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Abstract

Feature selection is a fundamental process to avoid over�tting and to reduce the size
of databases without signi�cant loss of information that applies to hierarchical clustering.
Dendrograms are graphical representations of hierarchical clustering algorithms that for
single linkage clustering can be interpreted as minimum spanning trees in the complete
network de�ned by the database. In this work, we introduce the problem that determines
jointly a set of features and a dendrogram, according to the single linkage method. We
propose di�erent formulations that include the minimum spanning tree problem constraints
as well as the feature selection constraints. Di�erent bounds on the objective function are
studied. For one of the models, several families of valid inequalities are proposed and the
problem of separating them is studied. For another formulation, a decomposition algorithm
is designed. In an extensive computational study, the e�ectiveness of the di�erent models is
discussed, the model with valid inequalities is compared with the decomposition algorithm.
The computational results also illustrate that the integration of feature selection to the
optimization model allows to keep a satisfactory percentage of information.

Keywords: Mixed integer linear optimization, Feature selection, Hierarchical clustering,
Single linkage, Minimum spanning tree.

1 Introduction

Advances in technology have led to the existence of a huge number of databases containing an
extensive amount of information. These large databases collect information on a multitude of
features for a multitude of objects in di�erent �elds such as medicine, chemistry, astronomy,

∗Corresponding Author, TO DETERMINE @ to determine.
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or social sciences. A way to extract the information is to group the objects into clusters in
order to analyze only some representatives of each cluster in detail. However, often in this
multidimensional analysis, not all features are equally informative, some features are redundant
and others simply do not provide information for classi�cation. Many times more characteristics
are used than necessary, even all of them, since a priori it is not known which ones are relevant.
Hence, identifying the e�ective and relevant features may be necessary or useful. Feature
selection is a common issue in optimization nowadays to approach, a part from over�tting, the
tractability of big and stream data. When it comes to supervised clustering, feature selection
is easier because multiple available tools that measure the relationship between clusters and
features can be used. However, when the goal is unsupervised clustering, the choice is more
complex. In this paper, feature selection in the area of unsupervised clustering known as
hierarchical clustering is analyzed. Hierarchical clustering is used when the number of groups
is unknown and when certain relationships between objects are sought. The choice of features
in hierarchical clustering has to preserve the information not only for a given number of groups
but for the entire tree. In the hierarchical clustering literature, there is an evident interest
in feature selection. In Witten and Tibshirani [2010], the authors propose a framework for
clustering which serves for hierarchical clustering, in which the features are selected making
use of a lasso-type penalty function. In Questier et al. [2002], a feature selection approach for
hierarchical clustering based on genetic algorithms is presented: a �tness function that tries to
minimize the di�erence between the dissimilarity matrix of the original feature set and the one
of the reduced feature sets is used. In Chavent et al. [2021] the authors combine hierarchical
clustering of variables and feature selection using random forests.

The result of a hierarchical clustering is a tree that represents the connections of objects
at di�erent levels. The graphical representation of this tree is called a dendrogram. In a
dendrogram, individuals are connected depending on their similarity; the more similar two
individuals are, the sooner they are connected in the dendrogram (or the closer is their
connection). Connections can be made according to di�erent criteria or methods: connecting
an individual or a group of individuals with nearest neighbor(s) (single linkage clustering), or
with the furthest neighbor(s) (complete linkage clustering), or with the nearest(s) in average
(simple average clustering), etcetera (see, for instance, Hansen and Jaumard [1997] and Nielsen
[2016] and the references therein). Once obtained the dendrogram, clusters are determined by
making cuts in the tree: individuals linked below the cut level remain in the same cluster. The
comparisons of the results from various hierarchical clustering will compare the clustering for a
sample of cuto� levels of the tree. Dendrograms are useful tools for representing an enormous
amount of information in a visual way. In addition to serving to represent a hierarchical
clustering, a dendrogram can be used to represent clustering of genes or relationships among
various biological taxa, in the latter case it is also called a phylogenetic tree. Wherever a list
of features or variables for a list of elements or samples is recorded, dendrograms allow visual
classi�cation. Dendrograms can appear in di�erent shapes, it can be horizontal or vertical, linear
or circular. Dendrograms are intermediate tools for more complex analysis as non hierarchical
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clustering or heat-map creation. Di�erent dendrogams for the same sample give complementary
information. Dendrograms can be compared with expected clustering or pairwise compared by
a tanglegram plot in which one faces the other and their labels are connected.

All the information required for the dendrogram of a set of points, when the single linkage
clustering method is considered, is contained in the minimum spanning tree of the network
(Gower and Ross [1969]). Thus, this particular dendrograms can be obtained by solving the
Minimum Spanning Tree problem (MST) over the complete graph de�ned by the object distance
matrix. Dendrograms are current graphics that are used in very diverse situations such as
psychological data analysis Wang et al. [2020], medical data analysis Ghosal et al. [2020],
economical data analysis O. Yim [2015] or sports Kahvecioğlu and Morton [2022], among others.

In this work we propose to obtain the dendrogram associated with the distance matrix
determined by a set of objects by obtaining the MST for the graph de�ned by the same distance
matrix. In this way, the problem of single linkage hierarchical clustering, which is usually
approached from the statistical or machine learning point of view of lasso regression, can
be formulated as an optimization problem. Assuming that the number of features to be kept
in the analysis is limited and known, for example ? , the problem we pose is to �nd the best
dendrogram/MST with ? features, where best indicates that the length of the spanning tree is as
short as possible. The optimization problem consists of selecting the ? features that lead to the
smallest minimum spanning tree; thus, we are introducing feature selection in MST. From here on
we will refer to this problem as the Feature Selection Minimum Spanning Tree problem (FSMST).

The research gap covered by the content of this paper is the mathematical optimization of
the single linkage hierarchical clustering with feature selection. Other clustering problems have
been analyzed from the mathematical optimization point of view, for instance in Benati et al.
[2018] the problem of selecting features from the complete data set and cluster centers from a
tentative set is modeled and solved. However, this is the �rst time for hierarchical clustering. And
last but not least, it is the �rst time that feature selection is taken into consideration for the MST.
The applicability of feature selection in MST is a secondary closed gap. The main contributions
of this work can be itemized as follows:

i. A mixed-integer optimization model is proposed for solving single linkage clustering with
feature selection. It is the �rst time in the literature that an optimization model is proposed
for this problem.

ii. Tight lower bounds for the optimal value of the problem are introduced.

iii. Four di�erent mixed-integer optimization (MIO) formulations are proposed.

iv. Valid inequalities are proposed to strengthened our models. Part of these valid inequalities
are based on the lower bounds of the optimal value and part of them are based on the
structure of minimum spanning trees.
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v. A decomposition approach based on one of the models is designed.

vi. Extensive computational experiments are conducted. In the analysis of the results, we
compare the models and evaluate the performance of feature selection in hierarchical
clustering.

