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3Observatoire de Paris, LERMA, Laboratoire Associé au CNRS UMR 8112, 61, Avenue de l’Observatoire, 75014 Paris, France
(Received 16 April 2008; published 15 July 2008)

Generically, the classical evolution of the inflaton has a brief fast-roll stage that precedes the slow-roll

regime. The fast-roll stage leads to a purely attractive potential in the wave equations of curvature and

tensor perturbations (while the potential is purely repulsive in the slow-roll stage). This attractive potential

leads to a depression of the CMB quadrupole moment for the curvature and B-mode angular power

spectra. A single new parameter emerges in this way in the early universe model: the comoving wave

number k1 characteristic scale of this attractive potential. This mode k1 happens to exit the horizon

precisely at the transition from the fast-roll to the slow-roll stage. The fast-roll stage dynamically modifies

the initial power spectrum by a transfer function DðkÞ. We compute DðkÞ by solving the inflaton evolution
equations. DðkÞ effectively suppresses the primordial power for k < k1 and possesses the scaling property

DðkÞ ¼ �ðk=k1Þ where�ðxÞ is a universal function. We perform a Monte Carlo Markov chain analysis of

the WMAP and SDSS data including the fast-roll stage and find the value k1 ¼ 0:266 Gpc�1. The

quadrupole mode kQ ¼ 0:242 Gpc�1 exits the horizon earlier than k1, about one-tenth of an e-fold before

the end of fast roll. We compare the fast-roll fit with a fit without fast roll but including a sharp lower

cutoff on the primordial power. Fast roll provides a slightly better fit than a sharp cutoff for the

temperature–temperature, temperature– E modes, and E modes– E modes. Moreover, our fits provide

nonzero lower bounds for r, while the values of the other cosmological parameters are essentially those of

the pure �CDM model. We display the real space two point CTTð�Þ correlator. The fact that kQ exits the

horizon before the slow-roll stage implies an upper bound in the total number of e-folds Ntot during

inflation. Combining this with estimates during the radiation dominated era we obtain Ntot � 66, with the

bounds 62<Ntot < 82. We repeated the same analysis with the WMAP-5, ACBAR-2007, and SDSS data

confirming the overall picture.
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I. INTRODUCTION

The standard (concordance) model of the Universe ex-
plains today a wide set of cosmological and astronomical
measurements performed over a large variety of wave-
lengths and observation tools: large and small angular scale
CMB observations, light element abundances, large scale
structure observations (LSS) and properties of galaxy clus-
ters, Hubble Space Telescope measurements on the Hubble
constant, supernova luminosity/distance relations (accel-
eration of the today universe expansion), and other mea-
surements. The concordance of these data imply that our
Universe is spatially flat, with gravity and cosmological
perturbations described by the Einstein general relativity
theory. WMAP data give a strong support to the standard
model of the Universe.

Inflation was introduced to solve several outstanding
problems of the standard big bang model [1] and has

now become an important part of the standard model of
the Universe. At the same time, it provides a natural
mechanism for the generation of scalar density fluctuations
that seed large scale structure, thus explaining the origin of
the temperature anisotropies in the cosmic microwave
background (CMB), as well as that of tensor perturbations
(primordial gravitational waves) [2,3].
The horizon and flatness problems are solved provided

the Universe expands for more than 62 e-folds during
inflation. This is achieved within slow-roll inflation where
the inflaton potential is fairly flat.
Although there are no statistically significant departures

from the slow-roll inflationary scenario at small angular
scales (l * 100), the Wilkinson Microwave Anisotropy
Probe (WMAP) data again confirm the surprisingly low
quadrupoles CTT

2 and CTE
2 [4,5] and suggest that it cannot

be completely explained by galactic foreground contami-
nation. The low value of the quadrupole has been an
intriguing feature on large angular scales since first ob-
served by COBE/DMR [6], and confirmed by the WMAP
data [4,5].
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In order to asses the relevance of the observed quadru-
pole suppression in the�CDMmodel, we determine in the
best fit �CDM model the probability to observe the quad-
rupole 20% below the theoretical mean value. This proba-
bility turns out to be only �0:06. This small probability
supports the necessity for a cosmological explanation of
the quadrupole depression beyond the �CDM model.

Generically, the classical evolution of the inflaton has a
brief fast-roll stage that precedes the slow-roll regime (see
Fig. 1). The fast-roll stage leads to a purely attractive
potential in the wave equations of curvature and tensor
perturbations. Such a potential is a generic feature of this
brief fast-roll stage that merges smoothly with slow-roll
inflation. This stage is a consequence of generic initial
conditions for the classical inflaton dynamics in which
the kinetic and potential energy of the inflaton are of the
same order, namely, the energy scale of slow-roll inflation.
During the early fast-roll stage the inflaton evolves rapidly
during a brief period, but slows down by the cosmological
expansion settling in the slow-roll stage in which the
kinetic energy of the inflaton is much smaller than its
potential energy.

As shown in Refs. [7,8] the attractive potential in the
wave equations of curvature and tensor perturbations dur-
ing the fast-roll stage leads to a suppression of the quad-
rupole moment for CMB and B-mode angular power
spectra. Both scalar and tensor low multipoles are sup-
pressed. However, the potential for tensor perturbations is
about an order of magnitude smaller than the one for scalar
fluctuations and hence the suppression of low ‘ tensor
perturbations is much less significative [7,8].

The observation of a low quadrupole [4–6] and the
surprising alignment of quadrupole and octupole [9,10]
sparked many different proposals for their explanation
[11].

The fast-roll explanation of the quadrupole does not
require one to introduce new physics nor modifications

of the slow-roll inflationary models. The only new feature
is that the quadrupole mode should exit the horizon during
the generic fast-roll stage that precedes slow-roll inflation.
A single new parameter emerges dynamically due to the

fast-roll stage: the comoving wave number k1, character-
istic scale of the attractive potential felt by the fluctuations
during fast roll. The fast-roll stage modifies the initial
power spectrum by a transfer function DðkÞ that we com-
pute solving the classical inflaton evolution equations (see
Fig. 3). DðkÞ effectively suppresses the primordial power
for k < k1 and possesses the scaling property DðkÞ ¼
�ðk=k1Þ, where �ðxÞ is a universal function. DðkÞ has a
main peak around kM ’ 1:9k1 and oscillates around zero
with decreasing amplitude as a function of k for k > kM.
DðkÞ vanishes asymptotically for large k, as expected.
We report here the results of a Monte Carlo Markov

chain (MCMC) analysis of the WMAP-3, small-scale
CMB and SDSS data including the fast-roll stage and
find the value k1 ¼ 0:266 Gpc�1. This mode k1 happens
to exit the horizon precisely at the transition from the fast-
roll to the slow-roll stage. The quadrupole mode kQ ¼
0:242 Gpc�1 exits the horizon during the fast-roll stage
approximately 1=10 of an e-fold earlier than k1. We com-
pare the fast-roll fit with a fit without fast roll but including
a sharp lower cutoff on the primordial power. Fast roll
provides a slightly better fit than a sharp cutoff for the
CTT
‘ , CTE

‘ , and CEE
‘ coefficients. Besides reproducing the

quadrupole depression, the fast-roll fit accounts for the
oscillations of the lower multipole data.
We analyze with MCMC and compare three classes of

cosmological models:
(i) The usual slow-roll�CDM, the�CDMþ r, and the

�CDMþ r on the CBNI models. BNI stands for
binomial new inflation. In this last model we enforce
the theoretical functional relation (denoted CBNI)
between ns and r valid in BNI. (We call �CDMþ
r on CBNI the usual �CDMþ r model constrained
on the curve CBNI).

(ii) The slow-roll �CDM on the CBNI model with a
sharp cut for k < k1.

(iii) The �CDM on the CBNI model including both fast-
and slow-roll stages.

The MCMC analysis of the WMAP and SDSS data
favors a double-well, spontaneously broken symmetric
potential for the inflaton in new inflation [12]

Vð’Þ ¼ �

4

�
’2 �m2

�

�
2
:

The quartic coupling in the effective theory of inflation
[13] is given by

� ¼ y

8N

�
M

MPl

�
4 � 10�12:

Here N � 60 is the number of e-folds since the cosmolog-
ically relevant modes exit the horizon till the end of in-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

ln a

ε v

FIG. 1 (color online). We plot here �v vs lna during the fast-
roll stage and the beginning of slow roll for new inflation with
y ¼ 1:322. We define as the end of fast roll the point where
�v ¼ 1

N ¼ 0:02. This gives here lnaF ¼ 1:091. Namely, fast roll

ends one e-fold after the beginning of inflation.
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flation and MPl ¼ 2:4� 1018 GeV is the Planck mass.
MCMC yields for the dimensionless quartic coupling y ’
1:32 and

M ¼ 0:57� 1016 GeV; m ¼ 1:34� 1013 GeV

for the inflation energy scaleM and the inflaton mass scale
m, respectively.

We modified the COSMOMC code introducing the fast-
roll transfer function DRðkÞ in the primordial power spec-
trum according to Eq. (3.31).

We repeated the same analysis with the WMAP-5,
ACBAR-2007, and SDSS data, this time setting N ¼ 60,
with no statistically significant change.

