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ABSTRACT. We investigate different geometrical properties of the inhomogeneous Poisson point
process Λµ associated to a positive, locally finite, σ-finite measure µ on the unit disk. In particular,
we characterize the processes Λµ such that almost surely: 1) Λµ is a Carleson-Newman sequence;
2) Λµ is the union of a given number M of separated sequences. We use these results to discuss
the measures µ such that the associated process Λµ is almost surely an interpolating sequence for
the Hardy, Bloch or weighted Dirichlet spaces.

1. INTRODUCTION AND MAIN RESULTS

Important notions in spaces of analytic functions include zero-sets, Carleson measures, inter-
polation, sampling, frames, etc. Such properties have been studied for many well-known spaces
of analytic functions in a deterministic setting. A canonical example is the Hardy space, where
all these properties are well established, see [16]. In other spaces such properties admit theoret-
ical characterizations which are not checkable in general (e.g. interpolation in Dirichlet spaces),
see e.g. [24] for a general reference. There also exist situations where a general characterization
is not available. In these circumstances it is useful to consider a random setting, which allows to
see whether certain properties are “generic” in a sense. The random model we are interested in
here is the Poisson point process.

A Poisson point process in the unit disk D is a random sequence Λ defined in the following
way: for any Borel set A ⊂ D the counting random variable NA = #(A∩Λ) is well defined and

(a) NA is a Poisson random variable, i.e., there exists µ(A) ≥ 0 such that the probability
distribution of NA is

P(NA = k) = e−µ(A) (µ(A))k

k!
, k ≥ 0.

In particular E[NA] = Var[NA] = µ(A).
(b) If A,B ⊂ D are disjoint Borel sets then the variables NA, NB are independent.
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It turns out that these two properties uniquely characterize the point process. Also, the values
µ(A) define a σ-finite Borel measure on D, which is called the intensity of the process.

The Poisson process is a well-known statistical model for point distributions with no (or weak)
interactions, and it has multiple applications in a great variety of fields [26]. Because of property
(b), it is clearly not adequate to describe distributions in which each point is not statistically inde-
pendent of the other points of the process. For such situations other models have been proposed
(e.g. determinantal processes or zeros of Gaussian analytic functions for random sequences with
repulsion, or Cox processes for situations with positive correlations and clumping [18]).

It is also possible to create a Poisson process from a given, σ-finite, locally finite, positive
Borel measure µ in D, in the sense that there exists a point process Λµ with intensity µ, i.e, whose
counting functions satisfy properties (a) and (b) above. This is a well-known, non-trivial fact that
can be found, for example, in [19, Theorem 3.6]. Such a Poisson process Λµ is sometimes called
inhomogeneous, or non-stationary.

In this paper, given a positive Borel measure µ on D, we study elementary geometric properties
of the inhomogeneous Poisson process of intensity µ, specifically in relation to conditions used
to describe interpolating sequences for various spaces of analytic functions in D. We shall always
assume that µ(D) = +∞, since otherwise Λµ would be finite almost surely.

The probabilistic point of view has already been explored before in connection with inter-
polation. Here we mention Cochran [10] and Rudowicz [22] who considered the probabilistic
model Λ = {rneiθn}n in which the radii rn ⊂ (0, 1) are fixed a priori and the arguments θn are
chosen uniformly and independently in [0, 2π] (a so-called Steinhaus sequence). For this model
they established a zero-one condition on {rn}n so that the resulting random sequence is almost
surely interpolating for the Hardy spaces. In [9] similar results, for the same probabilistic model,
were proven for the scale of weighted Dirichlet spaces between the Hardy space and the classical
Dirichlet space. See also [13] for related results in the unit ball and the polydisk.

We express our results in terms of a dyadic discretization of µ. Consider first the dyadic annuli

An = {z ∈ D : 2−(n+1) < 1− |z| ≤ 2−n}, n ≥ 0.

Each An can be split into 2n boxes of the same size 2−n:

Tn,k =
{
z = reit ∈ An :

k

2n
≤ t

2π
<
k + 1

2n
}
, k = 0, 1, . . . , 2n − 1.

These boxes can be viewed as the top halves of the Carleson windows

Q(In,k) =
{
z = reiθ ∈ D : r > 1− 2−n, eiθ ∈ In,k

}
associated to the dyadic intervals

(1) In,k =
{
eit ∈ T :

k

2n
≤ t

2π
<
k + 1

2n
}
, n ≥ 0 , k = 0, 1, . . . , 2n − 1.
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In,k

Q(In,k)

Tn,k

FIGURE 1. Carleson window Q(In,k) associated to the dyadic interval In,k and
its top half Tn,k.

Denote Xn,k = NTn,k , which by hypothesis is a Poisson random variable of parameter

µn,k := E[Xn,k] = Var[Xn,k] = µ(Tn,k).

In these terms, the assumption µ(D) = +∞ is just

µ(D) =
∑
n∈N

2n−1∑
k=0

µn.k =
∑
n,k

µn,k = +∞.

A first geometric property on random sequences we are interested in is separation. For this,
we recall that the pseudo-hyperbolic distance in D is given by

ρ(z, w) =

∣∣∣∣ z − w1− w̄z

∣∣∣∣ z, w ∈ D.

Definition 1.1. A sequence Λ = {λk}k≥1 ⊂ D is separated if there exists δ > 0 such that

ρ(λk, λl) ≥ δ, k 6= l.

When we need to specify the separation constant we say that Λ is δ-separated.

We are now in a position to state our result characterizing those Λµ which can (almost surely)
be expressed as finite unions of separated sequences.

Theorem 1.2. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ and let M ≥ 1 be an integer. Then

P
(
Λµ union of M separated sequences

)
=


1 if

∑
n,k

µM+1
n,k <∞

0 if
∑
n,k

µM+1
n,k =∞.
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In particular,

P
(
Λµ separated

)
=


1 if

∑
n,k

µ2
n,k <∞

0 if
∑
n,k

µ2
n,k =∞.

The characterization of a.s. separated sequences was first obtained, with a different proof, in
[2, Teorema 3.2.1].

Our second result deals with so-called α-Carleson sequences. Given any arc I ⊂ T = ∂D let
|I| denote its normalized length and consider the associated Carleson window

Q(I) =
{
z = reiθ ∈ D : r > 1− |I|, eiθ ∈ I

}
.

Definition 1.3. Let α ∈ (0, 1]. The sequence Λ satisfies the α-Carleson condition if there exists
C > 0 such that for all arcs I ⊂ T ∑

λ∈Q(I)

(1− |λ|)α ≤ C|I|α.

Such sequences will also be called α-Carleson sequences.

