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Introduction

Advances in technology have led to the existence of a huge number of databases containing an extensive amount of information. These large databases collect information on a multitude of features for a multitude of objects in di erent elds such as medicine, chemistry, astronomy, or social sciences. A way to extract the information is to group the objects into clusters in order to analyze only some representatives of each cluster in detail. However, often in this multidimensional analysis, not all features are equally informative, some features are redundant and others simply do not provide information for classi cation. Many times more characteristics are used than necessary, even all of them, since a priori it is not known which ones are relevant.

Hence, identifying the e ective and relevant features may be necessary or useful. Feature selection is a common issue in optimization nowadays to approach, a part from over tting, the tractability of big and stream data. When it comes to supervised clustering, feature selection is easier because multiple available tools that measure the relationship between clusters and features can be used. However, when the goal is unsupervised clustering, the choice is more complex. In this paper, feature selection in the area of unsupervised clustering known as hierarchical clustering is analyzed. Hierarchical clustering is used when the number of groups is unknown and when certain relationships between objects are sought. The choice of features in hierarchical clustering has to preserve the information not only for a given number of groups but for the entire tree. In the hierarchical clustering literature, there is an evident interest in feature selection. In [START_REF] Witten | A framework for feature selection in clustering[END_REF], the authors propose a framework for clustering which serves for hierarchical clustering, in which the features are selected making use of a lasso-type penalty function. In [START_REF] Questier | Feature selection for hierarchical clustering[END_REF], a feature selection approach for hierarchical clustering based on genetic algorithms is presented: a tness function that tries to minimize the di erence between the dissimilarity matrix of the original feature set and the one of the reduced feature sets is used. In [START_REF] Chavent | Combining clustering of variables and feature selection using random forests[END_REF] the authors combine hierarchical clustering of variables and feature selection using random forests.

The result of a hierarchical clustering is a tree that represents the connections of objects at di erent levels. The graphical representation of this tree is called a dendrogram. In a dendrogram, individuals are connected depending on their similarity; the more similar two individuals are, the sooner they are connected in the dendrogram (or the closer is their connection). Connections can be made according to di erent criteria or methods: connecting an individual or a group of individuals with nearest neighbor(s) (single linkage clustering), or with the furthest neighbor(s) (complete linkage clustering), or with the nearest(s) in average (simple average clustering), etcetera (see, for instance, [START_REF] Hansen | Cluster analysis and mathematical programming[END_REF] and [START_REF] Nielsen | Hierarchical clustering[END_REF] and the references therein). Once obtained the dendrogram, clusters are determined by making cuts in the tree: individuals linked below the cut level remain in the same cluster. The comparisons of the results from various hierarchical clustering will compare the clustering for a sample of cuto levels of the tree. Dendrograms are useful tools for representing an enormous amount of information in a visual way. In addition to serving to represent a hierarchical clustering, a dendrogram can be used to represent clustering of genes or relationships among various biological taxa, in the latter case it is also called a phylogenetic tree. Wherever a list of features or variables for a list of elements or samples is recorded, dendrograms allow visual classi cation. Dendrograms can appear in di erent shapes, it can be horizontal or vertical, linear or circular. Dendrograms are intermediate tools for more complex analysis as non hierarchical clustering or heat-map creation. Di erent dendrogams for the same sample give complementary information. Dendrograms can be compared with expected clustering or pairwise compared by a tanglegram plot in which one faces the other and their labels are connected.

All the information required for the dendrogram of a set of points, when the single linkage clustering method is considered, is contained in the minimum spanning tree of the network [START_REF] Gower | Minimum spanning trees and single linkage cluster analysis[END_REF]). Thus, this particular dendrograms can be obtained by solving the Minimum Spanning Tree problem (MST) over the complete graph de ned by the object distance matrix. Dendrograms are current graphics that are used in very diverse situations such as psychological data analysis [START_REF] Wang | Spatial disparity and hierarchical cluster analysis of nal energy consumption in china[END_REF], medical data analysis [START_REF] Ghosal | Impact of complete lockdown on total infection and death rates: A hierarchical cluster analysis[END_REF], economical data analysis O. [START_REF] Yim | Hierarchical cluster analysis: comparison of three linkage measures and application to psychological data[END_REF] or sports [START_REF] Kahvecioğlu | Optimal hierarchical clustering on a graph[END_REF], among others.

In this work we propose to obtain the dendrogram associated with the distance matrix determined by a set of objects by obtaining the MST for the graph de ned by the same distance matrix. In this way, the problem of single linkage hierarchical clustering, which is usually approached from the statistical or machine learning point of view of lasso regression, can be formulated as an optimization problem. Assuming that the number of features to be kept in the analysis is limited and known, for example , the problem we pose is to nd the best dendrogram/MST with features, where best indicates that the length of the spanning tree is as short as possible. The optimization problem consists of selecting the features that lead to the smallest minimum spanning tree; thus, we are introducing feature selection in MST. From here on we will refer to this problem as the Feature Selection Minimum Spanning Tree problem (FSMST).

The research gap covered by the content of this paper is the mathematical optimization of the single linkage hierarchical clustering with feature selection. Other clustering problems have been analyzed from the mathematical optimization point of view, for instance in [START_REF] Benati | Mixed integer linear programming and heuristic methods for feature selection in clustering[END_REF] the problem of selecting features from the complete data set and cluster centers from a tentative set is modeled and solved. However, this is the rst time for hierarchical clustering. And last but not least, it is the rst time that feature selection is taken into consideration for the MST.

The applicability of feature selection in MST is a secondary closed gap. The main contributions of this work can be itemized as follows: i. A mixed-integer optimization model is proposed for solving single linkage clustering with feature selection. It is the rst time in the literature that an optimization model is proposed for this problem.

ii. Tight lower bounds for the optimal value of the problem are introduced.

iii. Four di erent mixed-integer optimization (MIO) formulations are proposed. iv. Valid inequalities are proposed to strengthened our models. Part of these valid inequalities are based on the lower bounds of the optimal value and part of them are based on the structure of minimum spanning trees. v. A decomposition approach based on one of the models is designed. vi. Extensive computational experiments are conducted. In the analysis of the results, we compare the models and evaluate the performance of feature selection in hierarchical clustering.

The remainder of this paper is organized as follows. In Section 2, the notation is introduced and the problem is de ned. It is proved that the problem under study is NP-hard and also that di erent lower bounds for the optimal value of the model can be obtained depending on the selected features. In Section 3, a rst mixed integer linear formulation is introduced.