Our fits imposing CBNI predict nonzero lower bounds on
r: at 95% confidence level (C.L.), we find that r > 0:023
when no cutoff is introduced, while r > 0:018 when either
the sharp cutoff or the fast rollDðkÞ is introduced. The best
fit values of the other cosmological parameters remain
practically unchanged as compared to �CDM. Similarly
their marginalized probability distributions are almost un-
changed, with the natural exception of ns, which in BNI
has a theoretical upper limit [see Eq. (5.6)].

We observe that the oscillatory form of the fast-roll
transfer function DRðkÞ, by depressing as well as enhanc-
ing the primordial power spectrum at long wavelengths,
leads also to new superimposed oscillatory corrections on
the low multipoles. As far as fitting to current data is
concerned, such corrections are more effective than the
pure reduction caused by a sharp cutoff. The fast-roll
oscillations yield better gains in likelihood than the
sharp-cut case.

We display the best fit for the CTT
‘ , CTE

‘ , and CEE
‘ multi-

poles compared to the experimental data at low ‘. One can
observe that for ‘ ¼ 2 and ‘ ¼ 3 fast-roll and sharp-cut
models yield rather similar results (and better than the
�CDMþ r model) while for ‘ ¼ 4 fast roll produces for
CTE
‘ a value closer to WMAP-3 data than sharp cut. For

CEE
‘ both fast-roll and sharp-cut models produce a depres-

sion of the low multipoles including the EE quadrupole.
We summarize in the Appendix the numerical code used

in the simulations.
We display the real space two point TT correlator

CTTð�Þ for purely slow-roll �CDM, sharp-cut, and fast-
roll �CDM models. The purely slow-roll �CDM correla-
tor differs from the two others only for large angles � * 1.
Since all l modes besides the lowest ones are practically
identical in the three cases, this shows how important the
low multipoles are in the large angle correlations.

We get the following picture of the inflationary universe
explaining the quadrupole suppression from the effective
(Ginsburg-Landau) theory of inflation combined with
MCMC simulations of CMBþ LSS data. A fast-roll stage
lasting about one e-fold is followed by a slow-roll stage
lasting �65 e-folds. We have the radiation dominated era
after these �65þ 1 ¼ 66 e-folds of inflation. The quad-

rupole modes exit the horizon during the fast-roll stage
about 1 e-fold after the beginning of inflation and is
therefore suppressed compared to the modes exiting the
horizon later during the slow-roll stage.
The fast-roll stage explains the quadrupole suppression

and fixes the total number of e-folds of inflation. The fact
that the quadrupole mode kQ exits the horizon before the

slow-roll stage implies an upper bound in the total number
of e-folds Ntot during inflation. Combining this with esti-
mates during the radiation dominated era we obtain N >
56, Ntot � 66, the upper bound Ntot < 82, and the lower
bound Ntot > 62.
Our MCMC simulations give good fits for N ¼ 50 and

N ¼ 60. The bound N > 56 therefore favors N � 60
which implies Ntot � 66 and H � 3� 1010 GeV by the
end of inflation.
Changing N from 50 to 60 does not significantly affect

the MCMC fits we present in this paper. This is partially
due to the fact that a change on y can partially compensate
a change on N. More importantly, a 20% change in N may
affect the fit of k1 by a similar amount, leaving its scale
unchanged, which is of the order of the inverse Hubble
scale.
Another hint to increase N above 50 comes from

WMAP-5 that gives a larger ns value and using the theo-
retical upper limit for ns [12,14]: ns < 1� 1:9236...

N , which

gives ns < 0:9679 . . . for N ¼ 60. This value is compatible
with the ns value from WMAP5þ BAOþ SN and no
running [5].

II. THE EFFECTIVE THEORY OF INFLATION:
FAST- AND SLOW-ROLL REGIMES.

The inflaton potential Vð’Þ must be a slowly varying
function of ’ in order to permit a slow-roll solution for the
inflaton field which guarantees a large enough total number
of e-folds * 62. Such a value is necessary to solve the
horizon, flatness, and entropy problems.
As discussed in Ref. [13], the inflaton potential should

have the universal form

Vð’Þ ¼ NM4wð�Þ; (2.1)

where � is a dimensionless, slowly varying field

� ¼ ’ffiffiffiffi
N

p
MPl

; (2.2)

and M is the energy scale of inflation, N � 60 is the
number of e-folds since the cosmologically relevant modes
exit the horizon until the end of inflation.
The energy scale M of inflation is determined by the

amplitude of the observed CMB anisotropy, which implies
M� 0:7� 1016 GeV. That is, M � MPl, which ensures
the consistency of the effective theory of inflation.
The dynamics of the rescaled field � exhibits the slow

time evolution in terms of the stretched dimensionless time
variable,
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� ¼ tM2

MPl

ffiffiffiffi
N

p ; H � HMPlffiffiffiffi
N

p
M2

¼ Oð1Þ: (2.3)

The rescaled variables � and � change slowly with time. A
large change in the field amplitude ’ results in a small
change in the � amplitude, a change in’�MPl results in a

� change�1=
ffiffiffiffi
N

p
. The form of the potential, Eq. (2.1), the

rescaled dimensionless inflaton field Eq. (2.2), and the time
variable � make manifest the slow-roll expansion as a
consistent systematic expansion in powers of 1=N [13].

We can choose jw00ð0Þj ¼ 1 without losing generality.
Then, the inflaton mass scale at zero field is given by a
seesaw formula

m2 ¼ jV00ð’ ¼ 0Þj ¼ M4

M2
Pl

; M� 0:7� 1016 GeV;

m ¼ M2

MPl

� 2:0� 1013 GeV: (2.4)

The Hubble parameter, when the cosmologically relevant
modes exit the horizon, is given by

H ¼ ffiffiffiffi
N

p
mH � 5m� 1:0� 1014 GeV; (2.5)

where H � 1. As a result, m � M and H � MPl.
The energy density and the pressure in terms of the

dimensionless rescaled field � and the slow time variable
� take the form,

�

NM4 ¼ 1

2N

�
d�

d�

�
2 þ wð�Þ;

p

NM4
¼ 1

2N

�
d�

d�

�
2 � wð�Þ:

(2.6)

The equations of motion in the same dimensionless varia-
bles become

H 2ð�Þ ¼ 1

3

�
1

2N

�
d�

d�

�
2 þ wð�Þ

�
;

1

N

d2�

d�2
þ 3H

d�

d�
þ w0ð�Þ ¼ 0:

(2.7)

The slow-roll approximation follows by neglecting the 1
N

terms in Eqs. (2.7). Both wð�Þ and H ð�Þ are of order N0

for large N. Both equations make manifest the slow-roll
expansion as an expansion in 1=N.

The number of e-folds N½�� since the field � exits the
horizon until the end of inflation (where � takes the value
�end) can be computed in close form from Eqs. (2.7) in the
slow-roll approximation (that is, neglecting 1=N correc-
tions):

N½��
N

¼ �
Z �end

�

wð�Þ
w0ð�Þd� � 1; (2.8)

where we choose N ¼ N½��. Therefore, Eq. (2.8) deter-
mines � at the horizon exit as a function of the couplings in
the inflaton potential wð�Þ:

�
Z �end

�

wð�Þ
w0ð�Þ d� ¼ 1: (2.9)

Inflation ends after a finite number of e-folds provided

wð�endÞ ¼ w0ð�endÞ ¼ 0: (2.10)

So, this condition is enforced in the inflationary potentials.
There are two generic inflationary regimes: slow roll and

fast roll depending on whether [8]

1

2N

�
d�

d�

�
2 � wð�Þ: slow-roll regime;

1

2N

�
d�

d�

�
2 � wð�Þ: fast-roll regime:

(2.11)

Both regimes appear in all inflationary models in the class
Eq. (2.1). Fast roll clearly corresponds to generic initial
conditions for the inflaton field. The fast-roll stage turns
out to be very short and is generically followed by the
slow-roll stage [8].
For the quartic degree potentials Vð’Þ, the main two

families are as follows:
(a) discrete symmetry (’ ! �’) breaking potentials

(so-called new, or small-field, inflation)

Vð’Þ ¼ �

4

�
’2 �m2

�

�
2 ¼ �m2

2
’2 þ �

4
’4 þm4

4�
;

(2.12)

(b) unbroken symmetry potentials (chaotic, or large-
field, inflation),

Vð’Þ ¼ þm2

2
’2 þ �

4
’4: (2.13)

The corresponding dimensionless potentials wð�Þ take
the form

wð�Þ ¼ y

32

�
�2 � 8

y

�
2 ¼ � 1

2
�2 þ y

32
�4 þ 2

y

for new inflation

(2.14)

and

wð�Þ ¼ 1

2
�2 þ y

32
�4 for chaotic inflation (2.15)

where the coupling y is of order one and

� ¼ y

8N

�
M

MPl

�
4 � 10�12:

In new inflation the inflaton starts near the local maximum
� ¼ 0 and keeps rolling down the potential hill until it

reaches the absolute minimum � ¼
ffiffi
8
y

q
. In general, the

initial kinetic energy may be of the same order of magni-
tude as the initial potential energy of the inflaton which
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defines fast-roll inflation. That is, in general the initial
states are not slow roll.

