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. Introduction 

Diffusion MRI (dMRI) tractography allows us to image brain path-
ays in vivo and non-invasively, and is thus a useful tool in a va-

iety of research and clinical settings. However, it relies on indirect
easurements of axonal orientations extracted from the dMRI signal,
hich can lead to errors in the reconstructed pathways. Possible sources
f these errors, as identified by early studies, included uncertainty
n the signal due to imaging noise ( Jones, 2003 ) and crossing fibers
 Tuch et al., 2003 ). These issues motivated the effort to improve the
ignal-to-noise ratio (SNR), as well as the spatial and angular resolution
f dMRI. The Human Connectome Project (HCP) sought to address these
eeds by developing scanners with ultra-high gradients, which allowed
igher b-values to be acquired without sacrificing SNR, and accelerated
MRI sequences, which enabled higher angular and spatial resolution
ith shorter acquisition times ( Harms et al., 2018 ; Setsompop et al.,
013 ; Sotiropoulos et al., 2013 ; Van Essen et al., 2013 ). These devel-
pments made multi-shell dMRI data prevalent. In parallel, orientation
econstruction methods were adapted to make better use of such data
 Aganj et al., 2010 ; Canales-Rodríguez et al., 2009 ; Christiaens et al.,
015 ; Jbabdi et al., 2012 ; Jeurissen et al., 2014 ). 

These advances in data acquisition and analysis improved our ability
o resolve crossing fibers within a voxel ( Fan et al., 2014 ; Jones et al.,
018 ) and allowed us to reconstruct white-matter circuitry in greater
etail than previously possible ( Edlow et al., 2016 ; Maffei et al., 2018 ).
owever, it is unclear which analysis methods maximize the anatomic
ccuracy of the pathways that can be reconstructed from these state-
f-the-art acquisition protocols. Given the large amounts of HCP-style,
ulti-shell data that are now publicly available ( Bookheimer et al.,
019 ; Casey et al., 2018 ; Harms et al., 2018 ; Van Essen et al., 2013 ),
nd the plethora of methods for pre-processing, orientation reconstruc-
ion, and tractography that can be applied to these data, it is of critical
mportance to compare these methods with respect to objective metrics
f anatomic accuracy. 

Anatomic tracing in non-human primates (NHPs) can be used to as-
ess the accuracy of tractography in the brain ( Yendiki et al., 2021 ). It
llows us to reconstruct the complete trajectories of axon bundles from a
racer injection site to their destinations throughout the brain. The ma-
ority of previous studies that compared dMRI tractography to anatomic
racing were limited to single-shell dMRI data ( Azadbakht et al., 2015 ;
auguet et al., 2007 ; Gao et al., 2013 ; Schilling et al., 2019a ; Schilling
t al., 2019b ; Thomas et al., 2014 ; van den Heuvel et al., 2015 ). Fur-
hermore, the majority of such studies only considered the end points
f the fiber bundles, and not their complete trajectory ( Ambrosen et al.,
020 ; Azadbakht et al., 2015 ; Donahue et al., 2016 ; Girard et al., 2020 ;
agmann et al., 2008 ; van den Heuvel et al., 2015 ). That is because
2 
in pathways reconstructed by diffusion MRI (dMRI) tractography have received

e technical advances spearheaded by the Human Connectome Project (HCP)

in dMRI data quality, it remains unclear how these data should be analyzed

cy. Over a period of two years, we have engaged the dMRI community in the

o answer this question by leveraging a unique dataset. Macaque brains that have

d ex vivo dMRI at high spatial and angular resolution allow a comprehensive,

graphy accuracy on state-of-the-art dMRI acquisition schemes. We find that,

ully optimized, the HCP scheme can achieve similar accuracy as a more time-

e. Importantly, we show that simple pre- and post-processing strategies can

ess of many tractography methods. Finally, we find that fiber configurations that

 branching) are the most challenging for tractography. The IronTract Challenge

t can serve as a valuable validation tool for both users and developers of dMRI

hey did not have dMRI and tracer data from the same brains, hence
hey relied on connectivity matrices from existing tracer databases. 

The IronTract Challenge is the first open tractography challenge to be
onducted on high-resolution, densely sampled brain dMRI data. This al-
owed us to evaluate tractography accuracy for two widely adopted sam-
ling schemes: multi-shell and Cartesian-grid. We leveraged a unique
ollection of NHP brains, where both anatomic tracer injections and ex
ivo dMRI had been performed ( Grisot et al., 2021 ; Safadi et al., 2018 ;
ang et al., 2019 ). The availability of dMRI and tracer data in the same
rains allowed us to evaluate the accuracy of tractography not only at
he end points of the axon bundles but along their trajectory in the white
atter. This is the only way to localize exactly where tractography al-

orithms go wrong, which is a necessary step towards determining why
hey go wrong, and therefore how to improve them. 

The IronTract Challenge also differed from previous tractography
hallenges in terms of its design. Participants submitted results with
 wide range of tractography thresholds. When methods are com-
ared only at their default thresholds ( e.g., ( Maier-Hein et al., 2017 ;
chilling et al., 2019a ; Thomas et al., 2014 )), they differ in terms of
oth sensitivity and specificity, and it is impossible to disentangle the
ffect of the threshold and the effect of the algorithm. Our design al-
owed us to circumvent this issue and to compare algorithms in terms
f their sensitivity at the same level of specificity. 

A previous validation study used data only from the training case of
his challenge and performed a systematic comparison of a small num-
er of q-space sampling, orientation reconstruction, and tractography
ethods, in all their permutations ( Grisot et al., 2021 ). The IronTract
hallenge expands the scope of our prior validation studies in two major
ays. First, challenge participants chose a much wider range of state-
f-the-art orientation reconstruction and tractography methods. Second,
he addition of the validation case, which involved an injection in a dif-
erent anatomical location and fibers following very different trajecto-
ies than the training case, allowed us to compare the robustness of the
ethods to the location of the seed region. 

The IronTract Challenge was administered in two rounds
 https://irontract.mgh.harvard.edu ). The first round was organized in
he context of the 2019 international conference on Medical Image
omputing and Computer-Assisted Intervention. Preliminary results

rom the first and second rounds were presented, respectively, at
he 2020 and 2021 annual meetings of the International Society for
agnetic Resonance in Medicine ( Maffei et al., 2021 , 2020 ). In the
rst round, two teams outperformed all others, achieving both high
ccuracy and robustness to the location of the seed region. This moti-
ated the second round, where all participants revisited their analyses,
eplacing their pre- and post-processing steps with those of the two
igh-performing teams. This allowed us to investigate the extent to
hich performance was dependent on the pre- and post-processing vs.

he orientation reconstruction and tractography methods. The outcomes

https://irontract.mgh.harvard.edu
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Fig. 1. Overview of the IronTract Challenge . Data from two monkey brains, one with an injection in the anterior frontal cortex and one with an injection in the vlPFC, 

served as the training and validation case, respectively. Ex vivo dMRI data were acquired for both brains on a Cartesian grid (515 directions, 𝑏𝑚𝑎𝑥 = 40 , 000 𝑠 ∕ 𝑚 𝑚 

2 ) 

and resampled via NUFFT on the two shells of the HCP lifespan acquisition scheme, with b-values adjusted for ex vivo dMRI (93 directions with 𝑏 = 6000 𝑠 ∕ 𝑚 𝑚 

2 , 

92 directions with 𝑏 = 12 , 000 𝑠 ∕ 𝑚 𝑚 

2 ). Participants downloaded data and uploaded results on the QMENTA platform. For the training case, they received a score, 

allowing them to optimize their tractography pipeline. The optimized pipelines were then applied to the validation case for the final scores. 
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f this effort, as detailed below, include (i) practical recommendations
or users of HCP-style, multi-shell dMRI data, who are interested in
ethods for analyzing these data that maximize anatomical accuracy,

nd (ii) insights on the fundamental failure modes of tractography
or method developers, who are interested in potential avenues for
mproving these methods. 