Observe that to check the α-Carleson condition it is enough to test on the dyadic intervals In,k
given in (1).

The sequences Λ satisfying the 1-Carleson condition are by far the most studied, because of
their rôle in the famous characterization of the interpolating sequences for the algebra H∞ of
bounded holomorphic functions, given by L. Carleson [8] (see Section 3). They are sometimes
found in the literature under the name of Carleson-Newman sequences.

The α-Carleson property above is a special case of a more general condition: a finite, positive
Borel measure σ on D is a Carleson-measure of order α ∈ (0, 1] if σ(Q(I)) ≤ C|I|α for some
C > 0 and all intervals I . As shown by L. Carleson (see e.g. [16]), Carleson measures (of order
1) are precisely those for which the embedding H2 ⊂ L2(D, σ) holds; here H2 is the classical
Hardy space (see the definition in Subsection 3.1 below). Carleson measures of order α < 1
have been used, for example, in providing sufficient conditions for solvability of the ∂̄b-equation
in Lp, Lp,∞ and in Lipschitz spaces of the boundary of strictly pseudoconvex domains [3].

Theorem 1.4. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ. Then

(a)

P
(
Λµ is a 1-Carleson sequence

)
=


1 if there exists γ > 1 such that

∑
n,k

µγn,k <∞

0 if for all γ > 1
∑
n,k

µγn,k =∞.
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(b) Let α ∈ (0, 1). If there exists 1 < γ < 1
1−α such that

∑
n,k

µγn,k < +∞, then

P
(
Λµ is α-Carleson

)
= 1

(c) There exists a positive, σ-finite, locally finite measure µ such that
∑
n,k

µ
1/(1−α)
n,k < +∞ and

P
(
Λµ is α-Carleson

)
= 0.

(d) For every γ > 1 there exists a positive, σ-finite, locally finite measure µ such that
∑
n,k

µγn,k =

+∞ but
P
(
Λµ is α-Carleson

)
= 1

for all α ∈ (0, 1).

Remarks. 1) The first statement in part (a) is connected with the first part of the statement
in Theorem 1.2, since it is a well-known fact that every 1-Carleson (or Carleson-Newman) se-
quence can be split into a finite number of separated sequences, each of which being of course
1-Carleson[20, Lemma 21] (obviously a finite number of arbitrary separated sequences may not
be Carleson-Newman). However Theorem 1.4(a) does not give a precise information on the
number of separated sequences involved. It is also mentionable that the condition for a.s. separa-
tion from Theorem 1.2 implies automatically the Carleson condition (picking γ = 2 > 1). This
is perhaps more surprising and may be explained by the nature of the process: the independence
of the different points allows for big fluctuations, so the probability of finding pairs of points
arbitrarily close is quite big unless the number of points in the process is restricted severely (up
to
∑

n,k µ
2
n,k <∞).

2) It is interesting to point out that for the inhomogeneous Poisson process we have a charac-
terization of 1-Carleson sequences, while in the a priori simpler random model with fixed radii
and random arguments there is only a sufficient – still optimal – condition (see [9, Theorem 1.4]).

3) In the case α ∈ (0, 1) the results are less precise than when α = 1. The value 1/(1 − α)
turns out to be an optimal breakpoint, but nothing specific can be said beyond this value without
additional conditions on the distribution of µ. The example given in (c) is part of a certain
parameter dependent scale of measures which will be discussed in Section 4.1, and for which the
α-Carleson condition is characterized in terms of the parameter.

4) Our conditions, both here and in Theorem 1.2, are expressed in terms of µn,k, thus re-
distributing continuously µ on Tn,k if necessary, we can always assume that µ is absolutely
continuous with respect to the Lebesgue measure.

The structure of the paper is as follows. In Section 2 we prove the main Theorems 1.2 and 1.4.
Section 3 deals with the consequences of these results in the study of interpolating sequences
for various spaces of holomorphic functions. In particular, we find precise conditions so that a
Poisson process Λµ is almost surely an interpolating sequence for the Hardy spaces Hp, 0 < p ≤
∞, the Bloch space B, or the Dirichlet spaces Dα, α ∈ (1/2, 1). A final section is devoted to
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provide examples of Poisson processes associated to some simple measures and to give integral
conditions (non-discrete) on µ which are in some cases equivalent to the discrete versions used
in the statements.

We finish this introduction recalling the Borel-Cantelli lemma, which is a central tool in this
paper. We refer to [4] for a general source on probability theory. Given a sequence of events Ak
let lim supAk = {ω : ω ∈ Ak for infinitely many k}.

Lemma 1.5. Let (Ak)k be a sequence of events in a probability space. Then

(1) If
∑

P(Ak) <∞, then P(lim supAk) = 0,
(2) If the events Ak are independent and

∑
P(Ak) =∞, then P(lim supAk) = 1.

Acknowledgements: The authors would like to thank Joaquim Ortega-Cerdà for suggesting
the consideration of Poisson processes and for helpful discussions.

2. PROOF OF THEOREMS 1.2 AND 1.4.

2.1. Proof of Theorem 1.2. Assume first that
∑

n,k µ
M+1
n,k < +∞, and define the events

An,k = {Xn,k > M} = {Xn,k ≥M + 1}.
Then

P(An,k) = 1−
M∑
j=0

P(Xn,k = j) = 1− e−µn,k
( M∑
j=0

µjn,k
j!

)
.

By hypothesis lim
n

(supk µn,k) = 0, so we can use Taylor’s formula

(2) 1− e−x(
M∑
j=0

xj

j!
) =

xM+1

(M + 1)!
+ o(xM+1) x→ 0

to deduce that ∑
n,k

P(An,k) .
∑
n,k

µM+1
n,k

(M + 1)!
< +∞.

By the Borel-Cantelli lemma Xn,k ≤M for all but at most a finite number of Tn,k.

In principle this does not imply that Λµ can be split into M separated sequences, because
it might happen that points of two neighboring Tn,k come arbitrarily close. This possibility is
excluded by repeating the above arguments to a new dyadic partition, made of shifted boxes T̃n,k
having the “lower vertices” (those closer to T) at the center of the Tn,k’s (see Figure 2 below); let

T̃n,k =
{
z = reit :

3

2
2−(n+2) < 1− r ≤ 3

2
2−(n+1) ;

k + 1/4

2n
≤ t

2π
<
k + 3/4

2n

}
.