By numerically solving Eqs. (2.7) we find that the fast-
roll initial stage of the inflaton becomes very soon a slow-
roll stage [8]. This is a general property and implies that the
slow-roll regime is an atractor for this dynamical system
[15]. We see a de Sitter-like expansion during the slow-roll
stage � & 3 during which the Hubble parameter decreases
slowly and monotonically.

An initial state for the inflaton (inflaton classical dynam-
ics) with approximate equipartition between kinetic and
potential energies is a more general initialization of cos-
mological dynamics in the effective field theory than slow
roll which requires that the inflaton kinetic energy is much
smaller than its potential energy. The most generic initial-
ization of the inflaton dynamics in the effective field theory
leads to a fast-roll stage followed by slow-roll inflation [8].

The total number of e-folds of inflation is determined by
the initial conditions for the inflaton field: �ð0Þ � _�ð0Þ ¼
Oð1Þ. By varying these initial conditions, the total number
of e-folds of inflation sweeps a wide range of e-fold values
showing the flexibility of the inflationary model.

We have carried out analogous numerical studies in
scenarios of chaotic inflation with similar results: if the
initial kinetic energy of the inflaton is of the same order as
the potential energy, a fast-roll stage is always present. The
evolutions of the potentialsVRð�Þ andV Tð�Þ felt by the
curvature and tensor perturbations are similar to those for
new inflation and they are always attractive during the fast-
roll stage (see below).

III. THE EFFECT OF FAST ROLL ON THE
INFLATIONARY FLUCTUATIONS

The inflationary scenario features scalar curvature fluc-
tuations determined by a gauge invariant combination of
the inflaton field and metric fluctuations. They also feature
tensor fluctuations (gravitational waves).

It is convenient to introduce the gauge invariant potential
[2],

uðx; tÞ ¼ �zRðx; tÞ; (3.1)

where Rðx; tÞ stands for the gauge invariant curvature
perturbation of the comoving hypersurfaces and

z � aðtÞ _’

H
: (3.2)

The gauge invariant curvature field uðx; tÞ expanded in
terms of conformal time mode functions and creation and
annihilation operators takes the form [2]

uðx; �Þ ¼
Z d3k

ð2�Þ3=2 ½	RðkÞSRðk;�Þeik�x

þ 	y
RðkÞS	Rðk;�Þe�ik�x�; (3.3)

where the operators obey canonical commutation relations

½	RðkÞ; 	y
Rðk0Þ� ¼ 
ð3Þðk� k0Þ:

The vacuum state is annihilated by the operators	RðkÞ and
the mode functions obey the equations of motion [2],�

d2

d�2
þ k2 � 1

z

d2z

d�2

�
SRðk;�Þ ¼ 0: (3.4)

Here � stands for the conformal time

� ¼
Z dt

aðtÞ : (3.5)

Equation (3.4) is a Schrödinger-type differential equation
in the variable �. The potential felt by the fluctuations

WRð�Þ � 1

z

d2z

d�2
(3.6)

can be expressed in terms of the inflaton potential and its
derivatives. From Eqs. (3.2) and (3.6) and using the infla-
tion equations of motion (2.7), the potentialWRð�Þ can be
written as [8]

WRð�Þ ¼ a2ð�ÞH2ð�Þ
�
2� 7�v þ 2�2v �

ffiffiffiffiffiffiffiffi
8�v

p
V0

MPlH
2

� �vð3� �vÞ
�
; (3.7)

where we take for the sign of the square root
ffiffiffiffiffi
�v

p
, the sign

of _’ and

�v � 1

2M2
Pl

_’2

H2
; �v � M2

Pl

V00ð’Þ
Vð’Þ : (3.8)

�v and �v are the known slow-roll parameters [2]. Notice
that Eqs. (3.7) and (3.8) are exact (no slow-roll
approximation).
In terms of the dimensionless variables Eqs. (2.1), (2.2),

and (2.3) we obtain for the potential WRð�Þ,

WRð�Þ ¼ a2ð�ÞH 2m2N

�
2� 7�v þ 2�2v �

ffiffiffiffiffiffiffiffi
8�v
N

s
w0

H 2

� �vð3� �vÞ
�
; (3.9)

while the parameters �v and �v take the form

�v ¼ 1

2N

1

H 2

�
d�

d�

�
2
; �v ¼ 1

N

w00ð�Þ
wð�Þ : (3.10)

In the slow-roll regime they can be approximated as

�v ¼ 1

2N

�
w0ð�Þ
wð�Þ

�
2 þO

�
1

N2

�
¼ O

�
1

N

�
;

�v ¼ 1

N

w00ð�Þ
wð�Þ ¼ O

�
1

N

�
:

(3.11)

We explicitly see that the parameters �v and �v are sup-
pressed by powers of 1=N in the slow-roll regime. This

CMB QUADRUPOLE DEPRESSION PRODUCED BY EARLY . . . PHYSICAL REVIEW D 78, 023013 (2008)

023013-5



result is valid for all models in the class defined by Eq. (2.1)
regardless of the precise form of wð�Þ.

Tensor perturbations (gravitational waves) are gauge
invariant. The corresponding quantum fields (gravitons)
are written as

hijðx; �Þ ¼
2

að�ÞMPl

X
�¼�;þ

Z d3k

ð2�Þ3=2 �
i
jð�;kÞ

� ½eik�xa�;kSTðk; �Þ þ e�ik�xay�;kS
	
Tðk; �Þ�;

(3.12)

where � labels the two standard transverse and traceless

polarizations � and þ. The operators 	�;k, 	
y
�;k obey

canonical commutation relations, and �ijð�;kÞ are the

two independent symmetric and traceless-transverse ten-
sors constructed from the two independent polarization
vectors transverse to k, chosen to be real and normalized

such that �ijð�;kÞ�jkð�0; kÞ ¼ 
i
k
�;�0 .

The mode functions STðk;�Þ obey the differential equa-
tion [2,7,8]

S00Tðk;�Þ þ
�
k2 � a00ð�Þ

að�Þ
�
STðk;�Þ ¼ 0: (3.13)

That is, for both scalar curvature and tensor equations
we have the equation�

d2

d�2
þ k2 �Wð�Þ

�
Sðk;�Þ ¼ 0; (3.14)

where for scalar curvature perturbationsWRð�Þ is given by
Eq. (3.6) and for tensor perturbations WTð�Þ is

WTð�Þ ¼ a00ð�Þ
að�Þ :

It is convenient to explicitly separate the behavior ofWð�Þ
during the slow-roll stage by writing

Wð�Þ ¼ V ð�Þ þ �2 � 1
4

�2
; (3.15)

where the potential V ð�Þ is the fast-roll part and,

� ¼
�
�R ¼ 3

2 þ 3�v � �v þOð 1
N2Þ for curvature perturbations,

�T ¼ 3
2 þ �v þOð 1

N2Þ for tensor perturbations:
(3.16)

�v and �v are given by Eqs. (3.8) and (3.10).
The potential V ð�Þ is localized in the fast-roll stage

prior to slow roll (during which cosmologically relevant
modes cross out of the Hubble radius), V ð�Þ vanishes
during slow roll. In terms of the potential V ð�Þ the equa-
tions for the quantum fluctuations read�

d2

d�2
þ k2 � �2 � 1

4

�2
�V ð�Þ

�
Sðk;�Þ ¼ 0: (3.17)

A. The fluctuations during the slow-roll stage

The slow-roll dynamics acts through the term

�2 � 1=4

�2

which is a repulsive centrifugal barrier.
During the slow-roll stage V ð�Þ is negligible and the

mode equations simplify to�
d2

d�2
þ k2 � �2 � 1

4

�2

�
Ssrðk; �Þ ¼ 0: (3.18)

To leading order in slow roll, � is constant and for general
initial conditions the solution of Eq. (3.18) is

Ssrðk;�Þ ¼ AðkÞg�ðk;�Þ þ BðkÞ½g�ðk;�Þ�	; (3.19)

where

g�ðk;�Þ ¼ 1
2i
�þð1=2Þ ffiffiffiffiffiffiffiffiffiffiffiffi���

p
Hð1Þ

� ð�k�Þ; (3.20)

and Hð1Þ
� ðzÞ are Hankel functions. These solutions are

normalized so that their Wronskian is given by

W½g�ðk;�Þ; g	�ðk;�Þ� ¼ g0�ðk;�Þg	�ðk;�Þ
� g�ðk;�Þ½g0�ðk;�Þ�	

¼ �i: (3.21)

The mode functions and coefficients AðkÞ, BðkÞwill feature
a subscript index R, T, for curvature or tensor perturba-
tions, respectively.
For wave vectors deep inside the Hubble radius jk�j 


1, the mode functions have the asymptotic behavior

g�ðk;�Þ ¼�!�1 1ffiffiffiffiffi
2k

p e�ik�; (3.22)

while for � ! 0� the mode functions behave as

g�ðk;�Þ ¼�!0� �ð�Þffiffiffiffiffiffiffiffiffi
2�k

p
�

2

ik�

�
��ð1=2Þ

: (3.23)

In particular, in the scale-invariant case � ¼ 3
2 which is the

leading order in the slow-roll expansion, the mode func-
tions Eq. (3.20) simplify to

g3=2ðk;�Þ ¼ e�ik�ffiffiffiffiffi
2k

p
�
1� i

k�

�
: (3.24)
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B. The fluctuations during the earlier fast-roll stage

The mode equation (3.17) can be written as an integral
equation. We choose as initial condition the usual Bunch-
Davies asymptotic condition

Sðk;� ! �1Þ ¼ g�ðk;� ! �1Þ ¼ e�ik�ffiffiffiffiffi
2k

p : (3.25)

We formally consider here inflation and the conformal time
starting at � ¼ �1. However, it is natural to consider that
the inflationary evolution of the Universe starts at some
negative value �i < ��, where �� is the conformal time
when fast roll ends and slow roll begins.