. Methods 

.1. Outline of the challenge 

Both rounds of the IronTract challenge followed the outline shown
n Fig. 1 . In vivo tracer injections and ex vivo dMRI scanning were per-
ormed on two macaque brains (see 2.2 Data description ). The dMRI
ata, acquired on a Cartesian grid, were resampled onto the two-shell
f the HCP acquisition protocol ( Harms et al., 2018 ). We will refer
o these datasets as diffusion spectrum imaging ( DSI ) and HCP re-
pectively. The organizing team uploaded the data to the QMENTA
latform ( https://qmenta.com/irontract-challenge/ ) and the challenge
eams could download them along with the tracer injection sites in the
MRI space. Each team analyzed the data with methods of their choice
see 2.3 Analysis of dMRI data by challenge participants ). In round 1,
his included image pre-processing, orientation reconstruction, tractog-
aphy, and tractogram post-processing. In round 2, the pre- and post-
rocessing steps were standardized across all teams. Each team pro-
uced tractograms with a range of thresholds and uploaded them to the
MENTA platform. A score was computed on the fly by comparing the

ractograms to the tracer data (see 2.4 ROC analysis ). For the training
ase, participants were shown their score and were allowed to repeat
ata analysis and upload of results. Thus, participants tuned their anal-
sis pipelines to maximize their score on the training case. Finally, they
pplied the optimized pipeline to the data from the validation case. The
rganizing team computed AUC scores on the validation case and used
hem for the final ranking of the challenge teams. 

.2. Data description 

The training and validation cases used in this challenge are part
f a previously described dataset that consists of in vivo tracing and
3 
igh-resolution ex vivo dMRI acquired in the same macaque brains
 Grisot et al., 2021 ; Safadi et al., 2018 ; Tang et al., 2019 ). 

.2.1. Tracer injections 
The training and validation datasets came from two different male

hesus macaques. The former received an injection of the antero-
rade/bidirectional tracer Lucifer Yellow in the anterior frontal cor-
ex (frontal pole). The latter received an injection of the antero-
rade/bidirectional tracer Fluorescein in the ventrolateral prefrontal
ortex (vlPFC). Surgery and tissue preparation were performed at the
niversity of Rochester Medical Center. Details of these procedures were
escribed previously ( Haber, 1988 ; Lehman et al., 2011 ; Safadi et al.,
018 ). Briefly, each monkey received an injection of a bidirectional
racer conjugated with dextran amine (40–50 nl, 10% in 0.1 M phos-
hate buffer, pH 7.4; Invitrogen). Twelve days after the injection, ani-
als were perfused and their brains were postfixed overnight and cry-

protected in increasing gradients of sucrose (10, 20, and 30%). All ex-
eriments were performed in accordance with the Institute of Labora-
ory Animal Resources Guide for the Care and Use of Laboratory Animals
nd approved by the University of Rochester Committee on Animal Re-
ources. 

.2.2. dMRI data acquisition 
After fixation, the brains were scanned in a small-bore 4.7T Bruker

ioSpin scanner (maximum gradient strength 480 mT/m) using a 3D
PI sequence with the following parameters: 𝑇 𝑅 = 750 𝑚𝑠 , 𝑇 𝐸 =
3 𝑚𝑠 , 𝛿 = 15 𝑚𝑠 , Δ = 19 𝑚𝑠 , maximum 𝑏 = 40 , 000 𝑠𝑠 ∕ 𝑚 𝑚 

2 , matrix
ize 96 × 96 × 112 , 0 . 7 𝑚𝑚 isotropic resolution. Brains were submerged
n liquid Fomblin to eliminate susceptibility artifacts. We acquired
 non-diffusion weighted ( 𝑏 = 0 𝑠 ∕ 𝑚 𝑚 

2 ) volume and 514 diffusion-
eighted volumes corresponding to a Cartesian lattice in q-space. The

otal acquisition time was 48 h. We refer to this q-space sampling scheme
ata as DSI. 

We resampled the data onto q-shells, following a methodology that
as previously described and validated ( Jones et al., 2021 , 2020 ). It

nvolves approximating data points distributed on spheres in q-space
rom data points distributed on a Cartesian grid, using a fast implemen-
ation of the non-uniform fast Fourier transform (NUFFT) ( Fessler and
utton, 2003 ). We followed this procedure to generate data on the two q-
hells of the lifespan and disease HCP acquisition protocol ( Harms et al.,

https://qmenta.com/irontract-challenge/
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(  
018 ). This in vivo protocol includes 93 directions with 𝑏 = 1 , 500 𝑠 ∕ 𝑚 𝑚 

2 

nd 92 directions with 3 , 000 𝑠 ∕ 𝑚 𝑚 

2 . We multiplied these b-values by the
x factor required to achieve comparable diffusion contrast ex vivo as in
ivo ( Dyrby et al., 2011 ), i.e., we used 𝑏 = 6000 and 12000 𝑠 ∕ 𝑚 𝑚 

2 . We
efer to this q-space sampling scheme as HCP. 

To assess the SNR, we first fit the tensor model to the data and then
elineated a mask encompassing the CC by selecting the highly red vox-
ls in the color-coded fractional anisotropy (FA) map. We extracted the
ean signal from this mask and from a mask outside the brain to capture

he noise. We computed the SNR as the mean (signal)/standard deviation
noise) ( Jones et al., 2013 ) for the b = 0 image (training: 63.56, valida-
ion: 51.16) and a for a b = 40,000 s/mm 

2 image (training: 16.42, val-
dation: 12.76). The computation was done in DIPY ( Garyfallidis et al.,
014 ). 

.2.3. Histological processing 
Following whole-brain ex vivo dMRI, the brains were returned to

he University of Rochester for histological processing. They were sec-
ioned in 50 𝜇m thick coronal slices on a freezing microtome into 0.1
 phosphate buffer or cryoprotectant solution as previously described

 Haber et al., 2000 ). An undistorted photo of the blockface was taken be-
ore cutting for use in image registration (See 2.2.4 Registration of tracer
nd dMRI data ). Immunocytochemistry was then performed on every
th slice to visualize the transported tracer, resulting in an inter-slice
esolution of 400 μm. Additional details on the histological procedures
an be found elsewhere ( Haber et al., 2006 ; Haynes and Haber, 2013 ;
ehman et al., 2011 ). Labeled fiber bundles were outlined under dark-
eld illumination with a 4.0 or 6.4x objective, using Neurolucida soft-
are (MBF Bioscience). Fibers traveling together were outlined as a
roup or bundle. Axons were charted as they left the tracer injection site
nd followed through the right hemisphere, until the anterior commis-
ure. The 2D outlines were combined across slices using IMOD software
Boulder Laboratory ( Kremer et al., 1996 )) to create 3D renderings of
he structures and pathways as they traveled through them. These 2D
utlines were used to further refine bundle contours and ensure spatial
onsistency across sections. 

.2.4. Registration of tracer and dMRI data 
Each histology slice was registered to its corresponding blockface us-

ng a 2D robust affine registration ( Reuter et al., 2010 ), followed by a
D symmetric diffeomorphic registration ( Avants et al., 2008 ). Block-
ace images were then stacked to create a 3D volume and registered
o the b = 0 dMRI volume using a 3D affine registration followed by a
D diffeomorphic registration, with the same methods as above. The
omputed transformations were then applied to the tracer mask and the
njection site mask, to map them into dMRI space. The transformed in-
ection site mask was shared with challenge participants, to be used as
he seed region for tractography. 

