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ABSTRACT

Astrometric accuracy of complex modern VLBI arrays cannot be calculated analytically. We study the astrometric accuracy of phase-
referenced VLBI observations for the VLBA, EVN and global VLBI array by simulating VLBI data for targets at declinations −25◦,
0◦, 25◦, 50◦, 75◦ and 85◦. The systematic error components considered in this study are calibrator position, station coordinate, Earth
orientation and troposphere parameter uncertainties. We provide complete tables of the astrometric accuracies of these arrays for a
source separation of 1◦ either along the right ascension axis or along the declination axis. Astrometric accuracy is 50 µas at mid
declination and is 300 µas at low (−25◦) and high (85◦) declinations for the VLBA and EVN. In extending our simulations to source
separations of 0.5◦ and 2◦, we establish the formula for the astrometric accuracy of the VLBA: ∆α cos δ,δ = (∆1◦

α cos δ,δ − 14)× d+ 14 (µas)
where ∆1◦

α cos δ,δ is the astrometric accuracy for a separation d = 1◦ provided in our tables for various declinations and conditions of the
wet troposphere. We argue that this formula is also valid for the astrometric accuracy of the EVN and global VLBI array.

Key words. astrometry – techniques: high angular resolution – techniques: interferometric

1. Introduction

Very Long Baseline Interferometry (VLBI) narrow-angle as-
trometry pioneered by Shapiro et al. (1979) makes use of ob-
servations of pairs of angularly close sources to cancel atmo-
spheric phase fluctuations between the two close lines of sight.
In this initial approach, the relative coordinates between the two
strong quasars 3C 345 and NRAO512 and other ancilliary pa-
rameters were adjusted by a least-squares fit of the differenced
phases after connecting the VLBI phases for both sources over a
multi-hour experiment. Then, Marcaide & Shapiro (1983, 1984)
made the first phase-referenced map where structure and as-
trometry were disentangled for the double quasar 1038+528 A
and B. Both of these experiments demonstrated formal errors at
the level of a few tens of microarcseconds or less in the relative
angular separation between the two sources.

Another approach was designed to tackle faint target sources
by observing a strong reference source (quasar) to increase the
integration time of VLBI from a few minutes to a few hours
(Lestrade et al. 1990). This approach improves the sensitivity by
the factor√

Nb × Tint

Tscan
,

where Nb is the number of VLBI baselines, Tint is the extended
integration time permitted by phase-referencing (several hours)
and Tscan is the individual scan length (a few minutes). As
this factor is very large (e.g. >50 for the 45 baselines of the
Very Long Baseline Array), faint target sources can be detected
and their positions can be concomitantly measured with high
precision.

In the approach above, the VLBI phases of the strong refer-
ence source are connected, interpolated in time and differenced

with the VLBI phases of the faint source that do not need to
be connected. The differenced visibilities are then inverted to
produce the map of the brightness distribution of the faint tar-
get source and its position is determined by reading directly the
coordinates of the map peak which are relative to the a priori ref-
erence source coordinates. The map is usually highly undersam-
pled but suffices for astrometry. This mapping astrometry tech-
nique is implemented in the SPRINT software (Lestrade et al.
1990) and a similar procedure is also used within the NRAO
AIPS package to produce phase-referenced VLBI maps with ab-
solute source coordinates on the sky.

While phase-referencing in this way is efficient, it still
provides no direct positional uncertainty as does least-squares
fitting of differenced phases (Shapiro et al. 1979). In order to
circumvent this problem, we have developed simulations to eval-
uate the impact of systematic errors in the derived astrometric
results. Such simulations have been carried out for of a pair of
sources observed with the Very Long Baseline Array (VLBA)
and the European VLBI Network (EVN) at various declinations
and angular separations. Systematic errors in station coordinates,
Earth rotation parameters, reference source coordinates and tro-
pospheric zenith delays were studied in turn. The results of the
simulations are summarized below in tables that indicate posi-
tional uncertainties when considering these systematic errors ei-
ther separately or altogether. Such tables can be further interpo-
lated to determine the accuracy of any full-track experiment with
the VLBA and EVN.

