r > 0, Br := Br(0), and
SN−1 := {e ∈ RN : |e| = 1} be the unit Euclidean sphere of RN . The distance of a
point x ∈ RN from a set A ⊂ RN is given by dist(x,A) := inf

{
|y − x| : y ∈ A

}
, with the

convention dist(x, ∅) = +∞. We also call (e1, · · · , eN) the canonical basis of RN , that is,
ei := (0, · · · , 0, 1, 0, · · · , 0) for 1 ≤ i ≤ N , where 1 is the ith coordinate of ei.

Since both 0 and 1 are steady states, the question of the interplay between these two
states and the diffusion is intricate. One way to differentiate the roles of 0 and 1 is to
assume that the state 1 is more attractive than 0, in the sense that it attracts the solutions
of (1) – not necessarily satisfying (2) – that are “large enough” in large balls at initial time.

Hypothesis 3. The invasion property occurs for any solution u of (1) with a “large
enough” initial datum u0, that is, there exist θ ∈ (0, 1) and ρ > 0 such that if

θ 1Bρ(x0) ≤ u0 ≤ 1 in RN , (5)

for some x0 ∈ RN , then u(t, x)→ 1 as t→ +∞, locally uniformly with respect to x ∈ RN .

If f satisfies the following conditions:

f > 0 in (0, 1) and lim inf
s→0+

f(s)

s1+2/N
> 0, (6)

then Hypothesis 3 is satisfied with any θ ∈ (0, 1) and ρ > 0, see [2]; this property is known
as the hair trigger effect. If f > 0 in (0, 1) (without any further assumption on the behavior
of f at 0+), then Hypothesis 3 is still satisfied with any θ ∈ (0, 1), and with ρ > 0 large
enough. Hypothesis 3 holds as well if f is of the ignition type, that is,

∃α ∈ (0, 1), f = 0 in [0, α] and f > 0 in (α, 1), (7)

and θ in Hypothesis 3 can be any real number in the interval (α, 1), provided ρ > 0 is large
enough. For a bistable function f satisfying

∃α ∈ (0, 1), f < 0 in (0, α) and f > 0 in (α, 1), (8)

Hypothesis 3 is equivalent to
∫ 1

0
f(s) ds > 0, see [2, 18], and in that case θ in Hypothesis 3

can be any real number in (α, 1), provided ρ > 0 is large enough. However, without the
lower bound in condition (5), the solutions u may not converge to 1 at t → +∞ locally
uniformly in RN , as easily seen for instance with functions f of the types (7) or (8), when
‖u0‖L1(RN ) is small enough. For a tristable function f satisfying

∃ 0 < α < β < γ < 1, f < 0 in (0, α) ∪ (β, γ) and f > 0 in (α, β) ∪ (γ, 1), (9)

then it easily follows from [18] that Hypothesis 3 is equivalent to the positivity of both

integrals
∫ 1

β
f and

∫ 1

0
f .

More generally speaking, it actually turns out that Hypothesis 3 is equivalent to the
following two simple simultaneous conditions on the function f , see [14, 47]:

∃ θ ∈ (0, 1), f > 0 in [θ, 1), (10)
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and

∀ t ∈ [0, 1),

∫ 1

t

f(s) ds > 0. (11)

Furthermore, θ can be chosen as the same real number in Hypothesis 3 and in (10). In
particular, Hypothesis 3 is satisfied if f ≥ 0 in [0, 1] and if condition (10) holds. Notice
however that condition (10) alone is not enough to guarantee Hypothesis 3, since func-

tions f of the type (8) satisfy (10) but do not satisfy Hypothesis 3 if
∫ 1

0
f ≤ 0. Similarly,

condition (11) alone is not enough to guarantee Hypothesis 3, since there are C1([0, 1])
functions f which vanish at 0 and 1 and satisfy (11) but not (10): consider for instance f
defined by f(1) = 0 and f(s) = s(1 − s)3 sin2(1/(1 − s)) for s ∈ [0, 1). Notice that, from
the equivalence between Hypothesis 3 and (10)-(11), Hypothesis 3 is then independent of
the dimension N , whereas, for a function f which is positive in (0, 1), the hair trigger
effect (that is, the arbitrariness of θ ∈ (0, 1) and ρ > 0 in Hypothesis 3) depends on N (for
instance, for the function f(s) = sp(1−s) with p ≥ 1, Hypothesis 3 holds in any dimension
N ≥ 1, but the hair trigger effect holds if and only if p ≤ 1 + 2/N , see [2]).

In the large time dynamics of the solutions of the Cauchy problem (1), a crucial role is
played by the traveling front solutions connecting the steady states 1 and 0, defined as

u(t, x) = ϕ(x · e− ct)

with c ∈ R, e ∈ SN−1, and

1 = ϕ(−∞) > ϕ(z) > ϕ(+∞) = 0 for all z ∈ R. (12)

The level sets of these solutions are hyperplanes orthogonal to e, traveling with constant
speed c in the direction e. If any, the profile ϕ is necessarily decreasing and unique up to
shifts, for a given c. Most of the main results are derived under the following hypothesis:

Hypothesis 4. Equation (1) admits a traveling front connecting 1 to 0 with speed c0 > 0.

Hypothesis 4 is fulfilled for instance if f > 0 in (0, 1), or if f is of the ignition type (7),

or if f is of the bistable type (8) with
∫ 1

0
f(s) ds > 0 (in the last two cases, the speed

c0 is unique), see [2, 18, 33]. Hypothesis 4 is also satisfied for some functions f having
multiple oscillations in the interval [0, 1], see Remark 6 below. It actually turns out that
Hypothesis 4 is equivalent to the existence of a positive minimal speed c∗ of traveling fronts
connecting 1 to 0, and that Hypothesis 4 also implies Hypothesis 3 and further spreading
properties for the solutions of (1) fulfilling the conditions of Hypothesis 3:

Proposition 5. [27] Assume Hypothesis 4. Then equation (1) admits a traveling front
connecting 1 to 0 with minimal speed c∗, and c∗ > 0. Furthermore, Hypothesis 3 is fulfilled
and, for any solution u as in Hypothesis 3, it holds that

∀ c ∈ [0, c∗), min
|x|≤ct

u(t, x)→ 1 as t→ +∞. (13)

Lastly, for any compactly supported initial datum 0 ≤ u0 ≤ 1, the solution u of (1) satisfies

∀ c > c∗, sup
|x|≥ct

u(t, x)→ 0 as t→ +∞.
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The minimality of c∗ means that (1) in dimension N = 1 admits a solution of the form
ϕ(x−c∗t) satisfying (12), and it does not admit a solution of the same type with c∗ replaced
by a smaller quantity (notice that, necessarily, c∗ ≤ c0 under the notation of Hypothesis 4).
Proposition 5 answers affirmatively to Question 1 under Hypothesis 4, in the very special
case of compactly supported initial data satisfying (5), with w(e) = c∗ for all e ∈ SN−1.
This can be viewed as a natural extension of some results of the seminal paper [2], which
were originally obtained under more specific assumptions on f .

Remark 6. Whereas Proposition 5 shows the implication “Hypothesis 4 =⇒ Hypothe-
sis 3”, the converse implication is false in general. For instance, consider equation (1)

with f satisfying (9) together with
∫ β
0
f > 0 and

∫ 1

β
f > 0, and let c1 and c2 be the unique

(positive) speeds of the traveling fronts ϕ1(x − c1t) and ϕ2(x − c2t) connecting β to 0 on
the one hand, and 1 to β on the other hand. It follows from [18] that, if c1 ≥ c2, then
Hypothesis 4 is not satisfied, whereas Hypothesis 3 is. In that case, it turns out that the
compactly supported initial conditions u0 giving rise to invading solutions u develop into a
terrace of two expanding fronts with speeds c1 and c2, in the sense that infBct u(t, ·)→ 1 as
t→ +∞ if 0 < c < c2 (resp. supBc′′t\Bc′t |u(t, ·)− β| → 0 as t→ +∞ if c2 < c′ < c′′ < c1,
resp. supRN\Bct u(t, ·)→ 0 as t→ +∞ if c > c1). We refer to [13, 16, 22, 46, 47] for further
results on terraces in more general frameworks. On the other hand, still with (9) and the

positivity of
∫ β
0
f and

∫ 1

β
f , Hypothesis 4 is satisfied if (and, then, only if) c1 < c2, see [18].

