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Abstract The mechanisms underlying the generation

of hippocampal epileptic seizures and interictal events

and their interactions with the sleep-wake cycle are

not yet fully understood. Indeed, medial temporal lobe

epilepsy is associated with hippocampal abnormalities

both at the neuronal (channelopathies, impaired

potassium and chloride dynamics) and network level

(neuronal and axonal loss, mossy fiber sprouting), with

more frequent seizures during wakefulness compared

with slow-wave sleep. In this article, starting from

our previous computational modeling work of the

hippocampal formation based on realistic topology

and synaptic connectivity, we study the role of micro-

and mesoscale pathological conditions of the epileptic

hippocampus in the generation and maintenance of

seizure-like theta and interictal oscillations. We show,

through the simulations of hippocampal activity during

slow-wave sleep and wakefulness that: (i) both mossy

fiber sprouting and sclerosis account for seizure-like

theta activity, (ii) but they have antagonist effects

(seizure-like activity occurrence increases with sprout-

ing but decreases with sclerosis), (iii) though impaired

potassium and chloride dynamics have little influence

on the generation of seizure-like activity, they do play
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a role on the generation of interictal patterns, and (iv)

seizure-like activity and fast ripples are more likely to

occur during wakefulness and interictal spikes during

sleep.

Keywords hippocampus, computational model-

ing, epilepsy, sleep-wake cycle, realistic anatomy,

pathological connectivity
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1 Introduction

The hippocampus can exhibit oscillatory rhythms in

a wide range of frequencies, depending on the cogni-

tive task to perform, the vigilance state, the possible

pathological state, etc. Altered hippocampal rhythms

are involved in medial temporal lobe epilepsy, the most

frequent form of focal epilepsy, often pharmacoresis-

tant and affecting about 0.6 person per 1000 people

[Asadi-Pooya et al., 2017]. Beside hippocampal seizures

(complex phenomena typically consisting in episodes of

abnormal, excessive and/or hypersynchronous neural

activity, as defined in [Fisher et al., 2014] or [Jiruska

et al., 2013]), the epileptic hippocampus also produces

frequent interictal epileptic abnormal rhythms which

have been shown to be associated with cognitive impair-

ments of episodic memory ([Krauss et al., 1997]), mem-

ory maintenance and retrieval ([Kleen et al., 2013]), and

memory consolidation ([Gelinas et al., 2016]).

Some computational models have been previously

developed to reproduce epileptic seizures (see the

review from [Stefanescu et al., 2012]) or interictal

spikes (brief peaks of synchronous activity, see for

example [Demont-Guignard et al., 2009]), but these

models cannot fully explain the correlations between

neuropathological conditions of the hippocampus,

physiological processes such as the sleep-wake cycle,

and the resulting oscillations (note still that a broader

view can be found in [Jiruska et al., 2014]). Indeed,

computational models have typically studied epilep-

tic phenomena at a single scale ([Wendling et al.,

2012]). They usually focus either, on one hand, on

microscopic mechanisms with rather detailed neuron

models, but only small hippocampal substructures

[Demont-Guignard et al., 2009, Ratnadurai Girid-

haran et al., 2014], which do not allow to take into

account the specificity of the hippocampal anatomy

and connectivity responsible for the richness of the

produced rhythms; or, on the second hand, on macro-

scopic features that grant importance to connectivity

patterns and excitation/inhibition balance, while the

implication of intracellular dynamics, which also affects

rhythm genesis, remains unclear.

One can cite, among computational studies focusing

on cellular pathologies, the work of [Cressman et al.,

2009] on the role of potassium and sodium dynamics,

or [Dyhrfjeld-Johnsen, 2008] on the role of hyperpo-

larization activated current (other computational mod-

els of the epileptic dentate gyrus can be found in [Te-

jada and Roque, 2014]). At the network level, [Wendling

et al., 2002] model the synaptic coupling between neu-

ronal populations and take into account different types

of populations of inhibitory and excitatory neurons,

[Netoff, 2004] reproduce the topology of synaptic con-

nections, [Morgan and Soltesz, 2008] study the role of

sclerosis and mossy fiber sprouting. Some more recent

works focus on epileptic cortical tissue but have inter-

esting conclusions on epileptic networks and their dy-

namics in general. One can cite [Liou et al., 2020] which

developed a 2-D model studying seizure onset and prop-

agation in relation with synaptic plasticity and noise,

and [Rich et al., 2022] which tackles the link between

reduced network heterogeneity and ictogenic dynamics.

However, all these works at the network level do not

explicitly address the role of intracellular mechanisms.

Overall, and as is also pointed by [van den Heuvel et al.,

2019], this highlights the need for a multi-scale model

comprising the joint effects of both network and micro-

scopic properties.

In this context, the main objective of this article

is to provide better understanding of pathological

hippocampal oscillations: epileptic seizures, interictal

spikes and fast ripples. We do so by developing a

multi-scale computational model of the hippocampus

regrouping many mechanisms previously described in

separate works, and analyzing its oscillatory activity

as we vary different parameters representing either

structural or functional properties of the network,

associated with pathological modifications typically

observed in epilepsy.

More precisely, we extend a healthy hippocampus

model of the sleep-wake cycle we previously presented

in [Aussel et al., 2018] so as to include four typical

pathological modifications of the hippocampus seen in

medial temporal lobe epilepsies. In particular, we fo-

cus on hippocampal sclerosis ([Blümcke et al., 2013]),

mossy fiber sprouting ([Noebels et al., 2012]), impaired

potassium dynamics ([Lerche et al., 2012], [Coulter and

Steinhauser, 2015]), and impaired chloride dynamics in

pyramidal neurons (and its influence on inhibition, [Hu-

berfeld et al., 2007]). These modifications involve both

network connectivity and single neuron dynamics. The

model also includes a simulation of the Local Field Po-

tential (LFP) generated by the neurons, so as to be

comparable with clinical recordings. Typically, we aim

to reproduce morphologies and rhythms in specific fre-

quency bands characteristic for ictal or interictal events

and extensively explore the ranges of parameters that

give rise to them, rather than fitting one individual’s

precise recordings.

In the present work, we first analyze our pathologi-

cal hippocampal network’s behavior under stereotypical

inputs, and study how the four parameters representing

hippocampal sclerosis, mossy fiber sprouting, impaired

potassium dynamics and impaired chloride dynamics

can induce saturation or modify neural oscillatory fre-
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quency. We also investigate whether the specific func-

tional connectivity of wakefulness induced by choliner-

gic modulation could make this state more vulnerable

to epilepsy-associated damage.

We then move to a more realistic simulation and

apply signals derived from intracerebral recordings of

individuals with epilepsy as inputs to the network in

order to compare the LFP output of our model to real

recordings. The aim is to assess which parameter set-

tings enable the reproduction, at the LFP output of the

model, of some characteristics of a clinically recorded

hippocampal seizure in the theta frequency band, as

well as of different interictal patterns (interictal spikes

and fast ripples). More precisely, we show that mossy

fiber sprouting and hippocampal sclerosis determine the

appearance of seizure-like theta activity in the model

(the former parameter facilitates it while the latter hin-

ders it), whereas impaired potassium and chloride dy-

namics mostly affect the number of interictal events.