The mode equation (3.17) can be written as an integral
equation including the Bunch-Davies initial condition
Eq. (3.25),

Sðk;�Þ ¼ g�ðk;�Þ
þ ig�ðk;�Þ

Z �

�1
g	�ðk;�0ÞV ð�0ÞSðk;�0Þd�0

� ig	�ðk;�Þ
Z �

�1
g�ðk;�0ÞV ð�0ÞSðk;�0Þd�0;

(3.26)

where for simplicity we set �i ¼ �1.
Since V ð�Þ vanishes for �> ��, the mode functions

Sðk;�Þ for �> �� can be written as linear combinations
of the mode functions g�ðk;�Þ and g	�ðk;�Þ,

Sðk;�Þ ¼ AðkÞg�ðk;�Þ þ BðkÞg	�ðk;�Þ; � > ��;

(3.27)

where the coefficients AðkÞ and BðkÞ can be read from
Eq. (3.26),

AðkÞ ¼ 1þ i
Z 0

�1
g	�ðk;�ÞV ð�ÞSðk;�Þd�; (3.28)

BðkÞ ¼ �i
Z 0

�1
g�ðk;�ÞV ð�ÞSðk;�Þd�: (3.29)

The coefficients AðkÞ and BðkÞ are therefore calculated
from the dynamics before slow roll, that is, during fast
roll. [Recall that V ð�Þ ¼ 0 for �> �� during slow roll.]

The constancy of the WronskianW½Sðk;�Þ; S	ðk;�Þ� ¼
�i and Eqs. (3.21) and (3.27) imply the constraint,

jAðkÞj2 � jBðkÞj2 ¼ 1:

This relation permits one to represent the coefficients AðkÞ,
BðkÞ as [7]

AðkÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ NðkÞp

ei�AðkÞ; BðkÞ ¼ ffiffiffiffiffiffiffiffiffiffi
NðkÞp

ei�BðkÞ;
(3.30)

where NðkÞ, �A;BðkÞ are real.
Starting with Bunch-Davies initial conditions for � !

�1, the action of the fast-roll potential V ð�Þ generates a
mixture (Bogoliubov transformation) of the two linearly

independent mode functions g�ðk;�Þ and g	�ðk;�Þ, which
result in the mode functions Sðk;�Þ Eq. (3.27) for �> ��
when the fast-roll potential V ð�Þ vanishes. This is clearly
equivalent to starting the evolution of the fluctuations at the
beginning of slow roll � ¼ �� with initial conditions de-
fined by the Bogoliubov coefficients AðkÞ and BðkÞ given
by Eq. (3.29) as stressed in Ref. [8].
As shown in Ref. [8] the power spectrum of curvature

and tensor perturbations for the general fluctuations
Eq. (3.27) takes the form,

PRðkÞ ¼�!0� k3

2�2

��������SRðk;�Þ
zð�Þ

��������2¼ Psr
RðkÞ½1þDRðkÞ�;

PTðkÞ ¼�!0� k3

2�2

��������STðk;�ÞCð�Þ
��������2¼ Psr

T ðkÞ½1þDTðkÞ�:
(3.31)

Here DRðkÞ and DTðkÞ are the transfer functions for the
initial conditions of curvature and tensor perturbations
introduced in Ref. [7]:

DðkÞ ¼ 2jBðkÞj2 � 2Re½AðkÞB	ðkÞi2��3�
¼ 2NðkÞ � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NðkÞ½1þ NðkÞ�

p
� cos

�
�k � �

�
�� 3

2

��
; (3.32)

where one uses either R or T quantities and �k � �BðkÞ �
�AðkÞ.
The standard slow-roll power spectra are given by [2]

Psr
RðkÞ ¼

�
k

2k0

�
ns�1 �2ð�Þ

�3

H2

2�vM
2
Pl

�A2
R

�
k

k0

�
ns�1

;

Psr
T ðkÞ ¼A2

T

�
k

k0

�
nT
; nT ¼�2�v;

A2
T

A2
R

¼ r¼ 16�v:

(3.33)

These spectra are modified by the fast-roll stage as dis-
played in Eq. (3.31). The scale k0 is a reference or pivot
scale, for example, WMAP takes k0 ¼ 0:002 Mpc�1 and
COSMOMC, k0 ¼ 0:050 Mpc�1 (see Sec. IV).

The integral equation (3.26) can be solved iteratively in a
perturbative expansion if the potentialV ð�Þ is small when
compared to

k2 � �2 � 1=4

�2
;

which is indeed true in this case. Then, we can use for the
coefficients AðkÞ, BðkÞ the first approximation obtained by
replacing Sðk;�0Þ by g�ðk;�0Þ in the integrals Eqs. (3.28)
and (3.29). This is the Born approximation, in which

AðkÞ ¼ 1þ i
Z 0

�1
V ð�Þjg�ðk;�Þj2d�;

BðkÞ ¼ �i
Z 0

�1
V ð�Þg2�ðk;�Þd�:

(3.34)
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The transfer function of initial conditions given by
Eq. (3.32) can be computed in the Born approximation,
which is indeed appropriate in this situation. By using
Eqs. (3.34) for the Bogoliubov coefficients AðkÞ and BðkÞ
to dominant order in 1=N, that is � ¼ 3=2 [Eq. (3.16)],
DðkÞ is given by

DðkÞ ¼ 1

k

Z 0

�1
d�V ð�Þ

�
sinð2k�Þ

�
1� 1

k2�2

�

þ 2

k�
cosð2k�Þ

�
: (3.35)

The potential V ð�Þ is obtained from Eq. (3.15) as

V ð�Þ ¼ Wð�Þ � �2 � 1=4

�2
:

To explicitly compute VRð�Þ as a function of � for the
curvature fluctuations we solve numerically the equations
of motion (2.7) for new inflation [Eq. (2.14)] and insert the
solution for the inflaton �ð�Þ in Eqs. (3.9) and (3.10). No
largeN approximation is used in this numerical calculation
since we cover in the evolution the fast-roll region where
slow roll obviously does not apply.

We plot in Fig. 2 VRð�Þ vs � for new inflation
[Eq. (2.14)] for the coupling y ¼ 1:322 and a total number
of e-folds equal to 60. We choose here the initial values of
� and _� such that their initial kinetic and potential energies
are equal. We see that the potential VRð�Þ is attractive in
the fast-roll stage and asymptotically vanishes by the end
of fast roll ���0:04.

We obtain the transfer function DRðkÞ by inserting
VRð�Þ into Eq. (3.35) and computing the integral over
� numerically. In Fig. 3 we plot DRðkÞ vs k=m for new
inflation [Eq. (2.14)] and ten different couplings
0:005 36< y< 1:498 with a total number of e-folds equal
to 60. We see that DRðkÞ oscillates around zero and there-
fore produces suppressions as well as enhancements in the
primordial power spectrum [see Eq. (3.31)]. DRðkÞ van-
ishes asymptotically for large k as expected.

The first peak in DRðkÞ is clearly its dominant feature.
The k of this peak corresponds to kmodes which are today
horizon size and affect the lowest CMB multipoles (see
below and Table II) [7,8].
For small k the Born approximation to DRðkÞ yields

large negative values indicating that this approximation
cannot be used in this particular small k regime. We
introduce the scale k1 by the condition DRðk1Þ ¼ �1
and then just take DRðkÞ ¼ �1 for k � k1. This corre-
sponds to vanishing primordial power for the lowest values
of k (see Fig. 3).
From Fig. 3 we also see that the plots of DRðkÞ for

different couplings follow from each other almost entirely
by changing the scale in the variable k as summarized by
Eq. (3.36). Indeed, the characteristic scale k1 plays a
further important role.
Analyzing VRð�Þ and DRðkÞ for different couplings y

we find that they scale with k1=m. Namely,

V Rð�Þ ¼ k21Qðk1�Þ; DRðkÞ ¼ �

�
k

k1

�
; (3.36)

whereQðxÞ and�ðxÞ are universal functions. That is,QðxÞ
and �ðxÞ do not depend on the coupling y while k1 ¼
k1ðyÞ. We display k1 vs y in Fig. 4.
We obtain the function QðxÞ from Eq. (3.36) as

QðxÞ ¼ 1

k21
VR

�
x

k1

�
: (3.37)

We plot QðxÞ in Fig. 5 as follows from the right-hand side
of Eq. (3.37) for ten different values of y. We see that all the
curves collapse on a common curve proving the validity of
the quasiscaling properties Eq. (3.36).