.3. Analysis of dMRI data by challenge participants 

.3.1. Round 1 
In the first round, teams were provided raw dMRI data. They were al-

owed to use the q-space sampling scheme and analysis methods of their
hoice. A detailed description of the methods that each team used in
his round, including pre-processing, orientation reconstruction method,
ractography, and post-processing, are provided in the Supplementary
ote 1. Both probabilistic and deterministic tractography approaches
ere deployed, with a variety of orientation reconstruction methods.
articipants were asked to generate tractograms at multiple thresholds
y varying one or more parameters of their choice. The most com-
on choices were lower thresholds on probability, for submissions that
sed a probabilistic tractography algorithm; and upper thresholds on
he bending angle, sometimes combined with lower thresholds on frac-
ional anisotropy or other microstructural parameters, for submissions
hat used a deterministic tractography algorithm. 
4 
For each submission, participants uploaded a series of volumes,
btained by applying different thresholds to the tractograms, to the
MENTA platform. A score was computed on the fly by comparing the

ractograms to the tracer data (see 2.4 ROC analysis ). For the training
ase, the platform generated a performance report, including the AUC
core, and made it available to the participant. Participants could repeat
heir analysis, upload, and score any number of times, allowing them to
ne-tune the free parameters of their methods and optimize their score.
hey then applied their optimized analysis pipeline to the dMRI data
rom the validation case and uploaded the resulting tractograms to the
MENTA platform. 

.3.2. Round 2 
In the second round, analysis and scoring of the training and val-

dation cases were performed as described above. The difference was
hat the pre- and post-processing steps were standardized across teams.
articipants downloaded pre-processed dMRI data from the QMENTA
latform and were provided two scripts for the post-processing steps.
he orientation reconstruction and tractography methods were not stan-
ardized. 

Pre-processing: This followed the dMRI pre-processing procedures
hat had been used in round 1 by Team 1, the team that achieved the
est performance (see 3.1 Round 1 Results ). They included denoising
 Veraart et al., 2016 ) and correction for Gibbs ringing ( Kellner et al.,
016 ) in MRtrix3 ( Tournier et al., 2019 ), and correction for motion and
ddy-current distortions in FSL ( Andersson et al., 2003 ; Andersson and
otiropoulos, 2015 ). A binary dilation was applied to the tracer injection
ite mask. 

Orientation reconstruction and tractography: Teams were asked to ap-
ly the same orientation reconstruction and tractography methods as in
ound 1, if they had participated in round 1, or any methods of their
hoice otherwise. Supplementary note 2 details the orientation recon-
truction and tractography method used by the teams in round 2. 

Post-processing: This replicated the post-processing strategies that
ad been used by the two teams that had consistently good performance
cross both training and validation cases in round 1. (i) Gaussian filter-
ng . This strategy had been implemented by Team 1 in round 1. It in-
luded the application of a Gaussian filter with 𝑠𝑖𝑔𝑚𝑎 = 0 . 5 to increase
overage, followed by an iterative thresholding of 200 steps on the log
f the streamline count, for a total of 200 output tractogram volumes.
ii) Anatomical ROIs. This strategy had been implemented by Team 2 in
ound 1. ROIs from the PennCHOP macaque atlas ( Feng et al., 2017 )
ere transformed to the space of each dMRI dataset. Only streamlines

ntersecting at least one of these ROIs were retained. The ROIs were se-
ected on the base of general knowledge of projections of the prefrontal
ortex ( Lehman et al., 2011 ) and were located in: the cingulum bundle,
he genu of the corpus callosum, the external capsule, the anterior limb
f the internal capsule, and the uncinate fasciculus (Supplementary Fig.
). For round 2, after applying the anatomical ROIs, the same smooth-
ng ( 𝑠𝑖𝑔𝑚𝑎 = 0 . 5 ) and iterative thresholding (200 steps on the log of the
treamline count) as in the Gaussian filtering strategy were performed. It
s important to differentiate between the anatomical ROIs used by Team
, which were based on prior knowledge of the brain regions that are
onnected to the specific injection sites, and other masks. The anatomi-
al ROIs were applied after generating tractography streamlines, hence
e consider them a post-processing step. Teams could still use masks

hat were not specific to the connectional anatomy of the injection site
 e.g. , FA masks). These were used in the process of generating stream-
ines, hence we included them in the tractography step (Supplementary
ote 1, supplementary note 2). 

.4. ROC analysis 

.4.1. AUC score 
We adopted the area under the receiver operating characteristic

ROC) curve (AUC) as our main performance score. The ROC analy-
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is was performed as follows. For each of the submitted tractograms,
e obtained the numbers of voxels that were true positive (TP; voxels

ncluded both in the tractogram and in the tracer mask), true negative
TN; voxels included neither in the tractogram nor in the tracer mask),
alse positive (FP; voxels included in the tractogram but not in the tracer
ask), and false negative (FN; voxels included in the tracer mask but
ot in the tractogram). The computation of TN and FP was performed
or only for voxels included in a brain mask. The mask excluded brain
egions were not labeled in the tracing data ( e.g. , because they were too
audal to contain projections of these injection sites). The true-positive
ate (TPR) and false-positive rate (FPR) were then calculated as follows:

 𝑃 𝑅 = 

𝑇 𝑃 

𝑇 𝑃 + 𝐹 𝑁 

 𝑃 𝑅 = 

𝐹 𝑃 

𝐹 𝑃 + 𝑇 𝑁 

This was repeated for all tractograms in a submission, which had
een thresholded at different levels (either with the thresholding
ethod chosen by each team in round 1, or with the standardized

hresholding method in round 2). We obtained the ROC curve of each
ubmission by plotting the TPR as a function of FPR. We computed a
artial AUC score, i.e., the area under the ROC curve for FPR in the
0,0.3] range. Thus, the maximum possible AUC score was 0.3. The
hoice of this range was based on prior results showing that determinis-
ic tractography methods cannot always achieve FPRs outside this range
 Grisot et al., 2021 ). 

.4.2. Bundle-wise TPR 

As an alternative to the voxel-wise TPR, we also investigated how
any of the main white-matter areas that were included in the tracer
ask were reached by each tractography method. The goal was to de-

ermine what FPR we would have to tolerate with each method to reach
he main bundles that the injection site projects to, and what tractogra-
hy threshold would allow us to achieve that. To this end, every voxel
ncluded in the tracer mask in dMRI space was labeled by AY and CM.
or the training case, voxels were assigned to one of 8 classes: anterior
rontal white matter (AF); anterior limb of the internal capsule (ALIC);
ingulum bundle (CB); corpus callosum (CC); external capsule (EC);
edial prefrontal white matter (MPF); lateral prefrontal white matter

LPF); uncinate fasciculus (UF). For the validation case, voxels were as-
igned to one of 10 classes: ALIC; brainstem fibers (BS); commissural
bers (CF); CB; CC; EC; extreme capsule (EmC); LPF; thalamic fibers
ThF); UF. We assumed that tractography reached one of the above la-
els successfully if it reached at least 50% of the voxels in the label. We
omputed the bundle-wise TPR, which we defined as the percentage of
abels reached successfully by each tractogram. We then identified the
ractogram threshold at which each submission achieved a bundle-wise
PR of 0.8, i.e., reached 80% of the white-matter regions that the in-

ection site projects to. The goal was to examine if there was a similar
hreshold for which most methods achieved satisfactory coverage of the
rue bundles. If such a common threshold exists, it may be a sensible
hoice for users of tractography, in the general scenario where ground
ruth is not available. 

.4.3. Hausdorff distance 
As an alternative error metric to the FPR, we computed the modified

ausdorff distance (MHD) ( Dubuisson et al., 1994 ) between the tracer
ask and the tractogram. The MHD between two set of points S and T

s defined as the minimum distance between a point in one set and any
oint in the other set, averaged over all points in the two sets: 

 𝐻 𝐷 ( 𝑆, 𝑇 ) = 

1 
|𝑆 |

∑
𝑠𝜖𝑆 

𝑚𝑖 𝑛 𝑡𝜖𝑇 𝑑 ( 𝑠, 𝑡 ) + 

1 
|𝑇 |

∑
𝑡𝜖𝑇 

𝑚𝑖 𝑛 𝑠𝜖𝑆 𝑑 ( 𝑡, 𝑠 ) , 

here d( • , • ) is the Euclidean distance between two points, and | • | is the
ize of a set. Greater MHD indicates greater deviation of the tractography
olume from the tracer. 
5 
.5. Localization of challenging areas 

Having tracer and dMRI data from the same brain allows us to iden-
ify the exact locations where tractography goes wrong, and thus the
ber geometries that are consistently challenging across tractography
ethods. To this end, we extracted a map of TP voxels at FPR = 0.1,

or each of the submissions that participated in both rounds of the chal-
enge. We binarized these maps and summed them across all submis-
ions. This yielded a histogram that showed the number of teams that
chieved a TP in each voxel of the tracer mask. This allowed us to iden-
ify the locations where errors occurred consistently across tractogra-
hy methods in round 1, and to examine whether the pre- and post-
rocessing steps that were applied in round 2 mitigated these common
rrors. 