3 Spreading speeds and spreading sets

In this section, under Hypothesis 4, we investigate the notions of asymptotic spreading
speeds and spreading sets for the solutions u of (1)-(2) with general unbounded sets U
containing large enough balls. Such solutions u then converge to 1 as t → +∞ locally
uniformly in RN , and even satisfy (13), with c∗ > 0 given by Proposition 5. We now
want to provide a more precise description of the invasion of the state 0 by the state 1.
The invasion cannot be uniform in all directions in general, since it shall strongly depend
on the initial support U . For e ∈ SN−1, we then look for a quantity w(e) ∈ (0,+∞]
satisfying (3), referred to as the spreading speed and representing the asymptotic speed
at which the level sets between 0 and 1 move along the direction e. If any, it satisfies
w(e) ≥ c∗ by Proposition 5. However, contrary to the case of compactly supported initial
data satisfying (5), the spreading speed may not exist when the support of the initial
condition is unbounded, see the comments at the end of this section.

Let us first introduce the notions of sets of directions “around which U is bounded” and
“around which U is unbounded”, for short the sets of bounded directions and of unbounded
directions, defined by:

B(U) :=
{
ξ ∈ SN−1 : lim inf

τ→+∞

dist(τξ, U)

τ
> 0
}

and

U(U) :=
{
ξ ∈ SN−1 : lim

τ→+∞

dist(τξ, U)

τ
= 0
}
.

The sets B(U) and U(U) are respectively open and closed relatively to SN−1. The
condition ξ ∈ B(U) is equivalent to the existence of an open cone C containing the
ray R+{ξ} = {τ ξ : τ > 0} such that U ∩ C is bounded. Conversely, for any ξ ∈ U(U) and
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any open cone C containing the ray R+{ξ}, the set U ∩ C is unbounded. We also define
the notion of positive-distance-interior Uρ (with ρ > 0) of the set U as

Uρ :=
{
x ∈ U : dist(x, ∂U) ≥ ρ

}
.

The first main result shows the existence of and a formula for the spreading speeds,
providing a positive answer to the first part of Question 1.

Theorem 7. [27] Assume that Hypothesis 4 holds, let c∗ > 0 and ρ > 0 be given by
Proposition 5 and Hypothesis 3, and let u be the solution of (1)-(2), with Uρ 6= ∅ and

B(U) ∪ U(Uρ) = SN−1. (14)

Then, for every e ∈ SN−1, there exists w(e) ∈ [c∗,+∞] such that (3) holds, and even
lim
t→+∞

(
min
0≤s≤c

u(t, ste)
)

= 1 for every 0 ≤ c < w(e),

lim
t→+∞

(
sup
s≥c

u(t, ste)
)

= 0 for every c > w(e).
(15)

Furthermore, w(e) is given explicitly by the variational formula

w(e) = sup
ξ∈U(U), ξ·e≥0

c∗√
1− (ξ · e)2

, (16)

with w(e) = c∗ if there is no ξ ∈ U(U) such that ξ · e ≥ 0, and w(e) = +∞ if e ∈ U(U).

Since U(U) is closed in SN−1, it follows from (16) and the above conventions that
w(e) = +∞ if and only if e ∈ U(U),

w(e) > c∗ if and only if there is ξ ∈ U(U) such that ξ · e > 0,

w(e) = c∗ if and only if there is no ξ ∈ U(U) such that ξ · e > 0.

For a set U satisfying U(U) 6= ∅, formula (16) can be rephrased in a more geometric way:

w(e) =
c∗

dist(e,R+ U(U))
=

c∗

sinϑ
, (17)

where ϑ ∈ [0, π/2] is the minimum between π/2 and the smallest angle between e and the
directions in U(U) (with the convention c∗/0 = +∞). This formula immediately reveals
that the map e 7→ w(e) ∈ [c∗,+∞] is continuous in SN−1. If U(U) = ∅, then w(e) = c∗

for all e ∈ SN−1. If U is bounded, condition (14) is automatically satisfied and, if Uρ 6= ∅,
then (15) holds with w(e) = c∗ for all e ∈ SN−1, in agreement with Proposition 5.

Formula (16) is called a Freidlin-Gärtner type formula, since Freidlin and Gärtner [20]
were the first to characterize the spreading speeds of solutions of reaction-diffusion equa-
tions in RN by a variational formula. They were actually concerned with spreading speeds
for solutions of x-dependent reaction-diffusion equations of the Fisher-KPP type [19, 33]
(for which 0 < f(x, u)/u ≤ ∂f

∂u
(x, 0) for all (x, u) ∈ RN × (0, 1)) with f(x, u) periodic with

respect to x. More precisely, it follows from [20], together with [6, 7, 57], that (3) holds
for these solutions, with

w(e) = inf
ξ∈SN−1, ξ·e>0

c∗(ξ)

ξ · e
(18)
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for any e ∈ SN−1, where c∗(ξ) denotes the minimal speed of pulsating fronts connecting 1
to 0 in the direction ξ (a pulsating front connecting 1 to 0 with speed c in the direction ξ
is a solution u : R× RN → (0, 1) such that u(t, x) = φ(x · ξ − ct, x), where φ(−∞, x) = 1,
φ(+∞, x) = 0 uniformly in x ∈ RN , and φ has the same periodicity with respect to its
second argument as the function f or other coefficients of the equation, see e.g. [4, 54, 57,
58, 59]). Such formulas for the spreading speeds of solutions with compactly supported
initial conditions have been recently extended to more general reaction terms in [51].
For reaction-diffusion equations with spatially periodic coefficients, the spreading speed
w(e) may depend on the direction e, even for solutions with compactly supported initial
conditions u0. However, the continuity of the map e 7→ w(e) still holds for monostable,
ignition or bistable reactions f , as follows from [20, 51] and from the (semi-)continuity of
the minimal or unique speeds of pulsating traveling fronts with respect to the direction,
see [1, 21, 23, 51] (but the continuity of the spreading speeds and even their existence do
not hold in general when pulsating fronts connecting 1 to 0 do not exist anymore, see [22]).

Remember that Hypothesis 4 holds if f > 0 in (0, 1), in the ignition case (7), and in the

bistable case (8) with
∫ 1

0
f(s)ds > 0. In these cases, Theorem 7 yields the existence of the

spreading speeds satisfying (3) and (15), given by (16) as soon as the initial datum u0 = 1U

is associated with a set U ⊂ RN satisfying Uρ 6= ∅ and (14). Moreover, in the case of a
positive nonlinearity satisfying (6), ρ > 0 can be arbitrarily small. On the other hand, the
conclusions of Theorem 7 do not hold in general without Hypothesis 4: as in Remark 6,
for a function f of the type (9) with c1 > c2 (where c1 and c2 are the positive speeds of the
traveling fronts ϕ1(x − c1t) and ϕ2(x − c2t) connecting β to 0, and 1 to β, respectively),
the solutions u of (1)-(2) with U bounded (hence, (14) is satisfied) and Uρ 6= ∅ develop
into a terrace of expanding fronts, ruling out the existence of w(e) satisfying (3).

The geometric assumption (14) is invariant under rigid transformations of U . It holds
for instance if U is star-shaped and stays at a finite distance from its ρ-interior Uρ, by [27].

The next result states the uniformity of (3) with respect to the directions e ∈ SN−1,
making more precise the answer to Question 1.