Our study includes atmospheric fluctuations caused by the
turbulent atmosphere above all stations. These fluctuations have
been considered uniform and equivalent to a delay rate noise of
0.1 ps/s for all stations. The impact of these fluctuations is lim-
ited if the antenna switching cycle between the two sources is
fast enough. The phase structure function measured at 22 GHz
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above the VLA by Carilli & Holdaway (1999) provides prescrip-
tions on this switching time. At high frequency, it can be as short
as 10 s, as e.g. in Reid et al. (2003) who carried out precise
43 GHz VLBA astrometric observations of Sgr A∗ at a decli-
nation of −28◦. Switching time in more clement conditions is
typically a few minutes at 8.4 GHz for northern sources.

A few applications of mapping astrometry are the search for
extra-solar planets around radio-emitting stars (Lestrade et al.
1994), the determination of the Gravity Probe B guide star
proper motion (Lebach et al. 1999), the determination of ab-
solute motions of VLBI components in extragalactic sources,
e.g. in compact symetric objects (Charlot et al. 2005) or core-jet
sources (Ros et al. 1999), probing the jet collimation region in
extragalactic nuclei (Ly et al. 2004), pulsar parallax and proper
motion measurements (Brisken et al. 2002) and the determina-
tion of parallaxes and proper motions of maser sources in the
whole Galaxy as planned with the VERA project (Kawaguchi
et al. 2000; Honma et al. 2000).

2. Method

As indicated in e.g. Thompson et al. (1986), the theoretical pre-
cision of astrometry with the interferometer phase is

σα,δ =
1

2π
1

SNR
λ

B
, (1)

where SNR is the signal-to-noise ratio of the observation, λ is
the wavelength and B is the baseline length projected on the sky.
For observations with the VLBA (B ∼ 8000 km), λ = 3.6 cm,
and a modest SNR of 10, this theoretical precision is breathtak-
ingly ∼15 µas. Although a single observation of the target yields
an ambiguous position, multiple observations over several hours
easily remove ambiguities even with a sparse u − v plane cover-
age (Lestrade et al. 1990).

While the theoretical precision above might be regarded as
the potential accuracy attainable for the VLBI, systematic er-
rors in the model of the phase limit narrow-angle astrometry
precision to roughly ten times this level in practice (Fomalont
et al. 1999). An analytical study of systematic errors in phase-
referenced VLBI astrometry over a single baseline is given in
Shapiro et al. (1979) and it shows that all systematic errors
are scaled by the source separation. Another error analysis in
such differential VLBI measurements can be found in Morabito
(1984). However, for modern VLBI arrays with 10 or more an-
tennae, the complex geometry makes the analytical approach
intractable. For this reason, we have estimated such systematic
errors by simulating VLBI visibilities and inverting them for a
range of model parameters (station coordinates, reference source
coordinates, Earth Orientation parameters, and tropospheric dry
and wet zenith delays) corresponding to the expected errors in
these parameters.

The visibilities were simulated for a pair of sources at de-
clinations −25◦, 0◦, 25◦, 50◦, 75◦, 85◦ and with angular sepa-
rations 0.5◦, 1◦ and 2◦ for the VLBA, EVN and global VLBI
array (VLBA+EVN). For each of these cases, we simulated vis-
ibilities every 2.5 min from source rise to set (full track) with a
lower limit on elevation of 7◦. The adopted flux for each source
(calibrator and target) was 1 Jy to make the phase thermal noise
negligeable in our simulations. For applications to faint target
sources, one should combine the corresponding thermal astro-
metric uncertainty (Eq. (1)) with the systematic errors derived
below. The simulated visibilities were then inverted using uni-
form weighting to produce a phase-referenced map of the tar-
get source and estimate its position. This operation was repeated

100 times in a Monte Carlo analysis after varying slightly the
parameters of the model based on errors drawn from a Gaussian
distribution with zero-mean and plausible standard deviation.
We report the rms of the differences found between the known
a priori position of the target source and the resulting estimated
positions as a measure of the corresponding systematic errors for
each of the above cases. We have adopted the usual astrometric
frequency of 8.4 GHz for this analysis.

3. Phase model used in simulation

The phase delay and group delay in VLBI are described in
Sovers et al. (1998). The phase φ = ντ at frequency ν is related
to the interferometer delay

τ = τg + τtrop + τiono + τR + τstruc + τclk.