After presenting the detailed results of these differ-

ent simulations, we focus our discussion on the role and

the balance of the modeled phenomena in epilepsy. We

examine how the network related pathologies (mossy

fiber sprouting and sclerosis) and the cellular mech-

anisms (potassium and chloride dynamics) can affect

seizure-like theta episodes and interictal events gener-

ation, in both sleep and wakefulness states. We finally

discuss the implications of our study of hippocampal

rhythms on cognitive impairments, essentially memory

deficits, usually associated with hippocampal epilepsy.

2 Materials and Methods

In the following subsections, we will briefly present the

main features of our model of the healthy hippocampus

(developed in details in [Aussel et al., 2018] and whose

parameters were explored in [Aussel et al., 2021]), be-

fore showing how it was modified to account for epilep-

tic abnormalities. We will then explain thoroughly how

we simulated and analyzed the behavior of this epileptic

model.

2.1 Computational modeling of healthy hippocampal

oscillations

The model proposed in this paper is directly inspired

from our previous work ([Aussel et al., 2018]). We re-

call that this model covers multiple scales, from channel

level mechanisms (Hodgkin-Huxley formalism, used to

model classical K and Na channels, but also Calcium-

Activated Nonselective cation channel - CAN) to real-

istic anatomy and modulated connectivity (intra and

inter structures connection probabilities and gains on

synaptic conductances). The model includes more than

thirty thousand neurons to represent the four main re-

gions of the hippocampal formation: the Dentate Gyrus

(DG), CA3, CA1, and the entorhinal cortex (EC). The

number of neurons in each region and the proportion

of excitatory and inhibitory cells were chosen in ac-

cordance with the literature ([Jinno and Kosaka, 2010],

[West and Gundersen, 1990], [Patton and McNaughton,

1995], see [Aussel et al., 2018] for a detailed explana-

tion). The neuron models we use are taken from [Gio-

vannini et al., 2017], which themselves trace back to

the work on hippocampal neurons by [Jochems and

Yoshida, 2015] (and explains the role of the CAN chan-

nel in the persistent firing involved in memory). The

model is driven by a set of parameters (gains, max-

imum probabilities, input characteristics), themselves

with biological significance. The complete structure is

given Figure 1. In our previous paper, we have pro-

posed a set of parameters (in blue in Figure 1-B and C)

and mechanisms able to explain sleep-wake variations of

the oscillatory patterns (sharp-wave ripples and theta-

gamma) and the transitions between them. For details,

see [Aussel et al., 2018] and [Aussel et al., 2021].

2.2 Model changes to account for epilepsy

Among the different changes that can occur in an

epileptic hippocampus, we chose to focus on four

of the most frequent in particular: hippocampal

sclerosis, mossy fiber sprouting, increased excitability

and impaired inhibition of excitatory neurons. For

simplicity reasons, these changes have been targeted
exclusively at excitatory cells (their number, synaptic

connectivity, potassium and chloride dynamics), but

have been chosen so as to provide an overview of

the effect of both cell and network pathologies on

hippocampal dynamics. Parameters linked to epilepsy

in the model appear in red in Figure 1.

Hippocampal sclerosis was modeled by reducing the

number of excitatory neurons in each subregion of the

model as a fraction scl of the maximum pyramidal cell

and granule cell reduction observed in type 1 hippocam-

pal sclerosis (see [Blümcke et al., 2013]). More precisely,

the number of excitatory neurons was set to :

– 10000 · (1− 0.75scl) in the entorhinal cortex

– 10000 · (1− 0.6scl) in the dentate gyrus

– 1000 · (1− 0.8scl) in CA3

– 10000 · (1− 0.8scl) in CA1

with scl varying between 0 (no sclerosis) and 1 (high

sclerosis). With scl = 0, the number of excitatory neu-
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Fig. 1 A- Topology of the entorhinal cortex and the hippocampus used in the model, along with the two simulated electrode
contacts, adapted from [Aussel et al., 2018]. B- Membrane channels of the neuron models used in the network. C- Synaptic
connectivity of our model of the hippocampal formation. The number of neurons of each type in each region is shown inside
black boxes. Purple arrows represent AMPA synaptic interactions, and green arrows represent GABA synaptic interactions,
with next to them the corresponding connection probability and the maximum synaptic conductance. The black arrow represent
input stimulation given to the EC neural populations. In panels B and C, the parameters linked to the sleep-wake cycle appear
in blue and the parameters linked to epilepsy appear in red. D- Outputs of the model. Left : Raster plots of the excitatory
cells activity during 1 second of simulation. Right : Local field potential generated by the network during the same simulation.

rons in all regions is the same as in our healthy hip-

pocampus model. The number of inhibitory neurons on

the other hand was left unchanged for several main rea-

sons: first, they are not included in the typical defini-

tion of hippocampal sclerosis ([Blümcke et al., 2013]);

second, no inhibitory loss was reported in some studies

(see for example [Babb et al., 1989]) or, as proposed in

other studies (see [Fritschy et al., 1999]), the loss could

be compensated by an increased number of GABA-A

receptors in remaining cells (nevertheless, we have also

simulated the same proportion of neuronal loss on in-

hibitory cells as on excitatory cells in our model and it

did not significantly impact our results (see Figure S1

in appendix).

Mossy fiber sprouting (see [Noebels et al., 2012])

was represented by including recurrent excitatory con-

nections in the dentate gyrus as well as increasing the

number of connections from excitatory to inhibitory

neurons in this region, and to CA3 and CA1 neurons

(see [Bausch and McNamara, 2000] for a study on hip-

pocampal slice cultures), though reciprocal connections

from CA3 and CA1 to the DG have not been included.

A parameter spr varying between 0 (no sprouting) to 1

(high sprouting) was defined to modify the maximum

synaptic connection probabilities to:

– 0.1 · spr from excitatory to excitatory neurons, so

that each excitatory neuron makes in average 300

synapses with spr = 1, in accordance with the max-
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imum 500 new synapses reported in a pilocarpine

epilepsy model in [Buckmaster et al., 2002]

– 0.06·(1+spr) from excitatory to inhibitory neurons,

so that each excitatory neuron forms about 1% of

its new synapses with inhibitory interneurons.

It should be noted that the additional synapses in the

sprouted model obey the same equations as the healthy

synapses, and that they too have a higher probability

of being drawn between spatially close neurons than

between spatially distant neurons.

Regarding the increased excitability of pyramidal

cells, we chose to change the equilibrium poten-

tial for potassium EK . Though this parameter by

itself is agnostic of the malfunction causing the in-

creased excitability, it could represent for example

a channelopathy ([Lerche et al., 2012]). A healthy

hippocampus is characterized by EK = −100mV ,

and this value is increased to −90mV or −80mV to

represent epilepsy. As the role of this parameter is to

mimic increased excitability in pyramidal cells, this

change in EK was not implemented in interneurons.

Finally, different mechanisms can alter synaptic in-

hibition in medial temporal lobe epilepsy. The one we

focus on here is the accumulation of chloride ions in-

side pyramidal cells changing the reversal potential of

GABA synapses (see [Huberfeld et al., 2007] or [Auer

et al., 2020]).