.6. Comparison of orientation distribution functions 

After the end of the challenge, we asked participants to share
he orientation distribution functions (ODFs) from their final submis-
ions, to examine if the ODFs played a role in the performance dif-
erences between teams. All ODFs were projected onto a common set
f 362 directions that were distributed uniformly on the half sphere.
his direction set was generated by the electrostatic repulsion model
 Caruyer et al., 2013 ), as implemented in DIPY ( Garyfallidis et al.,
014 ). We then normalized the ODFs by the maximum ODF value and
onverted their amplitudes to their spherical harmonic representation
n MRtrix3 ( lmax = 12) ( Tournier et al., 2019 ). For each submission, we
xtracted a voxel-wise map of orientation dispersion by computing the
ean dispersion of the ODF lobes inside the voxel ( Smith et al., 2013 ).
e included only ODF lobes with peak amplitudes larger than 0.2 times

he maximum ODF amplitude, as very small peaks would typically not
e used in tractography. For each submission, we extracted the orien-
ation dispersion for a maximum of 3 peaks per orientation distribution
unction (ODF) in MRtrix3 ( Jeurissen et al., 2013 ; Raffelt et al., 2015 ).

e computed the Spearman’s rank correlation between the mean dis-
ersion and the AUC (Scipy 1.3.1). 

. Results 

.1. Round 1 results (variable pre- and post-processing) 

Out of 30 registered teams, 12 completed the challenge (total sub-
issions: 227; training: 186; validation: 38) and 16 final submissions
ere ranked. A detailed list is reported in Supplementary Table 1. 

Overall, results from round 1 showed that, in both training and
alidation cases, no submission could achieve high TPR without also
enerating a large number of false positives ( Fig. 2 A). Most submis-
ions achieved TPRs higher than 0.8 only at FPRs higher than 0.2.
lmost all submissions achieved higher accuracy in the training case

mean AUC = 0.20) than in the validation case (mean AUC = 0.16). Three
eams only (Teams 1, 2, 6) obtained similar accuracy across datasets,
ith even higher accuracy for the validation case ( Fig. 2 B). The AUC

core of two of these three teams (Teams 1,2) was considerably higher
AUC > 0.23) than all other submissions (AUC ≤ 0.18) in the val-
dation case. The overall highest score (AUC = 0.27) was obtained
y Team 1, with a combination of the Robust and Unbiased Model-
Ased Spherical Deconvolution (Rumba-SD) method for orientation re-
onstruction ( Canales-Rodríguez et al., 2015 ) and probabilistic tractog-
aphy ( Garyfallidis et al., 2014 ; Girard et al., 2014 ) on the DSI data.
ethods that used the DSI scheme achieved consistently high accuracy

 Fig. 2 C, left), whereas methods that used the HCP scheme varied in
heir performance. However, the results suggest that, if analysis methods
an be optimized carefully, the HCP acquisition may approach the ac-
uracy of the much more demanding DSI acquisition. While most orien-
ation reconstruction methods performed similarly in the training case,
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Fig. 2. Round 1 results . ( A) ROC curves are shown for each submission. Results are shown for the training case (left) and validation case (right), and for the HCP 

(solid lines) and DSI (dashed line) acquisition schemes. ( B) Bar plots show the AUC score for each submission for the training case (blue) and validation (green) 

case, and for HCP and DSI sampling schemes. ( C) AUC scores are shown by acquisition scheme, orientation reconstruction method, and tractography propagation 

method for the training case (top) and the validation case (bottom). Rumba-SD = robust and unbiased model-based spherical deconvolution( Canales-Rodríguez et al., 

2015 ); CSD = constrained spherical deconvolution ( Tournier et al., 2007 ); M-CSD = multi-shell multi-tissue CSD ( Dhollander et al., 2019 ; Jeurissen et al., 2014 ); 

3Comp = three compartment model( Tran and Shi, 2015 ); ASI = asymmetry spectrum imaging ( Wu et al., 2019 ); GQI = generalized Q-ball imaging ( Yeh et al., 2010 ); 

RL = Richardson Lucy ( Dell’Acqua et al., 2010 ), RDSI = radial diffusion spectrum imaging ( Baete et al., 2019 , 2016 ). 
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umba-SD ( Canales-Rodríguez et al., 2015 ) outperformed the other sub-
issions in the validation case ( Fig. 2 C, center). Finally, probabilistic

ractography approaches achieved overall higher accuracy scores (mean
UC = 0.20) than deterministic ones (mean AUC = 0.15), especially for

he validation case ( . 2 C, right) (See Supplementary Fig. 2 for perfor-
ance by method). 

.2. Sensitivity varies across white matter regions 

We investigated how many of the white matter regions included in
he tracer mask were correctly labeled by each Submission. Fig. 3 shows
he TPR of each submission at the same specificity level (FPR = 0.1) for
6 
ifferent white matter ROIs labeled in the training and validation case
 2.4.2 Bundle-wise TPR ). Sensitivity was variable across regions, with
imilar patterns across submissions. In the training case, most teams
abeled the EC, CC, and MPF correctly, but could reach the UF and CB
nly partially ( Fig. 3 A). 

In the validation case, almost all methods could label the UF, EC,
nd LPF correctly but most of the submissions failed to reach regions
ocated at a greater distance from the injection site, like the BS, ThF,
nd ALIC. In the training case several teams achieved similar perfor-
ance as Team 1. In the validation case, however, where fine-tuning
ith respect to the ground truth was not possible, the performance of
ost teams deteriorated. The best result was achieved by the Rumba-SD
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Fig. 3. Performance by white-matter region . ( A) 3D rendering of the tracer mask (in green) and injection site (in red) for the training case, showing the location of 

the coronal slices that are displayed in boxes a, b, and c. The boxes show the main white-matter pathways present in the tracing. Boxplots overlaid with scatterplots 

show the TPR in each bundle for each submission, with the HCP scheme (top, light grey) and the DSI scheme (bottom, light blue). ( B) The same results are presented 

for the validation case. All TPRs were evaluated at FPR = 0.1. (AF = anterior frontal white matter; ALIC = anterior limb of the internal capsule; BS = brainstem fibers; 

CB = cingulum bundle; CC = corpus callosum; CF = commissural fibers; EC = external capsule; EmC = extreme capsule; LPF = lateral pre-frontal white matter; 

MPF = medial pre-frontal white matter; OF = orbitofrontal white matter; ThF = thalamic fibers; UF = uncinate fasciculus). 

7 
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odel ( Canales-Rodríguez et al., 2015 ) and probabilistic tractography
 Garyfallidis et al., 2014 ; Girard et al., 2014 ) on the DSI data (Team 1),
hich achieved a TPR higher than 0.9 for all the regions. There were

lear differences in the bundles where errors occurred in the training
s. the validation case. This has to do with the fact that fibers starting
rom the two different injection sites enter these bundles from different
ngles ( See 3.4 Branching and turning fiber configurations are challenging
or tractography). 

.3. Round 2 results (standardized pre- and post-processing) 

Fourteen teams completed round 2 (259 total submission. Training:
05. Validation: 154). Of these, eleven also completed round 1, one
ompleted round 1 but submitted results with a different pipeline in
ound 2, and two teams were new (Team 13 and Team 14). Some of the
eams that had completed round 1 submitted results with new methods,
n addition to regenerating results with the methods that they had used
n round 1 but with the standardized pre- and post-processing. Fifty final
ubmissions were ranked (Supplementary Table 2). 