Since each T̃n,k is included in the union of at most four Tm,j , we still have
∑

n,k µ̃
M+1
n,k < ∞,

and therefore, as before, X̃n,k = NT̃n,k
is at most M , except for maybe a finite number of indices

(n, k). This prevents that two adjacent Tn,k have more than M points getting arbitrarily close. In
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conclusion, for all but a finite number of indices Xn,k ≤ M , hence the part of Λµ in these boxes
can be split into M separated sequences. Adding the remaining finite number of points to any of
these sequences may change the separation constant, but not the fact that they are separated.

In,k

Tn,k

T̃n,k

FIGURE 2. Dyadic partitions: {Tn,k}n,k in blue, {T̃n,k}n,k in red.

Assume now that
∑

n,k µ
M+1
n,k = +∞. We shall prove that for every δl0 = 2−l0 , l0 ∈ N,

P
(
Λ union of M δl0-separated sequences

)
= 0.

Split each side of Tn,k into 2l0 segments of the same length. This defines a partition of Tn,k in
22l0 small boxes of side length 2−n2−l0 , which we denote by

T l0,jn,k j = 1, . . . , 22l0 .

Let X l0,j
n,k = N

T
l0,j
n,k

denote the corresponding counting variable, which follows a Poisson law of

parameter µn,k,l0,j = µ(T l0,jn,k ).

It is enough to show that for any l0,

P(X l0,j
n,k > M for infinitely many n, k, j) = 1.

By the second part of the Borel-Cantelli lemma, since the X l0,j
n,k are independent, we shall be

done as soon as we see that

(3)
∑
n,k

22l0∑
j=1

P
(
X l0,j
n,k ≥M + 1

)
= +∞.

For any Poisson variable X of parameter λ, the probability

P(X ≥M + 1) = e−λ
( ∞∑
m=M+1

λm

m!

)
= 1− e−λ

( M∑
m=0

λm

m!

)
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increases in λ. Hence there is no restriction in assuming that 0 ≤ µn,k,l0,j ≤ µn,k ≤ 1/2 for all
n, k, j. Then we can use Taylor’s formula (2) to deduce that

P
(
X l0,j
n,k ≥M + 1

)
'

µM+1
n,k,l0,j

(M + 1)!
.,

and therefore (3) is equivalent to

∑
n,k

22l0∑
j=1

µM+1
n,k,l0,j

= +∞.

That this sum in infinite is just a consequence of the hypothesis and the elementary estimate

µM+1
n,k =

(22l0∑
j=1

µn,k,l0,j

)M+1

≤ 22l0(M+1)

22l0∑
j=1

µM+1
n,k,l0,j

.

2.2. Proof of Theorem 1.4. (a) Assume first that
∑

n µ
γ
n,k < +∞ for some γ > 1. It is enough

to check the Carleson condition ∑
λ∈Q(I)

(1− |λ|) ≤ C|I|

on the dyadic intervals In,k. Let Qn,k = Q(In,k). Decomposing the sum on the different layers
Am, it is enough to show that almost surely there exists C > 0 such that for all n ≥ 0, k =
0, . . . , 2n−1 ∑

λ∈Qn,k

(1− |λ|) '
∑
m≥n

∑
j:Tm,j⊂Qn,k

2−mXm,j ≤ C2−n.

This is equivalent to

(4) sup
n,k

2n
∑
m≥n

∑
j:Tm,j⊂Qn,k

2−mXm,j <∞

Denote
Xn,m,k = NQn,k∩Am = #(Λ ∩Qn,k ∩ Am) =

∑
j:Tm,j⊂Qn,k

Xm,j,

which is a Poisson variable of parameter

µn,m,k = µ(Qn,k ∩ Am) =
∑

j:Tm,j⊂Qn,k

µm,j.

Set
Yn,k = 2n

∑
m≥n

2−mXn,k,m =
∑
m≥n

2n−mXn,k,m,

so that (4) becomes supn,k Yn,k < +∞.
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Let A > 0 be a big constant to be fixed later on. Again by the Borel-Cantelli Lemma, it is
enough to show that

(5)
∑
n,k

P
(
Yn,k > A

)
< +∞,

since then Yn,k ≤ A for all but maybe a finite number of n, k; in particular supn,k Yn,k <∞.

The first step of the following reasoning is an adaptation to the Poisson process of the proof
given in [9, Theorem 1.1] and which allowed to improve the result on Carleson sequences for the
probabilistic model with fixed radii and random arguments. However, while in the original proof
the Carleson boxes Qn,k are decomposed into layers Qn,k ∩ Am (m ≥ n), in this new situation
(as well as for (b)), Carleson boxes are decomposed into top-halves Tm,j ⊂ Qn,k, which requires
more delicate arguments to reach the convergence needed in the Borel-Cantelli lemma.

Recall that the probability generating function of a Poisson variable X of parameter λ is
E(sX) = eλ(s−1). By the independence of the different Xn,k,m, m ≥ n,

E(sYn,k) =
∏
m≥n

E((s2n−m)Xn,m,k) =
∏
m≥n

eµn,m,k(s2
n−m−1).

Thus for any s > 1, by Markov’s inequality

P(Yn,k > A) = P(sYn,k > sA) ≤ 1

sA
E(sYn,k) =

1

sA

∏
m≥n

eµn,m,k(s2
n−m−1).

Using the estimate x(a1/x − 1) ≤ a, for a, x > 1, with a = s and x = 2m−n,

logP(Yn,k > A) ≤ −A log s+
∑
m≥n

(s2n−m − 1)µn,m,k

≤ −A log s+
∑
m≥n

s2n−m µn,m,k

= −A log s+ s
∑
m≥n

2n−m
∑

j:Tm,j⊂Qn,k

µm,j.

We want to optimize this estimate for s > 1. Set

Bn,k =
∑
m≥n

2−(m−n)
∑

j:Tm,j⊂Qn,k

µm,j

and define
φ(s) = −A log s+ sBn,k.

Let us observe first that the Bn,k are uniformly bounded (they actually tend to 0). Indeed, let β
denote the conjugate exponent of γ ( 1

γ
+ 1

β
= 1). Since for m ≥ n there are 2m−n boxes Tm,j in

Qn,k, by Hölder’s inequality on the sum in the index j we deduce that

Bn,k ≤
∑
m≥n

2−(m−n)
( ∑
j:Tm,j⊂Qn,k

µγm,j

)1/γ

2(m−n)/β
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=
∑
m≥n

2−(m−n)/γ
( ∑
j:Tm,j⊂Qn,k

µγm,j

)1/γ

< +∞.

Taking A big enough we see that the minimum of φ is attained at s0 = A/Bn,k > 1. Hence

logP(Yn,k > A) ≤ φ(s0) = −A log
A

Bn,k

+ A.

