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Laboratoire Associé au CNRS UMR 7589, Tour 24, 5ème. étage, 4, Place Jussieu, 75252 Paris, Cedex 05, France

(Received 24 July 2006; published 21 December 2006)

We investigate the issue of initial conditions of curvature and tensor perturbations at the beginning of
slow roll inflation and their effect on the power spectra. Renormalizability and small backreaction
constrain the high k behavior of the Bogoliubov coefficients that define these initial conditions. We
introduce a transfer function D�k� which encodes the effect of generic initial conditions on the power
spectra. The constraint from renormalizability and small backreaction entails that D�k� & �2=k2 for large
k, implying that observable effects from initial conditions are more prominent in the low multipoles. This
behavior affects the CMB quadrupole by the observed amount �10%–20% when � is of the order of the
energy scale of inflation. The effects on high l-multipoles are suppressed by a factor �1=l2 due to the
falloff of D�k� for large wave vectors k. We show that the determination of generic initial conditions for
the fluctuations is equivalent to the scattering problem by a potential V ��� localized just prior to the slow
roll stage. Such potential leads to a transfer function D�k� which automatically obeys the renormalizability
and small backreaction constraints. We find that an attractive potential V ��� yields a suppression of the
lower CMB multipoles. Both for curvature and tensor modes, the quadrupole suppression depends only on
the energy scale of V ���, and on the time interval where V ��� is nonzero. A suppression of the
quadrupole for curvature perturbations consistent with the data is obtained when the scale of the potential
is of the order of k2

Q where kQ is the wave vector whose physical wavelength is the Hubble radius today.
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I. INTRODUCTION

Inflation is a central part of early Universe cosmology
originally introduced to explain several shortcomings of
the standard big bang cosmology [1–5] and at the same
time it provides a mechanism for generating scalar (den-
sity) and tensor (gravitational wave) perturbations [6–10].
A distinct aspect of inflationary perturbations is that metric
perturbations are generated by quantum fluctuations of the
scalar field(s) that drive inflation. After their wavelength
becomes larger than the Hubble radius, these fluctuations
are amplified and grow, becoming classical and decoupling
from causal microphysical processes. Upon reentering the
horizon, during the matter era, these classical perturbations
seed the inhomogeneities which generate structure upon
gravitational collapse [6–10].

Most inflationary models predict fairly generic features:
a Gaussian, nearly scale invariant spectrum of (mostly)
adiabatic scalar and tensor primordial fluctuations, making
the inflationary paradigm fairly robust. The confirmation of
many of the predictions of inflation by current high preci-
sion observations places inflationary cosmology on solid
grounds.

The Gaussian, adiabatic, and nearly scale invariant spec-
trum of primordial fluctuations provide an excellent fit to
the highly precise wealth of data provided by the
Wilkinson Microwave Anisotropy Probe (WMAP) [11–

18]. Perhaps the most striking validation of inflation as a
mechanism for generating superhorizon (’acausal’) fluctu-
ations is the anticorrelation peak in the temperature-
polarization (TE) angular power spectrum at l� 150 cor-
responding to superhorizon scales [14,15].

The power spectra for scalar curvature and tensor (gravi-
tational wave) quantum fluctuations generated during the
inflationary stage determine the angular power spectrum of
cosmic microwave background (CMB) anisotropies. Their
initial conditions are usually chosen as Bunch-Davies con-
ditions [19], which fix the asymptotic behavior for large
negative conformal time � to be the same as in Minkowski
space-time in terms of positive frequencies. The Bunch-
Davies states transform as irreps under the maximal sym-
metry group O�4; 1� of de Sitter space-time. (Other initial
states were also considered [20]). The requirement that the
energy momentum tensor be renormalizable constrains the
UV asymptotic behavior of the Bogoliubov coefficients
that encode different initial conditions [21].

The possibility that more precise observations of the ani-
sotropies in the CMB may probe physical aspects of the
initial conditions of quantum fluctuations motivated a sub-
stantial effort to study different initial conditions and their
potential observational consequences [22]. The remarkable
high quality data and the exhaustive analysis of the 3 yr
results from WMAP [16] reveal that outlaying points and
wiggles near the acoustic peaks in earlier data have all but
disappeared thus rendering much less statistical signifi-
cance to potential observables from ‘‘transplanckian’’ ef-
fects in the CMB [22] on small angular scales.
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On the other hand, while there are no statistically sig-
nificant departures from the slow roll inflationary scenario
at small angular scales (l * 100), the third year WMAP
data again confirms the surprisingly low quadrupole C2

[16–18] and suggests that it cannot be completely ex-
plained by galactic foreground contamination. The low
value of the quadrupole has been an intriguing feature on
large angular scales since first observed by COBE/DMR
[23], and confirmed by the WMAP data [11–18]. The
observation of a low quadrupole [24] and the surprising
alignment of quadrupole and octupole [24,25] sparked
many different proposals for their explanation [26]. More
recently the robustness of these features in the low multi-
poles to foreground contamination has been studied [27]
with the suggestion [28] that these may originate in ex-
tended (large scale) foregrounds perhaps generated by
Sunayev-Zeldovich (SZ) distortions by hot electrons in
the local supercluster.

The goals and main results

In this article we address the issue of the initial con-
ditions of the fluctuations and the effects they imprint on
the primordial spectra of curvature and tensor perturba-
tions within the effective field theory of inflation [29]. We
show that initial conditions consistent with renormalizabil-
ity and small backreaction influence mainly the low CMB
multipoles. In particular we find a suppression of the CMB
quadrupole consistent with the current observations.
Furthermore, we formulate the problem of the initial con-
ditions in terms of a potential that affects the evolution of
scalar and tensor fluctuations prior to slow roll. In a com-
panion article [30] we show that this potential is a generic
feature of a brief fast roll stage prior to slow roll inflation,
and study its observational consequences as a suppression
in the CMB quadrupole for temperature and tensor modes.
We highlight that these results are derived within the
context of the effective theory of inflation [29,31].
Namely, we provide a consistent assessment of the initial
conditions at the energy scale of inflation which is the
grand unification scale (� 1016 GeV), without the need
to advocate transplanckian physics or extra assumptions as
an explanation for non-Bunch-Davies (BD) initial condi-
tions. As described in detail below, non-BD initial condi-
tions can be consistently incorporated within the effective
field theory valid at the inflation scale.

The goal of this article is to study the effects on the
power spectra of curvature and gravitational wave pertur-
bations of initial conditions consistent with the criteria of
renormalizability of the gauge invariant energy momentum
tensor and negligible backreaction. These general initial
conditions are related to the Bunch-Davies initial condi-
tions by a Bogoliubov transformation. The renormalizabil-
ity criteria constrains the high k behavior of the
Bogoliubov coefficients [21]. We show that these con-
straints imply that observable effects from initial condi-

tions are more pronounced in the low multipoles, namely,
in the region of the angular power spectra corresponding to
the Sachs-Wolfe plateau. Our main results are summarized
as follows:

(i) We introduce a transfer function for initial condi-
tions D�k� which encodes the effect of general initial
conditions on the power spectra. The constraint from
renormalizability and small backreaction entail that
D�k� � O��2=k2� for large k. We show that this
behavior naturally yields an observable correction
to the quadrupole. This correction can account for
the suppression of the quadrupole by the observed
amount�10%–20% when the high energy tail of the
initial conditions is set by the inflation scale. The
corrections to higher lmultipoles are suppressed by a
factor �1=l2 and therefore they are not observable
within the present data.

(ii) The equation for the fluctuations can be interpreted
as a one-dimensional Schrödinger equation with a
(conformal) time dependent potential. We argue that
this potential features two distinct parts: (i) the slow
roll part [��2 � 1=4�=�2] which is repulsive, (like a
repulsive potential barrier, � being the conformal
time, � being 3=2 plus slow roll parameters), and
(ii) a different part V ��� with support before slow
roll starts. The potential V ��� vanishes in the slow
roll stage, hence it does not affect the dynamics
during this stage, but its presence imprints the physi-
cal initial conditions to the fluctuations in the slow
roll stage both for metric and tensor perturbations.