Results show that the performance of most returning teams improved
hen compared to round 1, as a result of applying the harmonized pre-
nd post-processing strategies. This improvement was greater for the
alidation case (2–85%) than the training case (2–30%) ( Fig. 4 A). As
 result, the difference in AUC score between the training and valida-
ion case decreased substantially in round 2 ( Fig. 4 B). This led to many
ore teams achieving more similar performance between the training

nd validation case (Supplementary Fig. 3). At the same FPR = 0.1, all
ubmissions achieved higher TPR than in round 1 (Supplementary Fig.
). 

Remarkably, post-processing by Gaussian filtering, which does not
ssume any prior anatomical knowledge, also improved results for most
ubmissions ( Fig. 4 B), leading to a training-validation percent difference
nly slightly higher than the one obtained when using the anatomical
OIs. Only two teams (Team 6 and Team 8) did not show improvement
ith Gaussian filtering and one of them (Team 8) did not show improve-
ent with anatomical ROIs. These improvements allowed most teams to

btain higher scores, reducing the difference between their performance
nd that of Team 1, especially for the validation case ( Fig. 4 C). 

Fig. 5 shows ROC curves for round 2 with the bundle-wise TPR, i.e.,
he portion of white-matter regions where each submission achieved at
east 50% coverage. For this and subsequent results presented in this
ection, we show only one submission per team (the one that achieved
he highest AUC score on the validation case). Results are shown for
ost-processing by a Gaussian filter. Some of the submissions that used
eterministic tractography (Team 8 for HCP and DSI schemes; Team 12
or HCP scheme) could not reach all the ten white-matter regions and are
hus not shown. There was considerable variability across submissions,
ith Teams 1 and 2 reaching 50% coverage of all the regions with FPR
 0.11, and the remaining submissions with FPR > 0.15. Deterministic
ethods (solid lines) operate at lower specificity levels, and are only

ble to reach all regions at the cost of FPR > 0.22. In some cases, sub-
issions that used the same orientation reconstruction method (M-CSD

 Dhollander et al., 2019 ; Jeurissen et al., 2014 )) achieved coverage of
ll regions at very different FPR levels, suggesting that other algorithmic
hoices had an impact on the TPR/FPR trade-off. It is worth noting that
or the DSI scheme, all submissions (including deterministic) reached
ll ten regions at higher specificity levels (FPR ≤ 0.15) than for the HCP
cheme, and that the submission that used Rumba-SD was able to reach
 out of 10 regions with an FPR as low as 0.06. 

Fig. 6 shows the tractogram threshold for which each team achieved
undle-wise TPR = 0.8. Overall, most submissions needed very relaxed
hresholds ( < 0.02 of the maximum value in the tractogram). Only one
ubmission, using ASI ( Wu et al., 2019 ) and deterministic tractogra-
hy ( Wu et al., 2020 ), achieved this coverage at a much more stringent
hreshold (0.13 of the maximum value in the tractogram). However, this
ubmission also produced a much higher FPR at that threshold. For most
8 
ubmissions, a slightly higher (more stringent) threshold was needed in
he validation case than the training case. 

Supplementary Fig. 5 shows the MHD between the tracer mask and
he tractogram plotted against the TPR. While the FPR penalizes all FPs
qually, the MHD measures how far from the tracer mask the FPs oc-
ur. The plots show that the MHD was greater for the validation than
he training case for all submissions, even those that achieved similarly
igh AUC score in the two cases. At the same sensitivity level, MHD was
reater for deterministic than probabilistic methods. Similarly to what
e observed with the bundle-wise ROCs of Fig. 5 , there were submis-

ions that used the same orientation reconstruction method (CSD) but
ad very different MHDs at the same level of sensitivity (3–8 mm range
t TPR = 0.8). The MHD was below 10 mm for all submissions and all
evels of sensitivity. 

.4. Branching and turning fiber configurations are challenging for 
ractography 

Fig. 7 shows histograms of the number of teams that achieved a TP
 i.e. , voxels included both in the tractogram and in the tracer mask) in
ach voxel of the tracer mask, at FPR = 0.1. 

These histograms are shown for round 1 and for each of the post-
rocessing strategies adopted in round 2. The pre- and post-processing
sed in round 2 improved the overall coverage of the tracer masks by
ractography. In the training case, the ALIC, CB, EC were labeled cor-
ectly by most teams ( Fig. 7 , top, light blue arrows), while only few
eams could label these regions in round 1. The region where fibers turn
harply towards the temporal terminations of the UF remained challeng-
ng for all teams in both rounds ( Fig. 7 , top, violet arrow). In the vali-
ation case, the biggest improvement was located where fibers coming
rom the ALIC branch into fibers entering the thalamus and fibers enter-
ng a narrow bundle of axons projecting down the brainstem. In round 2,
ore submissions labeled the thalamic fibers correctly and achieved im-
roved coverage of the inferior brainstem fibers. Despite this improve-
ent, this region continues to pose challenges for most teams ( Fig. 7 ,

ottom, violet arrow). Like the UF region, this branch point is located
urther away from the injection/seed point than other regions in the
racing mask. Therefore, tractography needs to traverse other branching
nd turning points to get there and, as errors accumulate, the number
f streamlines that reach these regions is small. 

We can better understand the nature of these errors by examining
he false positives that occur around these challenging areas. We iden-
ified two regions for the training case (UF and LPF) and two for the
alidation case (ALIC and EC) where the tracer and tractography trajec-
ories consistently diverged in most submissions ( Fig. 8 , Supplementary
ideo). We observed that in areas where fibers branch into two bundles,
ractography tends to follow the least curved of the two and miss the
ther. Similarly, in areas where fibers take a sharp turn but, at the res-
lution of the dMRI data, overlap with a separate, less curved pathway,
ractography follows the latter, instead of taking the turn. An example
f such configuration is the area where the fibers coming from the EC
urn towards the UF and the ILF ( Fig. 8 B). Here tractography follows the
LF erroneously and fails to reach the UF terminations in the temporal
obe. 

Fanning regions also lead to errors in tractography. In the train-
ng case, fibers exiting the injection site branch from the main bun-
le, which is sometimes referred to as the “stalk ”, and fan out towards
he dorsolateral prefrontal cortex. Here tractography follows the main
talk, continuing in the frontal white matter and does not turn supero-
ateral to then fan into the LPF ( Fig. 8 C). In the validation case, most
eams showed false negatives in the supero-frontal projections of the CC
 Fig. 7 ). Fig. 8 D shows that here tractography continues into the body
f the CC to project to contralateral areas, missing the sharp turn of CC
rojections to the superior frontal gyrus. Another region of the valida-
ion case that showed significant false negatives across submissions was
he region where fibers enter the ALIC. Here tractography prefers fol-
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Fig. 4. Effect of harmonized pre- and post-processing . (A) Boxplots show the percent change in AUC scores between round 1 and round 2 for both post-processing 

strategies (Gaussian filter and anatomical ROIs). Results are shown for the training case (blue) and validation case (green), and for the HCP (left) and DSI (right) 

acquisition schemes. ( B) Difference in AUC scores between the training and validation cases, for round 1 and for each of the two post-processing strategies in round 

2 (Gaussian Filter and Anatomical ROIs ). ( C) We show the difference between the AUC score achieved in round 1 by Team 1 and the AUC scores achieved by all other 

submissions in round 1 and the two post-processing strategies in round 2. Median percent change is indicated by a horizontal line in each plot. 
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owing the direction of least curvature in the CC body and into the big
undle of anterior-posterior fibers stemming from the EC, rather than
urning into the smaller ALIC ( Fig. 8 E). 