Specifically, the geometric delay is:

τg = [P][N][EOP]
b · k

c

with the precession matrix [P], the nutation matrix [N], the Earth
Orientation Parameters matrix [EOP], the baseline coordinates b
in the terrestrial frame, the source direction coordinates k com-
puted with source right ascension and declination in the celestial
frame. The “retarded baseline correction” to account for Earth
rotation during elapsed time τg must also be modelled (Sovers
et al. 1998). The differential tropospheric delay τtrop between
the two stations is computed with a static tropospheric model
and the simple mapping function 1/ sin E (where E is the source
elevation at station) to transform the zenith delay into the line-
of-sight delay at each station. The differential ionospheric phase
delay τiono = −kTEC/ν2 is related to the total electronic content
TEC in the direction of the source at each station. The General
Relativity delay τR takes into account light propagation travel
time in the gravitational potential of the Sun. The source struc-
ture contribution τstruc can be computed according to the model
by Charlot (1990) but was not included in our simulations which
are for point sources. The clock delay τclk cancels in differenced
VLBI phases.

The model above is that implemented in the SPRINT soft-
ware used for our simulations. It is thought to be complete
for narrow-angle astrometry and additional refinements, such as
ocean loading, atmospheric loading, etc., would not make differ-
ence into our results. We have not studied the ionosphere contri-
bution to systematic errors. The unpredictible nature of the iono-
sphere makes this task difficult. Calibration of the ionosphere by
dual-frequency observations, or over a wide bandwidth at low
frequency (Brisken et al. 2002), or simply by observing at high
frequency (>10 GHz) where the effect is small, offers solutions
to this problem.

4. Results

4.1. VLBA

The parameter rms errors adopted as plausible for the VLBA
phase model are listed in Tables 1 and 2. The reference source
coordinate uncertainties (∆α0 cos δ0, ∆δ0) of 1 mas are typical
of those in the VLBA Calibrator Survey (Beasley et al. 2002),
from which most of the reference sources originate. However,
ICRF extragalactic sources have better position accuracies down
to 0.25 mas (Ma et al. 1998). We have thus carried out the calcu-
lations for both of these cases (1 mas and 0.25 mas) and both α0
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Table 1. Adopted rms errors for the source coordinates, VLBA sta-
tion coordinates and Earth Orientation Parameters in our Monte Carlo
simulations.

Parameters Errors
Source coordinates
α0 cos δ0 0.25/1 mas
δ0 0.25/1 mas
Station coordinates
X 1–2 mm
Y 1–3 mm
Z 1–2 mm
Earth orientation parameters
Xp 0.2 mas
Yp 0.2 mas
UT 1 − UTC 0.02 ms
ψ sin ε 0.3 mas
ε 0.3 mas

Table 2. Dry and wet tropospheric zenith path delays (τdtrp and τwtrp) at
the VLBA stations along with the adopted rms errors ∆τdtrp and ∆τwtrp

in our Monte Carlo simulations.

Stations Dry trop. Wet trop.
Mean Max

τdtrp ∆τdtrp τwtrp ∆τwtrp τwtrp ∆τwtrp

(cm) (cm) (cm) (cm) (cm) (cm)
Brewster 225 0.5 8 2.7 13 4.3
Fort Davis 192 0.5 8 2.7 15 5.0
Hancock 223 0.5 9 3.0 19 6.3
Kit Peak 185 0.5 6 2.0 15 5.0
Los Alamos 185 0.5 6 2.0 13 4.3
Mauna Kea 149 0.5 1 2.0 4 2.0
North Liberty 225 0.5 10 3.3 19 6.3
Owens Valley 199 0.5 5 2.0 20 6.7
Pietown 176 0.5 4 2.0 12 4.0
Saint Croix 213 0.5 22 7.3 30 10.0

and δ0 have been perturbed by these uncertainties in our sim-
ulations. The uncertainties for the station coordinates are from
the ITRF2000 frame (Boucher et al. 2004) while those for the
Earth Orientation Parameters are from the IERS web site1. The
adopted dry tropospheric rms error ∆τdtrp of 0.5 cm corresponds
to 2.5 millibars in atmospheric pressure uncertainty at sea level.
Although barometer reading is usually better, the absolute cal-
ibration of station barometers is at this level. Uncertainties in
the wet tropospheric zenith delay τwtrp derived from tempera-
ture and humidity are known to be large (Saastamoinen 1973).
Experience makes us believe that a 30% error is likely on τwtrp
and thus we took 1/3 of τwtrp as the plausible rms error ∆τwtrp
with a minimum value of 2 cm. We carried out simulations
for both mean and maximum values of wet zenith path delays
based on estimates of τwtrp recently derived from multiple VLBA
geodetic and astrometric sessions (Sovers 2003). The maximum
wet zenith delays and corresponding errors were used to investi-
gate the impact of extreme weather conditions on observations.
These values are listed for each VLBA station in Table 2.