(iii) We demonstrate that the problem of setting generic
initial conditions in the fluctuations equation is
equivalent to the scattering problem by a potential.
Thus, by implementing the powerful methods of
scattering theory we show that the potential V ���
yields initial conditions on the fluctuations for the
beginning of slow roll whose large k behavior is
consistent with renormalizability. We describe the
potential V ��� in a general manner and establish
that an attractive potential V ��� leads to an observ-
able suppression of the quadrupole.

(iv) We find that the effects on the power spectrum are
robust and only depend on the strength and width of
the potential V ���, namely, on the energy scale of
V ���, which is the inflation scale, and on the time
interval where V ��� is nonzero.

(v) Our analysis applies both to the curvature as well as
the tensor fluctuations. Therefore, we predict that the
initial conditions for slow roll also affect the quad-
rupole for B-modes.

We show in the companion article [30] that the potential
V ��� is quite generic and originates in a stage of fast roll
inflaton dynamics. This is an early stage during which the
inflaton varies rapidly, slowing down to merge with the
slow roll stage.
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II. INITIAL CONDITIONS AND THE ENERGY
MOMENTUM TENSOR OF SCALAR AND TENSOR

PERTURBATIONS

The effective field theory of slow roll inflation has two
main ingredients: the classical Friedmann equations in
terms of a classical part of the energy momentum tensor
described by a homogeneous and isotropic condensate, and
a quantum part. The latter features scalar fluctuations
determined by a gauge invariant combination of the scalar
field (inflaton) and metric fluctuations, and a tensor com-
ponent, gravitational waves. A consistency condition for
this description is that the contributions from the fluctua-
tions to the energy momentum tensor be much smaller than
those from the homogeneous and isotropic condensate. The
effective field theory must include renormalization coun-
terterms so that it is insensitive to the possible ultraviolet
singularities of the short wavelength fluctuations. Different
initial conditions on the mode functions of the quantum
fluctuations yield different values for their contribution to
the energy momentum tensor. Different initial conditions
on the mode functions of the quantum fluctuations yield
different values for the energy momentum tensor.

Criteria for acceptable initial conditions must include
the following: (i) backreaction effects from the quantum
fluctuations should not modify the inflationary dynamics
described by the inflaton, (ii) the ultraviolet counterterms
that renormalize the energy momentum tensor should not
depend on the particular choice of initial conditions,
namely, different initial conditions should not introduce
new ultraviolet divergences: a single renormalization
scheme, independent of initial conditions, should render
the energy momentum tensor UV finite. This set of criteria
imply that the ultraviolet allowed states have their large k
behavior constrained up to the fourth order in 1=k [21]. In
Ref. [21] only the energy momentum tensor of inflaton
fluctuations was considered. However, the fluctuations of
the inflaton field are not gauge invariant, and in order to
establish a set of criteria for UV allowed initial states in a
gauge invariant manner, we must study the full gauge
invariant energy momentum of scalar and tensor
fluctuations.

A. Scalar perturbations

The gauge invariant energy momentum tensor for qua-
dratic scalar metric fluctuations has been obtained in
Ref. [32] where the reader is referred to for details. Its
form simplifies in longitudinal gauge, and in cosmic time it
is given by [32]

 hT00i�M2
Pl

�
12Hh _ i�3h� _ �2i�

9

a2�t�
h�r �2i

�
�

1

2

�h� _��2i�
h�r��2i

2a2�t�
�
V00���

2
h�2i�2V 0���h �i;

(2.1)

where ��t� stands for the zero mode of the inflaton field,
��t; ~x� for the inflaton fluctuations around ��t�,  �t; ~x� is
the longitudinal gauge form of the Bardeen potential, and
the dots stand for derivatives with respect to cosmic time.
During inflation the Newtonian potential and the Bardeen
potential are the same in the longitudinal gauge [7,9] and
this property has been used in the above expression.

In longitudinal gauge, the equations of motion in cosmic
time for the Fourier modes are [7,9]

 

� ~k�

�
H�2

��
_�

�
_ ~k�

�
2
�

_H�2H
��
_�

�
�

k2

a2�t�

�
 ~k�0;

��~k�3H _�~k�

�
V00��	�

k2

a2�t�

�
�~k�2V 0��	 ~k�4 _� _ ~k�0;

(2.2)

with the constraint equation

 

_ ~k �H ~k �
1

2M2
Pl

�~k
_�: (2.3)

Initial conditions on the mode functions of the quantum
fluctuations correspond to an initial value problem at a
fixed time hypersurface. For modes of cosmological rele-
vance this time slice at which the initial conditions are
established is such that these modes are subhorizon.
Therefore, we must focus on the contribution to the energy
momentum tensor from subhorizon fluctuations, and, in
particular, in the large momentum region to assess the
criteria for UV allowed states.

For subhorizon modes with wave vectors k
 a�t�H,
the solutions of the Eq. (2.2) are [7]

  ~k�t� � e�ik� ) _ ~k�t� �
ik
a�t�

 ~k�t�: (2.4)

For k
 a�t�H the constraint equation (2.3) entails that
[32]

  ~k�t� �
ia�t�

2M2
Plk

_��~k: (2.5)

In slow roll,

 

_� � �
V 0���

3H

�
1�O

�
1

N

��

� �HMPl

��������
2�v

p �
1�O

�
1

N

��
; (2.6)

where the slow roll parameters �v, �v are of the order 1=N
[29],

 �v �
M2

Pl

2

�
V 0���
V���

�
2
� O

�
1

N

�
;

�v � M2
Pl

V00���
V���

� O

�
1

N

�
;

(2.7)

and N � 55 stands for the number of e-folds from horizon
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exit until the end of inflation. Therefore, for subhorizon
modes,

  ~k�t� � �i
��������
2�v

p �
Ha�t�
k

� �~k

2MPl
: (2.8)

These identities, valid in the limit k
 a�t�H allow to
obtain an estimate for the different contributions to T00.
The first line of Eq. (2.1), namely, the contribution from the
Newtonian potential mode with comoving wave vector k is

 hT� �00 i � 6�vH2h��~k�
2i: (2.9)

The first three terms in the second line of Eq. (2.1) (the
quadratic contribution from the scalar field fluctuations) is

 hT�00i �

�
k
a�t�

�
2
h��~k�

2i; (2.10)

and the crossed term is:

 V 0���h k�ki � �vH
2

�
a�t�H
k

�
h��~k�

2i: (2.11)

Therefore, in slow roll, �v, �v 
 1 and for subhorizon
modes k * a�t�H, the leading contribution to the energy
momentum tensor for the scalar fluctuations is given by the
contribution from the inflaton fluctuations, namely

 hT00i ’
1

2
h� _��2i �

h�r��2i

2a2�t�
�
V00���

2
h�2i: (2.12)

Furthermore, in terms of the slow roll parameter �v, V00 �
3�vH2 and for subhorizon wave vectors with k
 a�t�H
the last term in Eq. (2.12) is subdominant and will be
neglected. Hence, the contribution to the energy momen-
tum tensor from subhorizon fluctuations during the slow
roll stage is determined by the subhorizon quantum fluc-
tuations of the inflaton and given by

 hT00i ’
1

2
h� _��2i �

h�r��2i

2a2�t�
: (2.13)

This analysis allows us to connect with the results in
Ref. [21] for inflaton fluctuations.