Section 4 is devoted to the study of valid inequalities for the formulation proposed in Section 3.

Three alternative models are developed in Section 5. One of them is the main clue for a novel decomposition approach. Computational results are thoroughly reported in Section 6. Finally, we provide some discussion and conclusions in Section 7.

2 Notation, problem de nition, complexity, lower bounds and general results

Let be the set of features observed for the individuals of a sample. Let be the number of features we aim to select from . Let = ( , ) be the complete undirected graph whose vertices represent the individuals. For every edge = ( , ) ∈ and feature ∈ , let be the distance of edge ∈ according to feature ∈ , that is, the distance between individuals and for feature . Let T be the set of all possible spanning trees. The length of spanning tree is equal to the sum of the distances of its edges.

We de ne the Feature Selection Minimum Spanning Tree problem (FSMST) as follows:

min{ ∈ ∈ : ∈ T , ⊆ , | | = }
Problem FSMST consists thus in determining a spanning tree in graph and selecting features in such a way that the sum of the length of the tree for these features is minimum.

The following example illustrates the problem.

Example 1. In Figure 1, we present an instance of Problem FSMST with four nodes and three features. The three graphs show the costs of the connections for features 1, 2 and 3, respectively.

If is set to 2, the optimal solution consists in selecting features 1 and 2 and the tree containing edges (1,3), (1,4), (2,3), leading to an optimal value of 16.

The following theorem states that the FSMST is NP-hard. The proof of the theorem proceeds by a reduction of the -variable selection problem de ned in [START_REF] Benati | Mixed integer linear programming and heuristic methods for feature selection in clustering[END_REF] and that they show to be NP-hard. Proof. An instance of the recognition version of the -variable selection problem de ned in [START_REF] Benati | Mixed integer linear programming and heuristic methods for feature selection in clustering[END_REF] is given by a set of objects , a set of centers to which the objects must be assigned and a set of features . Further, cost , represents the cost associated to feature for assigning object to center . Finally, the -variable selection problem asks whether there exists a selection of features and an assignment of the objects to centers such that the sum of its costs for all selected features is less than or equal to a given value . Given an instance of the -variable selection problem, one can construct an instance of FSMST as follows. The set of nodes (individuals) is ∪ ∪ { }, where is a dummy node. For each feature the edges cost are de ned as:

• = 0, for all ∈ , • =
, for all ∈ and ∈ .

All other edges costs are equal to an arbitrary large value for all features. These edge costs are chosen large enough to ensure that none of these other edges is ever included in a minimum spanning tree whatever the subset of features considered.

In the same vein, the cost of edges linking the centers to are equal to zero for all features, all edges { , }, for all belonging to any MST, for any feature selection. In consequence there exists a solution to the -variable selection problem with value lower than or equal to a given threshold i FSMST has a solution (ST) with value lower than or equal to .

Next, the following ve remarks establish lower bounds on the objective value of FSMST. In short, two general bounds 1 and 2 and two families of lower bounds for the cases in which a speci c feature is selected, 1 and 2 .

Let us denote by S ( ) the set of the smallest entries of an -dimensional vector and by VS ( ) the value of that sum:

VS ( ) = min { =1 : =1 = , 0 ≤ ≤ 1, = 1, . . . , }.
Moreover, let us denote by MST ( ) and VMST ( ) a minimum spanning tree and its value in with edge cost vector = ( ) ∈ . Finally, represents the cost vector of an edge with one coordinate for each feature = 1, . . . , and represents the cost vector of a feature with one coordinate for each edge ∈ .

Remark 1. The value 1 = VS (VMST ( 1 ), . . . , VMST ( ) is a lower bound on the optimal value of Problem FSMST.

Remark 2. Let us sort by non decreasing order the lengths of the MSTs corresponding to each feature considered individually. From now on, 1 ≤ 2 ≤ . . . ≤ . If feature is chosen and VMST ( ) > , then 1 can be improved and the lower bound is 1 = 1 -+VMST ( ).

Remark 3. The length of a MST with costs = VS ( ) is an lower bound on the optimal value of FSMST, 2 . Explicitly, 2 = VMST ( ), where = ( ) ∈ .

Remark 4. For each edge ∈ , let us sort all the cost by non decreasing order: 1 ≤ 2 , . . . , .

If feature is chosen, the bound on the contribution to the total cost of an edge can be improved:

* = - + , if > , otherwise
and the length of the MST with costs * is a new lower bound 2 on the optimal value of FSMST.

Remark 5. If feature is selected, the lower bound for the problem is

= max{ 1 , 2 }.
The last result in this section states that given two spanning trees of a graph, it is always possible to compute the length of one from the other. The lemma also states the exact formula to apply.

Theorem 2. Let = ( , ) be a graph with edge costs for all ∈ and, for any subgraph of , denote by ( ) the sum of the costs of the edges belonging to . Consider any two spanning trees and of .

i. There exists a one-one mapping : \ → \ such that for each edge ∈ \ , ( ) ∈ \ and belongs to the unique path in linking the end vertices of edge , ii.

( ) = ( ) + ∈ \ ( -( ) ). Proof. First, given that all spanning trees contain | |-1 edges, | \ |= | \ |. Next, let ∈ \ .
Given that is a spanning tree, removing from determines a partition of the vertices into two subsets and is the unique edge of belonging to the so obtained edge cut. Further, there exists a unique path, denoted by ( ) in that connects the end vertices of edge . At least one edge, say ( ), of this path belongs to the cut (otherwise is not connected) and thus cannot belong to . We have,

( ) = ( \ { } ∪ { ( )}) + ( -( ) ).
In addition, \ { } ∪ { ( )} constitutes a tree with one more edge in common with . We can repeat this swapping of edges until all edges of \ have been considered, yielding the desired equation.

In the following, let ( ) be the path in tree that connects the end vertices of edge .