−0.25 −0.2 −0.15 −0.1 −0.05 0
−250

−200

−150

−100

−50

0

η

FIG. 2 (color online). The potential VRð�Þ vs � for new
inflation with y ¼ 1:322. VRð�Þ is attractive during fast roll
and vanishes by the end of fast roll (���0:04).
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FIG. 3 (color online). DRðkÞ vs k=m for new inflation and ten
different couplings 0:005 36< y< 1:498. We see that the plots
of DRðkÞ for different couplings follow from each other by
changing the scale in the variable k as summarized by
Eq. (3.36).
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IV. MCMC ANALYSIS OF CMB AND LSS DATA
INCLUDING THE EARLY FAST-ROLL

INFLATIONARY STAGE

In order to test the theoretical quadrupole depression
predicted by fast-roll inflationary stage against the current
experimental data we performed a MCMC analysis of the
commonly available CMB and LSS data using the
COSMOMC program [16].

For LSS we considered SDSS (DR4). For CMB we first
considered the three-years WMAP data (with the second
release of WMAP likelihood code) and small-scale data
(ACBAR-2003, CBI2, BOOMERANG03). While this
work was in progress the five-years WMAP data were
released, and we repeated our MCMC analysis almost
completely with these new data, using also the newer
2007 ACBAR release. Actually WMAP-3 or WMAP-5
provide by far the dominant contribution and small-scale
experiments have very little relevance for the quadruple
depression issue.

In all of our MCMC runs we have not marginalized over
the Sunayev-Zel’dovich amplitude and have not included
nonlinear effects in the evolution of the matter spectrum.
The relative corrections are in any case not significant
[4,12], especially in the present context.

COSMOMC is a publicly available open-source FORTRAN

package that performs MCMC analysis over the parameter

space of the standard cosmological model and variations
thereof. The main observables in this approach are the
correlations among the CMB anisotropies and in particu-
lar: the TT (temperature–temperature), the TE (tempera-
ture– E modes), the EE (E modes– E modes), and the BB
(B modes– B modes) correlation multipoles (E modes and
B modes are special modes of the CMB polarization).
These multipoles can be numerically calculated with very
good accuracy, as functions of the cosmological parame-
ters, from the primordial power spectrum through pro-
grams such as CAMB (included in COSMOMC). On the
other side, experimental data provide a likelihood distri-
bution for multipoles, which is then turned into a like-
lihood for the cosmological parameters through the
MCMC method. We modified the COSMOMC code intro-
ducing the transfer functionDRðkÞ in the primordial power
spectrum according to Eq. (3.31).
We ran COSMOMC on PC clusters with message passing

interface, producing from 10 to 24 parallel chains, with the
‘‘R-1’’ stopping criterion (which looks at the fluctuations
among parallel chains to decide when to stop the run) set
equal to 0.03. The statistical converge was also verified a
posteriori with the help of the GETDIST program of
COSMOMC.

The preferred reference model for slow-roll inflation
cosmology is the �CDMþ r model, that is the standard
�CDM model, which has six parameters,1 augmented by
the tensor-scalar ratio r. Indeed, the current experimental
accuracy provides sensible bounds only for the first order
parameters �v and�v, through their standard relation to the
scalar spectral index ns and the ratio r: ns � 1 ¼ 2�v �
6�v, r ¼ 16�v. Specific slow-roll scenarios, such as those
based on new (small-field) or chaotic (large-field) inflation,
connect in a model-dependent way �v and �v to free
parameters in the inflaton potential and thus typically
lead to specific theoretical constraints in the ðns; rÞ plane
[12].
We point out that we used the default COSMOMC pivot

scale k0 ¼ 0:05 Mpc�1 rather than the customary WMAP
choice of k0 ¼ 0:002 Mpc�1. As evident from Eq. (3.33)
this leads to a small difference with respect to the WMAP
choice in the definition itself of the tensor-scalar ratio r. In
particular, the COSMOMC r is roughly 10% larger than the
WMAP one.

A. MCMC analysis without quadrupole suppression:
DR ðkÞ ¼ 0

Let us present our MCMC analysis with the standard
slow-roll primordial power Eq. (3.33), that is, without

−3 −2.5 −2 −1.5 −1 −0.5 0
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x

Q

FIG. 5 (color online). QðxÞ for the ten values of y of Fig. 3,
according to Eq. (3.37). All curves collapse to a common one
proving the scaling properties Eq. (3.36).
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5

10

15

20

25

30

y

k 1

FIG. 4 (color online). k1=m vs y for new inflation.

1We use the standard ones of CosmoMC, that is the baryonic
matter fraction !b, the dark matter fraction !c, the optical depth
�, the ratio of the (approximate) sound horizon to the angular
diameter distance �, the primordial superhorizon power in the
curvature perturbation at 0:05 Mpc�1, As, and the corresponding
scalar spectral index ns
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including the early fast-roll stage and therefore vanishing
transfer function DRðkÞ.

For instance, in the simplest binomial realization of new
inflation described by the inflation potential of Eq. (2.12) or
Eq. (2.14), ns and r are constrained to the curve CBNI

parametrized by the quartic coupling y as [12]

ns ¼ 1� y

N

3zþ 1

ð1� zÞ2 ; r ¼ 16y

N

z

ð1� zÞ2 ;

y ¼ z� 1� logz; z ¼ y

8
�2; 0< z < 1:

(4.1)

This situation is clearly displayed in Fig. 6 in which the
curve CBNI, for the two choices N ¼ 50 and N ¼ 60, is
drawn over the contour plot of the likelihood distribution
for ns and r in the �CDMþ r model obtained with
COSMOMC, using the WMAP-3, small-scale CMB, and

SDSS data. Practically, the same contour plot applies
when WMAP-5 and ACBAR-2007 are used.

The likelihood L, as a function of the whole set of
parameters, provides a quantitative measure of the power
of a given model to fit the multipoles C�

‘ . As customary, we

set �2 logL ¼ �2
L, although it is well known that, due

particularly to cosmic variance, the shape of L, as function
of the C�

‘ , is not Gaussian especially for low ‘.

Now, as evident from Eq. (4.1) and Fig. 6, one could
expect from the �CDM model constrained to CBNI a fit to
the data not as good as in the �CDMþ r model since the
current data seem to favor smaller values for r. Indeed we
find

min�2
Lð�CDMþ r on CBNIÞ�min�2

Lð�CDMþ rÞ ’ 0:4:

(4.2)

This result was obtained for N ¼ 50 by direct minimiza-
tion of �2

L in the neighborhood of CBNI, using the data of a
large collection of long chain runs (with a grand total of
almost 2� 106 steps) for the �CDMþ r model with the
WMAP-3, small-scale CMB, and LSS data. The flat priors
on the cosmological parameters were the standard ones of
COSMOMC, that is

0:005<!b < 0:1; 0:01<!c < 0:99;

0:5< �< 10 0:01< �< 0:8;

2:7< logð1010AsÞ< 4; 0:5< ns < 1:5

while for the tensor-scalar ratio we imposed as prior

0< r < 0:35:

We repeated the same analysis with the WMAP-5,
ACBAR-2007, and SDSS data, this time setting N ¼ 60,
with no statistically significant change.
Another approach, that unlike the direct minimization of

�2
L over CBNI does take advantage of the explicit analytic

parametrizations in Eq. (4.1), is to use the single variable z
as the MCMC parameter, instead of the constrained pair
ðnsrÞ, with a flat prior over all the allowed range 0< z < 1.
Let us call �CDMzjCBNI the 6-parameter model �CDM
constrained on CBNI using the variable z. Then, we find that
taking into account the natural fluctuations due to the large
number of data (which make the likelihood landscape over
the MCMC parameters quite complex) and the various
approximations and numerical errors in the theoretical
calculation of the multipoles, the increasing in �2

L due to
the CBNI Eq. (4.1) constraint compared to the �CDM
model essentially vanishes (see Table I).
For completeness and reference, we report in Table I our

best fit (or most likely) values for the MCMC cosmological
parameters, as well as the absolute value of our best like-
lihoods, which of course depend on the specific data sets
used, that is WMAP-3, small-scale CMB, and SDSS. We
report in the first line of Table I our best fit for the standard
�CDM model, which has six free parameters since r is set
to zero by fiat.
It should be noted that the likelihoods difference be-

tween �CDMþ r and its direct restriction to CBNI (that is
�CDMþ r on CBNI), is mostly due to the SDSS data,
which together with the CMB data place an upper bound
on r twice more stringent than WMAP-3 alone. Indeed,
when only the WMAP-3 data were used, we verified that
no significant likelihoods difference was exhibited. This

n
s

r
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FIG. 6 (color online). Binomial new inflation compared to the
�CDMþ r model in the ðns; rÞ plane. The filled areas corre-
spond to 12%, 27%, 45%, 68%, and 95% confidence levels for
�CDMþ r according to WMAP-3, small-scale CMB, and
SDSS data. CBNI is the solid curve for N ¼ 50 or the dashed
curve for N ¼ 60. The white dots corresponds to the values
0:01þ 0:11 	 n, n ¼ 0; 1; . . . ; 9, of the variable z in Eq. (4.1),
starting from the leftmost ones. The quartic coupling y instead
increases monotonically starting from the uppermost dots, which
corresponds to the free-field, purely quadratic inflaton potential
y ¼ 0. We see that very small values of r are excluded since
they correspond to ns < 0:92 outside the 95% confidence level
contour.
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situation changes slightly when WMAP-5 is used, with �2
L

increasing approximately by 0.2 from �CDMþ r to
�CDMþ r on CBNI, since WMAP-5 alone puts a tighter
bound on r than WMAP-3 alone (0.43 vs 0.65 at 95% C.L.
[5]).