The inflaton fluctuation obeys the equation of motion

 

�� ~k � 3H _�~k �

�
3H2�v �

k2

a2�t�

�
�~k � 0: (2.14)

In what follows it is convenient to pass to conformal time
in terms of which, the homogeneous and isotropic
Friedmann-Robertson-Walker (FRW) metric is determined
by

 ds2 � dt2 � a2�t��d~x�2 � C2����d�2 � �d~x�2	; (2.15)

where t and � stand for cosmic and conformal time,
respectively. During slow roll

 C��� � �
1

�H�1� �v�
: (2.16)

In conformal time � the solution of Eq. (2.14) is given by

 �~k��� �
1

C���
��~kS��k; �� � �

y

� ~k
S���k; ��	; (2.17)

where the mode functions S��k; �� are solutions of

 

�
d2

d�2 � k
2 �M2

�C
2��� �

C00���
C���

�
S��k; �� � 0; (2.18)

here,

 M2
� � V 00��� � 3H2�v; (2.19)

and prime stands for derivative with respect to the confor-
mal time. Using Eqs. (2.7) and (2.16) during slow roll, this
equation simplifies to

 

�
d2

d�2 � k
2 �

�2
� �

1
4

�2

�
S��k; �� � 0; (2.20)

where for inflaton fluctuations during slow roll

 �� �
3

2
� �v � �v �O

�
1

N2

�
: (2.21)

The operators�~k,�
y
~k

in Eq. (2.17) obey the usual canonical
commutation relations.

B. Tensor perturbations

Tensor perturbations (gravitational waves) are gauge
invariant. The expectation value of their energy momentum
pseudotensor in a quantum state has been obtained in
Ref. [32] (see also Ref. [33]) and is given by
 

hT�T�00 i � M2
Pl

�
Hh _hklhkli �

1

8

�
h _hkl _hkli

�
1

a2�t�
hrhklrhkli

��
; (2.22)

where the dot stands for the derivative with respect to
cosmic time. The equations of motion for the spatial
Fourier transform of the dimensionless tensor field h are

 

�h kl� ~k� � 3H _hkl� ~k� �
k2

a2�t�
hkl� ~k� � 0: (2.23)

Tensor perturbations correspond to minimally coupled
massless fields with two physical polarizations. Passing
to conformal time the spatial Fourier transform of the
quantum fields are written as [8,10]
 

hij� ~k; �� �
1

C���MPl

���
2
p

X
���;�

�ij��; ~k����; ~kST�k;��

� �y
�; ~k
S�T�k;��	; (2.24)

where � labels the two standard transverse and traceless
polarizations � and �. The operators ��; ~k, �

y

�; ~k
obey the

usual canonical commutation relations, and �ij��; ~k� are
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the two independent traceless-transverse tensors con-
structed from the two independent polarization vectors
transverse to k̂, chosen to be real and normalized such
that �ij��; ~k��

j
k��
0; ~k� � �ik��;�0 .

The mode functions ST�k;�� obey the differential equa-
tion

 S00T�k;�� �
�
k2 �

C00���
C���

�
ST�k;�� � 0; (2.25)

where in the slow roll regime,

 

C00���
C���

�
�2
T �

1
4

�2 ; �T �
3

2
� �v �O

�
1

N2

�
: (2.26)

Thus, to leading order in slow roll the mode functions for
gravitational waves obey the same equations of motion as
for scalar fields but with vanishing mass, namely, setting
�v � 0.

C. Initial conditions

We treat both scalar and tensor perturbations on the
same footing by focusing on mode functions solutions of
the general equation

 

�
d2

d�2 � k
2 �

�2 � 1
4

�2

�
S�k; �� � 0: (2.27)

For general initial conditions we write

 S�k;�� � A�k�g��k;�� � B�k�f��k;��; (2.28)

where two linearly independent solutions of Eq. (2.27) are

 g��k;�� � 1
2i
���1=2� ������������

�	�
p

H�1�� ��k��; (2.29)

 f��k;�� � �g��k;��	�; (2.30)

where H�1�� �z� are Hankel functions. These solutions are
normalized so that their Wronskian is given by

 W�g��k;��; f��k;��	 � g0��k;��f��k;��

� g��k;��f0��k;��

� �i (2.31)

(here prime stands for the derivative with respect to the
conformal time). For the specific cases of scalar or tensor
perturbations, the mode functions and coefficients A�k�,
B�k� will feature a subscript index �, T, respectively.

For wave vectors deep inside the Hubble radius jk�j 

1, the mode functions for arbitrary � have the Bunch-
Davies asymptotic behavior

 g��k;�� �
�!�1 1�����

2k
p e�ik�; f��k;�� �

�!�1 1�����
2k
p eik�;

(2.32)

and for �! 0�, the mode functions behave as:

 g��k;�� �
�!0� �������������

2	k
p

�
2

ik�

�
���1=2�

: (2.33)

The complex conjugate formula holds for f��k;��.
In particular, in the scale invariant case � � 3

2 which is
the leading order in the slow roll expansion, the mode
functions equations (2.29) simplify to

 g3=2�k;�� �
e�ik������

2k
p

�
1�

i
k�

�
: (2.34)

The coefficients A�k�, B�k� for the general solution equa-
tion (2.28) are determined by an initial condition on the
mode functions S�k;�� at a given initial conformal time ��,
namely

 B�k� � �i�g��k; ���S0�k; ��� � g0��k; ���S�k; ���	; (2.35)

 A�k� � �i�f0��k; ���S�k; ��� � f��k; ���S0�k; ���	: (2.36)

Canonical commutation relations for the Heisenberg fields
entail that

 jA�k�j2 � jB�k�j2 � 1: (2.37)

The S-vacuum state j0iS is annihilated by the operators �~k
associated with the modes S�k;��. A different choice of the
coefficients A�k�; B�k� determines different choices of
vacua, the Bunch-Davies vacuum corresponds to A�k� �
1, B�k� � 0. An illuminating representation of these coef-
ficients can be gleaned by computing the expectation value
of the number operator in the Bunch-Davies vacuum.
Consider the expansion of the fluctuation field both in
terms of Bunch-Davies modes g��k;�� and in terms of
the general modes S�k;��, for example, for the scalar field
� (similarly for tensor fields with a subscript T and corre-
sponding normalization)

 �~k��� �
1

C���
�a ~kg���k;�� � ay

� ~k
g����k;��	

�
1

C���
��~kS��k;�� � �y

� ~k
S���k;��	; (2.38)

the creation and annihilation operators are related by a
Bogoliubov transformation

 �y~k � A��k�a
y
~k
� B��k�a� ~k;

� ~k � A���k�a ~k � B
�
��k�a

y

� ~k
:

(2.39)

The Bunch-Davies vacuum j0iBD is annihilated by a ~k,
hence we find the expectation value

 BDh0j�
y
~k
� ~kj0iBD � jB��k�j

2 � N��k�; (2.40)

where N��k� is interpreted as the number of S-vacuum
particles in the Bunch-Davies vacuum. In combination
with the constraint equation (2.37) the above result sug-
gests the following representation for the coefficients A�k�;
B�k�
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 A��k� �
����������������������
1� N��k�

q
ei
A�k�; B��k� �

�������������
N��k�

q
ei
B�k�;

(2.41)

where N��k�, 
A;B�k� are real. The only relevant phase is
the difference

 
k � 
B�k� � 
A�k�: (2.42)

Notice that we provide the initial conditions at a given
conformal time �� which is obviously the same for all
k-modes. This is the consistent manner to define the initial
value problem (or Cauchy problem) for the fluctuations.
This is different from what is often done in the literature
when an ad hoc dependence on k is given to �� [22].

D. The transfer function of initial conditions and its
asymptotic behavior

For gauge invariant scalar perturbations, the analysis
leading to Eq. (2.13) indicates that in order to study the
energy momentum tensor for general initial conditions it is
enough to consider the leading order in the slow roll
expansion. Consistently with neglecting the contributions
from the Newtonian potential as well as the term propor-
tional to V00��	 for the inflaton fluctuations, we set � �
3=2 in the expression for the mode functions equa-
tion (2.29). This simplification results in considering the
scalar field fluctuations as massless and minimally coupled
to gravity.