Theorem 8. [27] Under the assumptions of Theorem 7, for any compact set C ⊂ RN ,
lim
t→+∞

(
min
x∈C

u(t, tx)
)

= 1 if C ⊂ W ,

lim
t→+∞

(
max
x∈C

u(t, tx)
)

= 0 if C ⊂ RN \W ,
(19)

where W is the envelop set of the speeds w(e)’s, that is,

W :=
{
re : e ∈ SN−1, 0 ≤ r < w(e)

}
. (20)

Formula (17) reveals that W has the following simple geometric expression:

W = R+ U(U) + Bc∗ (21)

(with the convention that R+∅ + Bc∗ = Bc∗ if U(U) = ∅). Indeed, on the one hand, if
U(U) = ∅, then w(e) ≡ c∗ and W = Bc∗ . On the other hand, if U(U) 6= ∅, for any e
and r ≥ 0, one has dist(re,R+U(U)) = r dist(e,R+U(U)) = rc∗/w(e) by (17) (using the
convention rc∗/(+∞) = 0), and therefore the equivalence between (20) and (21) follows.
Formula (21) means that W is the c∗-neighborhood of the positive cone generated by
the directions U(U). It implies that W is an open set which is either unbounded (when
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U(U) 6= ∅), or it coincides with Bc∗ . For periodic Fisher-KPP equations, formula (18) for
the spreading speeds of solutions with compactly supported initial conditions means that
the closure of the set W defined by (20) coincides with the Wulff shape of the envelop set
of the minimal speeds c∗(ξ) of pulsating fronts and, since the map ξ 7→ c∗(ξ) ∈ (0,+∞)
is continuous in SN−1, the set W would therefore be a convex compact set. For our
problem (1)-(2), the set W defined in (20)-(21) is not bounded as soon as U(U) 6= ∅.
Furthermore, it is not convex in general. For instance, if U 6= ∅ is a non-convex closed
cone, say with vertex 0, then R+U(U) ∪ {0} = U and, from (21), W is not convex either.
Nevertheless, if U is a general convex set, then R+U(U)∪{0} andW are convex, from (21)
again. More generally speaking, if there is a convex set U ′ which lies at a finite Hausdorff
distance from U , then U(U) = U(U ′) and therefore W is convex, even if U itself is not.

Having in mind (19), W is called a spreading set for (1)-(2). We point out that (19) is
stronger than (3), owing to the continuity of the map e 7→ w(e) in SN−1. It also yields the
first line of (15). Compared to the first lines of (3) and (15), the first line of (19) provides
an additional uniformity with respect to the directions e. It also follows from (19) and the
continuity of the map e 7→ w(e) ∈ [c∗,+∞] that, for any σ ∈ (0, 1) and A > 0,

min
x∈σW∩BA

u(t, tx)→ 1 as t→ +∞.

Formulas similar to (19) have been established for the solutions of more general heteroge-
neous equations or systems with compactly supported initial conditions and Fisher-KPP
reactions [3, 8, 17, 36, 57], bistable reactions [59], or even more general terms [51, 57]. The
main difference is that, in these references, the spreading speeds and sets are bounded,
unlike the spreading set W defined in (20)-(21), which is unbounded as soon as U(U) 6= ∅.

Theorems 7-8 are concerned with the convergence towards 1 and 0 as t → +∞ along
some rays or some dilated sets. The next two results provide a description of the asymptotic
shape of the upper level sets of a solution u, defined for λ ∈ (0, 1) and t > 0 by

Eλ(t) :=
{
x ∈ RN : u(t, x) > λ

}
. (22)

That description involves the Hausdorff distance between some sets depending on Eλ(t)
and tW . The Hausdorff distance is defined, for any pair of subsets A,B ⊂ RN , by

dH(A,B) := max
(

sup
x∈A

dist(x,B), sup
y∈B

dist(y, A)
)
,

with the conventions that dH(A, ∅) = dH(∅, A) = +∞ if A 6= ∅ and dH(∅, ∅) = 0.

Theorem 9. [27] Under the assumptions of Theorems 7-8, it holds that

∀R > 0, ∀λ ∈ (0, 1), dH

(
BR ∩

1

t
Eλ(t) , BR ∩W

)
−→
t→+∞

0. (23)

Theorem 9 gives the approximation of t−1Eλ(t) by W as t → +∞, locally with
respect to the Hausdorff distance. But the convergence is not global in general, and
dH(t−1Eλ(t),W) 6→ 0 as t → +∞ in general, see the comments at the end of this sec-
tion. However, it is global if U is bounded and Uρ 6= ∅, by Proposition 5, with W = Bc∗

in this case.
The following result provides an asymptotic global approximation of t−1Eλ(t) by the

family of sets t−1U +Bc∗ , under a different assumption on U .
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Theorem 10. [27] Assume that Hypothesis 4 holds, let c∗ > 0 and ρ > 0 be given by
Proposition 5 and Hypothesis 3, and let u be the solution of (1)-(2), with Uρ 6= ∅ and

dH(U,Uρ) < +∞. (24)

Then, dH(Eλ(t), U +Bc∗t) = o(t) as t→ +∞ for every λ ∈ (0, 1), that is,

∀λ ∈ (0, 1), dH

(1

t
Eλ(t) ,

1

t
U +Bc∗

)
−→
t→+∞

0. (25)

Property (25) means that Eλ(t) behaves at large time t as the set U thickened by c∗t.
A sufficient condition for (24) to hold is that the set U fulfills the uniform interior sphere
condition of radius ρ: in such case dH(U,Uρ) ≤ 2ρ. In particular, if f satisfies condition (6),
then Theorem 10 applies to any non-empty set U which is uniformly C1,1.

We point out that a single formula like (25) valid for all λ ∈ (0, 1) does not hold in
general without Hypothesis 4. For instance, as in Remark 6, consider a tristable function f
of the type (9) with c1 > c2 (where c1 and c2 are the positive speeds of the traveling fronts
ϕ1(x− c1t) and ϕ2(x− c2t) connecting β to 0, and 1 to β, respectively). Then, as follows
from [13, 16, 18, 46], the solutions u of (1)-(2) with U bounded and Uρ 6= ∅ (hence, (24) is
satisfied) are such that dH(Eλ(t), U + Bc2t) = o(t) as t → +∞ if β < λ < 1, respectively
dH(Eλ(t), U +Bc1t) = o(t) as t→ +∞ if 0 < λ < β.

In order to enlighten our results stated above, we consider the important class of un-
bounded sets U given by subgraphs of some functions (see also the next section for further
results). Namely, we consider

U :=
{
x = (x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)

}
, (26)

with γ : RN−1 → R belonging to L∞loc(RN−1). Assume for instance that γ is of the form

γ(x′) = α |x′|+ o(|x′|) as |x′| → +∞,

for some α ∈ R. We see that Uρ 6= ∅ for any ρ > 0 and that B(U) =
{
e ∈ SN−1 : eN > α|e′|

}
and U(U) = U(Uρ) =

{
e ∈ SN−1 : eN ≤ α|e′|

}
. Thus (14) is fulfilled, hence (3), (15), (19)

and (23) hold under Hypothesis 4 on f , by Theorems 7-9. However, the shape of the
envelop set W given by (20)-(21) strongly depends on the sign of α. If α > 0, then
W = {x ∈ RN : xN < α |x′| + c∗

√
1 + α2}: it is a translation of the interior of the

cone R+U(U), hence it is non-convex and not C1. If α < 0 then W is still given by the
c∗-neighborhood of the same cone R+U(U), which now becomes “rounded” in its upper
part; indeed in such a case w(e) = c∗ if eN ≥ |e′|/|α|, and W is convex and C1 (but
not C2). If α = 0 (which includes the case γ bounded) then W = {x ∈ RN : xN < c∗} is a
half-space, with w(e) = +∞ if eN ≤ 0, and w(e) = c∗/eN if eN > 0. If γ in (26) satisfies

γ(x′)

|x′|
→ −∞ as |x′| → +∞,

then B(U)=SN−1\{−eN} and U(U)=U(Uρ)={−eN}, with eN = (0, · · · , 0, 1). Hence (14)
is fulfilled and therefore, under Hypothesis 4, properties (3), (15), (19) and (23) hold by
Theorems 7-9, with W = −R+eN + Bc∗ =

{
x ∈ RN : |x′| < c∗, xN ≤ 0

}
∪ Bc∗ . This is

a cylinder with a “rounded” top, which is convex and C1, but not C2. Lastly, if γ has
uniformly bounded local oscillations, that is, if there is M > 0 such that |γ(x′)−γ(y′)| ≤M
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for all x′ ∈ RN−1, y′ ∈ RN−1 with |x′ − y′| ≤ 1 (this is the case if γ is globally Lipschitz-
continous), then condition (24) is fulfilled and (25) holds, by Theorem 10.