.5. Sharper diffusion profiles do not always lead to more accurate 
ractography 

We compared the ODFs from different submissions in an area that
as consistently challenging across methods. This was where fibers
ranched into thalamic and brainstem fibers ( Fig. 7 ). All submissions
dentified two fiber populations correctly in the superior part of this
egion, where fibers branched, and one main fiber population in the in-
9 
erior part, where fibers projected caudally to the brainstem. However,
here were differences in the sharpness of the ODFs. Interestingly, the
ubmissions that achieved the highest accuracy were not the ones with
he sharpest diffusion profiles. This suggests that, depending on the un-
erlying fiber configuration, ODF sharpness may not be a universally
esirable property. Especially in the superior part of the ROI, where the
wo sets of fibers diverge, the best performing teams ( Fig. 9 B–D) show
omewhat less sharp ODFs. However, no clear trend was visible across
ubmissions as some of the submissions achieving lower accuracy also
how less sharp ODFs. 

We quantified the sharpness of the ODFs by computing the dis-
ersion of each peak in each voxel. Fig. 10 shows plots of the aver-
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Fig. 5. Bundle-wise TPR . ROC curves with the bundle-wise TPR are shown for the validation case and post-processing by a Gaussian filter. The bundle-wise TPR is 

defined as the portion of white-matter regions (ALIC, BS, CB, CC, CF, EC, EmC, LPF, ThF, UF) where a submission achieved at least 50% coverage. ASI = asymmetry 

spectrum imaging( Wu et al., 2018 ); 3CMP = three compartment model ( Tran and Shi, 2015 ); CSD = constrained spherical deconvolution ( Tournier et al., 2007 ); 

DSI = Diffusion spectrum imaging ( Wedeen et al., 2005 ); GQI = generalized Q-ball imaging ( Yeh et al., 2010 ); M-CSD = multi-shell multi-tissue CSD ( Dhollander et al., 

2019 ; Jeurissen et al., 2014 ); RDSI = radial diffusion spectrum imaging ( Baete et al., 2019 , 2016 ); Rumba-SD = robust and unbiased model-based spherical decon- 

volution ( Canales-Rodríguez et al., 2015 ). 

Fig. 6. Tractogram thresholds needed to achieve high coverage of the tracer mask . Bar plots show the tractogram threshold (with respect to the maximum value in the 

tractogram) for which each submission achieved bundle-wise TPR = 0.8. Submissions are grouped by the orientation reconstruction method that they used. Results are 

shown for the training (blue) and validation (green) case, and for the HCP (left) and DSI (right) sampling scheme. The bars are ordered along the x-axis by the FPR of 

the corresponding submissions, which is also indicated by the saturation level of each bar. ASI = asymmetry spectrum imaging ( Wu et al., 2019 , 2018 ); 3CMP = three 

compartment model ( Tran and Shi, 2015 ); CSD = constrained spherical deconvolution ( Tournier et al., 2007 ); DSI = Diffusion spectrum imaging ( Wedeen et al., 

2005 ); GQI = generalized Q-ball imaging ( Yeh et al., 2010 ); M-CSD = multi-shell multi-tissue CSD ( Dhollander et al., 2019 ; Jeurissen et al., 2014 ); RDSI = radial 

diffusion spectrum imaging ( Baete et al., 2019 , 2016 ); Rumba-SD = robust and unbiased model-based spherical deconvolution ( Canales-Rodríguez et al., 2015 ). 
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ge dispersion in seven ROIs from the training and validation case.
e selected both regions with complex fiber configurations (UF, CB,

C, EC-IC, TH-BS) and regions that should mainly contain single fiber
rientations, like the body of the CC (CCb) and BS. Fig. 10 shows
hat, although ODF dispersion was not the only factor that deter-
ined accuracy, submissions that achieved higher AUC scores had less
10 
harp ODFs, especially in regions with turning, fanning, and branch-
ng fiber configurations (TH-BS, CC, UF). This variability across re-
ions was confirmed by correlating the AUC with the mean dispersion
cross all ROIs from the training and validation cases. Results show a
ack of such a correlation for both HCP and DSI data (Supplementary
ig. 6). 
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Fig. 7. Number of teams reaching each voxel in the tracer mask. The heat maps are maximum intensity projections of the histograms of TPs across teams at FPR = 0.1, for 

the HCP acquisition scheme. The tracer mask is shown in green, under the heat maps. Results are shown for the training and validation case, and for round 1 and the 

two filtering strategies (Gaussian filtering, anatomical ROIs) in round 2. Only submissions that completed both rounds were included. Cyan arrows point to regions 

where the standardized pre- and post-processing round 2 led to improvement with respect to round 1. Violet arrows point to regions that remained challenging in 

both rounds. 
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. Discussion 

The IronTract Challenge evaluated a variety of state-of-the-art trac-
ography methods on high-angular and spatial resolution dMRI data by
uantitative voxel-wise comparison to anatomic tracing data in the same
HP brains. This effort differed from previous tractography challenges

n several ways. First, the dMRI acquisition protocol allowed us to eval-
ate HCP-style and DSI acquisition schemes in real brain data. Second,
he availability of both dMRI and tracer data in the same brains allowed
he precise localization of tractography errors and challenging fiber con-
gurations. Third, a training and validation case with different injection
ites allowed us to evaluate the robustness of submissions across seed ar-
as. Fourth, a full ROC analysis allowed us to compare the sensitivity of
ifferent methods at the same level of specificity. Fifth, by iterating over
he results in a second round, where all teams used the same pre- and
ost-processing steps, we disentangled the contribution of these steps
rom that of the orientation reconstruction and tractography steps. Our
esults provide insights into the optimal processing strategies for widely
vailable, HCP-style data. They also reveal why errors occur even with
hese state-of-the-art acquisition and analysis techniques, thus pointing
11 
o possible areas of improvement for future methodological develop-
ent. 

.1. The effect of acquisition scheme and propagation method 

We compared an HCP-style, two-shell acquisition scheme with a
uch more densely sampled DSI scheme. Overall, higher accuracy was

chieved by methods that used the full DSI data (515 diffusion volumes)
 Fig. 2 ). However, a few of the methods that used the HCP data ap-
roached the accuracy of the DSI methods. For methods that could be
pplied to both schemes, the loss in accuracy when using HCP versus
SI data was lower than 10% (Supplementary Table 1, Fig. 2 ). This

llustrates that when analysis methods are carefully optimized, the two-
hell HCP scheme represents an advantageous trade-off between accu-
acy and acquisition time, given that DSI acquisition involves 2.8 times
ore directions and 3.3 times higher maximum b -value. Previous vali-
ation studies showed that DSI produces more accurate fiber orientation
stimates both in simulations ( Daducci et al., 2014 ) and in comparison
o optical imaging measurements ( Jones et al., 2020 ). In this study, the
ost accurate submission was obtained using DSI data. While a full DSI
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Fig. 8. Challenging areas for tractography . ( A) 3D rendering of the tracer and injection site for the training (green) and validation (red) cases. Labeled boxes show the 

location of 2D views presented in B-E. ( B, C) A map of FPs is shown for one representative submission at FPR = 0.1 (red), overlaid by the tracer mask (blue) for the 

training case. Streamlines follow the ILF, instead of turning into the UF (B). Streamlines continue into the AF instead of fanning into the LPF (C). ( D, E) A map of 

FPs is shown for one representative submission at FPR = 0.1 (red), overlaid by the tracer mask (blue) for the validation case. Streamlines continue in the body of the 

CC to project contralaterally and miss the turn into the superior frontal gyrus (D). Tractography follows paths of lower curvature in the body of the CC and in the 

EC, instead of projecting into the ALIC (E). AF: antero-frontal white matter; ALIC: anterior limb of the internal capsule; CC: corpus callosum; EC: external capsule; 

ILF: inferior longitudinal fasciculus; LPF: lateral pre-frontal white matter; UF: uncinate fasciculus. 
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cquisition is time-consuming, compressed sensing (CS) allows DSI data
o be reconstructed from undersampled q-space ( Menzel et al., 2011 ;
etsompop et al., 2013 ; Tobisch et al., 2018 ). A recent post mortem val-
dation study showed that a CS-DSI protocol with 171 directions (similar
o the number of directions in the two-shell HCP protocol), preserves the
igh angular accuracy of fully sampled DSI ( Jones et al., 2021 ). Thus,
t is a viable alternative that combines the benefits of shell and grid
cquisitions. 