The remainder of this paper is organized as follows. In Section 2, the notation is introduced
and the problem is de�ned. It is proved that the problem under study is NP-hard and also
that di�erent lower bounds for the optimal value of the model can be obtained depending
on the selected features. In Section 3, a �rst mixed integer linear formulation is introduced.
Section 4 is devoted to the study of valid inequalities for the formulation proposed in Section 3.
Three alternative models are developed in Section 5. One of them is the main clue for a novel
decomposition approach. Computational results are thoroughly reported in Section 6. Finally,
we provide some discussion and conclusions in Section 7.

2 Notation, problem de�nition, complexity, lower bounds and
general results

Let  be the set of < features observed for the = individuals of a sample. Let ? be the number
of features we aim to select from  . Let � = (+ , �) be the complete undirected graph whose =
vertices represent the individuals. For every edge 4 = (8, 9) ∈ � and feature : ∈  , let 2:4 be the
distance of edge 4 ∈ � according to feature : ∈  , that is, the distance between individuals 8 and
9 for feature : . Let T be the set of all possible spanning trees. The length of spanning tree is
equal to the sum of the distances of its edges.

We de�ne the Feature Selection Minimum Spanning Tree problem (FSMST) as follows:

min{
∑
:∈(

∑
4∈)

3:4 : ) ∈ T , ( ⊆  , |( | = ?}

Problem FSMST consists thus in determining a spanning tree in graph � and selecting ?
features in such a way that the sum of the length of the tree for these ? features is minimum.

The following example illustrates the problem.

Example 1. In Figure 1, we present an instance of Problem FSMST with four nodes and three

features. The three graphs show the costs of the connections for features 1, 2 and 3, respectively.

If ? is set to 2, the optimal solution consists in selecting features 1 and 2 and the tree containing

edges (1,3), (1,4), (2,3), leading to an optimal value of 16.

The following theorem states that the FSMST is NP-hard. The proof of the theorem proceeds
by a reduction of the @-variable selection problem de�ned in Benati et al. [2018] and that they
show to be NP-hard.

Theorem 1. Problem FSMST is NP-hard.
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Figure 1: Small instance with |+ | = 4 and< = 3.

Proof. An instance of the recognition version of the @-variable selection problem de�ned in
Benati et al. [2018] is given by a set of objects � , a set of centers � to which the objects must
be assigned and a set of features  . Further, cost 2:8,9 represents the cost associated to feature :
for assigning object 8 to center 9 . Finally, the @-variable selection problem asks whether there
exists a selection of @ features and an assignment of the objects to centers such that the sum of
its costs for all selected features is less than or equal to a given value �. Given an instance of
the @-variable selection problem, one can construct an instance of FSMST as follows. The set of
nodes (individuals) is � ∪ � ∪ {B}, where B is a dummy node. For each feature : the edges cost 3:8 9
are de�ned as:

• 3:B 9 = 0, for all 9 ∈ � ,

• 3:8 9 = 2
:
8 9 , for all 8 ∈ � and 9 ∈ � .

All other edges costs are equal to an arbitrary large value " for all features. These edge costs
are chosen large enough to ensure that none of these other edges is ever included in a minimum
spanning tree whatever the subset of features considered.

In the same vein, the cost of edges linking the centers 9 to B are equal to zero for all features,
all edges {B, 9}, for all 9 belonging to any MST, for any feature selection. In consequence there
exists a solution to the @-variable selection problem with value lower than or equal to a given
threshold � i� FSMST has a solution (ST) with value lower than or equal to �. �

Next, the following �ve remarks establish lower bounds on the objective value of FSMST. In
short, two general bounds !�1 and !�2 and two families of lower bounds for the cases in which
a speci�c feature : is selected, !�:1 and !�:2 .

Let us denote by S? (0) the set of the ? smallest entries of an <-dimensional vector 0 and
by VS? (0) the value of that sum: VS? (0) = min~{

∑<
:=1 0

:~: :
∑<
:=1~

: = ?, 0 ≤ ~: ≤ 1, 8 =
1, . . . ,<}. Moreover, let us denote byMST (1) andVMST (1) a minimum spanning tree and
its value in � with edge cost vector 1 = (14)4∈� . Finally, 24 represents the cost vector of an edge
with one coordinate for each feature : = 1, . . . ,< and 2: represents the cost vector of a feature
with one coordinate for each edge 4 ∈ �.
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Remark 1. The value !�1 = VS?
(
(VMST (21), . . . ,VMST (2<)

)
is a lower bound on the

optimal value of Problem FSMST.

Remark 2. Let us sort by non decreasing order the lengths of the MSTs corresponding to each

feature considered individually. From now on, !1 ≤ !2 ≤ . . . ≤ !< . If feature : is chosen and

VMST (2: ) > !? , then !�1 can be improved and the lower bound is !�:1 = !�1−!?+VMST (2: ) .

Remark 3. The length of a MST with costs �4 = VS? (24) is an lower bound on the optimal value

of FSMST, !�2. Explicitly, !�2 = VMST (�), where � = (�4)4∈� .

Remark 4. For each edge 4 ∈ �, let us sort all the cost 2:4 by non decreasing order: �1
4 ≤ �2

4 , . . . ,�
=
4 .

If feature : is chosen, the bound�4 on the contribution to the total cost of an edge 4 can be improved:

�∗4 =

{
�4 −�?4 + 2:4 , if 2:4 > �

?
4

�4 , otherwise

and the length of the MST with costs �∗4 is a new lower bound !�:2 on the optimal value of FSMST.

Remark 5. If feature : is selected, the lower bound for the problem is !�: = max{!�:1 , !�:2 }.

The last result in this section states that given two spanning trees of a graph, it is always
possible to compute the length of one from the other. The lemma also states the exact formula
to apply.

Theorem 2. Let � = (+ , �) be a graph with edge costs 34 for all 4 ∈ � and, for any subgraph ( of

� , denote by 3 (() the sum of the costs of the edges belonging to ( . Consider any two spanning trees

) and ) ′ of � .

i. There exists a one-one mapping f : ) ′ \) → ) \) ′ such that for each edge 4 ∈ ) ′ \), f (4) ∈
) \) ′ and belongs to the unique path in ) linking the end vertices of edge 4 ,

ii. 3 () ′) = 3 () ) +∑
4∈) ′\) (34 − 3f (4) ).

Proof. First, given that all spanning trees contain |+ |−1 edges, |) ′\) |= |) \) ′ |. Next, let 4 ∈ ) ′\) .
Given that) is a spanning tree, removing 4 from) determines a partition of the vertices into two
subsets and 4 is the unique edge of) belonging to the so obtained edge cut. Further, there exists
a unique path, denoted by %) (4) in) that connects the end vertices of edge 4 . At least one edge,
say f (4), of this path belongs to the cut (otherwise ) is not connected) and thus cannot belong
to ) ′. We have,

3 () ) = 3 () \ {4} ∪ {f (4)}) + (34 − 3f (4) ) .