To complete this section, we present a list of situations where one or both hypothe-
ses (14) and (24) of Theorems 7-10 do not hold and the conclusions (3), (15), (19), (23)
and (25) fail. The examples also show that the conditions (14) and (24) on U cannot be
compared in general. We also discuss the validity of the following convergences:

lim
t→+∞

1

t
Eλ(t) =W = lim

t→+∞

1

t
U +Bc∗ , (27)

that one may expect to hold but that actually fail in general. The convergences (27)
would be understood with respect to the Hausdorff distance (which does not guarantee
the uniqueness of the limit). Notice first that, if (14) is fulfilled together with Uρ 6= ∅
and Hypothesis 4, then (23) holds and the limit of t−1Eλ(t), if any, must be the set W
(that is, the Hausdorff distance between the limit set and W must be 0). All of the
following instances refer to the equation (1) with logistic term f(u) = u(1− u), for which
Hypothesis 4 holds, as well as the hair trigger effect, i.e., θ ∈ (0, 1) and ρ > 0 can be
arbitrary in Hypothesis 3 and Proposition 5, in which c∗ = 2. The sets U listed below have
non-empty interiors, and (14) and (24) are understood here with ρ > 0 arbitrarily small.

• The set U :=
⋃
n∈NB2n+1 \B2n−1 fulfills (24) (hence (25) holds), but it violates (14),

and (3), (15), (19) and (23) all fail, for any function w : SN−1 → [0,+∞] and any
star-shaped, open set W ⊂ RN , and moreover both limits in (27) do not exist.

• The set U := U1 ∪ U2 with U1 :=
{
x ∈ RN : x1 ≥ 0 and x22 + · · · + x2N ≤ 1

}
and

U2 :=
{
x ∈ RN : x1 ≥ 0 and (x2 −

√
x1)

2 + x23 + · · · + x2N ≤ e−x
2
1

}
, fulfills (14)

(hence (3), (15), (19) and (23) hold), but it violates (24), and (25) fails. Moreover,
the first limit in (27) exists whereas the second one does not.

• The set U :=
{
x ∈ RN : |xN | ≤ e−|x

′|2} violates both (14) and (24),
and (3), (15), (19), (23) and (25) all fail, with w(e) and W given by (16) and (20).
Moreover, the two limits in (27) exist but do not coincide.

• The set U :=
{
x ∈ RN : xN ≤

√
|x′|
}

fulfills (14) and (24) (hence (3), (15), (19), (23)
and (25) all hold), but both limits in (27) do not exist and dH(t−1Eλ(t),W) = +∞
for all λ ∈ (0, 1) and t > 0.

The details about the above counter-examples can be found in [27, Section 6].

4 Flattening properties in the case of subgraphs

In this section, we focus on the important class of initial conditions which are characteristic
functions of subgraphs in RN . Up to rotation, let us consider graphs in the direction xN ,
hence initial conditions u0 given by

u0(x
′, xN) =

{
1 if xN ≤ γ(x′),

0 otherwise,
(28)

that is, u0 = 1U with U given by (26) and γ ∈ L∞loc(RN−1). From parabolic estimates,
u(t, x′, xN) → 0 as xN → +∞ and u(t, x′, xN) → 1 as xN → −∞, locally uniformly in
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(t, x′) ∈ [0,+∞)×RN−1. Furthermore, ∂xNu < 0 in (0,+∞)×RN , by the strong parabolic
maximum principle. As a consequence, for every t > 0, x′ ∈ RN−1 and λ ∈ (0, 1), there
exists a unique Xλ(t, x

′) ∈ R such that

u(t, x′, Xλ(t, x
′)) = λ, (29)

and the function (λ, t, x′) 7→ Xλ(t, x
′) is actually continuous in (0, 1) × (0,+∞) × RN−1.

In other words, the sets Eλ(t) given in (22) are the open subgraphs of x′ 7→ Xλ(t, x
′).

Theorems 7-10 applied to this case give some information on the shape of the graphs of
Xλ(t, ·) at large time and large space in terms of γ, provided the assumptions of these
theorems are fulfilled (see the previous section). We are now interested in the local-in-
space behavior of the graphs of Xλ(t, ·) at large time. Let us first point out that, because
of the asymmetry of the roles of the steady states 0 and 1 (assuming Hypothesis 4), the
behavior of the graphs of Xλ(t, ·) will be radically different depending on the profile of the
function γ at infinity. Consider the particular case γ(x′) = α |x′|. Whatever α may be,
the graphs of the functions Xλ(t, ·) look like the sets {x ∈ RN : dist(x, U) = c∗t} at large
time t, by Theorem 10. For each t > 0, the set {x ∈ RN : dist(x, U) = c∗t} is a shift of ∂U
in the direction xN and therefore has a vertex if α > 0, whereas it is C1 if α ≤ 0. Of course,
for each t > 0, in both cases α > 0 and α ≤ 0, each level set of u (that is, each graph
of Xλ(t, ·)) is of class C2 from the implicit function theorem and the negativity of ∂xNu.
Nevertheless, the previous observations imply that there should be a difference between
the flattening properties of the level sets of u according to the coercivity of γ at infinity.

The following result deals with the non-coercive case, i.e., lim sup|x′|→+∞ γ(x′)/|x′| ≤ 0.

Theorem 11. [29] Assume that Hypothesis 4 holds. Let u be the solution of (1) with an
initial datum u0 given by (28). If

lim sup
|x′|→+∞

γ(x′)

|x′|
≤ 0, (30)

then, for every λ ∈ [θ, 1) and every basis (e′1, · · · , e′N−1) of RN−1, there holds

lim inf
t→+∞

(
min

|x′|≤R, 1≤i≤N−1
|∇x′Xλ(t, x

′) · e′i|
)
−→ 0 as R→ +∞, (31)

where θ ∈ (0, 1) is given by Proposition 5 and Hypothesis 3, and Xλ by (29). In particular,
if N = 2, lim inft→+∞

(
min[−R,R] |∂x1Xλ(t, ·)|

)
→ 0 as R→ +∞, for every λ ∈ [θ, 1).

Roughly speaking, Theorem 11 says that the level set of any value λ ∈ [θ, 1) becomes
almost flat in some directions along sequences of points of RN and along sequences of
times diverging to +∞. We point out that the estimates on ∇x′Xλ(t, x

′) immediately
imply analogous ones on ∇x′u(t, x′, Xλ(t, x

′)), because

∇x′u(t, x′, Xλ(t, x
′)) = −∂xNu(t, x′, Xλ(t, x

′))∇x′Xλ(t, x
′)

and ∂xNu is bounded in [1,+∞)× RN by parabolic estimates. Hence, (31) implies that

lim inf
t→+∞

(
min

|x′|≤R, 1≤i≤N−1
|∇x′u(t, x′, Xλ(t, x

′)) · e′i|
)
−→ 0 as R→ +∞.

for every λ ∈ [θ, 1) and every basis (e′1, · · · , e′N−1) of RN−1. The proof of (31) is done
in [29] by way of contradiction and uses the fact that λ is larger than or equal to the
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quantity θ ∈ (0, 1) given by Proposition 5 and Hypothesis 3. If f > 0 in (0, 1), Hypoth-
esis 3 is satisfied for any θ ∈ (0, 1) and thus the conclusion (31) of Theorem 11 holds
for any λ ∈ (0, 1). Furthermore, if f satisfies (6), then (31) can be strengthened as
lim inft→+∞

(
min|x′|≤R |∇x′Xλ(t, x

′)|
)
→ 0 as R→ +∞ for every λ ∈ (0, 1), see [29].

Without (30), property (31) does not hold in general (immediate couterexamples are
solutions whose level sets are parallel hyperplanes which are not orthogonal to eN). More-
over, if one assumes lim inf |x′|→+∞ γ(x′)/|x′| ≥ 0 instead of (30), the conclusion (31) does
not hold either in general (counter-examples are given by rotated bistable V -shaped fronts,
from [24, 25, 43, 49]). However, with (30), we expect that the liminf of the min can be
replaced by a limit in (31), without reference to the size R, namely, we propose the follow-
ing.

Conjecture 12. Under the assumptions of Theorem 11, the conclusion (31) can be
strengthened by the limit, for every λ ∈ [θ, 1),

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, locally uniformly in x′∈RN−1. (32)

We emphasize that, even under the assumption (30), property (32) does not hold in
general uniformly with respect to x′ ∈ RN−1 (for instance, in dimension N = 2, (32) fails
if γ′ = 1 in (−∞,−1] and γ′ = −1 in [1,+∞)).