First model

In order to formulate FSMST as a MIO problem, we consider the following two sets of binary decision variables: For each feature ∈ , variable takes value one only when feature is selected. For each edge = ( , ) ∈ , variable is one if edge is in the tree. Finally, let ( ) be the tree determined by a vector .

min

, , ∈ =1

(1)

s.t. =1 = , (2) 
∈ {0, 1}, = 1, . . . , , (3) 
( ) ∈ T , (4) 
∈ {0, 1}, ∈ . ( 5 
)
The goal is to minimize the length of a MST in endowed with edge weights de ned as the sum of distances corresponding to features. Constraints ( 2) and ( 3) ensure that we select features. For each ∈ , we assume that its contribution to the objective function is the sum of the distances corresponding to the selected features. Constraint (4) states that de nes a spanning tree in . This constraint (4) can be replaced by at least ve di erent sets of constraints, [START_REF] Labbé | Computational comparisons of di erent formulations for the stackelberg minimum spanning tree game[END_REF].

In order to linearize the objective which contains the products of variables, a new family of variables (= ) is introduced and the following new set of constraints is added:

≥ + -1, ∈ , = 1, . . . , , (6) 
≤ , ∈ , = 1, . . . , , (7) 
≤ , ∈ , = 1, . . . , , (8) 
≥ 0, ∈ , = 1, . . . , . (9) 
Constraints ( 6)-( 8) describe the Boolean quadratic polytope, see [START_REF] Letchford | A new separation algorithm for the boolean quadric and cut polytopes[END_REF] and [START_REF] Padberg | The boolean quadric polytope: Some characteristics, facets and relatives[END_REF]. In this case, the following equalities can be added to the description of the Boolean polytope or alternatively replace some of them.

Proposition 1. The set of feasible points of the system (2)-( 9) is unchanged if (6) and (7) are replaced by

=1 = , ∈ , (10) 
∈ = (| |-1) , = 1, . . . , . (11) 
Proof. Given a feasible solution ( , , ), let 0 be the subset of with = 1 and let 0 be the subset of features with = 1. From ( 7) and ( 8) it holds that = 0 for all ∉ 0 and for all ∉ 0 . If ∈ 0 , then equality (10) becomes ∈ 0 = and provided that ≤ 1 for all ∈ 0 it only holds if = 1 for all ∈ 0 . Analogously, for a given ∈ 0 equality (11) becomes

∈ 0 = | | -1
and it only holds if = 1 for all ∈ 0 .

If we consider for ( ) the formulation proposed in [START_REF] Martin | Using separation algorithms to generate mixed integer model reformulations[END_REF], the complete mixedinteger linear optimization (MILO) model for the FSMST reads: 2), ( 3), ( 5)

(M 1 ) min , ∈ =1 s.t. (
-(9) ∈ = -1, (12) 
+ = , = ( , ) ∈ , = 1, ..., , , ≠ (13) 
( , ) ∈ :

( = ∧ = )∨ ( = ∧ = ) + =1,..., : ≠ ≤ 1, , = 1, . . . , , ≠ , (14) 
≥ 0, , , = 1, . . . , ,

Given its polynomial number of variables and constraints, it can be solved with o -the-shelf integer solvers.

The following example illustrates the interest in considering constraints (10) and ( 11).

Example 1. (cont.) If = 1 in the instance considered in Example 1, the optimal value for the linear relaxation of M 1 is zero and corresponds with the solution

1 = 2 = 0.5, (1,3) = 1, (1,4) = (2,3) =
(2,4) = (3,4) = 0.5. However, if constraints (10)-( 11) replace constraints (6)-( 7), the optimal value for the linear relaxation is 16 (the integer optimal value) for 1 = 2 = 1, and

(1,3) = (1,4) = (2,3) = 1.
4 Strengthening Formulation M 1 Let * denote the optimal value of Formulation M 1 . In this section several families of inequalities de ning a lower bound on * are proposed. Four of these families state that * is larger then or equal to certain linear combination of the bounds presented in Section 2. Other seven families of valid inequalities use, as coe cients, di erent values of S , VS , MST or VMST .

Valid inequalities based on lower bounds

Proposition 2. Let be any lower bound for the problem ( can be 1 or 2 or any other). Let

⊆ > = { ∈ : > }. Without loss of generality, let assume that < 1 ≤ . . . ≤ | | , Let 0 = . Then, the following inequality is valid. * ≥ + | | =1 ( - -1 ) . ( 16 
)
Proof. Given a solution ( , , , 16) is

) of M 1 , let * = { ∈ : = 1}. If * = ∅,
+ | | =1 ( - -1 ) ≤ + | * | =1 ( * - * -1 ) since for each * ∈ * if * = , then * -1 ≤ -1 . Moreover, + | * | =1 ( * - * -1 ) = * | * |
and by de nition * | * | ≤ * . Hence, inequality ( 16) is again satis ed.

These inequalities can be separated by solving a longest path problem in an acyclic network, which can be done in polynomial time, see [START_REF] Karger | On approximating the longest path in a graph[END_REF], [START_REF] Uehara | E cient algorithms for the longest path problem[END_REF] and [START_REF] Ioannidou | The longest path problem has a polynomial solution on interval graphs[END_REF].

Proposition 3. Let 1 ≤ 2 ≤ . . . ≤ be the lengths of the MSTs obtained when only one feature distance is considered. The following inequalities are valid:

* ≥ 1 + =1 (VMST ( ) -) + , ( 17 
) * ≥ 2 + =1 ( 2 -2 ) + . ( 18 
)
Proof. The validity follows from Remarks 2 and 4 and the fact that, in a feasible solution, the number of selected features is equal to .

Proposition 4. Let ¯ be a MST for the costs , ∈ . Its length is given by 2. The following inequality is valid:

* ≥ 2 + ∈ \ ¯ min ∈ ( ) ( -) + . ( 19 
)
Proof. Let be a solution tree whose value for FSMST is equal to * . We show that it satis es the above inequality. First, we know that * ≥ ( ) = ∈ .

Next, consider an edge ∈ ¯ \ and the partition of the vertices obtained when deleting this edge from ¯ . There exists an edge, say of \ ¯ whose end vertices belong to the di erent sets of the partition. Consider the new tree = \ { } ∪ { } with cost ( ). We have

( ) = ( ) - + ≤ ( ) - + ( ) ,
since belongs to the unique path linking the end vertices of in ¯ and ( ) is the edge of ¯ \ on that path with the highest cost. The tree has one more edge in common with ¯ than . We can apply this exchange of edges until we obtain the MST ¯ , yielding

( ) ≥ 2 + ∈ \ ¯ ( -( ) ),
that is the value of the right hand side of the valid inequality for the tree .

Proposition 4 cannot be generalized to any lower bound, as for instance LB 1 , because in general, there is not a MST whose cost is the lower bound.