Therefore

P
(
Yn,k > A

)
≤
(
Bn,k

A

)A
eA,

and ∑
n,k

P(Yn,k > A) ≤
( e
A

)A∑
n,k

BA
n,k.

The estimate on Bn,k obtained previously is not enough to prove that this last sum converges. In
order to obtain a better estimate take p > 1, to be chosen later on, its conjugate exponent q (i.e.
1
p

+ 1
q

= 1), and apply Hölder’s inequality in the following way:

Bn,k =
∑
m≥n

j:Tm,j⊂Qn,k

2−(m−n)µm,j = 2n
∑
m≥n

j:Tm,j⊂Qn,k

2−
m
p 2−

m
q µm,j

≤ 2n
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mβ
p

)1/β

×
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mγ
q µγm,j

)1/γ

.

Choose now p so that 1 < p < β; then∑
m≥n

j:Tm,j⊂Qn,k

2−
mβ
p =

∞∑
m=n

2−
mβ
p 2m−n = 2−n

∞∑
m=n

2−m(β
p
−1) ' 2−n2−n(β

p
−1) = 2−n

β
p .

Thus, from the above estimate,

Bn,k ≤ 2
n
q

( ∑
m≥n

j:Tm,j⊂Qn,k

2−
mγ
q µγm,j

)1/γ

.

Choosing A = γ yields ∑
n,k

Bγ
n,k ≤

∑
n,k

2
nγ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mγ
q µγm,j.

We now apply Fubini’s theorem to exchange the sums. The important observation here is that
each Tm,j has only one ancestor at each level n ≤ m (i.e, one Tn,k containing Tm,j). Hence∑

n,k

Bγ
n,k ≤

∑
m,j

2−
mγ
q µγm,j

∑
n≤m

k:Qn,k⊇Tm,j

2
nγ
p =

∑
m,j

2−
mγ
q µγm,j

∑
n≤m

2
nγ
q
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≤ 2
∑
m,j

2−
mγ
q µγm,j 2

mγ
q = 2

∑
m,j

µγm,j.

This finishes the proof of (5), hence of this part of the theorem.

Let us now assume that
∑

n,k µ
γ
n,k = +∞ for every γ > 1. Suppose M ≥ 1 is an integer.

Since the sum diverges for γ = M + 1, Theorem 1.2 implies that the sequence Λµ is almost
surely not a union of M separated sequences. In particular, a.s. there is λ0 ∈ Λµ such that
Dλ0 = {z ∈ D : ρ(λ0, z) < 1/2} contains at least M + 1 points of Λµ. Then, letting Iλ0 be the
interval centered at λ0/|λ0| with length 1 − |λ0|, we have

∑
λ∈Q(Iλ0 )(1 − |λ|) & M |Iλ0|, where

the underlying constant does not depend on M or λ0. This being true for every integer M ≥ 1,
the sequence cannot be 1-Carleson.

(b) Proceeding as in the first implication of (a) we see that it is enough to prove that almost
surely

(6) sup
n,k

Yn,k < +∞ ,

where now

(7) Yn,k = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

Xm,j.

The same estimates as in (a) based on the probability generating function yield, for s > 1,

logP
(
Yn,k ≥ A

)
≤ φ(s) = −A log s+Bn,k,

where now

Bn,k =
∑
m≥n

2−(m−n)α
∑

j:Tm,j⊂Qn,k

µm,j.

As in (a), the hypotheses imply that Bn,k is uniformly bounded: letting β denote the conjugate
exponent to γ ( 1

γ
+ 1

β
= 1) and noticing that α− 1/β = 1/γ − (1− α) > 0,

Bn,k ≤
∑
m≥n

2−(m−n)α
( ∑
j:Tm,j⊂Qn,k

µγm,j

)1/γ

2(m−n)/β

=
∑
m≥n

2−(m−n)(α−1/β)
( ∑
j:Tm,j⊂Qn,k

µγm,j

)1/γ

.

Therefore, optimizing the estimate for s > 1 exactly as we did in (a), we obtain P
(
Yn,k ≥ A

)
.

BA
n,k, and we are lead to prove that for some A > 0

(8)
∑
n,k

P
(
Yn,k ≥ A

)
.
∑
n,k

BA
n,k <∞.
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Again, we introduce an auxiliary weight p – to be determined later – and its conjugate exponent
q. Split 2−mα = 2−

mα
p 2−

mα
q and use Hölder’s inequality to obtain

Bn,k ≤ 2nα
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mαβ
p

)1/β

×
( ∑

m≥n
j:Tm,j⊂Qn,k

2−
mαγ
q µγm,j

)1/γ

.

The first sum is finite: since by hypothesis αβ = αγ
γ−1

> 1 there exists 1 < p < αγ
γ−1

and,∑
m≥n

j:Tm,j⊂Qn,k

2−
mαβ
p =

∑
m≥n

2−
mαβ
p 2m−n = 2−n

∑
m≥n

2−m(αβ
p
−1) ' 2−n

αβ
p .

This implies that
Bγ
n,k . 2nα

γ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mαγ
q µγm,j

and we can conlude the proof of (8) as before:∑
n,k

Bγ
n,k .

∑
n,k

2nα
γ
q

∑
m≥n

j:Tm,j⊂Qn,k

2−
mαγ
q µγm,j =

∑
m,j

µγm,j2
−mα γ

q

∑
n≤m

k:Qn,k⊇Tm,j

2nα
γ
q

=
∑
m,j

µγm,j2
−mα γ

q

∑
n≤m

2−nα
γ
q '

∑
m,j

µγm,j < +∞.

(c) Here we give a measure µ for which
∑

n,k µ
1/(1−α)
n,k < +∞ but P(Λµ is α-Carleson) = 0.

Let

dµ(z) =
dm(z)

(1− |z|2)1+α log
(

e
1−|z|2

) ,
which is the measure µ = µ(1+α, 1) given in the family of examples of Section 4.1. By a simple
computation (see (10))

µn,k '
2−n(1−α)

n
n ≥ 1, k = 0, . . . , 2n − 1

and therefore, since k ranges over 2n terms,∑
n,k

µ
1/(1−α)
n,k '

∑
n≥1

1

n1/(1−α)
< +∞.

On the other hand, letting Yn,k be as in the proof of part (b) (see (7)) we get

E(Yn,k) = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

µm,j ' 2nα
∑
m≥n

2−mα2m−n
2−(1−α)m

n

= 2−(1−α)n
∑
m≥n

1

n
= +∞
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Thus the expected weight of any single Carleson window Qn,k is infinite and Λµ cannot be α-
Carleson.