On the other hand, a strong support to the validity of Conjecture 12 is provided by
the conclusion of Theorem 10. Indeed, it asserts that, for any λ ∈ (0, 1), Eλ(t) ∼ U +Bc∗t

for t large, in the sense of (25), and one can check that condition (30) entails that the
exterior unit normals to the set U + Bc∗t at the points (x′, xN) ∈ ∂(U + Bc∗t) (whenever
they exist) approach the vertical direction eN = (0, · · · , 0, 1) as t→ +∞, locally uniformly
with respect to x′ ∈ RN−1. Hence the same is expected to hold for the sets Eλ(t), which
is what (32) asserts. This kind of arguments can be made rigorous, leading to a result
which is a weaker statement than Conjecture 12, that is, min|x′|≤βt |∇x′Xλ(t, x

′)| → 0 as
t→ +∞ for every β > 0, see [29]. A weaker statement than Conjecture 12 is also derived
in [29] in the case where f satisfies Fisher-KPP condition (39) below, namely, there holds
that lim inft→+∞

(
max|x′|≤A |∇x′Xλ(t, x

′)|
)

= 0 for every λ ∈ (0, 1) and A > 0 (see also
Theorem 21 below).

As for the full Conjecture 12, the following result shows that, under assumption (30),
the conclusion (32) holds for initial data u0 having an asymptotically conical support, or
being asymptotically x′-spherically-symmetric and nonincreasing. Notice that the following
result uses the weaker Hypothesis 3 instead of Hypothesis 4.

Theorem 13. [29] Assume that Hypothesis 3 holds. Let u be the solution of (1) with an
initial datum u0 given by (28), where γ satisfies one of the following assumptions:

(i) either γ is of class C1 outside a compact set and there is ` ≥ 0 such that
γ′(x1)→ ∓` as x1 → ±∞ ifN=2,

∇γ(x′) = −` x′

|x′|
+O(|x′|−1−η) as |x′| → +∞, for some η > 0, ifN≥3;

(33)

(ii) or γ is continuous outside a compact set and γ(x′)/|x′| → −∞ as |x′| → +∞;

(iii) or γ(x′) = Γ(|x′ − x′0|) outside a compact set, for some x′0 ∈ RN−1 and some con-
tinuous nonincreasing function Γ : R+ → R;
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(iv) or γ(x′) = Γ(|x′ − x′0|) outside a compact set, for some x′0 ∈ RN−1 and some C1

function Γ : R+ → R such that Γ′(r)→ 0 as r → +∞.

Then, for every λ0 ∈ (0, 1), there holds that

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in λ∈(0, λ0] (34)

and moreover

∇x′u(t, x′, xN) −→ 0 as t→ +∞, locally in x′∈RN−1 and uniformly in xN ∈R.

In dimension N = 3, by writing γ(x′) = γ̃(r, ϑ) in the standard polar coordinates,
condition (33) means that ∂rγ̃(r, ϑ) = −`+O(r−1−η) and ∂ϑγ̃(r, ϑ) = O(r−η) as r → +∞.

It is easy to see that, even under Hypothesis 4 (which is stronger than Hypothesis 3),
if (33) holds with ` > 0, then the convergence in (34) cannot be uniform with respect
to x′ ∈ RN−1. In other words, if the initial interface between the states 0 and 1 has a
non-zero slope at infinity, then the level sets cannot become uniformly flat at large time.
This observation naturally leads to the following conjecture.

Conjecture 14. Assume that Hypothesis 4 holds. Let u be the solution of (1) with an
initial datum u0 given by (28). If

lim
|x′|→+∞

∇γ(x′) = 0, (35)

then, for every λ0 ∈ (0, 1),

∇x′Xλ(t, x
′) −→ 0 as t→ +∞, uniformly in x′∈RN−1 and in λ∈(0, λ0] (36)

and moreover
∇x′u(t, x) −→ 0 as t→ +∞, uniformly in x∈RN . (37)

Properties (36)-(37) obviously hold if γ is constant. Furthermore, if condition (35)
is replaced by the boundedness of γ, then, at least for some classes of functions f , pro-
perties (36) (with λ ∈ (0, λ0] replaced by λ ∈ [a, b], for some fixed 0 < a ≤ b < 1) and (37)
hold: more precisely, if the function f is of the bistable type (8), these properties follow
from some results in [5, 18], and the same conclusions hold for more general functions f
of the multistable type [46] or for KPP type functions f satisfying (39) below or slightly
weaker conditions, see [5, 9, 26, 34, 55]. Further estimates on the exact position of the
level sets Xλ in the bistable or KPP cases have been established in [37, 38, 50]. However,
by considering some functions γ with large local oscillations at infinity, it turns out that
both conclusions of Conjecture 14 cannot hold if (35) is replaced by the weaker condition
lim|x′|→+∞ γ(x′)/|x′| = 0, see [29].

To complete this section, let us point out that, under the assumptions of Theo-
rems 7 and 11, the solution u of (1) with (28) propagates with speed c∗ in the direction
eN = (0, · · · , 0, 1), owing to Theorem 7, that is, w(eN) = c∗ in (15)-(16). We conjecture
that the solution u then locally converges along its level sets to the front profile ϕ with
minimal speed c∗.
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Conjecture 15. Under the assumptions of Theorems 7 and 11, it holds, for every
λ ∈ (0, 1), for every sequence (tn)n∈N diverging to +∞, and for every bounded sequence
(x′n)n∈N in RN−1,

u(tn + t, x′n + x′, Xλ(tn, x
′
n) + xN) −→ ϕ(xN − c∗t+ ϕ−1(λ)) as n→ +∞, (38)

in C1;2
loc (Rt × RN−1

x′ ) and uniformly with respect to xN ∈ R. If one further assumes (35),
then the above limit holds for every sequence (x′n)n∈N in RN−1, bounded or not.

By [29], the second conclusion does not hold in general if assumption (35) is replaced
by lim|x′|→+∞ γ(x′)/|x′| = 0. On the other hand, Conjecture 15, and especially its second
part, holds if γ is bounded, for some classes of functions f , see [5, 37, 38, 46, 50].

5 Asymptotic one-dimensional symmetry

Let us now present some results about the asymptotic one-dimensional symmetry, related
to the Question 2 presented in Section 1. They concern Fisher-KPP [19, 33] functions f ,
that is, satisfying

f(0)=f(1)=0, f(s)>0 for all s∈(0, 1), and s 7→ f(s)

s
is nonincreasing in (0, 1]. (39)

In this case the hair trigger effect holds, i.e., Hypothesis 3 is fulfilled for any θ, ρ > 0,
moreover Hypothesis 4 also holds and the minimal speed with the properties stated in
Proposition 5 is explicit: c∗ = 2

√
f ′(0), see [2, 33].

Theorem 16. [28] Assume that f is of the Fisher-KPP type (39). Let u be the solution
of (1) with an initial datum u0 = 1U such that U ⊂ RN satisfies

∃ δ > 0, dH(U,Uδ) < +∞. (40)

Assume moreover that U is convex, or more generally, that there is a convex set U ′ such
that dH(U,U ′) < +∞. Then, any function ψ ∈ Ω(u), with Ω(u) defined by (4), is of the
form ψ(x) = Ψ(x · e), for some e ∈ SN−1 and a function Ψ : R → R which is either
constant or strictly monotone.

Theorem 16 extends the asymptotic one-dimensional symmetry property known to
hold when U is bounded, as a consequence of some results of Jones [32] valid for even more
general functions f provided U contains a large ball, as well as when U is the subgraph
of a bounded function, by [5, 9, 26, 34, 55]. Conversely, the asymptotic one-dimensional
symmetry fails when U is “V -shaped”, i.e., the union of two non-parallel half-spaces, which
fulfills (40) but is not at a finite Hausdorff distance from a convex set nor it satisfies (41).
For such an initial datum, the Ω-limit set of the solution contains elements which are not
one-dimensional.