The energy density in the vacuum state defined by the
new initial conditions is

 � � Sh0jT00j0iS : (2.43)

The renormalized energy density from the fluctuations of
the inflaton field is found to be [21]

 � � �BD � I1 � I2; (2.44)

where �BD corresponds to the Bunch-Davies vacuum ini-
tial conditions Nk � 0 and

 I1 �
1

2	2

Z 1
0
dkk2fN��k�j _F�k; ��j2

�
��������������������������������������
N��k��1� N��k�	

q
Re�e�i
k� _F�k; ���2	g; (2.45)

 I2 �
1

2	2

Z 1
0
dkk2 k

2

a2 fN��k�jF�k; ��j
2

�
��������������������������������������
N��k��1� N��k�	

q
Re�e�i
k�F�k; ���2	g; (2.46)

where F�k; �� is given in terms of the Bunch-Davies mode
function equation (2.34) for � � 3=2 as

 F�k; �� � ��H��g3=2�k; �� �
H��������
2k3
p e�ik��i� k��:

(2.47)

The power spectrum of the inflaton fluctuations is given by

[4,8],
 

P��k;t��
S
h0jj�k���j2j0iS�PBD� �k;t��

k3

	2 fN��k�jF�k;��j
2

�
�������������������������������������
N��k��1�N��k�	

q
�Re�e�i
k�F�k;���2	g; (2.48)

where we used Eq. (2.38) and

 PBD� �k; t� �
k3

2	2 jF�k; ��j
2: (2.49)

We find

 I1 �
�H��4

�2	�2
Z 1

0
dk k3fN��k�

�
��������������������������������������
N��k��1� N��k�	

q
cos�2k�� 
k	g; (2.50)

 

I2�
�H2��2

�2	�2
Z 1

0
dkkfN��k��1�k2�2�

�
�������������������������������������
N��k��1�N��k�	

q
��1�k2�2�cos�2k��
k	

�2k�sin�2k��
k		g;

P��k;t��
�
H
2	

�
2
f�1�k2�2��1�2N��k�	

�2
�������������������������������������
N��k��1�N��k�	

q
��1�k2�2�

� cos�2k��
k	�2k�sin�2k��
k		g: (2.51)

Evaluating the power spectrum after horizon crossing
jk�j 
 1, yields

 

P�
PBD�

��������jk�j
1
� 1�D��k�; (2.52)

where we have introduced the transfer function for initial
conditions

 D��k� � 2jB��k�j2 � 2 Re�A��k�B���k�	

� 2N��k� � 2
��������������������������������������
N��k��1� N��k�	

q
cos
k: (2.53)

The integrals I1;2 are finite provided that asymptotically for
k! 1 the occupation numbers behave as

 N��k� � O

�
1

k4��

�
; (2.54)

with � > 0. Namely, the finiteness of the energy momen-
tum tensor constrains the asymptotic behavior of the occu-
pation numbers to vanish faster than 1

k4 for k! 1 [21]. Of
course, this asymptotic condition leaves a large freedom on
the occupation numbers Nk.

We systematically impose the constraint equation (2.54)
which guarantees the finiteness of the energy momentum
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tensor. This is not always the case for initial conditions
considered in the literature (see [22]).

Let us establish a bound on the large momentum behav-
ior of Nk inserting the asymptotic behavior

 Nk � N�

�
�
k

�
4��

; (2.55)

with 0< �
 1 in the integrals I1;2. Namely, assuming
that the integrals are dominated by the region of high
momenta k=H
 1 and that the occupation number attains
the largest possible values consistent with ultraviolet finite-
ness [Eq. (2.54)]. We observe that kj�j 
 1 in the early
stages of inflation for large k, and that the maximum
contribution from these integrals are at early time ��
�1=H. Hence, the oscillatory terms in I1; I2 average out
and we have from Eqs. (2.50) and (2.51),

 I1 � I2 �
N�
�2	�2

�4

�
: (2.56)

The contribution from the fluctuations to the energy mo-
mentum tensor does not lead to large backreaction effects
affecting the inflationary dynamics provided that I1; I2 

H2M2

Pl, which yields

 N� 
 2	2 H
2M2

Pl

�4 �: (2.57)

Equation (2.57) provides an occupation number distri-
bution exhibiting the largest asymptotic value compatible
with a UV finite energy momentum tensor. This maximal
occupation number distribution falls off for k! 1 with
the minimal acceptable power tail exponent 4� � with
�
 1.

Gravitons are massless particles with two independent
polarizations, therefore their energy momentum tensor is
given by Eq. (2.13) times a factor two. The first term in the
energy momentum pseudotensor for gravitational waves
Eq. (2.22) features only one time derivative, which results
in only one factor k for large momenta, whereas the terms
with two time or spatial derivatives yield k2. Therefore, the
first term is subdominant in the ultraviolet and the short
wavelength contribution to the energy momentum
(pseudo) tensor of gravitational waves is the same as that
for a free massless scalar field, up to a factor 2 from the
physical polarization states [33,34]. Therefore we can di-
rectly extend the results obtained above for scalar fluctua-
tions to the case of tensor fluctuations.

Small backreaction effects from the fluctuations is a
necessary consistency condition for the validity of the
inflationary scenario. In addition, the condition that differ-
ent initial states should not affect the renormalization
aspects of the energy momentum tensor is a consistency
condition on the renormalizability of the effective field
theory of inflation: the theory should be insensitive to the
short distance physics for any initial conditions. These
criteria lead to the following important consequences:

(i) If ��MPl then N� & H2=M2
Pl 
 1 because

H=MPl 
 1 in the effective field theory expansion
and the effect of initial conditions becomes
negligible.

(ii) For ��
������������
HMPl

p
� V1=4���, namely � of the order

of the scale of inflation during the slow roll stage,
then N� & 1. For example for �� 0:01 one obtains
N� � 0:1. If �


�������������
HMPl
p

, for example ��H, the
bound equation (2.57) is rather loose allowing a wide
range of N� with potentially appreciable effects.

(iii) The condition that the occupation number falls off
faster than 1=k4 for a large wave vector, implies that
the possible effects from different initial conditions
are more prominent for the smaller wave vectors,
those that exited the Hubble radius the earliest. For
cosmologically relevant wave vectors, these are
those that crossed about 55 e-folds before the end
of inflation. Today those wave vectors correspond to
the present Hubble scale, hence the low multipoles in
the CMB.

We conclude that consistent with renormalizability and
small backreaction there may be a substantial effect from
the initial conditions when the characteristic scale � �������������
HMPl

p
. The rapid falloff of the occupation numbersN��k�

for subhorizon wavelengths and the backreaction con-
straint equation (2.57) entails that for these modes the
transfer function equation (2.53) for initial conditions sim-
plifies to

 D��k� �
N��k�
1

�2
�������������
N��k�

q
cos
k; (2.58)

and that the smaller values of k yield the larger corrections
from initial conditions. The result Eq. (2.58) suggests a
suppression of the power spectrum for cos
k > 0. These
observations will be crucial below when we study the
effect of initial conditions on the multipoles of the CMB.

While this discussion focused on the fluctuations of the
inflaton, they are directly applicable to the case of gauge
invariant perturbations studied below.

III. EFFECTS OF THE INITIAL CONDITIONS ON
THE CURVATURE PERTURBATIONS

In the previous section we focused on the backreaction
effects from initial conditions beginning with the gauge
invariant energy momentum tensor for scalar and tensor
perturbations. Since the fluctuation modes are initialized
on a fixed time hypersurface while their wavelengths are
well inside the Hubble radius, we established a correspon-
dence with Ref. [21] which refers solely to the quantum
fluctuations of the inflaton field. The effect of different
initial conditions is encoded in the Bogoliubov coeffi-
cients, and, in particular, in the occupation numbers Nk
and the phases 
k. Ultraviolet allowed initial conditions
require that Nk diminishes faster than 1=k4 for asymptoti-
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cally large momenta. Small backreaction effects require in
general that Nk 
 1.