(d) One could think of considering a divergent series
∑

n,k µ
γ
n,k = +∞ such that

∑
n,k µ

γ′

n,k <

+∞ for every γ′ > γ, and then apply (b), showing that Λµ is α-Carleson when γ′ < 1
1−α , i.e.

when α > 1 − 1
γ′

= γ′−1
γ′

. However, this does not yield the whole range α ∈ (0, 1) for a fixed
measure, as required by the statement.

In order to construct an example working for all α ∈ (0, 1), we pick a measure µ supported in
a Stolz angle of vertex 1, i.e. let, for n ≥ 1,

µn,k =


1

n1/γ
if k = 0

0 if k > 1.

(We could equivalently take the measure τ(2, 1/γ) given in Subsection 4.1, Example 3). Then

(9)
∑
n,k

µγn,k =
∑
n

1

n
=∞

but for every γ′ > γ, ∑
n,k

µγ
′

n,k =
∑
n

1

nγ′/γ
< +∞.

To prove that Λµ is almost surely α-Carleson we will argue as before. Set Yn,k as in the proof
of (b) (see (7)) and follow the same steps to prove that

P(Yn,k ≥ A) . BA
n,k,

where

Bn,k =
∑
m≥n

∑
j:Tm,j⊂Qn,k

µm,j2
−(m−n)α.

By construction Bn,k = 0 for all k > 0. On the other hand

Bn,0 = 2nα
∑
m≥n

2−mαµm,0 = 2nα
∑
m≥n

2−mα

m1/γ
≤ 1

n1/γ
.

(Observe that this last expression is independent of α.) Hence∑
n,k

Bγ′

n,k =
∑
n

Bγ′

n,0 ≤
∑
n

1

nγ′/γ
< +∞,

and as in the proof of (b) the Borel-Cantelli lemma allows to conclude that Λ is almost surely
α-Carleson.
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3. RANDOM INTERPOLATING SEQUENCES

In this section we discuss several consequences of Theorems 1.2 and 1.4 on random inter-
polating sequences Λµ for various spaces of holomorphic functions in D. The results are rather
straightforward consequences of the aforementioned theorems and the known conditions for such
sequences.

3.1. Hardy (and Bergman) spaces. In this section we completely characterize the measures µ
for which the associated Poisson process Λµ is almost surely an interpolating sequence for the
Hardy spaces.

Recall that a sequence Λ = {λn}n∈N ⊂ D is interpolating for

H∞ =
{
f ∈ H(D) : ‖f‖∞ = sup

z∈D
|f(z)| <∞

}
whenever for every sequence of bounded values {wn}n∈N ⊂ C there exists f ∈ H∞ such that
f(λn) = wn, n ∈ N. According to a famous theorem by L. Carleson, Λ is H∞-interpolating if
and only if it is separated and 1-Carleson [8]. This characterization extends to all Hardy spaces

Hp =
{
f ∈ H(D) : ‖f‖p = sup

r<1

(∫ 2π

0

|f(reit)|p dt
2π

)1/p

< +∞
}

0 < p <∞,

for which the interpolation problem is defined in a similar manner (the data wn to be interpolated
should satisfy

∑
n(1− |λn|2)|wn|p < +∞, see e.g. [14, Chapter 9]).

The separation condition given in Theorem 1.2 implies immediately that Λµ is 1-Carleson, by
Theorem 1.4, hence the following result follows.

Theorem 3.1. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ. Then, for any 0 < p ≤ ∞,

P
(
Λµ is Hp-interpolating

)
=


1 if

∑
n,k

µ2
n,k <∞

0 if
∑
n,k

µ2
n,k =∞.

To complete the picture we discuss zero sequences Λ for Hp, 0 < p ≤ ∞. These are de-
terministically characterized by the Blaschke condition

∑
λ∈Λ(1 − |λ|) < ∞. Noticing that

{
∑

λ∈Λµ
(1− |λ|) <∞} is a tail event and using Kolmogorov’s 0-1 law we get:

Proposition 3.2. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ. Then, for any 0 < p ≤ ∞,

P
(
Λµ is a zero set for Hp

)
=


1 if

∑
n,k

2−nµn,k <∞

0 if
∑
n,k

2−nµn,k =∞.
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Observe that the condition is just

E
[∑
λ∈Λµ

(1− |λ|)
]

= E
[∑
n,k

∑
λ∈Tn,k

(1− |λ|)
]
'
∑
n,k

2−nE
[
Xn,k

]
=
∑
n,k

2−nµn,k <∞.

Observe also that
∑2n−1

k=0 µn,k = µ(An) for all n ∈ N, hence∑
n,k

2−nµn,k =
∑
n

2−nµ(An).

Proof of Proposition 3.2. Denote Xn = NAn =
∑2n−1

k=0 Xn,k and denote µn = E[Xn] = µ(An).

Assume first that
∑

n 2−nµn < +∞. Set Y =
∑

n 2−nXn and observe that, by the indepen-
dence of the different Xn,

E[Y ] =
∑
n

2−nµn < +∞ , Var(Y ) =
∑
n

2−2nµn < +∞.

Then, by Markov’s inequality

P(Y ≥ 2E(Y )) ≤ 1

2
.

Since {Y = ∞} is a tail event, Kolmogorov’s 0-1 law implies that P(Y = +∞) = 0, and in
particular the Blaschke sum is finite almost surely.

Assume now that
∑

n 2−nµn = +∞. Split the sum in two parts:∑
n

2−nµn =
∑

n:µn≤2n/n2

2−nµn +
∑

n:µn>2n/n2

2−nµn.

It is enough to consider the second sum, since the first one obviously converges. Since Var[Xn] =
µn, Chebyshev’s inequality yields,

P(Xn ≤
1

2
µn) = P(Xn ≤ µn −

µn
2

) ≤ P(|Xn − µn| ≥
µn
2

) ≤ 4

µn
.

Hence ∑
n:µn>2n/n2

P(Xn ≤
1

2
µn) ≤

∑
n:µn>2n/n2

4

µn
≤

∑
n:µn>2n/n2

4n2

2n
< +∞.

Now, by the Borel-Cantelli lemma, Xn >
1
2
µn for all but maybe a finite number of the n with

µn > 2n/n2; hence ∑
n:µn>2n/n2

2−nXn %
1

2

∑
n:µn>2n/n2

2−nµn,

which diverges, by hypothesis. �
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3.1.1. Remark. Interpolation in Bergman spaces. Interpolating sequences Λ for the (weighted)
Bergman spaces

Bp
α =

{
f ∈ H(D) : ‖f‖pα,p =

∫
D
|f(z)|p(1− |z|2)αp−1dm(z) <∞

}
,

with 0 < α, 0 < p ≤ ∞ are characterized by the separation together with the upper density
condition

D+(Λ) := lim sup
r→1−

sup
z∈D

∑
1/2<ρ(z,λ)≤r

log 1
ρ(z,λ)

log( 1
1−r )

< α

(see [23] and [17, Chapter 5] for both the definitions and the results).