Condition (40) means that there exists R > 0 such that, for any x ∈ U , there is a
ball Bδ(x0) ⊂ U with |x − x0| < R. It is fulfilled in particular if U satisfies a uniform
interior ball condition. One can show that, in dimension N = 2, for a convex set U ,
property (40) is equivalent to require that U has nonempty interior. The role of (40) is
cutting off regions of U playing a negligible role in the large-time behavior of the solutions.
This assumption is necessary, otherwise one could consider a V -shaped set Ũ and then take
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U := Ũ ∪
⋃
k∈ZN Be−|k|2 (k), which is at finite Hausdorff distance from the convex set RN but

does not satisfy (40), and the associated solution violates the asymptotic one-dimensional

symmetry (because it essentially behaves at large time as the solution associated with Ũ)
see [28]. The aforementioned two examples show that the answer to Question 2 cannot be
positive without any assumption on U .

The idea of the proof of Theorem 16 in [28] consists in reducing to a case where it
is possible to apply the reflection argument of Jones [32], which is valid for more general
functions f but fails when U is unbounded. This is achieved by an approximation of the
solution through a suitable truncation of its initial support. In order to control the error,
new types of supersolutions initially supported in exterior domains are used, which are
also employed in the proofs of the results of Section 3.

As a matter of fact, the convex-proximity assumption on U in Theorem 16 is a very
special case of a geometric hypothesis under which the one-dimensional symmetry holds.
Namely, for a given nonempty set U ⊂ RN and a given point x ∈ RN , we let πx denote the
set of orthogonal projections of x onto U , i.e.,

πx :=
{
ξ ∈ U : |x− ξ| = dist(x, U)

}
,

and, for x /∈ U , we define the opening function as follows:

O(x) := sup
ξ∈πx, y∈U\{ξ}

x− ξ
|x− ξ|

· y − ξ
|y − ξ|

,

with the convention that O(x) = −∞ if U = ∅ or U is a singleton (otherwise
−1 ≤ O(x) ≤ 1). When O(x) 6= −∞, one has O(x) = cosα, where α is the infimum
among all ξ ∈ πx of half the opening of the largest exterior cone to U at ξ having axis x−ξ.
Here is our most general asymptotic symmetry result.

Theorem 17. [28] Assume that f is of the Fisher-KPP type (39). Let u be a solution
of (1) with an initial datum u0 = 1U such that U ⊂ RN satisfies (40) and moreover

lim
R→+∞

(
sup

x∈RN ,dist(x,U)=R

O(x)

)
≤ 0. (41)

Then any function in Ω(u) is one-dimensional and, in addition, it is either constant or
strictly monotone, in the sense of Theorem 16.

It is understood that the left-hand side in condition (41) is equal to −∞ (hence the
condition is fulfilled) if supx∈RN dist(x, U) < +∞ (and indeed in such a case one has
by (40) that supx∈RN dist(x, Uδ) < +∞ for some δ > 0, which implies that u(t, x) → 1
uniformly in x ∈ RN as t→ +∞ due to Proposition 5, hence in particular the asymptotic
one-dimensional symmetry holds). We also point out that the limit in (41) always exists,
because the involved quantity is nonincreasing with respect to R, see [28]. Hypothesis (41)
means that the angle α in the definition of O(x) tends to a value larger than or equal to π/2
(i.e., the exterior cone contains a half-space) as dist(x, U) → +∞. Theorem 17 yields
Theorem 16 because, firstly, convex sets satisfy O(x) ≤ 0 for every x /∈ U (actually, they
are characterized by such condition in the class of closed sets) and, secondly, if (41) holds
for a given set, then it holds true for any set at finite Hausdorff distance from it, by [28].
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However, the class of sets satisfying (41) is wider. It contains for instance the subgraphs of
functions with vanishing global mean, i.e., U of the type (26) with γ ∈ L∞loc(RN−1) such that

γ(x′)− γ(y′)

|x′ − y′|
−→ 0 as |x′ − y′| → +∞ (42)

(see Corollary 20 below for the precise result in this case). Actually, with (26) and (42),
any ψ ∈ Ω(u) is of the form ψ(x) = Ψ(xN),

Theorems 16 and 17 are concerned with locally uniform convergence properties along
sequences of times (tn)n∈N diverging to +∞ and sequences of points (xn)n∈N. As a matter
of fact, a uniform asymptotic property can be derived, from the conclusions of Theorems 16
or 17. It is expressed in terms of the eigenvalues of the Hessian matrices D2u(t, x) (with
respect to the x variables). For a symmetric real-valued matrix A of size N × N , let
λ1(A) ≤ · · · ≤ λN(A) denote its eigenvalues, and let

σk(A) :=
∑

1≤j1<···<jk≤N

λj1(A)× · · · × λjk(A), 1 ≤ k ≤ N,

be the elementary symmetric polynomials of eigenvalues of A (σk(D
2u(t, x)) is also called

k-Hessian).

Theorem 18. [28] Let f and u be as in Theorem 17. Then, for every 2 ≤ k ≤ N ,
σk(D

2u(t, x))→ 0 as t→ +∞ uniformly in x ∈ RN .

Theorem 18 is proved using the asymptotic local one-dimensional symmetry given by
Theorem 17, together with standard parabolic estimates. We point out that, if ψ : RN → R
is of class C2 and one-dimensional, then σk(D

2ψ(x)) = 0 for all 2 ≤ k ≤ N and x ∈ RN ,
since the quantities σk(D

2ψ(x)) involve sums of products of at least two eigenvalues of
D2ψ(x) (but σ1(D

2ψ(x)) 6= 0 in general). However, the converse property is immediately
not true (for instance, the function ψ : (x1, x2) 7→ x21 + x2 satisfies σ2(D

2ψ(x1, x2)) = 0 for
all (x1, x2) ∈ R2, but it is not one-dimensional).

Once the asymptotic one-dimensional symmetry and monotonicity properties are estab-
lished, it is natural to ask what are the directions in which the solution actually becomes
locally one-dimensional. Namely, we investigate the set

E :=
{
e ∈ SN−1 : ∃ψ ∈ Ω(u) such that ψ(x) ≡ Ψ(x · e)
for some strictly decreasing function Ψ ∈ C2(R)

}
.

(43)

Under the assumptions of Theorems 16 or 17, the set E is then the set of the directions of
decreasing monotonicity of all non-constant elements of Ω(u) (by the direction of decreas-
ing monotonicity of a –necessarily one-dimensional by Theorems 16 or 17– non-constant
function ψ ∈ Ω(u), we mean the unique e ∈ SN−1 such that ψ(x) = Ψ(x · e) for all x ∈ RN ,
with Ψ decreasing). The constant functions ψ are excluded in the above definition, this is
necessary because they are one-dimensional in every direction. Thus, a direction e belongs
to E only if, along some diverging sequences of times, the solution flattens in the directions
orthogonal to e but not in the direction e, along some sequence of points. We characterize
the set E in terms of the initial support U .
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Theorem 19. [28] Let f and u be as in Theorem 17. Then E defined in (43) is given by

E =
{
e ∈ SN−1 :

xn − ξn
|xn − ξn|

→ e as n→ +∞, for some sequences (xn)n∈N, (ξn)n∈N in RN

such that dist(xn, U)→ +∞ as n→ +∞ and ξn ∈ πxn for all n ∈ N
}
.

In particular, E = ∅ if and only if U is relatively dense in RN or U = ∅. Moreover, for
any e ∈ E, any sequence (xn)n∈N in RN , and any sequence (tn)n∈N diverging to +∞ such
that u(tn, xn + x) → Ψ(x · e) as n → +∞ locally uniformly in x ∈ RN , with Ψ strictly
decreasing, one necessarily has dist(xn, U) ∼ c∗tn as n→ +∞.

We remark that, without the assumption (40), the last statement of Theorem 19 may
immediately fail. Indeed, if U = {0} then u(t, x) ≡ 0 for all t > 0, x ∈ RN , hence E = ∅,
but U 6= ∅ is not relatively dense in RN .

When U is bounded with non-empty interior, it follows from Theorem 19 that
E = SN−1. On the one hand, this conclusion gives an additional property –namely the
strict monotonicity– with respect to the asymptotic symmetry result contained in [32].
On the other hand, still when U is bounded, the same conclusion is also a consequence
of [15, 48], where it is proved by a completely different argument than in [28]. The charac-
terization of the directions of asymptotic strict monotonicity in the case of unbounded sets
U is more involved. The proof of Theorem 19 is based on an argument by contradiction
and on the acceleration of the solutions when they become less and less steep.