In this section we study UVallowed initial conditions on
the quantum fluctuations associated with gauge invariant
variables which determine the power spectra of observ-
ables. We focus on both scalar and tensor perturbations.

A. Effects of initial conditions on the power spectrum

The gauge invariant curvature perturbation of the co-
moving hypersurfaces is given in terms of the Newtonian
potential ( ) and inflaton fluctuation (�) by [7,8]

 R � � �
H
_�
�; (3.1)

where _� stands for the derivative of the inflaton field �
with respect to the cosmic time t.

It is convenient to introduce the gauge invariant potential
[7],

 u� ~x; t� � �zR� ~x; t�; (3.2)

where

 z � a�t�
_�

H
: (3.3)

The spatial Fourier transform of the gauge invariant field
u� ~x; t� is expanded in terms of conformal time mode func-
tions and creation and annihilation operators as follows
[7,8]

 u� ~k; �� � �R�k�SR�k;�� � �yR�k�S
�
R�k;��; (3.4)

where the vacuum state is annihilated by the operators
�R�k� and the mode functions are solutions of the equation

 

�
d2

d�2 � k
2 �

1

z
d2z

d�2

�
SR�k;�� � 0: (3.5)

During slow roll and to leading order in slow roll variables
 

1

z
d2z

d�2 �
2

�2

�
1�

3

2
�3�v � �v�

�
�
�2
R �

1
4

�2 ;

�R �
3

2
� 3�v � �v �O

�
1

N2

�
:

(3.6)

The general solution of Eq. (3.5) in the slow roll regime is
given by

 SR�k;�� � AR�k�g�R��� � BR�k�g��R���; (3.7)

where the function g���� is given by Eq. (2.29), the
Bogoliubov coefficients obey the relation (2.37) and can
be written in terms of the occupation number of Bunch-
Davies particles as in Eq. (2.41) with the label R replacing
�.

The power spectrum of curvature perturbations in the
state with general initial conditions is given by [4,8]

 PR�k� �
�!0� k3

2	2

��������SR�k;��
z

��������
2
: (3.8)

From Eq. (3.6) we see that in the slow roll regime z behaves
as

 z��� �
z0

��k0��
�R��1=2�

; (3.9)

where z0 is the value of z when a reference scale k0 exits
the horizon. Combining this result with the small � limit
Eq. (2.33) we find from Eqs. (3.8) and (3.9),

 PR�k� � PBDR �k��1�DR�k�	; (3.10)

where we introduced the transfer function for the initial
conditions of curvature perturbations:
 

DR�k� � 2jBR�k�j2 � 2 Re�AR�k�B�R�k�i
2�R�3	

� 2NR�k� � 2
���������������������������������������
NR�k��1� NR�k�	

q
� cos�
k � 	��R �

3
2�	 (3.11)

and

 PBDR �k� �
�
k

2k0

�
3�2�R �2��R�

	3

�
kH

a�t� _�

�
2

0
: (3.12)

The index 0 refers to the time where the reference scale k0

exits the horizon. In terms of the slow roll parameter �v this
expression simplifies to the usual result [4,8]

 PBDR �k� �
�
k

2k0

�
ns�1 �2��R�

	3

H2

2�vM
2
Pl

�A2
R

�
k
k0

�
ns�1

;

(3.13)

where the amplitude is given by
 

A2
R �

1

8	2�v

�
H
MPl

�
2
�
1� �3�v � �v�

�
ln4�  

�
3

2

��

�O

�
1

N2

��
; (3.14)

ns � 1 � 3� 2�R � 2�v � 6�v in the slow roll regime,
 �z� is the digamma function and  �32� �
�1:463 510 026 . . . As shown above, for wave vectors of
cosmological relevance,NR�k� 
 1, hence to lowest order
in slow roll (2�R � 3), the transfer function for initial
conditions simplifies to

 DR�k� �
NR�k�
1

�2
��������������
NR�k�

q
cos
k: (3.15)

Therefore, for a positive cos
k, we have a negative DR�k�.
That is, the initial conditions Eq. (3.11) suppress the power
in such case.

B. Tensor perturbations (gravitational waves)

The quantization of tensor fluctuations for general initial
conditions has been discussed in Sec. II B.
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Following the same steps as in Sec. III A we find the
power spectrum of gravitational waves to be [4,8]

 PT�k� �
�!0� k3

2	2

��������ST�k;��
C���

��������
2
� PBDT �k��1�DT�k�	;

(3.16)

where the transfer function for the initial conditions of
tensor perturbations is
 

DT�k� � 2jBT�k�j2 � 2 Re�AT�k�B�T�k�i
2�T�3	

� 2NT�k� � 2
�������������������������������������
NT�k��1� NT�k�	

q

� cos
�

k � 	

�
�T �

3

2

��
(3.17)

and

 PBDT �k� �A2
T

�
k
k0

�
nT
; (3.18)

with

 nT � �2�v;
A2

T

A2
R

� r � 16�v: (3.19)

The contribution from gravitational waves to the energy
momentum (pseudo) tensor is gauge invariant and up to a
factor of 2 from the polarizations is exactly of the form
Eq. (2.13) with � replaced by h [34]. Thus, the constraint
on the occupation number Eqs. (2.55), (2.56), and (2.57)
from the analysis of the backreaction and renormalizability
translate directly to the case of gravitational waves for the
occupation number NT�k�.

This implies that corrections to the power spectrum of
tensor modes from initial conditions are substantial if �,
the asymptotic k scale of NT�k�, is � �

������������
HMPl

p
, that is of

the order of the inflation scale [see discussion below
Eq. (2.55)]. We get from Eq. (3.17) for NT�k� 
 1 and to
leading order in slow roll,

 DT�k� �
NT �k�
1

�2
������������
NT�k�

q
cos
k: (3.20)

Again, for a positive cos
k, we have a negativeDT�k�. That
is, the initial conditions suppress the tensor power spec-
trum in such case.

IV. THE EFFECT OF INITIAL CONDITIONS ON
THE LOW MULTIPOLES OF THE CMB

We have shown above that the fast falloff of the occu-
pation number N�k� (for the corresponding perturbation)
entails that initial conditions can only provide substantial
corrections for perturbation modes whose wave vectors
crossed out of the Hubble radius early during inflation.
In turn, today these wave vectors correspond to scales of
the order of the Hubble radius, namely, to the low multi-
poles in the CMB.

In the region of the Sachs-Wolfe plateau for l & 30, the
matter-radiation transfer function can be set equal to unity
and the C0ls are given by [7–10]

 Cl �
4	
9

Z 1
0

dk
k
PX�k�fjl�k��tod � �LSS�	g

2; (4.1)

where PX is the power spectrum of the corresponding
perturbation, X �R for curvature perturbations and X �
T for tensor perturbations, jl�x� are spherical Bessel func-
tions [35], and

 �tod � �LSS �
1

a0H0

Z 1

1=1�zLSS

dx

x��M
x ���x2	1=2

; (4.2)

is the comoving distance between today and the last scat-
tering surface (LSS). In the above expression we consider
that the dark energy component is described by a cosmo-
logical constant. Taking �M � 0:28, �� � 0:72, zLSS �
1100 we find

 �tod � �LSS �
3:3
a0H0

: (4.3)

Notice that k=�a0H0	 � dH=�phys�t0� is the ratio between
today’s Hubble radius and the physical wavelength. The
power spectra for curvature (R) or gravitational wave (T)
perturbations are of the form given by Eqs. (3.10), (3.13),
(3.16), and (3.18),

 PX �A2
X

�
k
k0

�
ns�1
�1�DX�k�	; (4.4)

with ns � nR for curvature perturbations, ns � 1� nT for
tensor perturbations, and k0 � a0H0 is a pivot scale. Then,
from Eq. (2.52), the relative change �Cl in the C0ls due to
the effect of generic initial conditions (generic vacua), is
given by