It is evident that, as far as most likely values of the
cosmological parameters are concerned, the fit with the
constraint CBNI included, either with or without z as
MCMC parameter, does not determine any statistically
significant change, except of course for ns and r them-
selves. In particular, with respect to the�CDMþ r results,
the most likely value of ns is practically unchanged, while
that of r changes from values of order 10�2 (or just 0 in
�CDM) to values such as 0.059 and 0.069 (see Table I).

Concerning marginalized distributions, we find no sig-
nificant changes but for ns and r. These results are very
close to those in Ref. [12], where trinomial new inflation,
with a possibly asymmetric potential, was considered. In
particular, the marginalized distribution for r shows a
broad but clear peak centered near the most likely value
as in [12]. In the present context of binomial new inflation,
we find that r ¼ 0:089þ0:044

�0:05 with r > 0:023 at 95% C.L.

All together, these results show that, as far as pure data
fitting is concerned, the 6-parameter �CDMzjCBNI model
is just as good as the standard 6-parameter �CDM model.
More generally speaking, we may say that current CMB
and LSS data together, without any theoretical constraint,
put only an upper bound on r (namely, r < 0:20 with
95% C.L. in the most recent WMAP-5 analysis [5]).
Therefore, any inflation-based 6-parameter model (as the
�CDMzjCBNI model, for instance) predicting a value of r
well below 0.2 is as likely as the �CDM model itself. This
means that the theoretical grounds of a given model take a
more important role in the analysis and interpretation of
the CMB and LSS data. For instance, from an inflationary
viewpoint, the choice that r vanishes exactly appears un-
likely and unphysical. Notice that ns � 1 ¼ r ¼ 0 corre-
sponds to a singular and critical (massless) limit where the
inflaton potential vanishes [12], while the MCMC analysis
for both the binomial and trinomial new inflationary mod-
els yield lower bounds for r.

In order to asses the statistical relevance of the quadru-
pole suppression, we determine in the best fit �CDM
model, the probability that there is at least one multipole,

regardless of ‘, smaller than 20% of the theoretical mean
value. We obtained 0.06126 for such probability. Thus, in
the �CDM, the observed quadrupole realizes a rather
unlikely event which has only a 6% probability.
Therefore, it makes sense to search for a cosmological
explanation of the quadrupole depression beyond the
�CDM model.

B. MCMC analysis including the quadrupole
suppression: DR ðkÞ � 0

Let us now further develop this argument by considering
the quadruple depression, avoiding the a priori dismissal
based on the simple invocation of cosmic variance or
experimental inaccuracy. In the standard �CDM model
the simplest, purely phenomenological way to decrease
the low multipoles is to introduce an infrared sharp cut in
the primordial power spectrum of the curvature fluctua-
tions. That is, one assumes that PRðkÞ ¼ 0 for k < k1 and
treats k1 as a new MCMC parameter to be fitted against the
data. It is actually not necessary to include also a cut on the
tensor power spectrum, since it would lead to changes
certainly not appreciable within the current experimental
accuracy.
With this procedure we obtained, using either the

WMAP-3 data alone or both CMB and LSS data:

min�2
Lð�CDMþ sharp cutÞ �min�2

Lð�CDMÞ ’ �1:4:

This result is slightly better than the one reported in
Ref. [4], but still the likelihood gain hardly compensates
the price of a new parameter, especially because its nature
appears quite ad hoc. In Fig. 7 we plot the marginalized
probabilities and mean likelihoods of the seven MCMC
parameters plus other standard derived parameters in the
CMBþ LSS case. In the WMAP-3 alone case these plots
are almost identical. There are no significant changes from
�CDM to �CDMþ sharp cut in their common parame-
ters, in either most likely values or marginalized distribu-
tions. The distribution of the new cutoff parameter k1
shows a well-defined peak centered on its most likely value
(ML), which corresponds to today’s physical wavelength

TABLE I. Best fit values for the MCMC cosmological parameters without quadrupole suppression, using WMAP-3, small-scale
CMB, and SDDS. CBNI means the curve on which ns and r are constrained in binomial new inflation (BNI), Eq. (4.1) with N ¼ 50.
�CDMþ r on CBNI means the �CDMþ r model constrained on CBNI. �CDMzjCBNI denotes the �CDM model constrained on
CBNI using the single variable z Eq. (4.1) as the MCMC variable instead of the constrained pair ðns; rÞ.

10!b !c 10� � 109As ns r �2
L=2

�CDM 0.224 0.106 1.041 0.886 2.072 0.959 0 2713.906

�CDMþ r 0.224 0.107 1.042 0.831 2.054 0.960 0.009 2713.972

�CDMþ r on CBNI 0.223 0.106 1.040 0.848 2.047 0.956 0.059 2714.166

�CDMzjCBNI 0.222 0.107 1.041 0.877 2.065 0.958 0.069 2713.918
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ðk1ÞML ¼
�
0:291ðGpcÞ�1 ðWMAP-3 onlyÞ
0:272ðGpcÞ�1 ðCMBþ LSSÞ

ð�CDMþ sharp cutÞ;

that is of the order of today’s inverse Hubble radius, as
expected.

Introducing the infrared sharp cut on PRðkÞ in the
�CDMzjCBNI model we find sizably different gains

min�2
Lð�CDMzjCBNI þ sharp cutÞ

�min�2
Lð�CDMzjCBNIÞ

¼
��1:4 ðWMAP-3 onlyÞ;
�0:8 ðCMBþ LSSÞ:

As before, the difference is due to the tighter bound on r
due to the inclusion of the SDSS data. In fact, the most
likely values (ML) of k1 and r corresponding to
min�2

Lð�CDMzjCBNI þ sharp cutÞ are given in Table II.
The marginalized probabilities in the ðr; k1Þ plane (con-
verting to a flat prior on r) are shown in the two left panels
of Fig. 8. There are no significant changes on the other
cosmological parameters.

This situation is also reproduced when the fast-roll stage
is included, that is when the fast-roll transfer function

DRðkÞ Eq. (3.35) and Fig. 3 is used, treating the scale k1
in Eq. (3.36) as a MCMC parameter.
That is, in the MCMC analysis with fast roll included,

we use the initial power spectrum Eq. (3.31) which is
modified by the fast-roll transfer function DRðkÞ. We
computed once and forever DRðkÞ from Eq. (3.35) (see
Fig. 3). DRðkÞ is a function of k and k1 with the scaling
form Eq. (3.36), �ðxÞ being a universal function.
We then find

min�2
Lð�CDMzjCBNI þ fast rollÞ

�min�2
Lð�CDMzjCBNIÞ

¼
��1:8 ðWMAP-3 onlyÞ;
�1:2 ðCMBþ LSSÞ:

Correspondingly, in Table III we report the most likely
values (ML) of k1 and r (we report also the best fit for the
quartic coupling y for future use) where we used the
marginalized probability in the ðr; k1Þ plane as shown in
the two right panels of Fig. 8. Here �CDMzjCBNI þ
fast roll denotes the �CDMzjCBNI model with the fast
roll DRðkÞ included.
We see a clear peak in y when fast roll or a sharp cut are

introduced in the CMBþ SDSS fits.
We see that the gains in likelihood are more significant

in the fast-roll case than in the sharp-cut case. Clearly, this
fit improvement through power modification by fast roll
over power reduction by sharp cut is too small to constitute
a real experimental evidence. But still, it is very interesting
that the theoretically well-founded approach based on fast
roll works better than the purely phenomenological cutoff.
This may be appreciated also from Fig. 9 where the best fits
for the CTT

‘ multipoles are compared to the experimental

data at low ‘. We see that the oscillatory form of the fast-

TABLE II. The most likely values of k1 and r and the lower
bound on r in the �CDMzjCBNI þ sharp-cutÞ model.

þsharp cut

k1 (best fit) r (best fit) r (95% C.L.)

WMAP-3 only 0:275 Gpc�1 0.150 >0:023
CMBþ LSS 0:268 Gpc�1 0.051 >0:018
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FIG. 7 (color online). Marginalized distributions (solid lines) and mean likelihoods (dotted lines) for the parameters of the
�CDMþ sharp-cut model.
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roll transfer function DRðkÞ, by depressing as well as
enhancing the primordial power spectrum at long wave-
lengths, leads also to new superimposed oscillatory cor-
rections on the multipoles. As far as fitting to current data
is concerned, such corrections are more effective than the
pure reduction caused by a sharp cutoff.