We propose to model chloride ion concentration in

each excitatory neuron as a simple first order process:

d[Cl−]

dt
= − [Cl−]

τCl
(1)

with τCl the decay rate of [Cl−] (similarly to what has

been done in different papers such as [O'Leary et al.,

2013] on calcium concentration). Whenever the excita-

tory neuron emits an action potential, the concentra-

tion [Cl−] is then increased by a fixed amount (set here

to 0.2). A healthy hippocampus is characterized by a

fast τCl decay rate of 100ms; we increased this value up

to 0.5s or 1s to represent the abnormal accumulation

of intracellular chloride in epilepsy.

The expression of the resting potential EI of the

inhibitory synaptic current received by the neuron is

then modified to :

EI =

{
−80mV if [Cl−] ≤ 0.5

−50mV otherwise.
(2)

i.e., when the concentration of chloride ions inside a

neuron gets too high, the reversal potential of the in-

hibitory synapses received by the neurons is increased

to EI = −50 mV (as suggested in the experimental

work from [Pathak et al., 2007]), which is above the

resting potential of the neuron, and the synapses be-

come excitatory. This model has voluntarily been kept

relatively simple as there is to the best of our knowl-

edge no modeling literature on this topic as of today,

and [Pathak et al., 2007] suggests that GABA rever-

sal potential can reach a plateau of around −50 mV

after only a few spikes. The numerical values involved

in the model (the threshold of [Cl−] above which the

synapse gets excitatory, the decay rate of [Cl−], and

the increase of [Cl−] for each spike) have been cho-

sen empirically after simulation with different values so

that inhibitory synapses resting potentials are scarcely

modified in a simulation with parameters representing

a healthy hippocampus. The alteration of synaptic inhi-

bition is restricted to excitatory neurons in our model,

as one of the main mechanisms inducing this pathol-

ogy, an anomaly in KCC2 transporter expression, has

been mostly reported in pyramidal and granule cells of

the hippocampus (see [Auer et al., 2020], or [Chamma

et al., 2012] for a more general overview on KCC2).

To summarize, our study introduces 4 new patholog-

ical parameters in our hippocampal model, scl, spr, EK

and τCl, representing respectively hippocampal scle-

rosis, mossy fiber sprouting, pyramidal cell hyperex-

citability and impaired inhibition. These parameters

are to be studied in relation with the vigilance state,

which can be set to either slow-wave sleep or wakeful-

ness, according to the methodology described in our

previous works [Aussel et al., 2018] and [Aussel et al.,

2021], and recalled in Table 1.

Parameter Slow-wave sleep Wakefulness

Ge 1 3

ge 1 1/3

Gi 1 3

gCAN 0.5µS/cm2 25µS/cm2

Table 1 Choice of network parameters for the sleep and
wakefulness state

2.3 Output of the hippocampal model: LFP simulation

Our goal is to construct a full model, able to compare

with real electrophysiological signals recorded in indi-

viduals with epilepsy. But the model described in the

previous section is constructed using point neurons, and

point neurons cannot generate extracellular potentials,

as they do not respect current conservation laws. A min-

imal neuron model able to generate LFP has to be dipo-

lar ([Pettersen et al., 2012]). As the LFP is thought to
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be mainly due to synaptic currents, the neural dipoles

are supposed to form between the dendritic and somatic

compartments of the neurons.

For each excitatory neuron, its projection on the

stratum moleculare was thus computed as an estima-

tion of the position of its apical dendrites (Figure 1-A),

and its projection on the stratum oriens as an estima-

tion of the position of its basal dendrites. The synap-

tic compartments of the neural elementary dipole was

set to the basal or apical dendrites depending on the

synapse type, following existing literature (see for ex-

ample [Andersen et al., 2007]). This is slightly different

from our previous model [Aussel et al., 2018] where all

synapses locations were assigned to the apical dendrite

of target neurons. As interneurons contributions to the

LFP are very small [Mazzoni et al., 2015], their micro-

scopic geometry and thus the LFP they generate were

neglected (point neurons).

The analyzed output is the extracellular potential

generated by the network, at a macroscopic scale (an

example is shown on Figure 1-D, and an animation is

also provided as Supplementary Material).

The modelling of the LFP follows the approach pro-

posed in [Mazzoni et al., 2015]. More precisely, the po-

tential in every point in space was approximated by

a weighted sum of the synaptic currents (both excita-

tory and inhibitory) arriving at each pyramidal neuron

(the influence of the synaptic currents arriving onto in-

terneurons was neglected). Considering the neurons as

dipoles (with orientation and amplitude given by the

above described projections of the soma), the contri-

bution U of a neuron of length L to the extracellular

potential at any point in space, at a distance r and an

angle θ from the midpoint of the neuron, writes as:

U =
L cos θ

4πσr2
(IsynE

+ IsynI
) (3)

where σ = 0.3S/m is the conductivity of the extracel-

lular medium, which we considered homogeneous.

The LFP at one point is the sum of the contributions

from all the excitatory neurons in the entorhinal cortex

and the hippocampus (dentate gyrus, CA3, and CA1):

LFP=
∑
U . In order to model the signal recorded by

the macroscopic electrode and to compare it with real

patient recordings, we averaged the LFP on two sets of

144 points evenly distributed on a cylinder of diameter

0.8mm going through the network, each of them repre-

senting a 2mm-long contact, separated by 1.5mm,and

computed the difference between the two resulting sig-

nals, as in a bipolar sEEG montage (see figure 1-A).

This bipolar montage was used in the patients record-

ing so as to reduce the volume conduction (the influence

of the neural activity of surrounding brain regions) on

the signals.

Similarly to what was done in the intracerebral EEG

recordings available to us (section 2.4), the simulated

LFP was also bandpass filtered between 0.15Hz and

480Hz and downsampled to 1024Hz.

2.4 Inputs to the hippocampal model

The behavior of the model and its output are investi-

gated under two different types of inputs, either stereo-

typical or realistic.

Stereotypical inputs are simply direct current in-

jected into all excitatory and inhibitory neurons of the

entorhinal cortex. To study the response of the model

to input variations, we applied a square wave current

Istim starting at t0 = 250ms of which we varied the

maximum value A1 as well as the frequency f1 across

simulations:

Istim(t) =

{
A1 if {t > t0 and sin(2πf1(t− t0)) ≥ 0}
0 otherwise.

(4)

The amplitude of the input A1 was chosen follow-

ing our work in [Aussel et al., 2021] on the healthy hip-

pocampus to best represent the slow-wave sleep (A1 =

1.2nA) and wakefulness (A1 = 0.8nA) behavior respec-

tively.

Realistic inputs were simulated as synaptic in-

puts to the neurons of the entorhinal cortex, using ex-

citatory synapses with the same conductance gmax,e as

within the network. Three groups of 10000 presynaptic

neurons (assumed to belong to brain regions projecting

onto the EC) were defined, each of the groups being

connected to the neurons of a different slice of the en-

torhinal cortex with a uniform probability of 0.05. The

presynaptic neurons were modeled as Poisson processes

with variable firing rates (different for the three groups,

but common within each group). In our realistic sim-

ulations, the varying Poisson firing rate was extracted

from the envelope of real sEEG signals recorded in brain

regions afferent to the hippocampus (see [Aussel et al.,

2018] for details).