Since every 1-Carleson sequence has density D+(Λ) = 0, the same conditions of Theorem 3.1
also characterize a.s. Bergman interpolating sequences, regardless of the indices α and p. Again,
because of the big fluctuations of the Poisson process, the conditions required to have separation
a.s. are so strong that they can only produce sequences of zero upper density.

Another indication of the big fluctuations of the Poisson process is the following. For the
invariant measure dν(z) = dm(z)

(1−|z|2)2
, which obviously satisfies νn,k ' 1 for all n, k, it is not

difficult to see that almost surely,

D+(Λν) = +∞ and D−(Λν) := lim inf
r→1−

inf
z∈D

∑
1/2<ρ(z,λ)≤r

log 1
ρ(z,λ)

log( 1
1−r )

= 0.

Therefore there are way too many points for Λν to be interpolating for any Bp
α, but there are too

few for it to be sampling, since these sets must have strictly positive lower density D−(Λ) (see
[17, Chapter 5]).

3.2. Interpolation in the Bloch space. We consider now interpolation in the Bloch space B,
consisting of functions f holomorphic in D such that

‖f‖B := |f(0)|+ sup
z∈D
|f ′(z)|(1− |z|2) < +∞.

Since Bloch functions satisfy the Lipschitz condition |f(z) − f(w)| ≤ ‖f‖B δ(z, w), where
δ(z, w) = 1

2
log 1+ρ(z,w)

1−ρ(z,w)
denotes the hyperbolic distance, A. Nicolau and B. Bøe defined inter-

polating sequences for B as those Λ = {λn}n∈N such that for every sequence of values {vn}n∈N
with sup

n6=m

|vn−vm|
δ(λn,λm)

<∞ there exists f ∈ B with f(λn) = vn, n ∈ N [5].

Theorem ([5, pag.172], [24, Theorem 7]). A sequence Λ of distinct points in D is an interpolat-
ing sequence for B if and only if:

(a) Λ can be expressed as the union of at most two separated sequences,
(b) for some 0 < γ < 1 and C > 0,

#
{
λ ∈ Λ : ρ(z, λ) < r

}
≤ C

(1− r)γ
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independently on z ∈ D.

As explained in [5], condition (b) can be replaced by:

(b)’ for some 0 < γ < 1 and C > 0, and for all Carleson windows Q(I),

#
{
λ ∈ Q(I) : 2−(l+1)|I| < 1− |λ| < 2−l|I|

}
≤ C2γl , l ≥ 0.

In [24, Corollary 2] it is mentioned that it can also be replaced by:

(b)” there exist 0 < γ < 1 and such that Λ is γ-Carleson.

In view of conditions (a) and (b)” the following characterization of Poisson processes which
are a.s. Bloch interpolating sequences follows from Theorems 1.2 and 1.4(b) (with γ ∈ (2/3, 1)).

Theorem 3.3. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ. Then,

P
(
Λµ is B-interpolating

)
=


1 if

∑
n,k

µ3
n,k <∞

0 if
∑
n,k

µ3
n,k =∞.

Note. In case
∑

n,k µ
3
n,k < ∞ it is also possible to prove (b)’ directly, with the same methods

employed in the proof of Theorem 1.4. It is enough to prove the estimate for dyadic arcs In,k,
and for those

#
{
λ ∈ Q(In,k) : 2−(l+1)|In,k| < 1− |λ| < 2−l|In,k|

}
'

∑
j:Tn+l,j⊂Qn,k

Xn+l,j.

In the above, the left hand side corresponds essentially to the number of points in the layer
Q(In,k) ∩ An+l. Thus, with m = n+ l, (b)’ is equivalent to

sup
n,k

sup
m≥n

2−γ(m−n)
∑

j:Tm,j⊂Qn,k

Xm,j < +∞.

Letting

Yn,k,m = 2−γ(m−n)
∑

j:Tm,j⊂Qn,k

Xm,j , E[Yn,k,m] = 2−γ(m−n)
∑

j:Tm,j⊂Qn,k

µm,j

and proceeding as in the first part of the proof of Theorem 1.4(a) we get (taking A = 3):∑
n,k

∑
m≥n

P
(
Yn,k,m ≥ 3

)
.
∑
n,k

∑
m≥n

[
2−γ(m−n)

∑
j:Tm,j⊂Qn,k

µm,j

]3

≤
∑
n,k

∑
m≥n

2−3γ(m−n)
∑

j:Tm,j⊂Qn,k

µ3
m,j 22(m−n)

=
∑
m,j

µ3
m,j

∑
n≤m

∑
k:Qn,k⊇Tm,j

2−(3γ−2)(m−n).
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For any γ > 2/3 this sum is bounded by
∑

m,j µ
3
m,j , so we can conclude with the Borel-Cantelli

lemma.

3.3. Interpolation in Dirichlet spaces. Our last set of results concerns interpolation in the
Dirichlet spaces,

Dα =
{
f ∈ H(D) : ‖f‖2

Dα = |f(0)|2 +

∫
D
|f ′(z)|2(1− |z|2)αdm(z) <∞

}
,

with α ∈ (0, 1). The limiting case α = 1 can be identified with the Hardy space H2.

In these spaces, interpolating sequences are characterized by the separation and a Carleson
type condition. This was initially considered by W.S. Cohn, see [11]; we refer also to the general
result [1]. While separation is a simple condition, that in our random setting is completely
characterized by Theorem 1.2, the characterization of Carleson measures in these spaces is much
more delicate. This was achieved by D. Stegenga using the so-called α-capacity [25]. In our
setting it is however possible to use an easier sufficient one-box condition that can be found in
K. Seip’s book, see [24, Theorem 4, p.38], which we recall here for the reader’s convenience.

Theorem 3.4 (Seip). A separated sequence Λ in D is interpolating for Dα, 0 < α < 1 if there
exist 0 < α′ < α such that Λ is α′-Carleson.

The reader should be alerted that in Seip’s book the space Dα is defined in a slightly different
way, and that the above statement is adapted to our definition.

For these spaces Theorems 1.2 and 1.4 lead to less precise conclusions. Indeed, in view of
Theorem 1.4(c),(d) we cannot hope for complete characterizations if we do not impose additional
conditions on the measure µ.

Theorem 3.5. Let Λµ be the Poisson process associated to a positive, σ-finite, locally finite
measure µ.