Remark 6. Let UB be an upper bound of the problem. If VMST ( ) > , then = 0.

4.2 Valid inequalities based on S , VS , MST or VMST .

Proposition 5. The following inequalities are valid:

* ≥ =1 VMST ( ) , ( 20 
) * ≥ ∈ VS ( ) . (21) 
Further, inequality (20) is stronger than (17).

Proof. For any feasible solution to M 1 , its value = ∈

=1

. The inequalities come for the facts that ∈ ≥ VMST ( ) and =1 ≥ VS( ), respectively.

Next, let be the set of features with smallest VMST ( ), i.e. = S (VMST ( )).

The right hand side of inequality (17) reads:

∈ VMST ( ) + ∈ \ (VMST ( ) -VMST ( )) = ∈ VMST ( ) + ∈ \ VMST ( ) -VMST ( ) ∈ \ = ∈ VMST ( ) + ∈ \ VMST ( ) -VMST ( ) ( - ∈ ) = ∈ (VMST ( ) -VMST ( ) (1 -)) + ∈ \ VMST ( ) ≤ =1 VMST ( ) ,
since VMST ( ) ≤ VMST ( ) for all ∈ .

Proposition 6. The following inequalities are valid.

For every ¯ ∈ :

* ≥ ∈ ¯ + ∈ VMST ( - ¯ ) . ( 22 
)
For every edge ¯ ∈ : * ≥ ( -1)

∈ ¯ + ∈ VS ( -¯ ) . ( 23 
)
Proof. For a given feasible solution to M 1 , let = { ∈ :

= 1} and = { ∈ : = 1}. Its value for M 1 is equal to:

= ∈ ∈ = ∈ ¯ + ∈ ∈ ( - ¯ ) ≥ ∈ ¯ + ∈ VMST ( - ¯ ) .
Similarly,

= ( -1) ∈ ¯ + + ∈ ∈ ( -¯ ) ≥ ( -1) ∈ ¯ + ∈ VS ( -¯ ) .
Proposition 7. Let { ℓ , ℓ ∈ } be a partition of the feature set into | | nonempty subsets and let

{ ℓ }, ℓ ∈ be a subset of | | distinct features. Then, the following inequality is valid. * ≥ ∈ min ℓ ∈ { ℓ } + ℓ ∈ ∈ ℓ VMST ( -ℓ ) . (24) 
Proof. For a given feasible solution to 1 , its value satis es:

= ℓ ∈ ∈ ℓ ∈ ℓ + ℓ ∈ ∈ ℓ ∈ ( -ℓ ) , ≥ ℓ ∈ ∈ min ℓ ∈ { ℓ } ∈ ℓ + ℓ ∈ ∈ ℓ ∈ ( -ℓ ) , ≥ ∈ min ℓ ∈ { ℓ } + ℓ ∈ ∈ ℓ VMST ( -ℓ ) .
Note that the coe cient of variable can be (slightly) improved if there are less than features in the subset ℓ for which ℓ is minimum.

Proposition 8. Let be a subset of features. The following inequality is valid:

* ≥ ∈ ∈ + ∉ min ∈ VMST ( -) . ( 25 
)
Proof. For a given solution , to 1 , let represent the set of selected features, i.e. = { : = 1}. Since | |= | |, we may de ne a one-one mapping, say ( ) that assigns an element of \ to each element of \ so that

∈ ∈ = ∈ ∈ + ∈ \ ∈ ( -( ) )) . Consequently, * ≥ ∈ ∈ + ∉ ∈ ( -( ) )
.

The valid inequality is obtained by noting that

∈ ( -( ) ) ≥ min ∈ \ VMS ( -).
Proposition 9. Let be a spanning tree. The following inequality is valid:

* ≥ ∈ =1 + ∈ \ min ∈ ( ) S ( -) , (26) 
where = ( ) =1 andis thus the di erence of the cost vectors of edges and .

Proof. Let and de ne a feasible solution to 1 . Using Lemma 2, we have:

∈ =1 ≥ ∈ =1 + ∈ \ =1 ( -( ) )
The appropriate lower bound is then obtained by noticing that

=1 ( -( ) ) ≥ S ( -( ) ),
then, replacing ( ) by the edge of ( ) that provides the smallest value for S ( -).

The following example illustrates the last two families of valid inequalities.

Example 1. (cont): For = {1, 2}, cut (25) would read: * ≥ 7 (1,2) + 0 (1,3) + 6 (1,4) + 6 (2,3) + 6 (2,4) + 7 (3,4) +

3 (1,2) + 0 (1,3) + 1 (1,4) + 3 (2,3) + 9 (2,4) + 1 (3,4) + min{VMST ( 3 -1 ), ( 3 -2 )} 3 .
Since VMST ( 3 -1 ) = -1 and VMST ( 3 -2 ) = 5, the cut reads * ≥ 10 (1,2) + 7 (1,4) + 9 (2,3) + 15 (2,4) + 8 (3,4) -3

For this example, the family of valid inequalities (25) has three cuts: one for = {1, 2}, one for = {1, 3} and another for = {2, 3}.

For the spanning tree (1,3), (1,4), (2,3), cut (26) would read: * ≥ (6 + 0 + 6) 1 + (3 + 0 + 1) 2 + (10

+ 1 + 6) 3 + min{ ( (1,2) -(2,3) ), ( (1,2) -(1,3) )} (1,2) + min{ ( (2,4) -(1,3) ), ( (2,4) -(1,4) ), ( (2,4) -(2,3) )} (2,4) + min{ ( (3,4) -(1,3) ), ( (3,4) -(1,4) )} (3,4) ,
leading to * ≥ 12 1 + 4 2 + 17 3 -1 (1,2) + 0 (2,4) + 1 (3,4) .

For this example, the family of valid inequalities (26) has 16 cuts, one for each spanning tree in the graph.

Other valid inequalities

Proposition 10. Let be an arc in the graph. Let

= { ∈ : ∈ MST ( )}. If | | ≥ ,
then the inequalities

+ -1 ≥ ∈ ∀ ⊆ : | | = (27)
are valid inequalities for M 1 .

Proof. If for the selected features there is a MST using , then is in the optimal solution of the problem.