In addition, ) \ {4} ∪ {f (4)} constitutes a tree with one more edge in common with ) ′. We
can repeat this swapping of edges until all edges of ) ′ \ ) have been considered, yielding the
desired equation. �

In the following, let %) (4) be the path in tree ) that connects the end vertices of edge 4 .
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3 First model

In order to formulate FSMST as a MIO problem, we consider the following two sets of binary
decision variables: For each feature : ∈  , variable ~: takes value one only when feature : is
selected. For each edge 4 = (8, 9) ∈ �, variable G4 is one if edge 4 is in the tree. Finally, let ) (G)
be the tree determined by a vector G .

min
~,3,G

∑
4∈�

<∑
:=1

2:4~
:G4 (1)

s.t.
<∑
:=1

~: = ?, (2)

~: ∈ {0, 1}, : = 1, . . . ,<, (3)

) (G) ∈ T , (4)

G4 ∈ {0, 1}, 4 ∈ �. (5)

The goal is to minimize the length of a MST in � endowed with edge weights de�ned as
the sum of distances corresponding to ? features. Constraints (2) and (3) ensure that we select ?
features. For each 4 ∈ �,we assume that its contribution to the objective function is the sum of the
distances corresponding to the selected features. Constraint (4) states that G de�nes a spanning
tree in � . This constraint (4) can be replaced by at least �ve di�erent sets of constraints, Labbé
et al. [2019].

In order to linearize the objective which contains the products of variables, a new family of
variables I:4 (= ~:G4 ) is introduced and the following new set of constraints is added:

I:4 ≥ ~: + G4 − 1, 4 ∈ �, : = 1, . . . ,<, (6)

I:4 ≤ ~: , 4 ∈ �, : = 1, . . . ,<, (7)

I:4 ≤ G4 , 4 ∈ �, : = 1, . . . ,<, (8)

I:4 ≥ 0, 4 ∈ �, : = 1, . . . ,<. (9)

Constraints (6)-(8) describe the Boolean quadratic polytope, see Letchford and Sørensen
[2014] and Padberg [1989]. In this case, the following equalities can be added to the description
of the Boolean polytope or alternatively replace some of them.

Proposition 1. The set of feasible points of the system (2)-(9) is unchanged if (6) and (7) are
replaced by

<∑
:=1

I:4 = ?G4 , 4 ∈ �, (10)∑
4∈�

I:4 = ( |+ |−1)~: , : = 1, . . . ,<. (11)

Proof. Given a feasible solution (G,~, I), let �0 be the subset of � with G4 = 1 and let  0 be the
subset of ? features with ~: = 1. From (7) and (8) it holds that I:4 = 0 for all 4 ∉ �0 and for all
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: ∉  0. If 4 ∈ �0, then equality (10) becomes∑
:∈ 0

I:4 = ?

and provided that I:4 ≤ 1 for all : ∈  0 it only holds if I:4 = 1 for all : ∈  0. Analogously, for a
given : ∈  0 equality (11) becomes ∑

4∈�0

I:4 = |+ | − 1

and it only holds if I:4 = 1 for all 4 ∈ �0. �

If we consider for ) (- ) the formulation proposed in Martin [1991], the complete mixed-
integer linear optimization (MILO) model for the FSMST reads:

(M1) min
G,I

∑
4∈�

<∑
:=1

2:4 I
:
4

s.t. (2), (3), (5) − (9)∑
4∈�

G4 = = − 1, (12)

FA8 9 +FA 98 = G4 , 4 = (8, 9) ∈ �, A = 1, ..., =, 8, 9 ≠ A (13)∑
(8′, 9) ∈�:(8

′=A∧9=8)∨
(8′=8∧9=A )

G8′ 9 +
∑

9=1,...,=:9≠A
FA8 9 ≤ 1, 8, A = 1, . . . , =, 8 ≠ A, (14)

FA8 9 ≥ 0, 8, 9, A = 1, . . . , =, (15)

Given its polynomial number of variables and constraints, it can be solved with o�-the-shelf
integer solvers.

The following example illustrates the interest in considering constraints (10) and (11).

Example 1. (cont.) If ? = 1 in the instance considered in Example 1, the optimal value for the linear

relaxation of M1 is zero and corresponds with the solution ~1 = ~2 = 0.5, G (1,3) = 1, G (1,4) = G (2,3) =
G (2,4) = G (3,4) = 0.5. However, if constraints (10)-(11) replace constraints (6)-(7), the optimal value for

the linear relaxation is 16 (the integer optimal value) for ~1 = ~2 = 1, and G (1,3) = G (1,4) = G (2,3) = 1.

4 Strengthening Formulation M1

Let E∗ denote the optimal value of Formulation M1. In this section several families of inequalities
de�ning a lower bound on E∗ are proposed. Four of these families state that E∗ is larger then or
equal to certain linear combination of the bounds presented in Section 2. Other seven families
of valid inequalities use, as coe�cients, di�erent values of S? ,VS? ,MST orVMST .
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4.1 Valid inequalities based on lower bounds

Proposition 2. Let !� be any lower bound for the problem (!� can be !�1 or !�2 or any other). Let

( ⊆ (> = {: ∈  : !�: > !�}. Without loss of generality, let assume that !� < !�B1 ≤ . . . ≤ !�B |( | ,
Let !�B0 = !�. Then, the following inequality is valid.

E∗ ≥ !� +
|( |∑
9=1
(!�B 9 − !�B 9−1)~B 9 . (16)

Proof. Given a solution (G,~, I,F) of M1, let (∗ = {B ∈ ( : ~B = 1}. If (∗ = ∅, then inequality (16)
trivially holds. Otherwise, let (∗ = {B∗1, . . . , B∗|(∗ |} and !�B∗0 = !�. The right hand side of inequality
(16) is

!� +
|( |∑
9=1
(!�B 9 − !�B 9−1)~B 9 ≤ !� +

|(∗ |∑
9=1
(!�B

∗
9 − !�B

∗
9−1)

since for each B∗C ∈ (∗ if B∗C = B@, then !�B∗
C−1
≤ !�B@−1 .Moreover, !�+∑ |(∗ |

C=1 (!�B∗C −!�B∗C−1
) = !�B∗|(∗ |

and by de�nition !�B∗|(∗ | ≤ E
∗. Hence, inequality (16) is again satis�ed. �

These inequalities can be separated by solving a longest path problem in an acyclic network,
which can be done in polynomial time, see Karger et al. [1997], Uehara and Uno [2004] and
Ioannidou et al. [2011].