 Cl � CBDl � �Cl;
�Cl
Cl
�

R
1
0 DX��x�fl�x�dxR

1
0 fl�x�dx

; (4.5)

where x � k=� and

 � � a0H0=3:3; (4.6)

D��x� is the transfer function of initial conditions for the
corresponding perturbation and

 fl�x� � xns�2�jl�x�	2: (4.7)

We now focus on curvature perturbations since these are
directly related to the temperature fluctuations [15]. For
ns � 0:96 [16], the functions fl�x� are strongly peaked at
x� l. Therefore, �Cl

Cl
is dominated by wave numbers k�

l�.
Low multipoles l correspond to wavelengths today of the

order of the Hubble radius. These wavelengths crossed the
Hubble radius about 55 e-folds before the end of inflation.
Therefore, since inflation lasted a total number of e-folds
Ntotal * 60, these wave vectors were subhorizon during the
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first few e-folds, namely, during the slow roll stage k
 H.
As already discussed, let us take for these wave vectors the
occupation number Nk 
 1 as given by the asymptotic
expression

 Nk � N�

�
�
k

�
4��

; 0< �
 1 (4.8)

and assume that the angles 
k are slowly varying functions
of k in the region of k corresponding to today’s Hubble
radius so that cos
k � cos
. Then, we find that the frac-
tional change in the coefficients Cl is given by

 

�Cl
Cl
� �2

�������
N�

q �
3:3�
a0H0

�
2���=2�

cos

Il�ns � 2� �

2�

Il�ns�
;

(4.9)

where

 Il�ns� �
1

23�ns

��3� ns���
2l�1�3�ns�1

2 �

�2�4�ns2 ���
2l�1�3�ns�1

2 �
: (4.10)

To obtain an estimate of the corrections, we take the values
ns � 1, � � 0 and find

 

�Cl
Cl
� �

4

3

�������
N�

q �
3:3�
a0H0

�
2 cos

�l� 1��l� 2�

: (4.11)

The�1=l2 behavior is a result of the 1=k2 falloff ofD�k�, a
consequence of the renormalizability condition on the
occupation number. For the quadrupole, the relevant
wave vectors correspond to x� 2, namely kQ � a0H0. It
is convenient to write

 kQ � asrHi � a0H0; (4.12)

where asr and Hi are the scale factor and the Hubble
parameter during the slow roll stage of inflation when the
wavelength corresponding to today’s Hubble radius exits
the horizon.

Hence, when the scale � in the asymptotic form of the
occupation number Eq. (4.8) is of the order of the largest
scale of cosmological relevance today, one has

 

�
a0H0

� 1; (4.13)

and, for example, with N� � 0:01 we find that the frac-
tional change in the quadrupole is given by:

 

�C2

C2
��0:3cos
; (4.14)

namely a suppression of the order of �10% in the quad-
rupole provided that cos
� 1. This corresponds to � of
the order of the scale of inflation during the slow roll stage
[see Eq. (4.12)].

We emphasize that these are general arguments based on
the criteria of renormalizability and small backreaction
which initial conditions must fulfill.

In a companion article [30] we show that these initial
conditions are effectively realized in inflationary dynam-
ics. There we show that a short stage just prior to the onset
of slow roll inflation and in which the inflaton field evolves
fast, imprints initial conditions on the curvature perturba-
tions corresponding to the above analysis.

V. INITIAL CONDITIONS AS THE SCATTERING
BY A POTENTIAL

In the previous sections we have systematically analyzed
the consequences of generic initial conditions different
from Bunch-Davies, and which are UV allowed and con-
sistent with small backreaction effects. We now provide a
novel explanation of the origin of these initial conditions.

The mode equations (2.27) have the form of the
Schrödinger equation in one dimension suggesting to con-
sider them more generally as a potential scattering prob-
lem. The Eqs. (2.18), (2.25), and (2.27) can be written in the
form

 

�
d2

d�2 � k
2 �W���

�
S�k;�� � 0 (5.1)

as a Schrödinger equation, with � the coordinate, k2 the
energy, and W��� a potential that depends on the coordi-
nate �. In the cases under consideration

 W��� �
�
z00=z for curvature perturbations
C00=C for tensor perturbations

: (5.2)

It is convenient to explicitly separate the behavior of W���
during the slow roll stage by writing

 W��� � V ��� �
�2 � 1

4

�2 ; (5.3)

where � � 3
2�O�1N� [see Eqs. (2.21), (2.26), and (3.6)].

Consider the potential V ��� localized in a region of
conformal time prior to the slow roll stage and which
vanishes during the slow roll inflationary stage (during
which cosmologically relevant modes cross out of the
Hubble radius). Namely, a potential with the following
properties:

 V ��� �
�

� 0 for �1<�< ��
0 for ��< �

; (5.4)

where �� is the time when slow roll starts.
With Bunch-Davies (outgoing) boundary conditions,

 S�k;�� �
�!�1

e�ik�=
�����
2k
p

;

the solution of Eq. (5.1) for W��� given by Eqs. (5.3) and
(5.4) is

 S�k;�� �
�A�k�g��k� � B�k�g���k�; for �> ��
e�ik�����

2k
p ; for �! �1 :

(5.5)
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The coefficients A�k�, B�k� are obtained by matching the
wave function S�k;�� and its derivative at ��. A�k� and B�k�
are simply related to the usual transmission and reflection
coefficients of the scattering by a potential (see below).

We formally consider the conformal time starting at� �
�1. However, the inflationary dynamics of the Universe
presumably starts at some negative value �0 < ��.

In this article we study the general consequences of such
potential, deferring to a companion article [30], a compre-
hensive analytic and numerical study that shows that an
attractive potential of the form of Eq. (5.4) originates
naturally within the effective field theory of inflation
from a brief fast roll stage just prior to slow roll.

A. The effect of the potential V ��� as a change in the
initial conditions

In summary, the equations for the quantum fluctuations
are

 

�
d2

d�2 � k
2 �

�2 � 1
4

�2 �V ���
�
S�k;�� � 0: (5.6)

As discussed above the potential V ��� describes the de-
viation from the slow roll dynamics during a (brief) stage
prior to slow roll and is vanishingly small for�> ��, where
�� denotes the beginning of the slow roll stage during which
modes of cosmological relevance today exit the Hubble
radius.

The retarded Green’s function Gk��;�
0� of Eq. (5.6) for

V ��� � 0 obeys

 �
d2

d�2 � k
2 �

�2 � 1
4

�2

�
Gk��;�0� � ���� �0�;

Gk��;�
0� � 0 for �0 >�;

(5.7)

it is given by

 

Gk��;�0� � i�g��k;��g���k;�0� � g��k;�0�g���k;��	

����� �0�; (5.8)

where g��k;�� is given by Eq. (2.29).
The solution of the mode equation (5.6) can be written as

an integral equation using the Green’s function equa-
tion (5.8)

 S�k;�� � g��k;�� �
Z 0

�1
Gk��;�

0�V ��0�S�k;�0�d�0:

(5.9)

This is the Lippmann-Schwinger equation familiar in po-
tential scattering theory. Inserting Eq. (5.8) into Eq. (5.9)
yields

 

S�k;�� � g��k;�� � ig��k;��

�
Z �

�1
g���k;�0�V ��0�S�k;�0�d�0 � ig���k;��

�
Z �

�1
g��k;�0�V ��0�S�k;�0�d�0: (5.10)

This solution has the Bunch-Davies asymptotic condition

 S�k;�! �1� �
e�ik������

2k
p : (5.11)

Since V ��� vanishes for �> ��, the mode functions
S�k;�� for �> �� can be written as a linear combination
of the mode functions g��k;�� and g���k;�� as follows,

 S�k;�� � A�k�g��k;�� � B�k�g���k;��; � > ��;

(5.12)

where the coefficients A�k� and B�k� can be read from
Eq. (5.10),

 A�k� � 1� i
Z 0

�1
g���k;��V ���S�k;��d�;

B�k� � �i
Z 0

�1
g��k;��V ���S�k;��d�:

(5.13)

The constancy of the Wronskian W�g����; g�����	 � �i
and Eq. (5.12) imply the relation

 jA�k�j2 � jB�k�j2 � 1 :

It is clear that the action of a potential V ��� that vanishes
for �> �� is equivalent to setting initial conditions
Eqs. (5.12) and (5.13) on the mode functions at � � ��
which subsequently evolve during the slow roll stage in
which V ��� � 0. This is one of our main observations.