In regard to the propagation method, we found that probabilistic
ractography led to overall higher AUC (mean AUC: 0.22) than deter-
inistic tractography (mean AUC = 0.17). This was particularly true

or the validation case, where pipelines were not optimized with re-
pect to the ground truth ( Fig. 2 A and C). This confirms the overall
ower sensitivity of deterministic approaches at the same level of speci-
city ( Girard et al., 2020 ; Grisot et al., 2021 ). Probabilistic tractography

ed to better bundle coverage ( Fig. 5 ). Three deterministic submissions
ould not reach all the bundles labeled in the validation case, and the
ther ones did so at a much higher FPR than the probabilistic methods
 Fig. 5 ). This was especially true for white matter regions located further
way from the injection site/seed ( Fig. 3 B). 

.2. The effect of orientation reconstruction method 

Differences between the ODFs from the various submissions were
ostly subtle. Our results suggest that there is no simple, one-to-one
apping between ODF characteristics and the accuracy of tractography
12 
 Fig. 10 , Supplementary Fig. 6). This result is in line with a recent study
hat found that there is no single optimal method for all different fiber
onfigurations ( Canales-Rodríguez et al., 2019 ). 

However, the dispersion of the ODFs does seem to play a role.
he conventional wisdom is that sharper ODFs are better because
hey help resolve crossing fibers with small inter-fiber angles ( Canales-
odríguez et al., 2019 ). However, the ODFs from the winning method
Rumba-SD) showed higher dispersion than ODFs from most of the other
ubmissions. This was the case in almost all selected ROIs and especially
n those that included branching, fanning, or turning fibers ( Fig. 10 ).
ess sharp ODFs, when combined with probabilistic tractography, al-
ow a broader range of orientations to be sampled from the same ODF
eak. This can be beneficial in areas of branching or fanning. Areas
here fibers take sharp turns remain a challenge for all methods. They

an only be resolved by relaxing bending angle thresholds to a degree
here the FPR becomes prohibitively high. 

In a previous study, we evaluated a different set of tractogra-
hy methods on the dataset that we refer to as the training set here
 Grisot et al., 2021 ). We observed the highest accuracy from the combi-
ation of probabilistic tractography with GQI, a reconstruction method
hat does not produce particularly sharp ODFs. The performance of prob-
bilistic GQI in that study (TPR < 0.7 at FPR = 0.1) was lower than the
erformance of probabilistic Rumba-SD in the present study (TPR = 0.74
t FPR = 0.1). However, it may be worth revisiting the probabilistic GQI
pproach with the optimized pre- and post-processing methods of the
ronTract Challenge. 
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Fig. 9. Comparison of ODFs across submissions . (A) 3D rendering of the tracer mask from the validation case, showing the location of the magnification region 

where thalamic (TH) and brainstem (BS) fibers branch. ( B–R) ODFs for each submission are visualized for the region shown in A. Submissions are ordered based 

on the AUC score obtained for the validation case in round 2. ASI: asymmetry spectrum imaging ( Wu et al., 2019 ); 3CMP: three compartment model ( Tran and 

Shi, 2015 ); CSD: constrained spherical deconvolution ( Tournier et al., 2007 ); DSI: Diffusion spectrum imaging ( Wedeen et al., 2005 ); M-CSD: multi-shell multi-tissue 

CSD ( Dhollander et al., 2019 ; Jeurissen et al., 2014 ); ML: machine learning-based reconstruction ( Karimi et al., 2021 ); RDSI: radial diffusion spectrum imaging 

( Baete et al., 2019 , 2016 ); Rumba-SD: robust and unbiased model-based spherical deconvolution ( Canales-Rodríguez et al., 2015 ). 

Fig. 10. Effect of ODF dispersion and peak orientation on the accuracy of tractography . Bar plots of mean dispersion for each submission and each sampling scheme 

across different ROIs from the training and validation cases. For each ROI, teams are ordered along the x-axis based on AUC score for the validation case in round 2. 

Note that, as dispersion affects only methods that sample orientations from ODF, we excluded methods that follow the peak orientation exclusively. Training case: 

CB = cingulum bundle, UF = uncinate fasciculus. Validation case: BS = brainstem, CC = corpus callosum, CCb = body of the corpus callosum, EC-IC = external capsule 

– internal capsule, TH-BS = thalamus – brainstem. ASI = asymmetry spectrum imaging ( Wu et al., 2019 ); 3CMP = three compartment model ( Tran and Shi, 2015 ); 

CSD = constrained spherical deconvolution ( Tournier et al., 2007 ); DSI = Diffusion spectrum imaging ( Wedeen et al., 2005 );; M-CSD = multi-shell multi-tissue CSD 

( Dhollander et al., 2019 ); GRL = generalized Richardson-Lucy ( Guo et al., 2019 ); ML = machine learning-based reconstruction ( Karimi et al., 2021 ); RDSI = radial 

diffusion spectrum imaging ( Baete et al., 2019 , 2016 ); Rumba-SD = robust and unbiased model-based spherical deconvolution ( Canales-Rodríguez et al., 2015 ). 
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.3. The effect of pre- and post-processing 

In the second round of the challenge, we investigated the extent to
hich the pre- and post-processing strategies had contributed to the
igher robustness achieved by Teams 1 and 2 in the first round. When
he remaining teams used the same strategies, accuracy improved for
lmost all submissions ( Fig. 4 ). This improvement was higher for the
alidation than the training case, i.e. , the accuracy of tractography be-
ame more robust to the location of the seed region. More specifically,
ccuracy improved in some regions that proved challenging in round 1
 Fig. 7 ). 

While we did not study the effects of the pre- and post-processing
eparately, prior work studied the effects of some pre-processing steps
n the accuracy of diffusion orientation estimates ( Daducci et al., 2014 ).
hey found that denoising improved orientation accuracy up to 30–
0%. Approximately half of the teams had applied denoising in round 1
nd only four teams had performed eddy-current correction. These steps
ere included in the standardized pre-processing of round 2. 

The improved accuracy obtained with the use of a priori anatomical
OIs was expected. The more surprising result was that post-processing
ith a simple Gaussian filter, which requires no prior anatomical infor-
ation, increased the AUC by up to 80%, a benefit similar to the use of

natomical ROIs (Supplementary Fig. 2). While harmonizing pre- and
ost-processing in round 2 decreased the difference in AUC score be-
ween all the submissions and Team 1, the latter continued to achieve
he highest accuracy. When using DSI data, Team 1 could reach a much
igher TPR than all other submissions (TPR = 0.96 at FPR = 0.1), suggest-
ng that its pre- and post-processing strategies were not the only factors
ontributing to its high performance. 

.4. Localization of challenging areas 

Having data from anatomic tracing and dMRI in the same monkey
rain allowed us to identify the regions where tractography errors oc-
urred consistently across submissions. These included regions where
bers branched into smaller bundles, or where they took a sharp turn to
nter a bundle ( Figs. 7 and 8 , Supplementary video). These results agree
ith previous validation studies ( Grisot et al., 2021 ; Schilling et al.,
019a ) and illustrate the importance of anatomic tracing for identify-
ng realistic failure modes of tractography that go beyond the simple
rossing fiber configurations used in digital or physical phantoms. Al-
ost all submissions were successful in identifying projections that ran

hrough major crossing regions ( Figs. 3 and 7 ). However, many meth-
ds had trouble following fibers that branched into smaller bundles or
anned off the main bundle ( Figs. 7 and 8 ). These results highlight the
eed for further validation and development of tractography methods
hat go beyond the crossing-fiber paradigm. 