Proposition 3. Let !1 ≤ !2 ≤ . . . ≤ !< be the lengths of the MSTs obtained when only one feature

distance is considered. The following inequalities are valid:

E∗ ≥ !�1 +
=∑
:=1
(VMST (2: ) − !?)+~: , (17)

E∗ ≥ !�2 +
=∑
:=1
(!�:2 − !�2)+~: . (18)

Proof. The validity follows from Remarks 2 and 4 and the fact that, in a feasible solution, the
number of selected features is equal to ?. �

Proposition 4. Let )̄ be a MST for the costs �4 , 4 ∈ �. Its length is given by !�2. The following
inequality is valid:

E∗ ≥ !�2 +
∑
4∈�\)̄

min
5 ∈%) (4)

(�4 −�5 )+G4 . (19)

Proof. Let ) be a solution tree whose value for FSMST is equal to E∗. We show that it satis�es
the above inequality. First, we know that B∗ ≥ � () ) = ∑

4∈) �4 .
Next, consider an edge 4 ∈ )̄ \) and the partition of the vertices obtained when deleting this

edge 4 from )̄ . There exists an edge, say 5 of ) \ )̄ whose end vertices belong to the di�erent
sets of the partition. Consider the new tree ) ′ = ) \ {5 } ∪ {4} with cost � () ′). We have

� () ′) = � () ) −�5 +�4 ≤ � () ) −�5 +�4 (5 ) ,
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since 4 belongs to the unique path linking the end vertices of 5 in )̄ and 4 (5 ) is the edge of )̄ \)
on that path with the highest cost. The tree) ′ has one more edge in common with )̄ than) . We
can apply this exchange of edges until we obtain the MST )̄ , yielding

� () ) ≥ !�2 +
∑
5 ∈) \)̄

(�5 −�5 (4) ),

that is the value of the right hand side of the valid inequality for the tree ) . �

Proposition 4 cannot be generalized to any lower bound, as for instance LB1, because in
general, there is not a MST whose cost is the lower bound.

Remark 6. Let UB be an upper bound of the problem. IfVMST (2: ) > *�, then ~: = 0.

4.2 Valid inequalities based on S?,VS?,MST orVMST .

Proposition 5. The following inequalities are valid:

E∗ ≥
=∑
:=1
VMST (2: )~: , (20)

E∗ ≥
∑
4∈�
VS? (24)G4 . (21)

Further, inequality (20) is stronger than (17).

Proof. For any feasible solution to M1, its value E =
∑
4∈�

∑=
:=1 2

:
4G4~

: . The inequalities come for
the facts that

∑
4∈� 2

:
4G4 ≥ VMST (2: ) and

∑=
:=1 2

:
4~
: ≥ VS(24), respectively.

Next, let ( be the set of ? features with smallest VMST (2: ), i.e. ( = S? (VMST (2: )).
The right hand side of inequality (17) reads:∑

:∈(
VMST (2: ) +

∑
:∈ \(

(VMST (2: ) − VMST (2?))~:

=
∑
:∈(
VMST (2: ) +

∑
:∈ \(

VMST (2: )~: −VMST (2?)
∑
:∈ \(

~:

=
∑
:∈(
VMST (2: ) +

∑
:∈ \(

VMST (2: )~: −VMST (2?) (? −
∑
:∈(

~: )

=
∑
:∈(
(VMST (2: ) − VMST (2?) (1 − ~: )) +

∑
:∈ \(

VMST (2: )~:

≤
=∑
:=1
VMST (2: )~: ,

sinceVMST (2: ) ≤ VMST (2?) for all : ∈ ( . �

Proposition 6. The following inequalities are valid.
For every :̄ ∈  :

E∗ ≥ ?
∑
4∈�

2:̄4G4 +
∑
:∈ 
VMST (2: − 2:̄ )~: . (22)

For every edge 4̄ ∈ �:

E∗ ≥ (= − 1)
∑
:∈ 

2:4̄~
: +

∑
4∈�
VS? (24 − 24̄)G4 . (23)
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Proof. For a given feasible solution to M1, let � = {: ∈  : ~: = 1} and ) = {4 ∈ � : G4 = 1}. Its
value for M1 is equal to:

E =
∑
4∈)

∑
:∈�

2:4

= ?
∑
4∈�

2:̄4G4 +
∑
:∈ 

∑
4∈�
(2:4 − 2:̄4 )G4~:

≥ ?
∑
4∈�

2:̄4G4 +
∑
:∈ 
VMST (2: − 2:̄ )~: .

Similarly,

E = (= − 1)
∑
:∈ 

2:4̄~
: + +

∑
:∈ 

∑
4∈�
(2:4 − 24̄: )G4~:

≥ (= − 1)
∑
:∈ 

2:4̄~
: +

∑
4∈�
VS? (24 − 24̄)G4 .

�

Proposition 7. Let { ℓ , ℓ ∈ !} be a partition of the feature set  into |! | nonempty subsets and let

{:ℓ }, ℓ ∈ ! be a subset of |! | distinct features. Then, the following inequality is valid.

E∗ ≥ ?
∑
4∈�

min
ℓ∈!
{2:ℓ4 }G4 +

∑
ℓ∈!

∑
:∈ ℓ

VMST (2: − 2:ℓ )~: . (24)

Proof. For a given feasible solution to "1, its value E satis�es:

E =
∑
ℓ∈!

∑
4∈�

2:ℓ4 G4

∑
:∈ ℓ

~: +
∑
ℓ∈!

∑
:∈ ℓ

∑
4∈�
(2:4 − 2:ℓ4 )G4~: ,

≥
∑
ℓ∈!

∑
4∈�

min
ℓ∈!
{2:ℓ4 }G4

∑
:∈ ℓ

~: +
∑
ℓ∈!

∑
:∈ ℓ

∑
4∈�
(2:4 − 2:ℓ4 )G4~: ,

≥?
∑
4∈�

min
ℓ∈!
{2:ℓ4 }G4 +

∑
ℓ∈!

∑
:∈ ℓ

VMST (2: − 2:ℓ )~: .

�

Note that the coe�cient of variable G4 can be (slightly) improved if there are less than ?

features in the subset  ℓ for which 2:ℓ4 is minimum.

Proposition 8. Let � be a subset of ? features. The following inequality is valid:

E∗ ≥
∑
:∈�

∑
4∈�

2:4G4 +
∑
:∉�

min
:′∈�
VMST (2: − 2:′)~: . (25)

Proof. For a given solution G,~ to "1, let � ′ represent the set of selected features, i.e. � ′ = {: :
~: = 1}. Since |� ′ |= |� |, we may de�ne a one-one mapping, say n (:) that assigns an element of
� \ � ′ to each element of � ′ \ � so that∑

:∈� ′

∑
4∈�

2:4G4 =
∑
:∈�

∑
4∈�

2:4G4 +
∑

:∈� ′\�

∑
4∈�
(2:4 − 2

n (:)
4 ))G4 .