2.5 Clinical electrophysiological data

As mentioned at the beginning of this section, we aim

to confront our model with real clinical data recorded

using sEEG electrodes implanted in human epileptic

subjects. In order to achieve this, real sEEG recorded

signals were used both to create a realistic model input

(as described in section 2.4) as well as to compare them

with the LFP model output (section 2.3).
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Fig. 2 Coregistered CT-MRI image showing the implanta-
tion of SEEG electrodes in a patient’s hippocampi (frontal
view).

The LFP data we used was obtained from one in-

dividual presenting mesio-temporal refractory epilepsy

and implanted with deep intracerebral electrodes for

surgery planning at the Neurology Service of the

University Hospital (CHU) in Nancy, France. The

patient gave an informed consent for using data for

research purposes. The sEEG electrodes (Dixi Medical

®, France) had a diameter of 0.8mm, with 2mm-long

contacts and 1.5mm inter-contact distance, 8 to 15

contacts per electrode. The patient was implanted

according to phase 1 pre-surgical evaluation hypotheses

notably in the left prefrontal cortex, left temporal

lobe and in both hippocampi (see Figure 2 for an

MRI reconstructed image of the bilateral hippocampal

implantation). Left hippocampus was found as being

the seizure onset zone. The position of the electrodes

in the patient’s brain was automatically ascertained

using a procedure described in [Hofmanis et al., 2011].

The signals were recorded using Micromed®, Italy

acquisition system. The sampling frequency was 1024

Hz. The signals of each patient were labelled by neu-

rologists (OA) in order to identify the different stages

of the sleep-wake cycle (based on synchronous surface

EEG signal) as well as epileptic phenomena (interictal

or seizures). Data from both the slow-wave sleep and

wakefulness state was used.

2.6 Simulation tools

All the simulations were performed using the Brian2

libraries for Python ([Stimberg et al., 2014]), on

the Grid’5000 testbed, supported by a scientific in-

terest group hosted by Inria and including CNRS,

RENATER and several Universities as well as other

organizations (see https://www.grid5000.fr). The

source code for the model is openly available on the

ModelDB platform ([McDougal et al., 2016]), at :

http://modeldb.yale.edu/266796.

2.7 Analysis method

We constructed our analysis in several steps.

2.7.1 Stereotypical inputs

Under stereotypical inputs, we have started by defin-

ing the output characteristics of interest. In [Aussel

et al., 2021], we showed that our model is able to pro-

duce fast oscillatory patterns, with inter-pattern in-

terval mostly (but not only) determined by the fre-

quency of the stereotypical input. Since the human hip-

pocampus is also able to produce both fast oscillations

(gamma to fast ripple frequency range) and slow os-

cillations (delta to theta frequency range), we extract

from the LFP output of the model two frequency char-

acteristics:

– the mean frequency of the fast oscillatory patterns

ffast, i.e. the mean of the peak of the LFP spectrum

in the 30-500Hz range (from gamma to ripple and

higher) for each of the fast patterns

– the standard deviation of the frequency of the fast

oscillatory patterns std(ffast), i.e. the standard de-

viation of the peak of the LFP spectrum in the 30-

500Hz range (from gamma to ripple and higher) for

each of the fast patterns

– the peak frequency of LFP spectrum in the 1-30Hz

range fslow (from delta to gamma frequency, but

also including the theta frequency band), which cor-

responds to the inter-pattern frequency

After a first evaluation of the behavior of the model,

it appeared that the fastest oscillations were obtained

for a square input of frequency f1 = 2.5Hz. Therefore,

this is the input frequency we use in section 3.1 to study

the ffast and std(ffast) characteristics of the model.

The fslow characteristic on the other hand was studied

by giving a constant input to the model and observing

the natural frequency of the resulting slow oscillations.

To assess the significance of the ffast and fslow
peaks in their respective frequency bands, we computed

their Z-scores (i.e. the number of standard deviation

above the mean of the spectrum in this frequency band

they were reaching): for the fast oscillations all the

peaks reported in the Results section reached a Z-score

of at least 7.5, and for the slow oscillations all the peaks

reported reached a Z-score of at least 4.5 (note that

https://www.grid5000.fr
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lower Z-scores in the slow frequency band than in the

fast frequency band due to the 1/f shape of brain ac-

tivity). Therefore, all the selected peaks both in the fast

and slow frequency bands were highly significant.

We have explored the space of the epileptic parame-

ters (spr, scl, EK and τCl). The dimension being rather

low, we could sample it regularly, performing a total

of 648 five-second long simulations, testing six different

values of the parameters scl and spr and three different

values of the parameters EK and τCl, under the sleep

and wakefulness conditions (we tested more different

values of scl and spr compared to the other parameters

as these appeared to have a more significant impact on

the resulting oscillations) 1. The results of these simu-

lations are presented in section 3.1. They complement

our previous work on the healthy hippocampus model

at the basis of the present work [Aussel et al., 2021, Aus-

sel et al., 2018].

2.7.2 Realistic setup

Once the healthy/epileptic models were systemat-

ically characterized using the stereotypical inputs,

we immersed our model in a realistic context, by

using realistic inputs and comparing it with the

measured hippocampal sEEG signals. We performed

648 two-minute long simulations.

For generating the inputs, we extracted the envelope

from the signals recorded by the electrodes located in

the posterior inferior gyrus in prefrontal cortex, the in-

ferior temporal gyrus in lateral temporal lobe and the

temporal pole, and generated the Poisson spike trains

as described above. The model output was compared

with one sEEG seizure recorded in the left hippocam-

pus, from the two most internal contacts of the elec-

trode depicted in the right (radiological consensus) in

figure 1-A.

For assessing the quality of the results under these

simulations, we used characteristics more specific than

simply the peaks in the high and low frequency bands

ffast and fslow. More precisely, we focused on patho-

logical oscillatory patterns associated with seizures and

interictal epileptic discharges (IEDs).

In clinical context, seizures and IEDs are commonly

detected by visual inspection of the EEG or sEEG sig-

nals by an expert. Their automated detection is still an

active research field and often relies on machine learn-

ing techniques to cluster the data into a physiological

and an epileptic set (see for example [Paul, 2018] for

1 For an alternative way of assessing the role of different pa-
rameters in a higher dimensional parameter space, see [Aus-
sel et al., 2021], where we analyzed the healthy hippocampus
model.

the detection of seizures or [Gaspard et al., 2014] for

IEDs).

In this work, we chose to keep a classic clinical ap-

proach for the detection of pathological oscillations in

our simulated signals in order to be able to verify them

against real sEEG recorded seizure. Thus, seizure-like

theta episodes were characterized by an increase in the

power in the theta to alpha band (4-10Hz) as was shown

being characteristic for hippocampus seizures by [Naf-

tulin et al., 2018], [Perucca et al., 2014] in intracerebral

recordings.

Interictal spikes, sharp-wave ripples, and fast ripples

were detected by first filtering our simulated LFP in the

corresponding frequency bands (10-80Hz, 120-200 Hz

and 200-500Hz respectively), and computing the root

mean square envelope (RMS) of the resulting signals.

Events were then defined as portions of LFP with RMS

higher than its mean value and with a peak at least

four times its standard deviation in at least one of the

defined frequency band. IEDs were defined as events

with a peak in the RMS of the 10-80Hz filtered signal

but no peak in the ripple or fast ripple frequency ranges,

ripples were defined as events with a peak in the RMS

of the 120- 200Hz filtered signal but no peak in the fast

ripple frequency range, and fast ripples were defined as

events with a peak in the RMS of the 200-500Hz filtered

signal.