Alternative models and decomposition approach

In this section, three new models for Problem FSMST are proposed. The new models presented in this section have the advantage that they use fewer variables. The model presented in Section 3 uses -variables and -variables to de ne the tree, -variables to deal with the features and -variables to linearize the products of and -variables. The rst two models that we propose in this section do not need the -variables since the feasible region is described without products of variables. The last model in this section only uses -variables which makes it much smaller. In the second part of this section we propose a decomposition algorithm for the formulation with fewer variables.

The following proposition states that a valid formulation for FSMST is obtained by minimizing * over the cardinality constraint for the features, the spanning tree constraints and either inequalities (25) for all subset of features or (26) for all spanning trees. This result confers a special relevance to valid inequalities from Propositions 8 and 9 .

Proposition 11. Let F denote the set of all subsets of features and T denote the set of all spanning trees . Both, models

(M 2 ) min , , s.t. 
(2), ( 3), ( 12) -( 15)

≥ ∈ ∈ + ∉ min ∈ VMST ( -) , ∀ ∈ F and (M 3 ) min , , s.t.
(2), ( 3), ( 12) -( 15)

≥ ∈ =1 + ∈ \ min ∈ ( ) S ( -) , ∈ T
constitute valid formulations for FSMST.

Proof. Since we have an inequality of type ( 26) for each spanning tree and an inequality (25)

for each subset of features, we have in particular those for the optimal spanning tree and for the optimal subset of features, respectively. These inequalities provide the optimal value for FSMST.

The main advantage of the models in the above proposition is that they do not make use of variables . Thus, neither do they need constraints ( 5)-( 9). However, an exponential number of constraints ( 26) or ( 25) are required.

Observing FSMST, one realises that it is composed by two simpler problems: the Feature Selection Problem and the Minimum Spanning Tree Problem. Complete linear description of the convex hull of binary solutions for these two separate problems are well known, and even more, separately they can be solved by using very fast algorithms. However, when we try to solve them together, as problem FSMST, we need to include binary constraints on the variables and, as expected and as will be shown later in the numerical experiments, the problem becomes much harder to solve. Thus, given this particular structure of FSMST, one may think that it is an ideal problem for decomposition. The following theorem proposes a formulation involving only the -variables but an exponential number of constraints whose separation problem amounts to nding a minimum spanning tree with respect to some particular costs.

Theorem 3. The following model

(M 4 ) min , s.t. ≥ VMST ( ∈ ) + ∉ min ∈ VMST ( -) , ∈ F (28) =1 = , ∈ {0, 1}, = 1, . . . , ,
is a valid formulation of FSMST.

Proof. First, given that for all feasible feature set ∈ F and for all feasible vector , i.e.

corresponding to spanning trees, Result:

= = * ( ) ← ∞; ← -∞; ← 0; Ω = {∅};
Choose ¯ = ( ¯ 1 , . . . , ¯ ) a con guration of features;

while > do Do = + 1; Do Ω = Ω ∪ { };
Find a MST, , for the complete graph with arc costs = =1 ¯ ;

If = ∈ =1 ¯ < , then do = ; Find ¯ = min : ¯ -1 =0 ( -) if ¯ = 0, 0 if ¯ = 1 Solve: min , (Master Problem) s.t. =1 = , ∈ {0, 1}, = 1, . . . , , ≥ ∈ =1 + =1 ¯ , ∈ Ω Do ¯ = * and = * ;
end Algorithm 1: Decomposition Algorithm with (28) 20), ( 21) or ( 27).

Even though adding valid inequalities ( 22) or ( 23) do not report the best time or gap in any case, there exist an instance for which the execution time is improved with respect to 1 1 . In Table 2,1 1 +( 16) is the only valid inequality not reporting any improvement; however, this is not the case in Table (3).

When we consider as the base model 2 1 , Table 3, we can see that once more, incorporating (18) to 2 1 results in the smallest gaps. Again, in the last instance of size = 20, = 12, = 5, the gap is reduced in this case from 0.21 to 0.06. A similar behaviour that in Table 2 can be observed with respect to times: in 6 out of the 15 instances the best times are reported for 2 1 , in other 5 instances the best times are achieved for 2 1 +( 19), and the remaining by adding either ( 18) or ( 21). Unlike Table 2, in Table 3, we can observe that adding (16) to 2 1 reduces almost all the gaps, and valid inequalities ( 22) and ( 23) do not imply any improvement, in fact, for the latter, few instances (5 out of 15) are solved within the time limit.

If we compare the best gaps in Table 2 versus the best gaps in Table 3, we can assert that the smallest gaps are obtained for 1 1 + (18). If we examine times in in Table 2 versus times in Table 3, we can see that for the rst type of instances, = 20, = 12, = 5, times are very similar.

However, in medium size instances, = 40, = 10, = 5, 3 out of the 5 instances are solved much faster by using 2 1 + (19), the remaining two by using 1 1 + (19). The smallest execution times to solve the last group of instances, = 50, = 9, = 4, are all in Table 2. 16) We now analyze the performance of the decomposition algorithm. We show in Table 3, for each instance, the smallest (best) resolution times of Tables 1 and2, the resolution times of Algorithm 1, and the total times of Algorithm 1 reinforced (with all developed valid inequalities and remarks that involve only variables). In particular, Algorithm 1 reinforced is Algorithm 1 + ( 16) + ( 18) + (20) + Remark 6. Furthermore, we include in this table the total number of cuts of type (28) required in 4 , and how many of these cuts, Algorithm 1 and Algorithm 1 reinforced required to reach the optimal solution, that is, to converge. We start by comparing resolution times. We can observe in Table 4 that instances with = 20, = 12, = 5, are solved very fast by some of the formulations, since the number of variables in this case are moderate; however, the two versions of the algorithm require some more time to get the optimal since the number of cuts that need to be computed and included is high, 792 for Algorithm 1 and between 66 and 249 for Algorithm 1 reinforced, depending on the instance. Nevertheless, for the rest of the instances, solving the problems by using any of the two versions of the algorithm is always faster than solving it using the formulations 1 1 or 2 1 . The di erences between times are very high, for instance, for the rst instance of size = 50, = 9, = 4, the fastest this is solved using the formulations is in 645.48 seconds, meanwhile using Algorithm 1 it is solved in 67.71 seconds and using Algorithm 1 reinforced in 7.2 seconds. If we compare Algorithm 1 and Algorithm 1 reinforced, we can see that the convergence of Algorithm 1 is always attained when all the cuts are inserted, which is equivalent to nding the solution by enumeration; however, the number of cuts that need to be inserted in Algorithm 1 reinforced to converge is signi cantly smaller: in instances of size = 40, = 10, = 5, it goes from 55 to 62, out of 252, and in instances of size = 50, = 9, = 4, it goes from 15 to 25, out of 126; which is translated in a huge reduction of time. Again, we highlight in blue the smallest resolution times. Finally, we show in Table 5, the performance of Algorithm 1 reinforced when solving bigger instances that cannot be solved by using any of the formulations (within the time limit of 1800 seconds). We can see that instances with 200 individuals, 11 di erent features and = 6, are solved in approximately 350 seconds, and only around 80 of the 462 di erent cuts must be included to reach an optimal solution. When we increase the number of features to = 15 and = 7, the number of di erent cuts increases to 6435, nevertheless, the algorithm nds an optimal solution by including approximately 45 of them, which lasts around 250 seconds. The bigger instances we consider, 400 individuals, 15 features and = 7, are harder to solve, all of them require more than 1800 seconds, even though the number of cuts that have to be included is not so high, between 67 and 71, but the mixed integer Master Problem that has to be solved 71 times becomes harder after each iteration. Note that the bigger instances we are able to solve with the formulations are of size = 50, = 9, = 4, and with Algorithm 1 reinforced we increased this size to = 400, = 15, = 7.