.5. Robustness across seed areas 

Our training and validation cases allowed us to evaluate the robust-
ess of tractography methods across different seed areas. The two in-
ection sites, while projecting through similar white-matter pathways
 Fig. 3 ), follow very different routes to reach these pathways and pose
ifferent challenges to tractography. In the training case, the injection
ite is in the frontal pole. From here, most fibers travel straight poste-
iorly to enter the internal and external capsule. The most challenging
reas are where fibers fan out into the LPF or turn into the UF and CB
 Figs. 7 and 8 ). In the validation case, the injection site is in the vlPFC.
rom here, fibers need to first course medially and take a more com-
licated and curved trajectory before entering the capsules. The ALIC
hows lower TPs in the validation case than in the training case ( Fig. 3 ),
nd the most challenging area is located posterior to the ALIC where
bers branch into thalamic and brainstem fibers ( Fig. 7 ). 

For most of the submissions, optimizing the methods with respect
o accuracy for one seed/injection region did not guarantee optimal
14 
erformance for another region, with a 25% average decrease in AUC
core between the training and the validation case ( Fig. 2 ). Only two
eams could achieve high accuracy for both injection sites. One of these
wo teams used anatomical ROIs, based on general knowledge on the
onnections of the prefrontal cortex from previous tracer experiments
 Lehman et al., 2011 ), illustrating the importance of such experiments
or mapping the organizational rules of white matter projections. In fu-
ure studies, we intend to investigate a wider variety of injection sites
nd evaluate whether these conclusions generalize to different brain ar-
as. 

.6. Optimal data processing for the HCP protocol 

One of the main goals of the IronTract challenge was to identify op-
imal processing strategies for the widely used, two-shell HCP acquisi-
ion scheme. Our results can inform various methodological choices that
ave to be made when analyzing such data, including pre-processing,
rientation reconstruction, tractography, post-processing, and thresh-
lding. When these choices were made as summarized below, tractog-
aphy reconstructed 8 out of the 10 bundles present in the tracer mask
ith FPR = 0.05, and it reconstructed all 10 with FPR = 0.1 ( Fig. 5 ). 

Pre-processing: The winning pipeline included denoising
 Veraart et al., 2016 ), corrections for Gibbs ringing ( Kellner et al.,
016 ), and motion/eddy-current distortions ( Andersson et al., 2003 ;
ndersson and Sotiropoulos, 2015 ), all sensible and widely used
rocedures. 

Orientation reconstruction: The method that achieved the highest per-
ormance was Rumba-SD ( Figs. 3 , 5 and Supplementary Figs. 5 and
). Its estimation framework relies on Rician and noncentral Chi likeli-
ood models, which accommodate realistic MRI noise, and a 3D total-
ariation spatial regularization term, which promotes continuity and
moothness along individual tracts by taking into account the spatial
orrelation among adjacent voxels ( Canales-Rodríguez et al., 2015 ).
hile this is a relatively newer method, we note that high accuracy

nd robustness were also achieved by classical reconstruction meth-
ds like CSD ( Tournier et al., 2007 ) (applied on the high-b shell only)
nd DSI ( Wedeen et al., 2005 ). However, these results were specific
o Team 2, who supplemented these methods with anatomical ROIs.
he 3CMP ( Tran and Shi, 2015 ) and M-CSD ( Dhollander et al., 2019 ;
eurissen et al., 2014 ) also achieved relatively higher accuracy and
ower reconstruction error than other methods ( Figs. 5 and 6 ). 

Tractography: Our results concur with previous studies that showed
he higher sensitivity of probabilistic methods, when compared to their
eterministic counterparts at the same specificity ( Girard et al., 2020 ;
risot et al., 2021 ; Schilling et al., 2018 ). 

Post-processing: Simple Gaussian post-filtering improved the accuracy
f most tractography methods used in this challenge, as well as their
obustness to the location of the seed region. The use of inclusion ROIs
ased on prior anatomical knowledge led to small additional gains in
erformance. 

Thresholding: Most methods required a rather low threshold ( < 2%
f the maximum value of the tractogram) to reach all the main bundles
resent in the tracer ( Fig. 6 ). This is in agreement with a prior find-
ng that the biggest changes in tractograms occur between thresholds
f approximately 2 and 3%, above which the sensitivity of tractography
ecreases dramatically ( Schilling et al., 2019a ). We note that we fo-
used on optimal thresholds for reconstructing all the bundles that the
njection site projects to, which is a task that requires high sensitivity.
n other tasks, such as constructing whole-brain connectivity matrices,
igh specificity may be more important. In that case, where low speci-
city would lead to a situation where most brain regions appear to be
onnected to each other, one may want to use more stringent thresholds
nd accept that only a subset of the true connections will be included. 

It is important to note that the outcomes of this study are based on
x vivo dMRI data and therefore the processing strategies suggested here
ay be supplemented with additional steps, such corrections for Rician
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oise correction (Koay and Basser, 2006) or susceptibility-induced dis-
ortions ( Andersson et al., 2003 ), when analyzing in vivo data. 

.7. Limitations 

The main limitation of using tracer injections to validate dMRI trac-
ography is that such studies cannot be performed in the human brain.
uman and NHP brains differ in terms of both absolute and relative

izes of different gray and white-matter structures. However, similari-
ies in position, cytoarchitectonics, connections, and behavior indicate
hat the overall organization of brain circuitry is relatively comparable
 Petrides et al., 2012 ; Petrides and Pandya, 1984 ). In particular, the rel-
tive positions of different brain regions, as well as the obstacles the
bers encounter on their way from one area to another, are compara-
le. As a result, similar fiber geometries (crossing, branching, turning,
anning) exist in similar locations of the NHP and human brain. Thus,
mportant insights can be gained from the performance of tractography
ethods in NHP brains. 

The present study was limited to two injection/seed areas. Further-
ore, we used binary tracer and tractography maps, i.e. , we only com-
ared the presence or absence of labeled axons and tractography stream-
ines at each voxel, rather than their density. Automated methods for
egmenting and quantifying the tracer maps will be critical for extend-
ng these analyses in the future. 

Other limitations of tracer validation studies include imperfect tracer
ptake or imperfect alignment of histology and dMRI data. The injec-
ions used in this study passed rigorous quality assurance checks at
r. Haber’s laboratory and had high-quality transport. Injections that

howed evidence of contamination or weak labeling were not included
n this study ( Haber et al., 2006 ). The manual annotation of the axon
undles and their alignment to the dMRI volumes were also checked by
r. Haber and refined at multiple stages. 

Finally, it should be noted that macaque brains are fixed by in situ
erfusion, which limits the degradation of the tissue caused by autoly-
is in human post mortem brains ( D’Arceuil and de Crespigny, 2007 ).
onetheless, diffusivity is reduced in all post-mortem specimens when
ompared to in vivo brains. Previous studies have demonstrated
hat, while fixation decreases diffusivity by 60–80% compared to in
ivo , diffusion anisotropy along fiber orientations is largely preserved
 D’Arceuil and de Crespigny, 2007 ; Dyrby et al., 2011 ; McNab et al.,
009 ). We accounted for the decrease in diffusivity by multiplying the
-values in the dMRI protocol by a factor of 4. Some parameters of ori-
ntation reconstruction methods may have to be adjusted differently for
x vivo and in vivo tissue, therefore we have not provided recommenda-
ions on the values of such parameters. 

. Conclusion 

As part of the IronTract challenge we undertook a comprehensive,
uantitative, voxel-wise assessment of tractography accuracy across
ifferent tractography pipelines, acquisition schemes, and seed ar-
as. This allowed us to identify common failure modes of tractogra-
hy for both commonly used and more recently developed tractog-
aphy algorithms and to propose optimized strategies for analyzing
MRI data that have been acquired with high angular resolution tech-
iques, including the popular two-shell acquisition scheme employed
y the lifespan and disease HCP. The IronTract Challenge remains open
 https://qmenta.com/irontract-challenge/ ) and we plan to expand its
cope in future iterations. We hope that it can serve as a valuable vali-
ation tool for both users and developers of dMRI analysis methods. 
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