Consequently,
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E∗ ≥
∑
:∈�

∑
4∈�

2:4G4 +
∑
:∉�

∑
4∈�
(2:4 − 2

n (:)
4 )G4~: .

The valid inequality is obtained by noting that∑
4∈�
(2:4 − 2

n (:)
4 )G4 ≥ min

:′∈�\� ′
VMS) (2: − 2:′) .

�

Proposition 9. Let ) be a spanning tree. The following inequality is valid:

E∗ ≥
∑
4∈)

<∑
:=1

2:4~
: +

∑
4∈�\)

min
5 ∈%) (4)

S? (24 − 2 5 )G4 , (26)

where 24 = (2:4 )<:=1 and 24 − 2 5 is thus the di�erence of the cost vectors of edges 4 and 5 .

Proof. Let G and ~ de�ne a feasible solution to "1. Using Lemma 2, we have:∑
4∈�

<∑
:=1

2:4~
:G4 ≥

∑
4∈)

<∑
:=1

2:4~
: +

∑
4∈�\)

<∑
:=1
(2:4 − 2:f (4) )~

:G4

The appropriate lower bound is then obtained by noticing that
<∑
:=1
(2:4 − 2:f (4) )~

: ≥ S? (24 − 2f (4) ),

then, replacingf (4) by the edge 5 of %) (4) that provides the smallest value forS? (24−2 5 ). �

The following example illustrates the last two families of valid inequalities.

Example 1. (cont): For � = {1, 2}, cut (25) would read:

E∗ ≥ 7G (1,2) + 0G (1,3) + 6G (1,4) + 6G (2,3) + 6G (2,4) + 7G (3,4)+

3G (1,2) + 0G (1,3) + 1G (1,4) + 3G (2,3) + 9G (2,4) + 1G (3,4)+

min{VMST (23 − 21), (23 − 22)}~3.

SinceVMST (23 − 21) = −1 andVMST (23 − 22) = 5, the cut reads

E∗ ≥ 10G (1,2) + 7G (1,4) + 9G (2,3) + 15G (2,4) + 8G (3,4) − ~3

For this example, the family of valid inequalities (25) has three cuts: one for � = {1, 2}, one for
� = {1, 3} and another for � = {2, 3}.

For the spanning tree (1,3), (1,4), (2,3), cut (26) would read:

E∗ ≥ (6 + 0 + 6)~1 + (3 + 0 + 1)~2 + (10 + 1 + 6)~3+

min{(? (2 (1,2) − 2 (2,3) ), (? (2 (1,2) − 2 (1,3) )}G (1,2)+

min{(? (2 (2,4) − 2 (1,3) ), (? (2 (2,4) − 2 (1,4) ), (? (2 (2,4) − 2 (2,3) )}G (2,4)+

min{(? (2 (3,4) − 2 (1,3) ), (? (2 (3,4) − 2 (1,4) )}G (3,4) ,

12



leading to

E∗ ≥ 12~1 + 4~2 + 17~3 − 1G (1,2) + 0G (2,4) + 1G (3,4) .

For this example, the family of valid inequalities (26) has 16 cuts, one for each spanning tree in the

graph.

4.3 Other valid inequalities

Proposition 10. Let 4 be an arc in the graph. Let "4 = {: ∈  : 4 ∈ MST (2: )}. If |"4 | ≥ ?,
then the inequalities

G4 + ? − 1 ≥
∑
:∈"

~: ∀" ⊆ "4 : |" | = ? (27)

are valid inequalities for M1.

Proof. If for the ? selected features there is a MST using 4, then 4 is in the optimal solution of the
problem. �

5 Alternative models and decomposition approach

In this section, three new models for Problem FSMST are proposed. The new models presented
in this section have the advantage that they use fewer variables. The model presented in Section
3 uses G-variables and F-variables to de�ne the tree, ~-variables to deal with the features and
I-variables to linearize the products of G and ~-variables. The �rst two models that we propose
in this section do not need the I-variables since the feasible region is described without products
of variables. The last model in this section only uses~-variables which makes it much smaller. In
the second part of this section we propose a decomposition algorithm for the formulation with
fewer variables.

The following proposition states that a valid formulation for FSMST is obtained by
minimizing E∗ over the cardinality constraint for the features, the spanning tree constraints and
either inequalities (25) for all subset of ? features or (26) for all spanning trees. This result confers
a special relevance to valid inequalities from Propositions 8 and 9 .

Proposition 11. Let F denote the set of all subsets of ? features and T denote the set of all spanning

trees ) . Both, models

(M2) min
G,~,E

E

s.t. (2), (3), (12) − (15)

E ≥
∑
:∈�

∑
4∈�

2:4G4 +
∑
:∉�

min
:′∈�
VMST (2: − 2:′)~: , ∀� ∈ F

13



and

(M3) min
G,~,E

E

s.t. (2), (3), (12) − (15)

E ≥
∑
4∈)

<∑
:=1

2:4~
: +

∑
4∈�\)

min
5 ∈%) (4)

S? (24 − 2 5 )G4 , ) ∈ T

constitute valid formulations for FSMST.

Proof. Since we have an inequality of type (26) for each spanning tree and an inequality (25)
for each subset of ? features, we have in particular those for the optimal spanning tree and for
the optimal subset of features, respectively. These inequalities provide the optimal value for
FSMST. �

The main advantage of the models in the above proposition is that they do not make use of
variables I:4 . Thus, neither do they need constraints (5)-(9). However, an exponential number of
constraints (26) or (25) are required.

Observing FSMST, one realises that it is composed by two simpler problems: the Feature
Selection Problem and the Minimum Spanning Tree Problem. Complete linear description of
the convex hull of binary solutions for these two separate problems are well known, and even
more, separately they can be solved by using very fast algorithms. However, when we try to
solve them together, as problem FSMST, we need to include binary constraints on the variables
and, as expected and as will be shown later in the numerical experiments, the problem becomes
much harder to solve. Thus, given this particular structure of FSMST, one may think that it is an
ideal problem for decomposition. The following theorem proposes a formulation involving only
the ~-variables but an exponential number of constraints whose separation problem amounts to
�nding a minimum spanning tree with respect to some particular costs.

Theorem 3. The following model

(M4) min
~,E

E

s.t. E ≥ VMST (
∑
:∈�

2: ) +
∑
:∉�

min
:′∈�
VMST (2: − 2:′)~: , � ∈ F (28)

 ∑
:=1

~: = ?,

~: ∈ {0, 1}, : = 1, . . . ,<,

is a valid formulation of FSMST.