The integral equation can be solved iteratively in a
perturbative expansion if the potential V ��� is small
when compared to k2 � ��2 � 1=4�=�2. In such case, we
can use for the coefficients A�k�, B�k� the first approxima-
tion obtained by replacing S�k;�0� by g��k;�0� in the
integral equation (5.13). This is the Born approximation,
in which

 A�k� � 1� i
Z 0

�1
V ���jg��k;��j2d�;

B�k� � �i
Z 0

�1
V ���g2

��k;��d�:
(5.14)

These simple expressions are very illuminating. For
asymptotically large k Eq. (2.32) for the mode functions
can be used, and if the potential V ��� is differentiable and
of compact support, an integration by parts yields

 B�k� �
k!1
�

1

4k2

Z 0

�1
e�2ik�V 0���d�; (5.15)

where the prime stands for derivative with respect to �.
Therefore, according to the Riemann-Lebesgue lemma,
Nk � jB�k�j2 & 1=k4 for large k and UV convergence in
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the integrals for the energy momentum tensor is guaran-
teed. Hence, an immediate consequence of the explanation
of the initial conditions as a scattering problem with a
localized potential is that these initial conditions are auto-
matically ultraviolet allowed.

To illustrate the main aspects and highlight the main
consequences, we consider now two simple potential mod-
els for V ��� localized at � � �0 < �� and characterized
by a strength v0 and width �. The first one has an ex-
ponential profile and the second is a square well. We solve
the first one in the Born approximation while the second
one is exactly solvable. These exact results agree remark-
ably well with the simpler Born approximation. Thus, the
exactly solvable example supports the reliability of the
Born approximation in the present framework.

B. Born approximation

As is clear from the integral equation (5.13) the occu-
pation number N�k� grows with the strength of the poten-
tial V ���. Moreover, as shown above, negligible
backreaction requires N�k� 
 1 for wave vectors of cos-
mological relevance. This is the regime where the Born
approximation equation (5.14) is reliable.

To leading order in slow roll we consider the scale
invariant case, � � 3

2 with the mode functions given by
Eq. (2.34), and model a potential localized at a time scale
�0 by

 V ��� �
v0����
	
p e������0�=�	2 ; (5.16)

where �� � �0 ��. The localization length must be
j�j 
 j�0j such that the potential must not influence the
dynamics during slow roll, and v0 must be small for the
Born approximation to be valid. More precisely jv0�j 

k, as seen below. Under these conditions we find,

 A�k� � 1� i
v0j�j

2k

�
1�

1

�k�0�
2 �O

����������

�0

��������
2
��
; (5.17)

 

B�k� � �i
v0j�j

2k
e��k��2e�2ik�0

�
1�

1

�k�0�
2 �

2i
�k�0�

�O

����������

�0

��������
2
��
: (5.18)

To lowest order in v0 the number of produced BD modes
Nk and the transfer function D�k� are given by

 Nk �
�
v0j�j

2k

�
2
e�2�k��2

�
1�

1

�k�0�
2

�
2
; (5.19)

and

 D�k� � �
v0j�j

k
e��k��2

�
sin�2kj�0j�

�
1�

1

�k�0�
2

�

�
2 cos�2kj�0j�

kj�0j

�
; (5.20)

respectively. The particle number Nk clearly falls off faster
than any power at large k, thereby ensuring the ultraviolet
convergence of the integrals in the energy momentum
tensor.

This example reveals that a potential that is localized
near a (conformal) time scale �0 results in a phase differ-
ence �e�2ik�0 between the Bogoliubov coefficients A�k�,
B�k�. This is a general result that stems directly from the
general expressions for these coefficients Eq. (5.14) and
that in turn results in the oscillatory component of the
transfer function D�k�.

In the integral equation (4.5) that yields the coefficients
�Cl=Cl, the transfer function D�k� multiplies a function
that is strongly peaked at x� l, namely, for momenta k�
l�. Therefore, if kj�0j � l�j�0j 
 1, the rapid oscillations
in D�k� average out in the integrand, resulting in a vanish-
ing contribution to the �Cl=C

0
ls. Hence, there are signifi-

cant contributions to �Cl=Cl only when l�j�0j � 1. For
the quadrupole this corresponds to �a0H0j�0j	 � 1.

The potential V ��� acts prior to the slow roll stage
during which cosmologically relevant modes cross the
Hubble radius. For the corrections to the low multipoles
to be substantial, the condition for wave vectors corre-
sponding to the Hubble radius today is k� a0H0 and
kj�0j � 1. The conclusion is that modifications to the
low multipoles arise from a potential V ��� localized just
prior to horizon crossing of the modes whose wavelengths
correspond to the Hubble radius today. It is also clear that
the corrections for higher wave vectors are strongly sup-
pressed because of the rapid falloff of B�k�.

Furthermore, in the Born approximation the sign of the
correction �Cl=Cl is determined by the sign of the poten-
tial. In the example given above with the potential equa-
tion (5.16), it is given by the sign of v0, negative (positive)
v0 corresponding to an attractive (repulsive) potential.
Figure 1 shows the quadrupole correction �C2=C2 deter-
mined by the transfer function equation (5.20) for an
attractive potential (v0 � �jv0j) clearly revealing a sup-
pression for �j�0j � 1.

The corrections for the higher multipoles are substan-
tially smaller, vanishing very rapidly for l � 3 as shown in
Fig. 2 for the attractive potential.

C. Exactly solvable potential

The Born approximation is the first order in perturbation
theory and is valid in the regime k
 jv0j. A simple and
exactly solvable example is the square well potential

 V ��� �
�
�jv0j for �1 � � � �2;
0 otherwise

; (5.21)

where �1 � �0 �
�
2 and �2 � �0 �

�
2 , �> 0 is the width

of the potential well and �jv0j its depth. The case of a
potential barrier is obtained by the replacement jv0j !
�jv0j.
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We compute the mode functions by matching the func-
tions and derivatives as in the familiar case of the step-
potential in the one-dimensional Schrödinger equation, and
again to lowest order in slow roll we consider the scale
invariant case � � 3=2. The wave function is given by

 S�k; �� �

8><
>:
g�k��; � < �1

E�k�g�q�� �Q�k�g��q��; �1 � � � �2

A�k�g�k�� � B�k�g��k��; �2 <�< 0
;

(5.22)

where

 g�k�� � e�ik�
�

1�
i
k�

�
; q �

�������������������
k2 � jv0j

q
: (5.23)

Matching functions and derivatives at � � �1 and � �

�2, we find
 

A�k� �
eik�

4kq

�
e�iq��k� q�2

�
1� i

k� q
kq�1

��
1� i

k� q
kq�2

�

� eiq��k� q�2
�

1� i
k� q
kq�1

��
1� i

k� q
kq�2

��
;

B�k� � �jv0j
e�2ik�0

4kq

�
e�iq�

�
1� i

k� q
kq�1

��
1� i

k� q
kq�2

�

� eiq�

�
1� i

k� q
kq�1

��
1� i

k� q
kq�2

��
: (5.24)

It is straightforward to check the unitarity condition
jA�k�j2 � jB�k�j2 � 1. We consider an arbitrary depth
jv0j to include nonperturbative aspects, but focus on the
case of a narrow well for which

 

���������

�0

��������
 1: (5.25)

The number of particles created by the pre-slow roll stage
is
 

Nk � jB�k�j
2

�
�v0�2

0�
2

4�k�0�
2

���������

�0

��������
2
��

sinq�

q�

�
1�

jv0j

�kq�0�
2

�
�

cosq�

�q�0�
2

�
2

�

�
2

k�0

sinq�

q�

�
2
�
: (5.26)

For arbitrary strength of the potential v0, a small number of
produced particles requires a narrow width (5.25).