The analysis of the performances of the model in

this realistic setup is presented in section 3.2.

3 Results

3.1 Exploration of the epilepsy parameter space under

stereotypical inputs

In this section, we apply a stereotypical square-wave

input to our network to study the frequency of the os-

cillations it can produce under different values of the

epilepsy parameters (recall that 648 simulations were

performed in total). It should be noted that though not

all possible combinations of parameters are biologically

plausible in a human hippocampus (for example, high

mossy fiber sprouting with no hippocampal sclerosis),

we are still sampling the complete parameter space in

order to get a deeper understanding of the role of each

parameter and their interactions. All simulations are

done for both sleep and wakefulness conditions, i.e. af-

ter setting the parameters of the (healthy) hippocam-

pus model at the values found in our previous works

and recalled in Table 1. Similarly to the structural pa-

rameters that were chosen for one of the two conditions

(sleep / wake), the input varied in amplitude, from high
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amplitude for sleep (A1 = 1.2nA) to lower amplitude

(A1 = 0.8nA) for wakefulness.

3.1.1 The pathological model produces altered

oscillations under stereotypical inputs

Under stereotypical inputs, i.e. when stimulating en-

torhinal cortex neurons with a positive square current,

the LFP generated by the network shows coupled fast

and slow oscillations whose frequency varies with the

pathological parameters.

The evolution of the fast oscillations peak frequency

ffast as a function of the four parameters spr, scl, EK

and τCl is shown on Figure 3-A for slow-wave sleep

and wakefulness respectively. Each subplot of this figure

shows in color the values of ffast depending on spr and

scl, for fixed values of EK and τCl, which correspond to

the line and column at which the subplot appears. The

point in the bottom-left corner of the bottom-left plot

therefore corresponds to a healthy hippocampus model.

This layout will be used again throughout this article

for the representation of other model outputs.

In both the slow-wave sleep and wakefulness modes,

high mossy fiber sprouting level comes with higher

frequency fast oscillations compared to the healthy

hippocampus. Reciprocally, high hippocampal sclerosis

tends to reduce the frequency of the fast oscillations

produced by the network.

This study of ffast suggests that the fast ripple

oscillations observed in epileptic hippocampus exper-

imentally in wakefulness and slow-wave sleep could be

obtained in our model with high mossy fiber sprouting

level and rather low sclerosis level. An hyperexcitability

of the pyramidal neurons (controlled by the parameter

EK) would facilitate such pathological oscillations, es-

pecially in higher sclerosis settings. As for slower epilep-

tiform patterns such as interictal discharges (of fre-

quency typically less than 100Hz), these could be ob-

tained more easily with higher sclerosis levels and lower

mossy fiber sprouting level. However it should be noted

that the ffast parameter does only reflect the highest

peak in the power spectrum in the 30-500Hz frequency

range and does not show if other significant peaks are

present. This is why the presence of interictal activity

will be assessed more precisely in the next section with

realistic inputs.

The standard deviation of the ffast frequency of the

network activity emerging from ten successive stimu-

lations is shown on Figure 3-B. From this, it can be

noted that when presented with an input consisting of

several stimulations with the same duration and am-

plitude, the network can respond with fast oscillatory

patterns at different frequencies. This is especially true

for intermediate to high values of the scl, spr and EK

parameters, that is when the network is at the limit be-

tween a healthy and a fast pathological behavior. The

standard deviation of ffast is also higher in the wakeful-

ness compared to the slow-wave sleep state. Because no

parameter was changed between successive simulations,

it is likely that the different oscillatory frequencies re-

sult from a different initial state of the network when

the stimulation starts (for example, the initial mem-

brane potential of neurons, which are set randomly),

and from the internal noise in the neuron models.

Epileptic features of the network influence the slow

frequency of the oscillations fslow as well (Figure 3-

C). More precisely, medium sclerosis values coupled to

healthy potassium dynamics enable the network to pro-

duce oscillations in the theta frequency band under

constant input during both wakefulness and slow-wave

sleep. Moreover, when potassium dynamics are altered

the network is even able to produce activity in the alpha

or low beta band with high sclerosis values.

It is interesting to notice that our experiments could

in principle be used for predicting the output of the

model for other parametrizations. Indeed, the relation-

ship between the fast oscillations frequency ffast and

our four parameters can be estimated with a second or-

der polynomial function (with a least-square method).

This estimation yields a coefficient of determination

R2 2 of 0.91 in the wakefulness mode and 0.89 in the

slow-wave sleep one. In both sleep and wakefulness, one

of the most important parameters is the mossy fiber

sprouting level spr, but the sclerosis level scl and the

potassium channel equilibrium potential EK also play

an important role, either on their own or squared or

jointly with other parameters (see Figure 4). The chlo-

ride dynamics altered by the τCl on the other hand only

play a minimal role.

3.1.2 Model saturates in extreme high sprouting - low

sclerosis conditions

Certain parameter values cause the network to saturate

after a few seconds, i.e. to produce continuous parox-

ystic neural spiking in all the regions of the model,

which does not stop even after all external input to the

network is removed. This abnormal activity first arises

from CA3, which can be expected knowing that this

region is the one with highest recurrent excitation. The

LFP in this saturated state shows a peak in the fast

ripple frequency band (above 200Hz) in its spectrum.

2 R2 = 1−
∑N

i=1(yi−ŷi)
2∑N

i=1
(yi−ȳ)2

with y the observed values to esti-

mate, ȳ the mean of the observed values, ŷ the modeled values
and N the number of data points
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Fig. 3 Evolution of the frequency of the simulated LFP for different values of spr, scl, EK and τCl. A- Fast oscillation
frequency ffast under square input of amplitude A1 and frequency f1. Fast oscillations frequency reaches abnormally high

values during wakefulness for spr > scl. B- Standard deviation of the fast oscillation frequency ffast under square input
of amplitude A1 and frequency f1. Fast oscillations frequency varies when the network is presented with successive

stimulations, all the more so with high EK , spr and scl. C- Slow oscillation frequency fslow under constant input of
amplitude A1. Under constant input, the network responds with slow oscillations in the delta to beta frequency band,

higher fslow values are obtained with high EK and scl. In each plot, the left panel shows results under slow-wave sleep
settings, while the right panel shows wakefulness settings. The input stimulation has frequency f1 = 2.5Hz and amplitude
A1 = 1.2nA for slow-wave sleep and f1 = 2.5Hz and A1 = 0.8nA for wakefulness.
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Fig. 4 Coefficients measuring each parameter’s individual, squared or joint influence in the polynomial modeling of ffast in
the wakefulness (upper panel) and slow-wave sleep mode (lower panel). The significant coefficients (p<0.01) are shown in red.

Overall, results in the next sections should be in-

terpreted with caution for areas of the parameter space

leading to such paroxystic activity, although it should

be noted that these areas (with excessive sprouting but

little to no sclerosis) are unlikely to be seen in a human

hippocampus in the first place.

Under wakefulness settings, such saturation

state only appears with high mossy fiber sprout-

ing level spr and low hippocampal sclerosis level

scl ((spr = 0.8,scl = 0),(spr = 1,scl = 0) or

(spr = 1,scl = 0.2)), which is consistent with an overall

epileptogenic effect of sprouting ([Santhakumar et al.,

2005]) compared to a protective effect of sclerosis

([Lopim et al., 2016]).