Instances 1 1 1 1 +(
1 1 +(18) 1 1 +(19) 1 1 +(27) 1 1 +(20) 1 1 +(21) 1 1 +(22) 1 1 +(23) n K Gap Time Gap Cuts
We show in Figure 2 the convergence of one of these instances of size = 400, = 15, = 7, that is, the lower and upper bound in each iteration. We can see that the upper bound reaches very fast the optimal value, but it takes until 69 iterations to increase the lower bound until such value. We repeatedly observed this behaviour in some of the instances: more iterations are needed to increase the lower bound until the optimal value than to decrease the upper bound. 

Feature selection in MST insights

In this section, we analyze the quality of the obtained solution. We do so by checking the similarity between clusters de ned when all the features are considered and clusters when only the best features, according to our model, are taken into account. Furthermore, we check if the clustering produced when choosing random features is similar to the clustering obtained when the best features are chosen; that is, we compare if selecting random features reports similar results to selecting features according to our model, in such case, applying FSMST would be useless.

To conduct this comparison, following [START_REF] Questier | Feature selection for hierarchical clustering[END_REF], we consider the Wallace measure, [START_REF] Wallace | A method for comparing two hierarchical clusterings: comment[END_REF], to quantitatively compare two clustering results of the same dataset. This is a standard method for comparing two hierarchical clusterings. Given two clusterings and , the Wallace measure provides the probability that a randomly chosen pair of objects is within the same class in one clustering , given that it is in the same class in clustering . If we denote by the number of objects classi ed in group of partition and in ℎ of partition , and by . = =1,..., , the Wallace measure can be de ned as:

= =1 =1 2 

=1

.

2

.

We show, in Figures 3 and4, a graphic with the Wallace measure values, y-axis, when we compare the clustering for di erent numbers of groups, x-axis, when all features are selected versus selecting only . That is, we show how similar the clusters created using the FSMST model are to the clusters created accounting for all the features. We show such results for an instance with = 50 and = 9 and = 2, 4, 6, 8 in Figure 3, and in an instance with = 200 and = 15 and = 3, 7, 12 in Figure 4. We can observe that for smaller number of groups, the clusters generated for the FSMST for di erent -values are quite similar to those generated by using all the features. For example, in Figure 4, for most of the values of , until around 45 groups, the probability that two individuals that are in the same group when all the features are considered remain in the same group when only are selected, according to our model, is higher than 0.5, which implies that the groups are rather similar. Even for = 3, the case in which fewer features are accounted to create the groups, until around 40 groups, this probability is above 0.5.

A similar behavour can be seen in Figure 3. When the number of features selected, , increases, we can observe that the clusters determined by our model tend be more similar to those created for all the features.The lines for the di erent values of are crossed because the grouping of a population in a given number of clusters does not have to be followed by the same variables as the grouping for another number of clusters. It is even possible that the best way to group into clusters uses totally di erent variables than the classi cation of the same population into clusters. For example, the Wallace values for = 12 are always above the others in Figure 4, but this is not the case for = 8 in Figure 3.

In Figures 5 and6, we show, for the same instances than before, the comparison of clusters created when random features are selected with the clusters generated when using the FSMST model. We can observe that the clusters are, in general, very di erent, in fact, we can observe how the Wallace measure decreases to less than 0.5 very quickly, for most of the values. This measure is below 0.5 for all thefor more than 8 groups for the instance with = 50 and for more than 18 groups for the instance with = 200. These results highlight the utility of reducing the selection of features using the proposed approach. 

Conclusions

In this work, we proposed a framework for selecting features of a data set with the goal of obtaining a dendrogram using the single linkage method, that is, a minimum spanning tree, with the minimum possible total costs. Such a dendrogram/MST is also determined within the proposed framework.

We developed di erent formulations. For the rst one, we proposed several valid inequalities which result in a reduction of the resolution times and also of the integrality gap. For the rest, we designed a decomposition algorithm reinforced with valid inequalities, which exploits the structure of the involved problems: feature selection and MST. The latest formulation provided the fastest resolution times for most of the studied instances.

We conducted a numerical study to test the proposed formulations, valid inequalities and decomposition algorithm, and to get insights about the designed framework. This study revealed that the incorporation of feature selection to the MST model allows to maintain a higher percentage of original information and relationships; this percentage decreases when the features are selected randomly.

The study of more general objective functions and the incorporation of features selection in other hierarchical clustering methods will be the topic of forthcoming works.

Theorem 1 .Figure 1 :

 11 Figure 1: Small instance with | | = 4 and = 3.

  then inequality (16) trivially holds. Otherwise, let * = { * 1 , . . . , * | * | } and * 0 = . The right hand side of inequality (

  Hence M 4 constitutes a relaxation of M 2 and * ( M 4 ) ≤ * ( M 2 ).
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 3 Figure 3: Comparison of clustering with reduced features set, using FSMST, vs all features in terms of Wallace measure (y-axis), for di erent number of groups (x-axis) and di erent values, for an instance with = 50 and = 9.
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 4 Figure 4: Comparison of clustering with reduced features set, using FSMST, vs all features in terms of Wallace measure (y-axis), for di erent number of groups (x-axis) and di erent values, for an instance with = 200 and = 15.