Theorem 19 implies that if U is of class C1 then E is contained in the closure of the set
of the outward unit normal vectors to U . If U is convex then E coincides with the closure
of the set of outward unit normal vectors to all half-spaces containing U . When U is the
subgraph of a function γ with vanishing global mean, i.e. satisfying (42), then it turns out
that E = {eN}, with eN = (0, · · · , 0, 1), as the following result shows.

Corollary 20. [28] Assume that f is of the Fisher-KPP type (39). Let u be the solution
of (1) with an initial datum u0 = 1U , where U is given by (26) with γ ∈ L∞loc(RN−1)
satisfying (42). Then any function ψ ∈ Ω(u) is of the form ψ(x′, xN) ≡ Ψ(xN) for all
(x′, xN) ∈ RN−1 × R, with Ψ either constant or strictly decreasing. Moreover, E = {eN}.

Since, by parabolic estimates, the convergence in the definition (4) of the Ω-limit set
holds true in C2

loc(RN) up to subsequences, Corollary 20 implies that

∇x′u(t, x′, xN)→ 0 as t→ +∞, uniformly with respect to (x′, xN) ∈ RN−1 × R.

A way to interpret this result is that the oscillations of the initial datum are “damped” as
time goes on through some kind of averaging process. We point out that Corollary 20 does
not imply the existence of a function Ψ : R+×R→ R such that u(t, x′, xN)−Ψ(t, xN)→ 0
as t→ +∞ uniformly in (x′, xN) ∈ RN−1×R, and indeed such a function Ψ does not exist
in general (as shown in [50] when N = 2 and the limits limx′→±∞ γ(x′) exist but do not
coincide). Condition (42) is satisfied in particular when γ is bounded, and in such a case
the conclusion of Corollary 20 can also be deduced from [5, 9, 26, 34, 55].

It is possible to relax the uniform mean condition (42) of γ in Corollary 20, at the price
of restricting the Ω-limit set. Similarly, the arguments of the proof of Theorem 17 can
somehow be localized. Loosely speaking, if one focuses on the asymptotic one-dimensional
property around a given direction, the global geometric assumption (41) can be restricted
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to the points x around that direction, and hypothesis (40) can be relaxed too. This leads
us to introduce the notion of Ω-limit set in a direction e ∈ SN−1 of a solution u, defined as

Ωe(u) :=
{
ψ ∈ L∞(RN) : u(tn, xn + ·)→ ψ in L∞loc(RN)
for some sequences (tn)n∈N in R+ diverging to +∞,
and (xn)n∈N in RN \ {0} such that xn/|xn| → e as n→ +∞

}
⊂ Ω(u).

Theorem 21. [28] Assume that f is of the Fisher-KPP type (39). Let u be the solution
of (1) with an initial condition u0 =1U , where U has nonempty interior and is such that

U ⊂
{

(x′, xN) ∈ RN−1 × R : xN ≤ γ(x′)
}
, (44)

for a function γ ∈ L∞loc(RN−1) satisfying (30). Then, any function ψ ∈ ΩeN (u) satisfies
ψ(x′, xN) ≡ Ψ(xN) in RN , with Ψ either constant or strictly decreasing. In particular,
∇x′u(t, x′, xN)→ 0 as t→ +∞ locally in x′∈RN−1 and uniformly in xN ∈ [R,+∞), for any
R ∈ R. Moreover if the inclusion is replaced by an equality in (44), then ∇x′u(t, x′, xN)→ 0
as t→ +∞ locally in x′∈RN−1 and uniformly in xN ∈R.

To complete this section, we propose a list of open questions and conjectures related
to the previous results. First of all, under the Fisher-KPP assumption (39), let ϕ be
the traveling front profile with minimal speed, that is, for each e ∈ SN−1, ϕ(x · e − c∗t)
satisfies (1) with 0 = ϕ(+∞) < ϕ < ϕ(−∞) = 1 and c∗ = 2

√
f ′(0). Based on Theorems 17

and 19, and together with the definition (43) of E , we propose the following.

Conjecture 22. Let f and u be as in Theorem 17. Then,

Ω(u) =
{

0, 1, x 7→ ϕ(x · e+ a) : e ∈ E , a ∈ R
}
.

The above conjecture is known to be true in the case where U is bounded with non-
empty interior, by [15, 48], as well as when U is the subgraph of a bounded function,
or more generally when there are two half-spaces H and H ′ –necessarily with parallel
boundaries– such that H ⊂ U ⊂ H ′, by [5, 9, 26, 34, 55].

We remark that the assumption (41) of Theorem 17 is stable by bounded perturbations
of the sets U . We could then wonder whether the asymptotic one-dimensional symmetry
is also stable with respect to bounded perturbations of the initial support. Namely, if the
solution to (1) with an initial datum 1U satisfying (40) is asymptotically locally planar,
and if U ′ ⊂ RN satisfies (40) and dH(U ′, U) < +∞, then is the solution to (1) with initial
datum 1U ′ asymptotically locally planar as well?

One can also wonder whether the reciprocal of Theorem 17 is true, in the following
sense: if the asymptotic one-dimensional symmetry holds for a solution u of (1) with initial
datum 1U and U satisfying (40), does necessarily U fulfill (41)? The answer is immediately
seen to be negative in general: take for instance U given by U =

⋃
n∈N[2n, 2n + 1]×RN−1,

which fulfills (40) but not (41), while u – hence any element of Ω(u) – is one-dimensional,
depending on the variable x1 only. However, the question is open if U is connected.

The results of this section are concerned with the Fisher-KPP equation, i.e. when f
satisfies (39). However, the same question about the asymptotic one-dimensional symmetry
can be asked for more general reaction terms f , still with f(0) = f(1) = 0 and satisfying
Hypothesis 4, or simply the invasion property stated in Hypothesis 3. First of all, the
condition (40) should be strengthened, by requiring δ to be larger than the quantity ρ in

Hypothesis 3 (indeed, if f is for instance of the bistable type (8) with
∫ 1

0
f(s)ds > 0, then
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by [12, 60] there is δ0 > 0 such that the solution to (1) with initial condition u0 = 1Bδ0
converges uniformly as t → +∞ to a ground state, that is, a positive radial solution
converging to 0 as |x| → +∞, hence u is not asymptotically locally planar). For general
functions f for which Hypothesis 3 holds, if U is bounded and Uρ 6= ∅, then the solutions
to (1) with initial condition 1U are known to be asymptotically locally planar, by [32]. The
same conclusion holds for bistable functions f of the type (8) if there are two half-spaces
H and H ′ –necessarily with parallel boundaries– such that H ⊂ U ⊂ H ′, by [5, 18, 37, 38]
(see also [46] for the case of more general functions f). On the other hand, still for bistable

functions f of the type (8) for which
∫ 1

0
f(s)ds > 0, the solutions u to (1) with initial

condition 1U are not asymptotically locally planar if U is V-shaped, that is, if it is the
union of two half-spaces with non-parallel boundaries, by [24, 25, 43, 49]. These known
results lead us to formulate the following De Giorgi type conjecture for the solutions of the
reaction-diffusion equation (1) beyond the Fisher-KPP case.

Conjecture 23. Assume that the invasion property, namely Hypothesis 3, holds for some
ρ > 0. Let u be the solution to (1) with an initial datum u0 = 1U such that U ⊂ RN

satisfies dH(U,Uρ) < +∞ and (41). Then any function in Ω(u) is one-dimensional and,
in addition, it is either constant or strictly monotone.

We point out that, when u0 is given by (28) with γ satisfying (35), Conjecture 14 would
imply the validity of the asymptotic one-dimensional symmetry.

Let us also mention another natural question related to the preservation of the convexity
of the upper level sets of u when u0 = 1U and U is convex. It is known from [10, 31] that,
if U is convex, then the solution of the heat equation ∂tu = ∆u is quasi-concave at each
t > 0, that is, for each t > 0 and λ ∈ R, the upper level set {x ∈ RN : u(t, x) > λ} is
convex. The same conclusion holds for (1) set in bounded convex domains instead of RN ,
and under some additional assumptions on f , by [30]. A natural question is to wonder for
which class of functions f this property still holds for (1) in RN .