During slow-wave sleep, this phenomenon arises

from a smaller subset of the parameters space,

that is with high pyramidal cell hyperexcitability

(EK = −80mV or higher), very high sprouting

(spr = 0.8 or higher), and no hippocampal sclerosis

(scl = 0). In conditions where instability appears only

in wakefulness, it seems to arise from the modified

synaptic connectivity accompanying wakefulness (and

the increased excitatory synaptic strength in the den-

tate gyrus in particular), and not from the increased

CAN current (see Figure S2).

3.2 Exploration of the pathological parameter space

under realistic inputs

We next applied a realistic input to our network as de-

fined in Section 2.4. More precisely, we chose portions

of signal from a patient having a seizure episode during

both slow-wave sleep and wakefulness to study the

appearance of seizure-like theta episodes in our model,

and portions of wakefulness and slow-wave sleep signal

from another patient without seizures for the study of

interictal events. It should be noted that, even though

the LFP signals used to compute the input were

recorded at the same time seizures or interictal events

occurred in the hippocampus, they did not include any

seizure nor interictal event themselves (as they were

recorded in the prefrontal cortex, the lateral temporal

lobe and the temporal pole, where no epileptic activity

was present, according to medical expertise).

3.2.1 Seizure-like theta activity appears under balanced

sclerosis and mossy fiber sprouting

Under wakefulness settings, it is possible for the model

to reproduce high amplitude theta oscillations with sim-

ilar temporal and frequency profile as in clinical seizure

recordings, as shown on Figure 5-A-(a), except for the

fact that simulated theta episodes do not stop (which

is to be expected, since our model does not include

any internal seizure termination mechanisms). Increas-

ing the parameters spr or EK , or decreasing the param-

eter scl, tends to increase the amplitude and frequency

of the discharges in the seizure-like theta episode, to a

point where the model produces permanent seizure-like

theta discharges (i.e. that start at the very beginning of

a simulation, independently of the input). Conversely,

choosing parameters closer to a healthy state (Figure 5-

A-(b)) reduces the amplitude of the discharges and the

power in the theta band, to a point where the seizure-

like theta disappears (the increase in theta band power

at the start of the seizure being only due to an increase
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of the amplitude of the inputs given to the model). It

should also be noted that when stimulated with an in-

put recorded outside a seizure episode, the pathological

network produces isolated interictal events (see next

section) but no seizure-like theta episodes, as shown

on Figure 5-A-(c). In other words, both pathological

epilepsy-related parameters and seizure-related inputs

are needed for the model to reproduce this patient’s

seizure, which is why Figures 5-A-(b) and 5-A-(c) show

little resemblance to the patient’s seizure compared to

Figure 5-A-(a).

The firing rates of the different neuron groups

during the seizure-like theta episode with a patho-

logical model are shown in Supplementary Figure S3

(and an animation is also provided in Supplementary

Material), indicating that the theta patterns arise from

synchronous neural spiking, starting from the EC and

CA3 and then propagating to the DG and CA1. The

seizure-like theta activity in the simulated LFP occurs

when the input stimulation shows an increased power

in the theta to beta frequency bands, in accordance

with our previous results on stereotypical inputs.

No significant change occurs in the spectrum of the

simulated LFP before the beginning of the seizure-like

theta episode.

The total power in the theta band in the whole

seizure-like theta episode (Figure 5-B) is increased com-

pared to a healthy network when the sclerosis param-

eter scl is smaller than the sprouting parameter spr,

and is strongly reduced at higher sclerosis levels. The

amount of the increase in theta power in this region

of the parameter space is comparable to the clinical

recordings available to us (i.e., the seizure episode shows

an 11-fold increase in theta power compared to seizure-

free recordings). Under wakefulness settings, the neu-

ronal hyperexcitability controlled by EK is slightly in-

creasing the range of the spr and scl parameters en-

abling such high power in the theta band, thus mak-

ing the network more prone to generate epileptiform

theta activity. On the other hand, the slow-wave sleep

network shows only a moderated increase of its theta

band power in a highly sprouted compared to a healthy

case, which shows that this vigilance state has a rather

protective effect against seizure-like theta episodes.

3.2.2 Both single-cell and network level pathological

parameters influence the production of interictal spikes

and fast ripple activity

It is possible for the network to produce high ampli-

tude, brief activity peaks similar to IEDs as shown on

Figure 6-A. These interictal spikes tend to appear when

a healthy slow-wave sleep network would produce large

amplitude, slow oscillations (see Figure 6-B). They are

more easily produced by a slow-wave sleep compared

to a wakefulness network, especially when the sclerosis

level scl is higher than the sprouting level spr (Figure

6-C). In wakefulness settings, the model predicts that

impaired potassium dynamics (i.e. high EK) enables

the production of an increased number of IEDs in the

high spouting, medium sclerosis region of the parameter

space.

Though the increased number of IEDs in the scl >

spr region of the parameter space was to be expected in

slow-wave sleep given our previous study of ffast (Sec-

tion 3.1), the lower number of IED in wakefulness is

more surprising, but could be a consequence of the fact

that even with a peak ffast frequency in the gamma

band, other faster oscillations also appear during high

amplitude events (in other words the network produces

fast ripples instead of IEDs, as will be shown there-

after).

The network is also able to reproduce fast ripples,

i.e. transient events with peak frequency higher than

physiological sharp-wave ripples (typically 200-500Hz),

such as the example shown on Figure 7-A. These events

can appear both in the slow-wave sleep and wakeful-

ness modes, though they are more numerous in simula-

tions in wakefulness settings (Figure 7-C). Wakefulness

fast ripples can emerge from almost any combination

of parameters, but are more numerous with high EK

or τCl and spr < scl. On the other hand, the number

of fast ripples under slow-wave sleep settings has a dif-

ferent profile, being more consistently produced in the

spr > scl region of the parameter space, especially with

high τCl and low EK . In this figure, it should be noted

that in the region where EK = −80mV , spr is high and

scl = 0, the network is in a saturated state (see section

3.1.2) and therefore fast ripple events cannot be reli-

ably detected with our method, as oscillations within

the fast ripple band are continuously produced.

Under slow-wave sleep settings, the three parame-

ters spr, EK and τCl tend to increase the power in the

fast ripple band (see Figure 7-B), while increased sclero-

sis scl reduce it. It should be noted that the increased

power in the fast ripple band does not necessarily go

with a decrease in the power in the ripple band, which

is why the study of ffast in Section 3.1 showed different

results especially in the slow-wave sleep settings where

sharp-wave ripples are prominent.