Proof. First, given that for all feasible feature set � ∈ F and for all feasible vector G , i.e.
corresponding to spanning trees,

∑
:∈�

∑
4∈� 2

:
4G4 ≥ VMST (

∑
:∈� 2

: ). Hence M4 constitutes a
relaxation of M2 and E∗( M4) ≤ E∗( M2).
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Next, consider an optimal solution (E∗, ~∗) to M4 and let � ∗ be the set of features : such that
~∗: = 1. We have,VMST (∑:∈�∗ 2

: ) ≤ E∗(M4) ≤ E∗(M2) ≤ VMST (
∑
:∈�∗ 2

: ),
where the �rst inequality is obtained by using inequality (28) for � = � ∗ and the third one comes
from the fact that � ∗ and the corresponding minimum spanning tree constitute a feasible solution
to M2 with valueVMST (∑:∈�∗ 2

: ).
�

The idea of the Decomposition Algorithm is to solve at each iteration a restricted integer
master problem that involves inequality (28) for only a subfamily, say F̄ , of feature sets. If its
optimal solution (E∗, ~∗) satis�es inequality (28) for the set � ∗ of features de�ned by ~∗ then,
following the same reasoning as in the proof of Theorem 3, the algorithm terminates and the
optimal solution has been found. Otherwise, inequality (28) for set � ∗ is added to the restricted
master, upper and lower bounds are updated and the algorithm proceeds to the next iteration.
Given that a cut corresponding to a di�erent feature subset is added at each iteration, the
algorithm terminates in a �nite number of iterations. The description of our solution method
is presented in Algorithm 1.

The Master Problem in Algorithm 1 can be reinforced by including all the previously
developed valid inequalities and remarks that involve only ~ variables ((16), (17), (18), (20) and
Remark 6). We will call this reinforcement of the algorithm Algorithm 1 reinforced. Further,
min:′∈� VMST (2: − 2:

′) can be e�ciently computed by using Kruskal and sorting algorithms.

6 Computational results

This section is devoted to present the numerical results obtained in a computational experiment
conducted to compare the performance of the di�erent formulations, valid inequalities and
algorithm (Sect. 6.1), and to analyze the behaviour of the feature selection in hierarchical
clustering minimizing the total size of the tree (Sect. 6.2).

In order to conduct the numerical study, we generated instances of di�erent sizes. We
�rst �xed the number of individuals (=), features ( ) and features to select (?). The di�erent
combinations chosen for these parameters along the study are shown in the �rst three columns
of each table reporting results. In particular, = ∈ {20, 40, 50, 200, 400},  ∈ {9, 10, 11, 12, 15} and
? ∈ {4, 5, 6, 7}. Once these parameters �xed, to create di�erent random instances, we generated
random costs by using normal and uniform distributions (one for each feature). Values were
later normalized. For each combination of parameters =,  and ? , �ve di�erent instances were
generated.

The computational experiment was carried out on a personal computer with Intel R© Core i7-
1065G7, 1.30GHz and 1.50GHz with 16 GB RAM. The optimization problems were solved exactly
by using Gurobi Version: 9.1.2.
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Result: *� = !� = E∗(%)
*� ←∞;
!� ← −∞;
g ← 0;
Ω = {∅};
Choose ~̄ = (~̄1, . . . , ~̄ ) a con�guration of ? features;
while*� > !� do

Do g = g + 1;
Do Ω = Ω ∪ {g};
Find a MST, Gg , for the complete graph with arc costs 24 =

∑<
:=1 2

:
4 ~̄
: ;

If E =
∑
4∈�

∑ 
:=1 2

:
4 ~̄
:Gg4 < *�, then do*� = E ;

Find

2̄g
:
=

{
min:′:~̄g−1

:′ =0+"() (2: − 2:
′) if ~̄: = 0,

0 if ~̄: = 1

Solve:

min
~,W

W (Master Problem)

s.t.
 ∑
:=1

~: = ?,

~: ∈ {0, 1}, : = 1, . . . ,  ,

W ≥
∑
4∈�

<∑
:=1

2:4G
a
4 +

<∑
:=1

2̄a
:
~: , a ∈ Ω

Do ~̄ = ~∗ and !� = W∗;

end
Algorithm 1: Decomposition Algorithm with (28)
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6.1 Formulations, valid inequalities and algorithm comparison

When stating the �rst model, that is, M1, we proved in Proposition 1 that di�erent combinations
of constraints lead to the same feasible region. We �rst compare, in terms of gap and resolution
time, the performance of the following three constraints combinations:

• "1.

• "1
1 , which is "1 plus (10) and (11).

• "2
1 , which is "1 removing (6) and (7), and adding (10) and (11).

Table 1 reports the results of this comparison. To calculate the gap, we compute the di�erence
between the optimal value of the mixed integer model and the optimal value of the linear
relaxation, and divide it by the optimal value of the mixed integer model.

We can observe in Table 1 that there is a clearly winner combination with respect to the gap,
"1

1 . The gap is always smaller, that is, the optimal value of the linear relaxation is always closer to
optimal value of Problem FSMST when "1 contains constraints (10) and (11). The optimal value
of the linear relaxation of "1 is always zero giving a gap equal to 1, hence, this is always the
worst possible combination. In "2

1 , the gap is always higher than "1
1 , but much smaller than 1;

for example, for the �rst instance type of the table, with = = 20, : = 12 and ? = 5, the gap for "1
1

is 0.14 meanwhile for"2
1 is 0.23. If we consider time, there is again an obvious loser combination,

"1; however, depending on the instance type,"1
1 or"2

1 perform better. For example, for the last
instance with = = 40,  = 10, ? = 5, the average time required to solve the problem was 397.62
seconds for "1

1 and 645.36 for "2
1 ; meanwhile for the third instance of the same combination

of parameters, "1
1 solved the problem to optimality in 385.51 seconds and "2

1 in 150.9 seconds.
Therefore, "1

1 and "2
1 seem both reasonable combinations to model FSMST.

We next compare the performance of the di�erent proposed valid inequalities in "1
1 , in

Table 2, and in "2
1 , in Table 3.

In Tables 2 and 3, we show the resulting gap and resolution time when each valid inequality
is added to formulation"1

1 and"2
1 , respectively. The reason for not including in the Tables 2 and

3 some non-dominated valid inequalities is that they were useless or very time consuming. We
also considered adding combinations of valid inequalities to the models, however, few signi�cant
changes were observed. We highlight in blue color the best time and gap for each type of
instances. We also emphasize in green color the values (time or gap) that despite not being
the best ones for the corresponding instance type, improve the value (time or gap) obtained for
the model without including such additional valid inequality.