Figure 5 :

 5 Figure 5: Comparison of clustering with random features set vs set determined by FSMST, in terms of Wallace measure (y-axis), for di erent number of groups (x-axis) and di erent values, for an instance with = 50 and = 9.
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 6 Figure 6: Comparison of clustering with random features set vs set determined by FSMST, in terms of Wallace measure (y-axis), for di erent number of groups (x-axis) and di erent values, for an instance with = 200 and = 15.

Table 2 :

 2 Numerical comparison of Formulation 1 1 strengthened with di erent valid inequalities

	Time Gap Time Gap Time Gap Cuts Time Gap Time Gap Time Gap Time Gap Time	2 17.55 0.08 17.34 0.14 15.34 0.14 2 14.04 0.14 14.46 0.14 16.6 0.14 14.89 0.14 19.97	2 15.52 0.07 13.6 0.13 15.23 0.13 1 11.37 0.13 10.07 0.13 13.04 0.13 12.37 0.13 13.58	2 14.17 0.06 8.73 0.12 11.17 0.12 0 9.49 0.12 8.89 0.12 11.55 0.12 10.77 0.12 13.54	2 16.76 0.07 13.14 0.13 13.35 0.13 2 12.38 0.13 11.66 0.13 12.0 0.13 13.38 0.13 14.53	2 16.35 0.05 14.89 0.11 14.57 0.11 0 12.81 0.11 14.03 0.11 13.9 0.11 15.48 0.11 19.1	2 363.41 0.06 731.16 0.11 389.01 0.11 0 317.09 0.11 410.21 0.11 385.46 0.11 563.84 0.11 637.59	2 505.04 0.05 554.78 0.09 440.72 0.09 0 418.45 0.09 411.39 0.09 423.32 0.09 723.3 0.09 734.31	2 761.91 0.07 688.2 0.1 420.83 0.1 0 517.98 0.1 497.57 0.1 502.98 0.1 894.55 0.1 1009.84	2 883.37 0.07 728.09 0.12 376.99 0.12 0 497.09 0.12 575.21 0.12 582.45 0.12 722.21 0.12 747.4	2 783.59 0.08 866.05 0.11 291.37 0.11 0 406.8 0.11 433.8 0.11 494.09 0.11 557.8 0.11 655.54	2 932.44 0.05 1242.59 0.08 974.53 0.08 0 686.52 0.08 800.03 0.08 765.2 0.08 1370.72 0.08 875.86	2 766.13 0.07 1201.78 0.09 522.73 0.09 0 688.53 0.09 697.96 0.09 991.86 0.09 1517.92 0.09 974.53	2 583.48 0.05 696.03 0.07 577.57 0.07 1 571.93 0.07 607.21 0.07 618.85 0.07 708.62 0.07 668.41	2 1151.62 0.05 982.05 0.08 838.04 0.08 0 1214.72 0.08 1093.7 0.08 957.11 0.08 1298.12 0.08 1578.78	2 824.48 0.06 1501.15 0.08 736.03 0.08 0 796.79 0.08 697.28 0.08 579.15 0.08 822.21 0.08 860.91
		20 12 5 0.14 11.96 0.14	20 12 5 0.13 14.08 0.13	20 12 5 0.12 9.58 0.12	20 12 5 0.13 11.16 0.13	20 12 5 0.11 13.91 0.11	40 10 5 0.11 338.49 0.11	40 10 5 0.09 385.51 0.09	40 10 5 0.1 508.19 0.1	40 10 5 0.12 490.47 0.12	40 10 5 0.11 397.62 0.11	50 9 4 0.08 645.48 0.08	50 9 4 0.09 669.77 0.09	50 9 4 0.07 366.13 0.07	50 9 4 0.08 1199.51 0.08	50 9 4 0.08 777.22 0.08

Table 3 :

 3 Numerical comparison of Formulation 2 1 strengthened with di erent valid inequalities Instances Best Time Total Cuts Algorithm 1 Alg. 1 reinforced

	1 1 +(16) 2 2 1 +(18) 2 1 +(19) 2 1 +(27) 2 1 +(20) 2 1 +(21) 2 1 +(22) 2 1 +(23)	n K Gap Time Gap Cuts Time Gap Time Gap Time Gap Cuts Time Gap Time Gap Time Gap Time Gap Time	20 12 5 0.23 13.87 0.21 3 87.3 0.09 23.93 0.23 15.61 0.23 2 14.33 0.23 12.62 0.23 13.52 0.23 18.8 0.23 102.61	20 12 5 0.22 10.09 0.21 3 74.96 0.09 11.45 0.22 12.77 0.22 1 13.05 0.22 13.75 0.22 10.14 0.22 14.18 0.22 79.87	20 12 5 0.19 8.1 0.18 3 67.74 0.09 13.65 0.19 8.79 0.19 0 8.93 0.19 10.27 0.19 8.73 0.19 14.25 0.19 88.51	20 12 5 0.25 10.03 0.23 3 98.38 0.09 9.98 0.25 10.87 0.25 2 12.81 0.25 11.69 0.25 11.11 0.25 14.27 0.25 92.63	20 12 5 0.21 11.71 0.19 3 328.67 0.06 15.66 0.21 12.04 0.21 0 13.92 0.21 13.42 0.21 12.99 0.21 15.47 0.21 78.74	40 10 5 0.18 174.1 0.16 3 TL 0.07 647.79 0.18 147.02 0.18 0 160.03 0.18 227.86 0.18 519.98 0.18 187.87 0.18 TL	40 10 5 0.17 156.13 0.16 3 TL 0.07 177.18 0.17 104.48 0.17 0 133.65 0.17 154.48 0.17 96.98 0.17 175.4 0.17 TL	40 10 5 0.17 140.63 0.16 4 TL 0.08 530.11 0.17 124.81 0.17 0 127.48 0.17 584.11 0.17 478.13 0.17 639.31 0.17 TL	40 10 5 0.21 591.7 0.19 3 TL 0.08 682.25 0.21 572.51 0.21 0 606.35 0.21 739.15 0.21 549.96 0.21 854.04 0.21 TL	40 10 5 0.18 527.72 0.17 3 696.02 0.08 764.8 0.18 463.98 0.18 0 538.07 0.18 598.29 0.18 552.1 0.18 790.93 0.18 TL	50 9 4 0.17 1258.83 0.16 3 TL 0.08 1710.35 0.17 1276.07 0.17 0 1445.02 0.17 1694.41 0.17 1432.76 0.17 1399.83 0.17 TL	50 9 4 0.18 TL 0.18 3 TL 0.07 TL 0.18 TL 0.18 0 TL 0.18 TL 0.18 1387.15 0.18 1730.3 0.18 TL	50 9 4 0.17 1303.81 0.16 3 TL 0.07 1469.83 0.17 1484.08 0.17 1 1420.25 0.17 1743.8 0.17 1330.57 0.17 TL 0.17 TL	50 9 4 0.19 1293.96 0.18 3 TL 0.07 1459.61 0.19 1416.6 0.19 0 1270.52 0.19 1638.27 0.19 1329.16 0.19 TL 0.19 TL	50 9 4 0.15 1451.73 0.14 3 TL 0.08 1210.57 0.15 1527.09 0.15 0 1458.55 0.15 1555.22 0.15 1130.98 0.15 TL 0.15 TL
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Next, consider an optimal solution ( * , * ) to M 4 and let * be the set of features such that * = 1. We have, VMST ( ∈ * ) ≤ * (M 4 ) ≤ * (M 2 ) ≤ VMST ( ∈ * ), where the rst inequality is obtained by using inequality (28) for = * and the third one comes from the fact that * and the corresponding minimum spanning tree constitute a feasible solution to M 2 with value VMST ( ∈ * ).