4 Discussion

In this work, we have modified our previously devel-

oped healthy hippocampal model ([Aussel et al., 2018])

into an epileptic model, so as to take into account four
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Fig. 5 Reproduction of seizure-like theta activity under realistic inputs. A-Comparison of the measured hippocampal LFP
and its theta band power around a seizure in a patient (blue) and the simulated LFP of the model (orange). Seizure-like
theta oscillations are obtained with the model using epilepsy-related abnormalities and inputs drawn from a patient

experiencing a seizure. Example A-(a): With spr=0.8, scl=0.6, EK = −90mV and τCl=0.5 second, and an input recorded
during a seizure. Example A-(b): With a healthy model (spr=0, scl=0, EK = −100mV and τCl=0.1 second), and an input
recorded during a seizure. Example A-(c): With spr=0.8, scl=0.6, EK = −90mV and τCl=0.5 second, and an input recorded
outside a seizure. All LFPs were normalized so that their maximum value before the start of the seizure is equal to 1. B-
Relative theta power of the simulated LFP compared to the healthy model, depending on the values of spr, scl, EK and τCl,
under sleep (left) or wakefulness (right) settings. The values shown are in log-scale, with the zero corresponding to the theta
band power in healthy conditions. The relative theta power of the individual with epilepsy in an epoch containing a seizure
compared to a seizure-free epoch is indicated on the color bar. The parameter values corresponding to the pathological and
healthy examples shown on panel A are indicated with the letters P and H respectively. High theta power close to patient’s

seizure can be obtained with the model under wakefulness settings and spr > scl.

hippocampal abnormalities usually associated with

epilepsy, that is hippocampal sclerosis (type I), mossy

fiber sprouting, impaired potassium dynamics (leading

to neuronal hyperexcitability), and impaired chloride

dynamics (leading to impaired inhibition).

These pathological features include both network

and single-cell dynamics for excitatory neurons, but it

should be noted that our model does not involve in-

terneuron pathologies, which may play a peculiar role

in epilepsy and seizure onset ([Chang et al., 2018], [Rich

et al., 2020]), as inhibition typically increases synchrony

in neuronal networks ([Diba et al., 2014]). Also, our

model does not tackle seizure initiation or termination

mechanisms, such as synaptic depletion (see the review

from [Lado and Moshé, 2008]). Such features will be left

for future works.

A study of the network’s behavior under stereotyp-

ical inputs reveals that very fast oscillations, as well as

saturation, can now be obtained, which was not pos-

sible with the ”healthy” model described in our previ-

ous works ([Aussel et al., 2021]). The wakefulness state

enhances the capacity of the network to produce such

saturated state, mostly due to the combined effects of

mossy fiber sprouting and cholinergic modulation of

synaptic currents. Impaired potassium dynamics also

favor such abnormal activities, while hippocampal scle-

rosis has a rather protective effect.

When stimulated with a realistic input, the modeled

network can also reproduce theta oscillations character-

istic of epileptic seizures as well as interictal spikes and

fast ripples. The timing of epileptic seizure-like theta

rhythms is in particular determined by the power in

the theta to beta frequency ranges in the stimulation

input given to the network.

Modeled seizure-like theta patterns closest to the

clinically recorded seizures can be obtained when

the degrees of sclerosis and mossy fiber sprouting are

properly balanced. High mossy fiber sprouting with low

hippocampal sclerosis leads to perpetual seizure-like

theta activity, while high sclerosis with low sprouting

suppresses the theta patterns. Interestingly, impaired

potassium and chloride dynamics have little influence

on the generation of theta seizures-like oscillations (at

least not directly, though the increased excitability and

fast spiking they induce can increase neuronal death

through excitotoxicity, see [Wang and Qin, 2010] or

[Deshpande et al., 2007], and can be involved in epilep-

togenesis). In accordance with clinical observations

(see [Crespel et al., 1998] or [Sedigh-Sarvestani et al.,

2014]), and as our study under stereotypical inputs
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Fig. 6 Interictal epileptiform discharges generated by the model. A- Example of an interictal discharge simulated with a
network in a slow-wave sleep state with spr = 0.6, scl = 0.6, EK = −90mV and τCl = 500ms. B- Comparison of the LFP
generated with a network in a slow-wave sleep state in five different conditions, under the same input stimulation. Healthy
state : spr = 0, scl = 0, EK = −100mV and τCl = 100ms. EK + state : spr = 0, scl = 0, EK = −80mV and τCl = 100ms. τCl

+ state : spr = 0, scl = 0, EK = −100mV and τCl = 1s. scl + state : spr = 0, scl = 0.2, EK = −100mV and τCl = 100ms.
spr + state : spr = 0.2, scl = 0, EK = −100mV and τCl = 100ms. Increased τCl or scl give rise to an interictal discharge.

C- Number of interictal discharges obtained with a network under slow-wave sleep (left) or wakefulness (right) settings in a
one-minute-long simulation for different values of spr, scl, EK and τCl. Highest number of interictal spikes can be obtained

with the model under slow-wave sleep settings and spr < scl.

suggested, theta oscillation characteristic of seizures

are more prominent in the model of wakefulness

compared to slow-wave sleep.

In the pathological model, interictal spikes are more

commonly produced under slow-wave sleep settings

than under wakefulness, especially in the presence

of hippocampal sclerosis. However, they can also be

produced during both sleep and wakefulness under

impaired potassium dynamics. Fast ripples on the

other hand are more commonly produced by the model

during wakefulness, but are also slightly favored during

slow-wave sleep if chloride dynamics are impaired. One

possible consequence of these results is that cognitive

impairments seen in individuals with epilepsy, and

promoted by interictal spikes and fast ripples ([Kleen

et al., 2013], [Krauss et al., 1997]), might be reduced

by targeting such chloride and potassium mechanisms.

This hypothesis could be further supported by experi-

ments conducted in mice where Kv1.1 ion channels are

affected ([Thouta et al., 2021] in the amygdala).

Overall, we observed that the spr = scl hyperplane

of the parameter space plays a very important role

in the production of pathological oscillations. With

high spr and scl, it is possible to reproduce realistic

seizure-like theta oscillations as well as numerous

fast ripple oscillations during wakefulness. During

slow-wave sleep scl > spr increases the number of

interictal discharges while spr > scl favors fast ripple

oscillations. Impaired potassium and chloride dynamics

mostly influence the generation of interictal discharges

and fast ripples, but not the generation of seizure-like

theta activity (in the parameter range we studied).

Seizure-like theta episodes are mostly the result of the

abnormal structural connectivity induced by mossy

fiber sprouting and specific functional connectivity

of wakefulness. This is important as the role of

mossy fiber sprouting in epileptogenesis is debated

([Elmér et al., 1997]). Our results are in accordance

with ([Isokawa et al., 1993]) and plead for a major

role of mossy fiber spouting in seizure genesis. This

supports further research on mossy fiber sprouting

as potential therapeutic target for mesial temporal

lobe epilepsy ([Cavarsan et al., 2018]). More, as mossy

fiber normal synaptogenesis was shown to be related

to long term spatial memory ([Ramı́rez-Amaya et al.,

2001]), higher rates of aberrant sprouting (as found in

our study) may support memory impairments found

in individuals with medial temporal epilepsy. Finally,
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Fig. 7 Fast ripples generated by the network. A- Example of a fast ripple simulated with a network in a slow-wave sleep
state with spr = 0, scl = 0, EK = −90mV and τCl = 100ms, showing raw LFP trace (top) and power spectrum (bottom).
B-Comparison of the activity generated with a network in a slow-wave sleep state in five different conditions, under the same
input stimulation generating a sharp-wave ripple like event, showing raw LFP traces (top) and power in the fast ripples
frequency band (bottom). Healthy state : spr = 0, scl = 0, EK = −100mV and τCl = 100ms. EK + state : spr = 0, scl = 0,
EK = −80mV and τCl = 100ms. τCl + state : spr = 0, scl = 0, EK = −100mV and τCl = 1s. scl + state : spr = 0, scl = 0.2,
EK = −100mV and τCl = 100ms. spr + state : spr = 0.2, scl = 0, EK = −100mV and τCl = 100ms. Parameters spr, EK

and τCl increase the power in the fast ripple band of healthy sharp-wave ripple complexes while scl decreases it. C-
Number of fast ripple oscillations obtained with a network under slow-wave sleep (left) or wakefulness (right) settings in a
one-minute-long simulation for different values of spr, scl, EK and τCl. Highest number of fast ripples can be obtained

with the model under wakefulness settings with high Ek and τCl and spr < scl.