We can observe in Table 2 that valid inequality (18) added to "1
1 reports the smallest gaps

for all the instances, for example, for the last instance of size = = 20,  = 12, ? = 5, the gap is
reduced from 0.11 to 0.05. By contrast, there is not a valid inequality that leads to the smaller
times for all the instances. In 5 out of the 15 considered instances, "1

1 without any additional
valid inequality is faster. In other 5 instances, "1

1 + (19) is the fastest; for example, in the forth
instance of size = = 50,  = 9, ? = 4, the execution time is reduced from 1199.51 seconds to
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"1
1 "1 "2

1

n K ? Gap Time Gap Time Gap Time

20 12 5 0.14 11.96 1.0 18.19 0.23 14.37
20 12 5 0.13 14.08 1.0 21.84 0.22 9.58
20 12 5 0.12 9.58 1.0 15.34 0.19 7.7
20 12 5 0.13 11.16 1.0 16.62 0.25 9.72
20 12 5 0.11 13.91 1.0 17.7 0.21 11.42
40 10 5 0.11 338.49 1.0 1682.8 0.18 179.82
40 10 5 0.09 385.51 1.0 1488.79 0.17 150.9
40 10 5 0.1 508.19 1.0 1740.72 0.17 142.92
40 10 5 0.12 490.47 1.0 1587.25 0.21 670.45
40 10 5 0.11 397.62 1.0 1666.11 0.18 645.36
50 9 4 0.08 645.48 1.0 TL 0.17 1250.39
50 9 4 0.09 669.77 1.0 TL 0.18 1604.33
50 9 4 0.07 366.13 1.0 TL 0.17 1148.86
50 9 4 0.08 1199.51 1.0 TL 0.19 1121.32
50 9 4 0.08 777.22 1.0 TL 0.15 1278.56

Table 1: Comparison of formulation"1 containing di�erent constraints combinations according
to Proposition 1.

838.04. The 5 remaining instances are solved faster by adding valid inequality (20), (21) or (27).
Even though adding valid inequalities (22) or (23) do not report the best time or gap in any case,
there exist an instance for which the execution time is improved with respect to "1

1 . In Table
2, "1

1 +(16) is the only valid inequality not reporting any improvement; however, this is not the
case in Table (3).

When we consider as the base model "2
1 , Table 3, we can see that once more, incorporating

(18) to"2
1 results in the smallest gaps. Again, in the last instance of size = = 20,  = 12, ? = 5, the

gap is reduced in this case from 0.21 to 0.06. A similar behaviour that in Table 2 can be observed
with respect to times: in 6 out of the 15 instances the best times are reported for "2

1 , in other 5
instances the best times are achieved for "2

1 +(19), and the remaining by adding either (18) or
(21). Unlike Table 2, in Table 3, we can observe that adding (16) to "2

1 reduces almost all the
gaps, and valid inequalities (22) and (23) do not imply any improvement, in fact, for the latter,
few instances (5 out of 15) are solved within the time limit.

If we compare the best gaps in Table 2 versus the best gaps in Table 3, we can assert that the
smallest gaps are obtained for "1

1 + (18). If we examine times in in Table 2 versus times in Table
3, we can see that for the �rst type of instances, = = 20,  = 12, ? = 5, times are very similar.
However, in medium size instances, = = 40,  = 10, ? = 5, 3 out of the 5 instances are solved
much faster by using "2

1 + (19), the remaining two by using "1
1 + (19). The smallest execution

times to solve the last group of instances, = = 50,  = 9, ? = 4, are all in Table 2.
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We now analyze the performance of the decomposition algorithm. We show in Table 3,
for each instance, the smallest (best) resolution times of Tables 1 and 2, the resolution times of
Algorithm 1, and the total times of Algorithm 1 reinforced (with all developed valid inequalities
and remarks that involve only ~ variables). In particular, Algorithm 1 reinforced is Algorithm 1
+ (16) + (18) + (20) + Remark 6. Furthermore, we include in this table the total number of cuts of
type (28) required in "4, and how many of these cuts, Algorithm 1 and Algorithm 1 reinforced
required to reach the optimal solution, that is, to converge. We start by comparing resolution
times. We can observe in Table 4 that instances with = = 20,  = 12, ? = 5, are solved very fast by
some of the formulations, since the number of variables in this case are moderate; however, the
two versions of the algorithm require some more time to get the optimal since the number of cuts
that need to be computed and included is high, 792 for Algorithm 1 and between 66 and 249 for
Algorithm 1 reinforced, depending on the instance. Nevertheless, for the rest of the instances,
solving the problems by using any of the two versions of the algorithm is always faster than
solving it using the formulations "1

1 or "2
1 . The di�erences between times are very high, for

instance, for the �rst instance of size = = 50,  = 9, ? = 4, the fastest this is solved using the
formulations is in 645.48 seconds, meanwhile using Algorithm 1 it is solved in 67.71 seconds
and using Algorithm 1 reinforced in 7.2 seconds. If we compare Algorithm 1 and Algorithm 1
reinforced, we can see that the convergence of Algorithm 1 is always attained when all the cuts
are inserted, which is equivalent to �nding the solution by enumeration; however, the number
of cuts that need to be inserted in Algorithm 1 reinforced to converge is signi�cantly smaller: in
instances of size = = 40,  = 10, ? = 5, it goes from 55 to 62, out of 252, and in instances of size
= = 50,  = 9, ? = 4, it goes from 15 to 25, out of 126; which is translated in a huge reduction of
time. Again, we highlight in blue the smallest resolution times.
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Instances Best Time Total Cuts Algorithm 1 Alg. 1 reinforced
n K ? Time Cuts Time Cuts Time

20 12 5 11.96 792 792 401.29 249 103.87
20 12 5 9.58 792 792 402.95 216 84.73
20 12 5 7.7 792 792 426.12 99 31.04
20 12 5 9.72 792 792 378.25 89 28.04
20 12 5 11.42 792 792 551.41 66 19.33
40 10 5 179.82 252 252 102.67 62 29.38
40 10 5 150.9 252 252 102.85 55 25.49
40 10 5 142.92 252 252 108.1 56 25.93
40 10 5 376.99 252 252 159.0 56 26.09
40 10 5 291.37 252 252 180.34 57 26.55
50 9 4 645.48 126 126 67.71 21 7.2
50 9 4 522.73 126 126 91.92 15 5.74
50 9 4 366.13 126 126 91.61 15 5.12
50 9 4 838.04 126 126 91.38 15 7.51
50 9 4 579.15 126 126 65.13 25 15.16

Table 4: Numerical comparison of best time from Formulation "1
1 and "2

1 , Algorithm 1 and
Algorithm 1 reinforced.