We did not display in Figs. 9 and 10 the �CDMþ
sharp-cut results since they are indistinguishable from the
BNIþ sharp-cut values.

We plot in Fig. 10 the best fit for the CTE
‘ multipoles

compared to the experimental data at low ‘. We see that for
‘ ¼ 2 and ‘ ¼ 3 fast-roll and sharp-cut models yield rather
similar results (and better than the �CDMþ r model)
while for ‘ ¼ 4 fast roll produces a value closer to
WMAP-3 data than sharp cut.

We plot in Fig. 11 the CEE
‘ multipoles computed in the

best fit point to the WMAP-5 data compared to the experi-
mental WMAP-5 data at low ‘. We see that both fast-roll
and sharp-cut models produce a reduction of the low EE
multipoles including the EE quadrupole.

Our fits imposing CBNI predict nonzero lower bounds on
r: at 95% C.L., we find that r > 0:023 when no cutoff is
introduced, while r > 0:018when either the sharp cutoff or
the fast-roll DðkÞ are introduced. The best fit values of the

other cosmological parameters remain practically un-
changed as compared to �CDM. Similarly their marginal-
ized probability distributions are almost unchanged, with
the natural exception of ns, which in BNI has a theoretical
upper limit [see Eq. (5.6)].

TABLE III. The most likely values of k1, r and the quartic
coupling y and the lower bound on r in the �CDMzjCBNI þ
fast-rollÞ model.

þfast roll

k1 (best fit) r (best fit) r (95% C.L.) y (best fit)

WMAP-3 only 0:249 Gpc�1 0.146 >0:018 0.031

CMBþ LSS 0:266 Gpc�1 0.058 >0:018 1.322

r
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FIG. 8 (color online). Marginalized pair distributions in the ðr; k1Þ plane, at 20%, 41%, 68%, and 95% C.L., with the WMAP-3 data
alone in the top panels and with the CMBþ SDSS data in the bottom panels. The left panels refer to the �CDMzjCBNI þ sharp-cut
model, while the right ones are for the �CDMzjCBNI þ fast-roll model. k1 is in Mpc�1.
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FIG. 9 (color online). Comparison, with the experimental
WMAP-3 data, of the theoretical CTT

‘ multipoles computed in

the best fit point of the various models of the main text. The error
bars in the plotted range of ‘ are mostly due to cosmic variance.
The inset contains an enlargement in linear scale of the first
seven multipoles. BNI stands for binomial new inflation. The
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natural logarithm of ‘. Error bars of the WMAP-3 data are one-
sigma (68% C.L.).
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C. Real space two point TT correlator

We display in Fig. 12 the real space two point TT-
correlation function CTTð�Þ for �CDM, sharp-cut and
fast-roll models,

CTTð�Þ ¼ 1

4�

X1
l¼2

ð2lþ 1ÞCTT
l Plðcos�Þ:

We see that the �CDM correlator becomes really different
from the two others only for large angles � * 1. Since all
l modes besides the lowest ones are practically identical in
the three cases, this shows how dominant are the low
multipoles in the large angle correlations. We also show
the WMAP data, where the width of the data is mostly due
to the cosmic variance.
As is clear from Fig. 12, both fast-roll and sharp-cut

models reproduce the two point correlator CTTð�Þ better
than the pure slow-roll �CDMþ r model.

V. THE TOTAL NUMBER OF E-FOLDS OF
INFLATION Ntot ¼ Nþ 6� 66

Another interesting observation is possible concerning
the number N of e-folds since horizon exit at the end of
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FIG. 10 (color online). Comparison, with the experimental
WMAP-3 data, of the theoretical CTE

‘ multipoles computed in

the best fit point of the �CDMþ r model, fast-roll, and sharp-
cut models. Notice that for CTE

2 and CTE
3 fast-roll and sharp-cut

models yield rather similar results (and better than the
�CDMþ r model), while for ‘ ¼ 4 fast roll produces a value
closer to WMAP-3 than sharp cut. The CTE

‘ units are ð
K2Þ and
they are plotted as functions of the natural logarithm of ‘. Error
bars of the WMAP-3 data are one-sigma (68% C.L.).
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lowest ones are practically identical in the three cases, this shows
how important are the low multipoles in the large angle corre-
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inflation. First of all let us clarify why in all our MCMC
runs we keep N fixed. The reason is that the main physics
that determines the value of N is not contained in the
available data but involves the reheating era. Therefore,
although technically possible, it is not reliable to fit N
solely with the CMB and LSS data within a pure, near
scale-invariant slow-roll scenario. On the other hand, the
quadruple depression allows us to set an absolute wave-
length scale for the primordial power, so we can check the
consistency of our assumptions about N which fixes the
total number of e-folds of inflation.

In the case of the �CDMzjCBNI þ fast-roll model with
the CMBþ LSS data sets, the most likely value of the
quartic coupling y is slightly larger than unity. Then from
Fig. 4 we read a value�14 for the ratio k1=m at the horizon
exit.

It is important to compare the quadrupole mode scale kQ
with the scale k1 that characterizes the fast-roll stage.

The physical quadrupole (l ¼ 2) wave modes today kQ
are related to the particle horizon today �0 by

kQ�0 ¼ 3:342; . . . ;

where the spherical Bessel function j2ðk�0Þ takes its maxi-
mum value, and �0 is given by [7]

�0 ¼ 3:29

H0

when one takes into account the acceleration of the uni-
verse expansion for 0< z & 2. Therefore, using the
present value H0 [17] we obtain

kQ ¼ 0:242 ðGpcÞ�1:

Notice that the value of kQ is smaller than the characteristic

scale k1.
We display in Table IV the relevant wave numbers: kQ,

k1, k0 and the number of e-folds since the beginning of
inflation when they exit the horizon. We see that the
quadrupole modes exit the horizon during the fast-roll
stage, approximately 1=10 of an e-fold before the end of
fast roll. The mode k1 exits the horizon by lna ¼ 1:107,
very close to the point lna ¼ 1:091 where �v ¼ 1=N (see
Fig. 1). That is, k1 precisely exits the horizon when fast roll
ends and becomes slow roll.

We denote by k0 in Table IV the pivot wave numbers in
the WMAP [4] and COSMOMC codes [16], where the in-
dices ns, r and the running of ns are computed. Both k0’s
exit the horizon well inside the slow-roll regime.
We read from Table IV that the total number of e-folds

of inflation is given by

Ntot ¼ N þ 6

since we have six e-folds before the pivot wave number in
COSMOMC exits the horizon followed by N e-folds of

inflation.
We can compute the redshift 1þ zb since the beginning

of inflation until today comparing kQ ¼ 0:242 ðGpcÞ�1

(today) with kinitialQ ¼ 0:910kinitial1 ¼ 12:7m (at the begin-

ning of inflation). [Recall that 1 GeV ¼ 1:564�
1041 ðGpcÞ�1.]
We use for m the value obtained from the scale of

inflation [12]

m ¼ M2

MPl

;

where M is fixed by the amplitude of the scalar adiabatic
fluctuations [4,12]. We obtain

M ¼ 0:57� 1016 GeV and m ¼ 1:34� 1013 GeV

for y ¼ 1:322:

[Notice that these results are in agreement with the generic
estimates Eq. (2.4).] Therefore,

1þ zb ¼ 1:10� 1056 ’ e129:

Assuming a sharp transition from inflation to radiation
dominated expansion, the redshift 1þ zb can be written as

10�56 � 1

1þ zb
¼ are

�Ntot ; (5.1)

where ar is the scale factor at the begining of the radiation
dominated era andNtot is the total number of e-folds during
inflation (during fast roll plus during slow roll).
The scale factors at the beginning (ar) and the end (aeq,

equilibration) of the radiation dominated era are related by

TABLE IV. The number of e-folds since the beginning of inflation when the wave numbers
kQ, k1, k0 exit the horizon. The quadrupole modes exit the horizon during the fast-roll stage,

about 1=10 of an e-fold before fast roll ends. k1 precisely exits the horizon at the transition
from the fast-roll to the slow-roll stage.

k lna at horizon exit �v at horizon exit

kQ ¼ 0:242 Gpc�1 1.01 0:0276 * 1=N
k1 ¼ 0:266 Gpc�1 1.107 0:0188� 1=N
k0 ¼ 2 Gpc�1 (WMAP) 3.135 & 1=N
k0 ¼ 50 Gpc�1 (COSMOMC) 6.363 & 1=N
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aeq
ar

¼
ffiffiffiffiffiffiffiffi
H

Heq

s
;

where H and Heq stand for the Hubble parameter at the

beginning and at the end of the radiation dominated era,
respectively. For simplicity we assume instantaneous re-
heating in these formulas.

Furthermore, Heq and H0 are related by [3]

Heq ¼
ffiffiffiffiffiffiffiffiffiffi
2�m

p
a�ð3=2Þ
eq H0;

where H0 stands for the Hubble parameter today and �m

for the matter fraction of the energy density of the Universe
today.