Notice finally that, for any solution u to (1), for any sequence (tn)n∈N diverging to +∞,
and for any sequence (xn)n∈N in RN , the functions u(tn+·, xn+·) converge locally uniformly
in R×RN , up to extraction of a subsequence, to an entire solution to (1) (that is, a solution
for all t ∈ R). Remembering Theorem 16 on the asymptotic one-dimensional symmetry
for the solutions to (1) with u0 = 1U and U convex, and having in mind the question of
the previous paragraph on the convexity of the upper level sets, it is then natural to ask
the following: if an entire solution v : R × RN → [0, 1] to (1) is quasi-concave for every
t ∈ R, is v(t, ·) necessarily one-dimensional for every t ∈ R?

6 The logarithmic lag in the KPP case

Assume in this section that f satisfies the Fisher-KPP condition (39). We recall that
Hypotheses 3 and 4 are fulfilled, and the minimal speed c∗ of traveling fronts connec-
ting 1 to 0 is given by c∗ = 2

√
f ′(0). It is known from [9, 26, 34, 44, 55] that, in the

one-dimensional case, the solution u of (1) with initial condition u0 = 1R− is such that

sup
x∈R

∣∣∣u(t, x)− ϕ
(
x− c∗t+

3

c∗
ln t+ x0

)∣∣∣→ 0 as t→ +∞,

for some x0 ∈ R. Hence, there is a lag by (3/c∗) ln t of the position of the level sets of u
behind the position c∗t given by the spreading speed. In dimension N = 2, for initial
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conditions trapped between two shifts of 1R×R− , there is a bounded function a such that

sup
(x1,x2)∈R2

∣∣∣u(t, x1, x2)− ϕ
(
x2 − c∗t+

3

c∗
ln t+ a(t, x1)

)∣∣∣→ 0 as t→ +∞,

see [50]. In any dimension N ≥ 2, if the nonnegative initial condition 0 6≡ u0 ≤ 1 is
compactly supported, there is a Lipschitz continuous function a : SN−1 → R such that

sup
x∈RN\{0}

∣∣∣u(t, x)− ϕ
(
|x| − c∗t+

N + 2

c∗
ln t+ a

( x
|x|

))∣∣∣→ 0 as t→ +∞,

see [15, 21, 48]. Notice that N + 2 = 3 + (N − 1) corresponds to an additional lag by
((N − 1)/c∗) ln t, compared with the 1-dimensional case, which is due to the curvature of
the level sets inherited from the fact that the initial condition is compactly supported.

Let us now consider the case of a solution to (1) with an initial condition given by (28)
and investigate the lag between the position of the level sets of u behind c∗t in the direc-
tion xN . Assuming that γ is bounded from above, one infers by comparison that, up to
an additive constant, the lag is between (3/c∗) ln t (the lag in the 1-dimensional case) and
((N + 2)/c∗) ln t (the lag in the case of compactly supported initial conditions): namely,
for every λ ∈ (0, 1) and x′ ∈ RN−1, under the notations (29), the lag c∗t−Xλ(t, x

′) satisfies

3

c∗
ln t+O(1) ≤ c∗t−Xλ(t, x

′) ≤ N + 2

c∗
ln t+O(1) as t→ +∞. (45)

But it is not clear in principle whether or not this lag is equal to one of these bounds or
whether it takes intermediate values. The main result of this section states that the actual
lag coincides with the upper bound in (45) provided that γ tends to −∞ at infinity faster
than a logarithm with a suitable negative coefficient. Thus, in such a case, the position of
the level sets of u in the direction xN is the same as when the initial condition is compactly
supported. Here is the precise result.

Theorem 24. [29] Assume that f is of the Fisher-KPP type (39) and let u be the solution
of (1) with an initial condition u0 satisfying (28). If

lim sup
|x′|→+∞

γ(x′)

ln(|x′|)
< −2(N − 1)

c∗
, (46)

then

Xλ(t, x
′) = c∗t− N + 2

c∗
ln t+O(1) as t→ +∞, (47)

locally uniformly with respect to λ ∈ (0, 1) and x′ ∈ RN−1, and the inequality “≤” holds
true in the above formula locally uniformly in λ ∈ (0, 1) and uniformly in x′ ∈ RN−1.

If the upper bound for γ in (46) is relaxed, we expect the lag of the solution with
respect to the critical front to differ from the one associated with compactly supported
initial data, that is ((N + 2)/c∗) ln t. We derive the following lower bound for the lag.

Proposition 25. [29] Assume that f is of the Fisher-KPP type (39) and let u be the
solution of (1) with an initial condition u0 satisfying (28). If there is σ ≥ −(N − 1)
such that

lim sup
|x′|→+∞

γ(x′)

ln |x′|
≤ 2σ

c∗
, (48)
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then, for any λ ∈ (0, 1),

Xλ(t, x
′) ≤ c∗t− 3− σ

c∗
ln t+ o(ln t) as t→ +∞, (49)

locally uniformly with respect to x′ ∈ RN−1.

Property (49) means that the lag c∗t−Xλ(t, x
′) is at least ((3− σ)/c∗) ln t+ o(ln t) as

t → +∞. Notice that this holds even for positive σ. We conjecture that, if the limsup is
replaced by a limit in (48) and the inequality by an equality, then the estimate (49) should
be sharp, namely, the lag should be

c∗t−Xλ(t, x
′) =

3− σ
c∗

ln t+ o(ln t) as t→ +∞,

for every λ ∈ (0, 1) and x′ ∈ RN−1. We emphasize that when σ = 0, this formula would
be coherent with the 1-dimensional lag. This formula would also mean that the constant
−2(N−1)/c∗ in (46) would be optimal for the lag to be equivalent to that of solutions with
compactly supported initial conditions. Lastly, it would provide a continuum of lags with
logarithmic factors ranging in the whole half-line (−∞, (N+2)/c∗]. In particular, solutions
with initial conditions of the type (28) with γ(x′) ∼ (6/c∗) ln |x′| as |x′| → +∞ would have
no logarithmic lag, i.e., the same position c∗t along the xN -axis as the planar front moving
in the direction eN , up to a o(ln t) term as t → +∞. Furthermore, if γ(x′) ∼ κ ln |x′|
as |x′| → +∞ for some κ > (6/c∗), then the logarithmic lag would be negative, i.e., the
position of the solution would be ahead of that of the front by a logarithmic-in-time term
(observe that the term is linear in time when γ(x′) ∼ α|x′| as |x′| → +∞ with α > 0, by
Theorem 7 and (15)-(16)).

Theorem 24 allows us to prove part of Conjecture 12 about the flattening of the level
sets under the hypotheses of that theorem.

Corollary 26. [29] Assume that f is of the Fisher-KPP type (39) and let u be the solution
of (1) with an initial condition u0 satisfying (28) and (46). Then the following hold:

(i) the conclusion (32) of Conjecture 12 holds, and even locally in λ ∈ (0, 1), that is,
∇x′Xλ(t, x

′)→ 0 as t→ +∞, locally uniformly in x′ ∈ RN−1 and λ ∈ (0, 1);

(ii) for any λ ∈ (0, 1) and x′0 ∈ RN−1, the function

ũ(t, x′, xN) := lim
s→+∞

u(s+ t, x′, Xλ(s, x
′
0) + xN),

which exists (up to subsequences) locally uniformly in (t, x′, xN) ∈ R×RN , is indepen-
dent of x′ and satisfies limxN→−∞ ũ(t, xN +c∗t) = 1 and limxN→+∞ ũ(t, xN +c∗t) = 0,
uniformly with respect to t ∈ R.

Corollary 26 shows that, as t→ +∞, the solution approaches a one-dimensional entire
solution whose level sets move in the direction eN with average velocity equal to c∗. It is
then natural to expect that ũ(t, xN) = ϕ(xN − c∗t+ ϕ−1(λ)) for all (t, xN) ∈ R2, where ϕ
is the front connecting 1 and 0 with minimal speed c∗. That would correspond to prop-
erty (38) in Conjecture 15. By comparison and some arguments based on the number of in-
tersections of solutions to (1) in dimension 1, it can be shown that ũ(t, xN) ≥ ϕ(xN−c∗t+ζ)
in R2, for some ζ ∈ R. But the proof of (38) would still require additional arguments.
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[45] P. Poláčik. Convergence and quasiconvergence properties of solutions of parabolic equations on the
real line: an overview. In: Patterns of Dynamics, volume 205 of Springer Proc. Math. Stat., pages
172–183, Springer, 2017.
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