(a) If 1/2 < α < 1, then

P
(
Λµ is interpolating for Dα

)
=


1 if

∑
n,k

µ2
n,k < +∞

0 if
∑
n,k

µ2
n,k = +∞.

(b) If 0 ≤ α < 1/2 and there exists 1 < γ < 1
1−α such that

∑
n,k

µγn,k < +∞, then

P
(
Λµ is interpolating for Dα

)
= 1.

Clearly, the condition
∑

n,k µ
2
n,k < +∞ is also necessary in the case (b) (if the sum diverges,

then Λµ is almost surely not separated).

Proof. (a) If
∑

n,k µ
2
n,k = +∞, then Λµ is almost surely not separated by Theorem 1.2, hence it

is almost surely not interpolating.
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If
∑

n,k µ
2
n,k < +∞, Theorem 1.2 shows again that the sequence Λµ is almost surely separated.

By Seip’s theorem, it remains to show that Λµ is almost surely α′-Carleson for some α′ < α.
Pick 1/2 < α′ < α < 1, so that 1/(1− α′) > 2. Choosing γ ∈ (2, 1/(1− α′)) we get∑

n,k

µγn,k .
∑
n,k

µ2
n,k < +∞,

and by Theorem 1.4(b) we conclude that Λµ is almost surely α′-Carleson.

(b) If α < 1/2 then 1/(1−α) < 2 and the value γ given by the hypothesis satisfies 1 < γ < 2.
Therefore ∑

n,k

µ2
n,k .

∑
n,k

µγn,k < +∞,

which allows to deduce from Theorem 1.2 that Λµ is almost surely separated.

Since the inequality γ < 1/(1 − α) is strict, we also have γ < 1/(1 − α′) for some α′ < α
sufficiently close to α. Again, Theorem 1.4(b) shows that Λµ is almost surely α′-Carleson, and
Seip’s theorem implies that Λµ is almost surely interpolating. �

3.4. Additional remarks and comments. The above results show several applications of our
Theorems 1.2 and 1.4, but they also give rise to many challenging questions. Is it possible to
get a necessary counterpart of Theorem 1.4(b) under reasonable conditions on µ (more general
than the class considered in Section 4.1 below)? Is it possible to get precise statements when
α = 1/2? Also, the case of the classical Dirichlet space seems to be largely unexplored for
Poisson point processes, while the situation regarding interpolation, separation and zero-sets for
the radial probabilistic model is completely known for all α ∈ [0, 1] (see [9, 6]).

4. EXAMPLES AND INTEGRAL CONDITIONS FOR THE MEASURE µ

In the first part of this final section we illustrate the above results with three simple families of
measures on D. In the second part we briefly discuss alternative, non-discrete, formulations of
the conditions given in the previous statements.

4.1. Examples. 1. Radial measures. Let dm denote the normalized Lebesgue measure and let
dν(z) = dm(z)

(1−|z|2)2
be the invariant measure in D. Define

dµ(a, b)(z) =
dm(z)

(1− |z|2)a logb
(

e
1−|z|2

) =
dν(z)

(1− |z|2)a−2 logb
(

e
1−|z|2

) ,
where either a > 1, b ∈ R, or a = 1 and b ≤ 1 (so that µ(a, b)(D) = +∞).

Observe that

µ(a, b)n,k '
2−n(2−a)

nb
n ≥ 1, k = 0, . . . , 2n − 1,
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and therefore, for γ > 0,

(10)
∑
n,k

µ(a, b)γn,k '
∑
n

2n
2−n(2−a)γ

nbγ
=
∑
n

2−n[(2−a)γ−1]

nbγ
.

Proposition 4.1. Consider the Poisson process Λa,b associated to the masure µ(a, b), with either
a > 1 or a = 1 and b ≤ 1.

(a) Λa,b can a.s. be expressed as a union of M separated sequences if and only if either
a < 2− 1

M+1
and b ∈ R, or a = 2− 1

M+1
and b > 1

M+1
.

(b) In particular, Λa,b is a.s. separated if and only if either a < 3/2 and b ∈ R, or a = 3/2
and b > 1/2.

(c) Λa,b is a.s. a 1-Carleson sequence if and only if a < 2, b ∈ R.
(d) Let α ∈ (0, 1). Then Λa,b is a.s. an α-Carleson sequence if and only if a < 1 + α or

a = 1 + α and b > 1.

Proof. (a) is immediate from Theorem 1.2 and (10) with γ = M + 1.

(c) If a ≥ 2 the series in (10) diverges for all γ > 1, thus by Theorem 1.4(a) Λa,b is a.s. not
1-Carleson.

On the other hand, if a < 2 there exists γ such that (2− a)γ − 1 > 0 (i.e, such that γ > 1
2−a).

For that γ the series in (10) converges, and we can conclude again by Theorem 1.4(a).

(d) Suppose first that a < 1 + α. As in the previous case, since 2 − a > 1 − α there exists
γ ∈ ( 1

2−a ,
1

1−α). For this γ the series in (10) converges and we can apply Theorem 1.4(b).

If a > 1 +α and b ∈ R, then Λµ(a,b) contains in the mean more points than Λµ(1+α,1) for which
we have shown in Theorem 1.4(c) that it is almost surely not α-Carleson.

It thus remains the case a = 1 +α. Again, when b = 1 — and thus also when b < 1 since then
we have more points in the mean — the proof of Theorem 1.4(c) shows that the corresponding
sequence is almost surely not α-Carleson.

Finally, suppose that a = 1 + α and b > 1. Recall from (7) the notation

Yn,k = 2nα
∑
m≥n

2−mα
∑

j:Tm,j⊂Qn,k

Xm,j.

In the proof of Theorem 1.4(b) we have shown that

P (Yn,k ≥ A) ≤ BA
n,k,

where
Bn,k =

∑
m≥n

2−(m−n)α
∑

j:Tm,j⊂Qn,k

µm,j.

From the explicit form of µm,j we get

Bn,k '
∑
m≥n

2−(m−n)α × 2m−n × 2−m(2−a)

mb
= 2n(α−1)

∑
m≥n

2−m(α+1−a)

mb
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which converges exactly when a < 1 + α or when a = 1 + α and b > 1 which is the case we are
interested in here. In this situation, we get

Bn,k '
2−n(2−a)

nb

Clearly, when A ≥ 1/(2 − a) = 1/(1 − α), then
∑

n,k B
A
n,k converges, and the Borel-Cantelli

lemma shows that Yn,k ≥ A can happen for an at most finite number of Carleson windows Qn,k.
Hence Λµ(a,b) is a.s. α-Carleson. �

2. Measures with a singularity on T. Define now

dσ(a, b)(z) =
dm(z)

|1− z|a logb
(

e
|1−z|

) ,
where either a > 2, b ∈ R, or a = 2 and b ≤ 1 (so that σ(a, b)(D) = +∞). Here

σ(a, b)n,k = σ(a, b)(Tn,k) '
2−2n

[(k + 1)2−n]a logb
(

e
(k+1)2−n

) , n ∈ N, k = 0, . . . , 2n−1.