our study of interictal spikes and fast ripples shows

the importance of inhibition in spiking synchrony en-

hancement (as previous modeling studies [Giovannini

et al., 2017]). Therefore, large inhibition may lead to

high synchrony which in turn could yield increased

mossy fiber sprouting, and so on. This further suggests

that pharmacological treatments aiming at reinforcing

gabaergic inhibition that are largely used in clinical

approaches may not be the most suitable strategies to

avoid epilepsies which are, by definition, the behavioral

expression of abnormal synchronized neuronal activity.
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How do seizures stop? Epilepsia, 49(10):1651–1664.

Lerche et al., 2012. Lerche, H., Shah, M., Beck, H., Noebels,
J., Johnston, D., and Vincent, A. (2012). Ion channels in
genetic and acquired forms of epilepsy. The Journal of Phys-
iology, 591(4):753–764.

Liou et al., 2020. Liou, J., Smith, E. H., Bateman, L. M.,
Bruce, S. L., McKhann, G. M., Goodman, R. R., Emerson,
R. G., Schevon, C. A., and Abbott, L. (2020). A model for
focal seizure onset, propagation, evolution, and progression.
eLife, 9.

Lopim et al., 2016. Lopim, G. M., Campos, D. V., da Silva,
S. G., de Almeida, A. A., Lent, R., Cavalheiro, E. A., and
Arida, R. M. (2016). Relationship between seizure fre-
quency and number of neuronal and non-neuronal cells in
the hippocampus throughout the life of rats with epilepsy.
Brain Research, 1634:179–186.

Mazzoni et al., 2015. Mazzoni, A., Lindén, H., Cuntz, H.,
Lansner, A., Panzeri, S., and Einevoll, G. T. (2015). Com-
puting the local field potential (lfp) from integrate-and-fire
network models. PLOS Computational Biology, 11(12):1–38.

McDougal et al., 2016. McDougal, R. A., Morse, T. M.,
Carnevale, T., Marenco, L., Wang, R., Migliore, M., Miller,
P. L., Shepherd, G. M., and Hines, M. L. (2016). Twenty
years of ModelDB and beyond: building essential modeling
tools for the future of neuroscience. Journal of Computa-
tional Neuroscience, 42(1):1–10.

Morgan and Soltesz, 2008. Morgan, R. J. and Soltesz, I.
(2008). Nonrandom connectivity of the epileptic den-
tate gyrus predicts a major role for neuronal hubs in
seizures. Proceedings of the National Academy of Sciences,
105(16):6179–6184.

Naftulin et al., 2018. Naftulin, J. S., Ahmed, O. J., Piantoni,
G., Eichenlaub, J.-B., Martinet, L.-E., Kramer, M. A., and
Cash, S. S. (2018). Ictal and preictal power changes outside
of the seizure focus correlate with seizure generalization.
Epilepsia, 59(7):1398–1409.

Netoff, 2004. Netoff, T. I. (2004). Epilepsy in small-world
networks. Journal of Neuroscience, 24(37):8075–8083.

Noebels et al., 2012. Noebels, J. L., Avoli, M., Rogawski,
M. A., Olsen, R. W., Delgado-Escueta, A. V., and Buck-
master, P. S. (2012). Jasper’s Basic Mechanisms of Epilep-

sies. Oxford University Press.
O'Leary et al., 2013. O'Leary, T., Williams, A. H., Caplan,

J. S., and Marder, E. (2013). Correlations in ion channel ex-
pression emerge from homeostatic tuning rules. Proceedings
of the National Academy of Sciences, 110(28):E2645–E2654.

Pathak et al., 2007. Pathak, H. R., Weissinger, F.,
Terunuma, M., Carlson, G. C., Hsu, F.-C., Moss, S. J.,
and Coulter, D. A. (2007). Disrupted dentate granule
cell chloride regulation enhances synaptic excitability
during development of temporal lobe epilepsy. Journal of

Neuroscience, 27(51):14012–14022.
Patton and McNaughton, 1995. Patton, P. E. and Mc-

Naughton, B. (1995). Connection matrix of the hippocam-
pal formation: I. The dentate gyrus. Hippocampus, 5(4):245–
286.

Paul, 2018. Paul, Y. (2018). Various epileptic seizure detec-
tion techniques using biomedical signals: a review. Brain
Informatics, 5(2).

Perucca et al., 2014. Perucca, P., Dubeau, F., and Gotman,
J. (2014). Intracranial electroencephalographic seizure-
onset patterns: effect of underlying pathology. Brain,
137(1):183–196. Publisher: Oxford Academic.

Pettersen et al., 2012. Pettersen, K. H., Lindén, H., Dale,
A. M., and Einevoll, G. T. (2012). Extracellular spikes and
CSD. Handbook of neural activity measurement, 1:92–135.

Ramı́rez-Amaya et al., 2001. Ramı́rez-Amaya, V., Balderas,
I., Sandoval, J., Escobar, M. L., and Bermúdez-Rattoni, F.
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Fig. S1 Evaluation of the model with sclerosis (scl parameter) reducing the number of interneurons in the same proportion
as excitatory neurons. On each panel (A to F), an output of the model is evaluated depending on the values of spr, scl, EK

and τCl, under sleep (left) or wakefulness (right) settings. A- Fast oscillation frequency ffast under stereotypical inputs. B-
Slow oscillation frequency fslow under stereotypical inputs. C- Standard deviation of the fast oscillation frequency ffast under
stereotypical inputs. D- Relative theta power of the simulated LFP compared to the healthy model (log scale) under realistic
inputs. E- Number of interictal discharges under realistic inputs. F- Number of fast ripples under realistic inputs

Fig. S2 Network saturation appears with high sprouting and low sclerosis levels. Simulated LFP under a square current of
amplitude 1nA, with spr = 1, scl = 0.2, EK = −100mV and τCl = 0.01s, with low or high CAN channel conductance and
wakefulness or slow-wave sleep connectivity. The network saturates only with wakefulness connectivity.
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Fig. S3 A - Instantaneous firing rates of the neurons in the model during a seizure-like theta episode. Top row - LFP of a
seizure-like theta episode simulated by the model with spr=0.6, scl=0.6, EK = −80mV and τCl=1 second under wakefulness
settings. Bottom four rows - Instantaneous firing rates of the excitatory (orange) and inhibitory (blue) neurons in the EC,
DG, CA3 and CA1 regions of the model, in Hz. B - Instantaneous firing rates of the excitatory neurons in the model during
one peak of a seizure-like theta episode, indicated with a black arrow on panel A.
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