The idea of the Decomposition Algorithm is to solve at each iteration a restricted integer master problem that involves inequality (28) for only a subfamily, say F , of feature sets. If its optimal solution ( * , * ) satis es inequality (28) for the set * of features de ned by * then, following the same reasoning as in the proof of Theorem 3, the algorithm terminates and the optimal solution has been found. Otherwise, inequality (28) for set * is added to the restricted master, upper and lower bounds are updated and the algorithm proceeds to the next iteration.

Given that a cut corresponding to a di erent feature subset is added at each iteration, the algorithm terminates in a nite number of iterations. The description of our solution method is presented in Algorithm 1.

The Master Problem in Algorithm 1 can be reinforced by including all the previously developed valid inequalities and remarks that involve only variables (( 16), ( 17), ( 18), (20) and Remark 6). We will call this reinforcement of the algorithm Algorithm 1 reinforced. Further, min ∈ VMST ( -) can be e ciently computed by using Kruskal and sorting algorithms.

Computational results

This section is devoted to present the numerical results obtained in a computational experiment conducted to compare the performance of the di erent formulations, valid inequalities and algorithm (Sect. 6.1), and to analyze the behaviour of the feature selection in hierarchical clustering minimizing the total size of the tree (Sect. 6.2).

In order to conduct the numerical study, we generated instances of di erent sizes. We rst xed the number of individuals ( ), features ( ) and features to select ( ). The di erent combinations chosen for these parameters along the study are shown in the rst three columns of each table reporting results. In particular, ∈ {20, 40, 50, 200, 400}, ∈ {9, 10, 11, 12, 15} and ∈ {4, 5, 6, 7}. Once these parameters xed, to create di erent random instances, we generated random costs by using normal and uniform distributions (one for each feature). Values were later normalized. For each combination of parameters , and , ve di erent instances were generated.

The computational experiment was carried out on a personal computer with Intel R Core i7-1065G7, 1.30GHz and 1.50GHz with 16 GB RAM. The optimization problems were solved exactly by using Gurobi Version: 9.1.2.

Formulations, valid inequalities and algorithm comparison

When stating the rst model, that is, M 1 , we proved in Proposition 1 that di erent combinations of constraints lead to the same feasible region. We rst compare, in terms of gap and resolution time, the performance of the following three constraints combinations:

• 1 .

• 1 1 , which is 1 plus ( 10) and ( 11).

• 2 1 , which is 1 removing ( 6) and ( 7), and adding ( 10) and ( 11).

Table 1 reports the results of this comparison. To calculate the gap, we compute the di erence between the optimal value of the mixed integer model and the optimal value of the linear relaxation, and divide it by the optimal value of the mixed integer model.

We can observe in Table 1 that there is a clearly winner combination with respect to the gap, 1 1 . The gap is always smaller, that is, the optimal value of the linear relaxation is always closer to optimal value of Problem FSMST when 1 contains constraints ( 10) and ( 11). The optimal value of the linear relaxation of 1 is always zero giving a gap equal to 1, hence, this is always the worst possible combination. In 2 1 , the gap is always higher than 1 1 , but much smaller than 1; for example, for the rst instance type of the table, with = 20, = 12 and = 5, the gap for 1 1 is 0.14 meanwhile for 2 1 is 0.23. If we consider time, there is again an obvious loser combination, 1 ; however, depending on the instance type, 1 1 or 2 1 perform better. For example, for the last instance with = 40, = 10, = 5, the average time required to solve the problem was 397.62 seconds for 1 1 and 645.36 for 2 1 ; meanwhile for the third instance of the same combination of parameters, 1 1 solved the problem to optimality in 385.51 seconds and 2 1 in 150.9 seconds. Therefore, 1 1 and 2 1 seem both reasonable combinations to model FSMST. We next compare the performance of the di erent proposed valid inequalities in 1 1 , in Table 2, and in 2 1 , in Table 3.

In Tables 2 and3, we show the resulting gap and resolution time when each valid inequality is added to formulation 1 1 and 2 1 , respectively. The reason for not including in the Tables 2 and 3 some non-dominated valid inequalities is that they were useless or very time consuming. We also considered adding combinations of valid inequalities to the models, however, few signi cant changes were observed. We highlight in blue color the best time and gap for each type of instances. We also emphasize in green color the values (time or gap) that despite not being the best ones for the corresponding instance type, improve the value (time or gap) obtained for the model without including such additional valid inequality.

We can observe in Table 2 that valid inequality (18) added to 1 1 reports the smallest gaps for all the instances, for example, for the last instance of size = 20, = 12, = 5, the gap is reduced from 0.11 to 0.05. By contrast, there is not a valid inequality that leads to the smaller times for all the instances. In 5 out of the 15 considered instances, 1 1 without any additional valid inequality is faster. In other 5 instances, 1 1 + (19) is the fastest; for example, in the forth instance of size = 50, = 9, = 4, the execution time is reduced from 1199.51 seconds to