Hence for γ > 1,

(11)
∑
n,k

σ(a, b)γn,k '
∑
n

2−nγ(2−a)

2n∑
k=1

1(
ka logb

(
e

k2−n

))γ .
Let us examine the growth of the sum in k. For that, set

Sn(a, b, γ) =
2n∑
k=1

1

kaγ logbγ
(

e
k2−n

) ' ∫ 2n

1

dx

xaγ logbγ
(

e
x2−n

)
The change of variable t = log

(
e

x2−n

)
leads to

Sn(a, b, γ) '
∫ 1

log(2ne)

(
et

e2n

)aγ−1 −dt
tbγ

=
2−n(aγ−1)

eaγ−1

∫ log(2ne)

1

et(aγ−1) dt

tbγ

Our standing assumption being a > 2 or a = 2 and b ≤ 1, we only need to consider these two
cases. In both cases, et(aγ−1)/tbγ → +∞when t→ +∞, and the last integral behaves essentially
as the value in the upper bound of the integration interval∫ log(2ne)

1

et(aγ−1) dt

tbγ
' 2n(aγ−1)

nbγ
.

Hence
Sn(a, b, γ) ' 1

nbγ
,

and

(12)
∑
n,k

σ(a, b)γn,k '
∑
n

2−nγ(2−a) × 1

nγb
=
∑
n

2−nγ(2−a)

nγb
.
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We are now in a position to prove the following result.

Proposition 4.2. Consider the Poisson process Λ̃a,b associated to the measure σ(a, b), with either
a > 2 or a = 2 and b ≤ 1.

(a) For a > 2 the process Λ̃a,b is a.s. neither a finite union of separated sequences nor an
α-Carleson, for any α ∈ (0, 1].

(b) For a = 2 the process Λ̃2,b is
(i) the union of M separated sequences if and only if b > 1

M+1
,

(ii) α-Carleson for α ∈ (0, 1) if b > 1− α.

Proof. (a) is immediate from Theorems 1.2 and 1.4, since (12) diverges for all γ > 0.

(b) In this case the series (12) is just
∑

n 1/nbγ .

The case (i) follows from Theorem 1.2 with γ = M + 1.

For (ii), by the hypothesis 1/b < 1/(1− α), there exists 1/b < γ < 1/(1− α), for which the
series (12) converges. We can conclude by Theorem 1.4. �

3. Measures in a cone. Given a point ζ ∈ T, consider a Stolz region

Γ(ζ) =
{
z ∈ D :

|ζ − z|
1− |z|

< 2
}
.

We discuss the previous measures restricted to Γ(ζ). With no restriction of generality we can
assume that ζ = 1. Let thus

dτ(a, b)(z) = χΓ(1)(z)dµ(a, b)(z) = χΓ(1)(z)
dm(z)

(1− |z|2)a logb
(

e
1−|z|2

) ,
where now either a > 2, b ∈ R, or a = 2 and b ≤ 1 (so that ν(a, b)(D) = +∞). Since in Γ
the measures dµ(a, b) and dσ(a, b) behave similarly, we could replace dµ(a, b) by dσ(a, b) in the
definition of dτ(a, b).

Observe that ν(a, b)n,k is non-zero only for a finite number N of k at each level n, and that for
those k

τ(a, b)n,k '
2−n(2−a)

nb
n ≥ 1, k = 0, . . . , N.

Hence

(13)
∑
n,k

τ(a, b)γn,k '
∑
n

2−n(2−a)γ

nbγ
,

which is exactly the same estimate as in (12) and thus immediately leads to the same result as
Proposition 4.2. This might look surprising since σ(a, b) (and a fortiori µ(a, b)) puts infinite mass
outside Γ(ζ) (actually outside Stolz angles at ζ with arbitrary opening).

Proposition 4.3. Consider the Poisson process Λ̂a,b associated to the masure τ(a, b), with either
a > 2 or a = 2 and b ≤ 1.
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(a) For a > 2 the process Λ̂a,b is a.s. not a finite union of separated sequences separated or
α-Carleson for any α ∈ (0, 1].

(b) For a = 2 the process Λ̂2,b is
(1) the union of M separated sequences if and only if b > 1

M+1
,

(2) α-Carleson for α ∈ (0, 1) if b > 1− α.

4.2. Integral conditions on µ. Given a locally finite, σ-finite measure µ, a natural question is
whether the discretized conditions appearing in Theorems 1.2 and 1.4 can be reformulated in
terms of integrals. Let us assume that µ is absolutely continuous with respect to the Lebesgue (or
the invariant) measure on D. In view of the aforementioned discrete conditions this is not really
restrictive, since in case µ had a singular part we could just redistribute its mass continuously on
each Tn,k. Assume thus that dµ = h dν, where dν = dm(z)

(1−|z|2)2
is the invariant measure, h ≥ 0 and

h ∈ L1
loc(D; ν) (but h /∈ L1(D; ν), so that µ(D) =∞).

As a result of Jensen’s inequality applied to ν on Tn,k, we deduce the following general obser-
vation.

Proposition 4.4. Let µ = h dν, where h ≥ 0 and h ∈ L1
loc(D). For every γ > 1 there exists

C > 0 such that

(14)
∑
n,k

µγn,k ≤ C

∫
D
hγ(z) dν(z).

Of course without additional conditions on h the conditions on the sum and on the integral
cannot be equivalent, and there are standard construction methods to find measures for which the
sum is convergent while the integral diverges. We do not go into details of that here.

One is obviously more interested in situations where the sum and the integral conditions are
equivalent. This is for instance the case when h is radial with some regularity conditions (as in
the first class of examples in the previous section) or when h is subharmonic (as in the second
class of examples).

Another mildly regular case in which an equivalent reformulation in terms of integrals is pos-
sible is when µ is doubling, meaning that there exists C > 0 such that µ(2D) ≤ Cµ(D) for all
open disc D ⊂ D. Here 2D denotes the disk with the same center as D but with double radious
(in the pseudohyperbolic metric). Fixing any c ∈ (0, 1) and defining Fµ(z) = µ(D(z, c)) one
immediately sees that for any γ > 1∑

n,k

µγn,k '
∫
D
F γ
µ (z) dν(z).
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