Finally, we show in Table 5, the performance of Algorithm 1 reinforced when solving bigger
instances that cannot be solved by using any of the formulations (within the time limit of 1800
seconds). We can see that instances with 200 individuals, 11 di�erent features and ? = 6, are
solved in approximately 350 seconds, and only around 80 of the 462 di�erent cuts must be
included to reach an optimal solution. When we increase the number of features to  = 15
and ? = 7, the number of di�erent cuts increases to 6435, nevertheless, the algorithm �nds an
optimal solution by including approximately 45 of them, which lasts around 250 seconds. The
bigger instances we consider, 400 individuals, 15 features and ? = 7, are harder to solve, all of
them require more than 1800 seconds, even though the number of cuts that have to be included
is not so high, between 67 and 71, but the mixed integer Master Problem that has to be solved
71 times becomes harder after each iteration. Note that the bigger instances we are able to solve
with the formulations are of size = = 50,  = 9, ? = 4, and with Algorithm 1 reinforced we
increased this size to = = 400,  = 15, ? = 7.

We show in Figure 2 the convergence of one of these instances of size = = 400,  = 15, ? = 7,
that is, the lower and upper bound in each iteration. We can see that the upper bound reaches
very fast the optimal value, but it takes until 69 iterations to increase the lower bound until
such value. We repeatedly observed this behaviour in some of the instances: more iterations are
needed to increase the lower bound until the optimal value than to decrease the upper bound.
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Instances Total cuts Alg. 1 reinforced
n K ? Cuts Time

200 11 6 462 79 328.97
200 11 6 462 82 350.17
200 11 6 462 80 338.07
200 11 6 462 82 353.23
200 11 6 462 82 348.6
200 15 7 6435 44 270.48
200 15 7 6435 45 257.66
200 15 7 6435 45 288.42
200 15 7 6435 41 251.27
200 15 7 6435 49 274.23
400 15 7 6435 67 1869.19
400 15 7 6435 74 2261.1
400 15 7 6435 69 2078.81
400 15 7 6435 69 2379.48
400 15 7 6435 71 3876.7

Table 5: Numerical results of Algorithm 1 reinforced
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Figure 2: Upper and lower bounds obtained in each iteration of Algorithm 1 reinforced for an
instance with 400 nodes, 15 features and ? = 7
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6.2 Feature selection in MST insights

In this section, we analyze the quality of the obtained solution. We do so by checking the
similarity between clusters de�ned when all the features are considered and clusters when only
the best ? features, according to our model, are taken into account. Furthermore, we check if the
clustering produced when choosing ? random features is similar to the clustering obtained when
the best ? features are chosen; that is, we compare if selecting ? random features reports similar
results to selecting ? features according to our model, in such case, applying FSMST would be
useless.

To conduct this comparison, following Questier et al. [2002], we consider the Wallace
measure, Wallace [1983], to quantitatively compare two clustering results of the same dataset.
This is a standard method for comparing two hierarchical clusterings. Given two clusterings �
and � , the Wallace measure provides the probability that a randomly chosen pair of objects is
within the same class in one clustering� , given that it is in the same class in clustering � . If we
denote by =8 9 the number of objects classi�ed in group 6 9 of partition� and in ℎ8 of partition � ,
and by =8 . =

∑
9=1,...,< =8 9 , the Wallace measure can be de�ned as:

(, =

∑;
8=1

∑<
9=1

(=8 9
2
)∑;

8=1
(
=8 .
2
) .

We show, in Figures 3 and 4, a graphic with the Wallace measure values, y-axis, when we
compare the clustering for di�erent numbers of groups, x-axis, when all features are selected
versus selecting only ? . That is, we show how similar the clusters created using the FSMST
model are to the clusters created accounting for all the features. We show such results for an
instance with = = 50 and  = 9 and ? = 2, 4, 6, 8 in Figure 3, and in an instance with = = 200
and  = 15 and ? = 3, 7, 12 in Figure 4. We can observe that for smaller number of groups,
the clusters generated for the FSMST for di�erent ?- values are quite similar to those generated
by using all the features. For example, in Figure 4, for most of the values of ? , until around 45
groups, the probability that two individuals that are in the same group when all the features are
considered remain in the same group when only ? are selected, according to our model, is higher
than 0.5, which implies that the groups are rather similar. Even for ? = 3, the case in which fewer
features are accounted to create the groups, until around 40 groups, this probability is above 0.5.
A similar behavour can be seen in Figure 3. When the number of features selected, ? , increases,
we can observe that the clusters determined by our model tend be more similar to those created
for all the features.The lines for the di�erent values of ? are crossed because the grouping of
a population in a given number of clusters does not have to be followed by the same variables
as the grouping for another number of clusters. It is even possible that the best way to group
into C clusters uses totally di�erent variables than the classi�cation of the same population into
@ clusters. For example, the Wallace values for ? = 12 are always above the others in Figure 4,
but this is not the case for ? = 8 in Figure 3.

In Figures 5 and 6, we show, for the same instances than before, the comparison of clusters
created when ? random features are selected with the clusters generated when using the FSMST
model. We can observe that the clusters are, in general, very di�erent, in fact, we can observe
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Figure 3: Comparison of clustering with reduced features set, using FSMST, vs all features in
terms of Wallace measure (y-axis), for di�erent number of groups (x-axis) and di�erent ? values,
for an instance with = = 50 and  = 9.

Figure 4: Comparison of clustering with reduced features set, using FSMST, vs all features in
terms of Wallace measure (y-axis), for di�erent number of groups (x-axis) and di�erent ? values,
for an instance with = = 200 and  = 15.
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Figure 5: Comparison of clustering with ? random features set vs set determined by FSMST, in
terms of Wallace measure (y-axis), for di�erent number of groups (x-axis) and di�erent ? values,
for an instance with = = 50 and  = 9.

how the Wallace measure decreases to less than 0.5 very quickly, for most of the ? values. This
measure is below 0.5 for all the ? − E0;D4B for more than 8 groups for the instance with = = 50
and for more than 18 groups for the instance with = = 200. These results highlight the utility of
reducing the selection of features using the proposed approach.
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Figure 6: Comparison of clustering with ? random features set vs set determined by FSMST, in
terms of Wallace measure (y-axis), for di�erent number of groups (x-axis) and di�erent ? values,
for an instance with = = 200 and  = 15.

7 Conclusions

In this work, we proposed a framework for selecting features of a data set with the goal of
obtaining a dendrogram using the single linkage method, that is, a minimum spanning tree,
with the minimum possible total costs. Such a dendrogram/MST is also determined within the
proposed framework.

We developed di�erent formulations. For the �rst one, we proposed several valid inequalities
which result in a reduction of the resolution times and also of the integrality gap. For the rest,
we designed a decomposition algorithm reinforced with valid inequalities, which exploits the
structure of the involved problems: feature selection and MST. The latest formulation provided
the fastest resolution times for most of the studied instances.

We conducted a numerical study to test the proposed formulations, valid inequalities and
decomposition algorithm, and to get insights about the designed framework. This study revealed
that the incorporation of feature selection to the MST model allows to maintain a higher
percentage of original information and relationships; this percentage decreases when the features
are selected randomly.

The study of more general objective functions and the incorporation of features selection in
other hierarchical clustering methods will be the topic of forthcoming works.
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