For k
 jv0j the number of particles is

 Nk �
k!1 v2

0

8k4 : (5.27)

Moreover, a continuous and differentiable potential V ���
with smooth edges will yield a Nk vanishing faster than
1=k4 for large k since the Fourier transform of a continuous
and differentiable function of compact support falls off
exponentially at large k. Therefore, the asymptotic behav-
ior for a general continuous potential with a typical scale
v0 is Nk < v2

0=k
4 and the ultraviolet finiteness of the

energy momentum tensor is guaranteed [21].
To leading order in the ’narrow width’ approximation

the transfer function is
 

D�k� �
jv0j�

2
0

kj�0j

���������

�0

��������
�
sin�2kj�0j�

�
sinq�

q�

�
1�

jv0j�
2
0

�kq�2
0�

2

�

�
cosq�

�q�0�
2

�
� 2

cos2k�0

kj�0j

sinq�

q�

�
; (5.28)

where we have written the transfer function explicitly in
terms of the relevant dimensionless combinations of pa-
rameters v0, �, and �0.

We have performed an exhaustive numerical study of the
corrections to the C0ls in a wide range of the dimensionless
parameters �j�0j, jv0j�2

0, and j�=�0jwhere � is defined in
Eq. (4.6), with the conclusion that for an attractive poten-

 

FIG. 1. The quadrupole correction ��C2=C2�=jv0�0�j vs
�j�0j in the Born approximation for an attractive potential of
the form (5.16), for j�=�0j � 0:01, 0.05, 0.1. Here, � � a0H0

3:3 . It
clearly reveals a suppression for ��0 � 1, that is for the modes
whose wavelengths correspond to the Hubble radius today.

 

FIG. 2. The corrections ��Cl=Cl�=jv0�0�j vs l in the Born
approximation for an attractive potential of the form (5.16), for
�j�0j � 1; j�=�0j � 0:01. The corrections for the higher multi-
poles are substantially smaller than the quadrupole correction,
vanishing very rapidly for l � 3.
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tial there is a substantial suppression of the quadrupole for
�j�0j � 1 and that the corrections for higher multipoles
are negligibly small and observationally irrelevant since
these fall off as 1=l2, hence much smaller than the irreduc-
ible cosmic variance.

Figure 3 displays the changes in the quadrupole for
various representative values of jv0j�2

0 for the cases
j�=�0j � 0:01, 0.1, respectively. Figure 4 shows that the
suppression of the higher multipoles l > 2 is negligibly
small. It is clear from these figures that there is a substan-
tial suppression of the quadrupole if the potential is local-
ized at a time scale j�0j � 1=�a0H0	. This time scale
approximately coincides with 55 e-folds before the end
of inflation when the wavelengths corresponding to today’s
Hubble radius exited the horizon.

Furthermore, for localization scales of the potential
0:05 � j�=�0j � 0:1, a 10%–20% suppression of the
quadrupole is obtained for jv0j � ��2

0 . Therefore a sub-
stantial suppression of the quadrupole is explained quite
naturally within the effective field theory of inflation with a
pre-slow roll potential of scale v0 � ��2

0 .

These exact results agree remarkably well with the
simpler Born approximation within the range of parame-
ters consistent with a small number of particles as required
by the small backreaction condition. Therefore, this ex-
actly solvable example lends support to the statement that
the Born approximation is indeed robust and describes
remarkably well the main corrections from the potential
V ���.

These results apply equally well to curvature and tensor
perturbations. Therefore, this analysis leads to the predic-
tion that the quadrupole of tensor perturbations will also
feature a suppression.

VI. CONCLUSIONS

In this article we studied the effect of initial conditions
on metric and tensor perturbations with emphasis on the
observational consequences of initial conditions consistent
with renormalizability and small backreaction.
Generalized initial conditions for the mode functions of
gauge invariant perturbations are encoded in Bogoliubov
coefficients, or equivalently in distribution functions of
Bunch-Davies quanta. We begun the study by clarifying
the constraint on the Bogoliubov coefficients from the
general restrictions of renormalizability and negligible
backreaction on the energy momentum tensor of gauge
invariant perturbations. These general criteria constrain
the asymptotic behavior for large wave vectors of the
Bogoliubov coefficients up to 1=k4. We find that the mod-
ifications to the power spectra of gauge invariant perturba-
tions due to general initial conditions are encoded in a
transfer function for initial conditions D�k�. Our main
results are summarized as follows:

(i) General arguments based on the asymptotic behavior
of the Bogoliubov coefficients at large wave vector
show that only the low multipoles, those in the
Sachs-Wolfe plateau, are sensitive to initial condi-
tions allowed by renormalizability and small back-
reaction. Effects upon high multipoles are strongly
suppressed by the rapid falloff of the Bogoliubov
coefficients at large wave vectors k. We compute the
change in the quadrupole due to generic initial con-

 

FIG. 3. ��C2=C2�=jv0�0�j vs �j�0j for the square well potential, for jv0j�
2
0 � 1, 3, 5; j�=�0j � 0:01 (left panel) and j�=�0j �

0:1 (right panel). There is a substantial suppression of the quadrupole when the potential is localized at a time scale �0 � 1=�a0H0	.
This time scale is approximately 55 e-folds before the end of inflation when the wavelengths corresponding to today’s Hubble radius
exited the horizon.

 

FIG. 4. ��Cl=Cl�=jv0�0�j vs l for the square well potential,
for jv0j�

2
0 � 1; �j�0j � 1 and j�=�0j � 0:01, 0. 1. We see that

the suppression of higher multipoles are negligibly small (they
fall off as 1=l2) and observationally irrelevant.
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ditions described by the asymptotic limit of the
Bogoliubov coefficients. A substantial change of
the order 10%–20% on the CMB quadrupole is
found when the momentum scale at which the
asymptotic behavior sets corresponds to the physical
wavelength of the order of the Hubble radius today.

(ii) We show that mode functions with general initial
conditions determined before the slow roll stage are
equivalent to those that result from scattering by the
potential V ��� arising from the cosmological evo-
lution just prior to the onset of slow roll. The influ-
ence of initial conditions upon the power spectra of
curvature and tensor perturbations is encoded in a
transfer function D�k�.

(iii) Implementing methods from scattering theory, we
develop the formulation of initial conditions arising
from scattering by a potential V ��� and obtain the
transfer function of initial conditions D�k� in terms
of this potential. The changes in the low multipoles
are studied both in the Born approximation and in an
exact solvable case for V ���, with complete agree-
ment between the results in both cases. The transfer
function for initial conditions is shown to have the
asymptotic large k behavior consistent with renor-
malizability and negligible backreaction.

(iv) Furthermore, this study reveals that attractive poten-
tials lead to a suppression of the quadrupole with a
value consistent with the WMAP data if the potential
is localized at a time scale �0 very near the scale at

which the wavelength corresponding to the Hubble
radius today exits the horizon during inflation, with a
strength V ��0� � 1=�2

0. The change in the
l-multipole falls off as 1=l2 as a consequence of the
falloff of the Bogoliubov coefficients for large k.
This entails that only the quadrupole features an
observable suppression, while the corrections in
higher multipoles are not observable with the present
data.

(v) Our study applies to curvature and tensor perturba-
tions, hence we predict a suppression of quadrupole
forB-modes for an attractive potential localized prior
to slow roll.

In the companion article [30] we show that the potential
V ��� which determines the initial conditions for the fluc-
tuations in the slow roll stage is a general feature of a stage
of fast roll inflaton dynamics followed by slow roll. Under
general circumstances this potential turns out to be attrac-
tive and results in a suppression on the CMB quadrupole of
the order �10%–20% consistent with the observations.
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