Using the current values of the cosmological parameters
[17] we find

ar � 10�29

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4MPl

H

s
’ e�67

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10�4MPl

H

s
: (5.2)

Inserting Eq. (5.2) into Eq. (5.1) yields

H

1014 GeV
¼ e2½56�N�: (5.3)

Since H must be below its value at the beginning of
inflation �1014 GeV [see Eq. (2.5)], we conclude that

N > 56: (5.4)

On the other hand, we know from (big bang nucleosynthe-
sis that H is at least larger than 1 MeV. This together with
Eq. (5.3) yields the upper bound

N < 76: (5.5)

Furthermore, our MCMC simulations give good fits for
N � 50–60. The bound Eq. (5.4) therefore favors N � 60
which implies Ntot � 66 and H � 3� 1010 GeV. In addi-
tion, from Eqs. (5.4) and (5.5) we obtain the bounds 62<
Ntot < 82.

In summary, the fast-roll stage explains the quadrupole
suppression and fixes the total number of e-folds of infla-
tion [7,8].

Our present MCMC analysis yields Ntot � 66. More
generally, the upper bound Eq. (5.5) implies Ntot < 82.

Changing N from 50 to 60 does not significantly affect
the MCMC fits we present in this paper. This is partially
due to the fact that a change on y can partially compensate
a change on N. Another hint to increase N above 50 comes
from WMAP-5 that gives a larger ns and using the theo-
retical upper limit for ns [12,14]:

ns < 1� 1:9236 � � �
N

; (5.6)

which gives ns < 0:9679 � � � for N ¼ 60. This value is

compatible with the ns value from WMAP5þ BAOþ
SN and no running [5].
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APPENDIX

As already shown in Sec. IV, the four types of correla-
tion multipoles, TT, TE, EE, and BB, among the CMB
anisotropies can be numerically computed with good ac-
curacy within the COSMOMC program starting from a given
cosmological model with a fixed value for all its parame-
ters. To be precise, this computation is performed by the
CAMB subprogram, which is an evolution of CMBFAST [18].

CAMB can also compute, with several levels of approxima-

tions, the matter power spectrum observable today given
the primordial power spectrum of density perturbations.
On modern workstation CPU’s, the calculation of 2000

scalar multipoles (related to the primordial curvature fluc-
tuations) and 1000 tensor multipoles (related to primordial
gravitational waves) takes less than 1 s. Thus, within a
given type of cosmological model, the theoretical predic-
tions for different choices of parameters can be produced at
a very high rate.
To test these predictions against the experimental data

COSMOMC makes use of likelihood functions to assign

different weights to different sets of correlation multipoles
and matter power data. The experimental data and associ-
ated numerical code to evaluate such likelihoods is part of
COSMOMC in the case of small-scale CMB experiments and

LSS surveys. The data and likelihood routines for WMAP
are not part of COSMOMC, but they can be downloaded from
http://lambda.gsfc.nasa.gov/ and integrated quite easily
into COSMOMC, since its interface to CMB likelihoods
has been appositely designed for WMAP.
The WMAP likelihood code is particularly complex

with respect to the other experiments, due to the wealth
of experimental data, the variety of source of systematical
errors, and the importance of cosmic variance on lower
multipoles. Indeed, it has significantly changed and im-
proved along the three WMAP releases. At any rate, it is
used in COSMOMC exactly as released by the WMAP team.
Finally, COSMOMC provides the MCMC engine, that is,

the routines to perform suitable random walks (the chains)
in the parameter space of a give cosmological model in
such a way to reconstruct the experimental probability for
the parameters from the distribution of values produced
along the chains. In our simulations we always employed
the default Metropolis rule, where the one-step transition
probability from one set � of parameter values to the next
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is given by

Wð�0; �Þ ¼ gð�0; �Þmin

�
1;
Lð�0Þgð�0; �Þ
Lð�Þgð�; �0Þ

�
;

where gð�0; �Þ is a Gaussian proposal, or jump, probability
and Lð�Þ is the complete posterior likelihood, that is the
product of the prior probability of choosing the starting
point of the chain, times the likelihood obtained by com-
paring the theoretical prediction on multipoles (and matter
power if LSS constraints are required) with the experimen-
tal data. As is well known from the theory of stationary
Markov chains, in the limit of infinitely long chains no
dependence is retained on gð�0; �Þ and the reconstructed
profile is that of Lð�Þ only. Of course, since actual chains
have a finite length, suitable convergence tests are needed
to verify that such a reconstruction is accurate enough. On
PC-cluster running several parallel chains at once,
COSMOMC offers very effective tests of this kind.

In order to test our own models based on binomial new
inflation, with or without sharp cut or fast roll, we needed
to modify some routines in COSMOMC. Since our changes

with respect to the �CDM model are restricted to the
primordial power spectrum, only routines relative to the
so-called fast variables needed suitable modifications. Fast
variables in COSMOMC are cosmological parameters that
affect only the primordial spectrum so that, in a
Monte Carlo step that proposes changes restricted to
them, no need arises to perform the time-consuming re-
computation of the transfer functions from a given primor-
dial spectrum to observable multipoles. Slow variables
such as the baryonic and dark matter fractions, !b, !c,
the optical depth �, and the present Hubble parameter H0

have the opposite definition. No change was done in the by
far major portion of the COSMOMC program that deals with
slow variables.
We recall also that we let only the four slow variables

mentioned above vary in our MCMC run (to be precise, we
used the default choice of COSMOMC which replaces H0

with �, the ratio of the approximate sound horizon to the
angular diameter distance), keeping all other slow cosmo-
logical parameters, such as the parameter of the dark
energy equation of state or the neutrino density fraction,
to the values of the standard �CDM model.
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et al., Astrophys. J. 612, 81 (2004); A. Shafieloo and T.
Souradeep, Phys. Rev. D 70, 043523 (2004); A. de
Oliveira-Costa and M. Tegmark, Phys. Rev. D 74,
023005 (2006).

[10] D. Schwarz, G. Starkman, D. Huterer, and C. Copi, Phys.
Rev. Lett. 93, 221301 (2004); C. Copi, D. Huterer, D.
Schwarz, and G. Starkman, Phys. Rev. D 75, 023507
(2007); A. Rakic and D. Schwarz, Phys. Rev. D 75,
103002 (2007).

[11] N. J. Cornish, D.N. Spergel, G.D. Starkman, and E.
Komatsu, Phys. Rev. Lett. 92, 201302 (2004); B. F.
Roukema, B. Lew, M. Cechowska, A. Marecki, and S.
Bajtlik, Astron. Astrophys. 423, 821 (2004); J. G.
Cresswell, A. R. Liddle, P. Mukherjee, and A. Riazuelo,
Phys. Rev. D 73, 041302 (2006); M. Liguori, S. Matarrese,
M. Musso, and A. Riotto, J. Cosmol. Astropart. Phys. 408
(2004) 011; R.V. Buniy, Int. J. Mod. Phys. A 20, 1095
(2005); R. V. Buniy, A. Berera, and T.W. Kephart, Phys.
Rev. D 73, 063529 (2006); T. Multamaki and O. Elgaroy,
Astron. Astrophys. 423, 811 (2004); C. Gordon and W.
Hu, Phys. Rev. D 70, 083003 (2004); T. R. Jaffe, A. J.
Banday, H. K. Eriksen, K.M. Gorski, and F.K. Hansen,
Astrophys. J. 629, L1 (2005); C. Gordon, W. Hu, D.
Huterer, and T. Crawford, Phys. Rev. D 72, 103002
(2005); C-H. Wu, K.-W. Ng, W. Lee, D.-S. Lee, and Y.-
Y. Charng, J. Cosmol. Astropart. Phys. 02 (2007) 006; L.
Campanelli, P. Cea, and L. Tedesco, Phys. Rev. Lett. 97,
131302 (2006); Phys. Rev. D 76, 063007 (2007); Y. S.

CMB QUADRUPOLE DEPRESSION PRODUCED BY EARLY . . . PHYSICAL REVIEW D 78, 023013 (2008)

023013-17



Piao, Phys. Rev. D 71, 087301 (2005); M. Kawasaki and F.
Takahashi, Phys. Lett. B 570, 151 (2003); L. R. Abramo,
L. Sodre Jr., and C.A. Wuensche, Phys. Rev. D 74, 083515
(2006); I-C. Wang and K-W. Ng, Phys. Rev. D 77, 083501
(2008); J.M. Cline, P. Crotty, and J. Lesgourgues, J.
Cosmol. Astropart. Phys. 09 (2003) 010.

[12] C. Destri, H. J. de Vega, and N.G. Sánchez, Phys. Rev. D
77, 043509 (2008).

[13] D. Boyanovsky, H. J. de Vega, and N.G. Sanchez, Phys.
Rev. D 73, 023008 (2006).

[14] H. J. de Vega and N.G. Sánchez, Phys. Rev. D 74, 063519
(2006).

[15] V. A. Belinsky, L. P. Grishchuk, Ya. B. Zeldovich, and
I.M. Khalatnikov, Phys. Lett. 155B, 232 (1985); JETP
62, 195 (1985).

[16] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002),
http://cosmologist.info/cosmomc/.

[17] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[18] U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437

(1996).

C. DESTRI, H. J. DE VEGA, AND N.G. SANCHEZ PHYSICAL REVIEW D 78, 023013 (2008)

023013-18