We simulated the visibilities of a full u − v track experi-
ment with the VLBA for six declinations between −25◦ and 85◦
with a 1◦ relative source separation (either oriented in right as-
cension or in declination). Uniform weighting was applied to
the visibilities, resulting in a synthesized beam mainly shaped
by the longest baselines. As a test, we have also removed the

1 http://hpiers.obspm.fr/iers/eop/eopc04/EOPC04.GUIDE
(Table 2).

9 baselines smaller than 1500 km in length out of the 45 base-
line array and noted a decrease in systematic errors of ∼15% in
a few test cases. Conservatively, we have retained these “short”
baselines in our final simulations. This is motivated by the fact
that all possible baselines must be kept for sensitivity when ob-
serving weak sources. The antenna switching cycle between tar-
get and reference sources was set to 2.5 min. The results, how-
ever, do not depend critically on this value. It was chosen so that
the automatic phase connection routine for the reference source
does not discard too much data in the presence of a delay rate
error of 0.1 ps/s (adopted uniformly for all the stations in the
simulation). As mentioned previously, we analysed these data
simulated with SPRINT using the a priori parameter values per-
turbed by some errors. We carried out this analysis 100 times for
each systematic error component with perturbation errors drawn
from Gaussian distributions with zero mean and standard devia-
tions according to the rms errors in Tables 1 and 2. The resulting
position of the target was estimated by reading the peak posi-
tion in each of the 100 phase-referenced maps. The pixel size in
the maps was 0.05 mas. This size is small compared to the syn-
thesized beam (∼1 mas at 8.4 GHz on 8000 km baseline) and,
hence, the uncertainty in the peak position due to the pixel size is
negligeable. This position was determined by fitting a parabola
over the full half beam width. This procedure was used in the
Hipparcos/VLBI work of Lestrade et al. (1999) and was found
to be appropriate. As expected, each position was slightly off-
set from the map phase center, reflecting the corresponding sys-
tematic errors. After substracting the initial perturbation in the
calibrator position, we calculated the rms of these 100 relative
coordinate offsets ∆α cos δ and ∆δ for the adopted 1◦ source sep-
aration in right ascension or declination. Note that the mean of
these 100 coordinate offsets was close to zero in all cases. In
Tables 3 and 4, we report the rms astrometric errors for each in-
dividual error component along with the total astrometric errors
when all model parameters are perturbed together in the simula-
tion. The total errors were derived by considering a 1 mas error
in the calibration position.

The wet troposphere systematic error clearly dominates over
all the other error components for δ ≤ 50◦ but the calibra-
tor error dominates at higher declinations if its position is not
known to better than 1 mas. This behavior was first noted by
Shapiro et al. (1979) who derived analytical formulae providing
the astrometric errors caused by the calibrator coordinate uncer-
tainties in the case of a single VLBI baseline. A detailed analysis
comparing our simulated errors with those obtained from these
formulae is given in Appendix A. Other systematic errors, in
particular the Earth orientation parameter and the station coordi-
nate errors, are small. In Tables 3 and 4, we note that astrometric
errors originating from mean and maximum wet troposphere un-
certainties are not drastically different (a ratio of 1.5 at most).

Finally, we have plotted in Fig 1 the distribution of all co-
ordinate offsets ∆α cos δ and ∆δ for the 50◦ declination target
when all perturbation errors are present. For this specific case
we have carried out 1000 simulations to refine the binning of the
distribution. We have also performed the Pearson test on all dis-
tributions and provide the reduced chi-square χ2

ν and probabil-
ity p that such distributions are Gaussian in Table 5. The results
of this test show that most of the distributions are not Gaussian
with p generally smaller than 0.4.

4.2. EVN

We have carried out a similar study for the EVN by simulat-
ing full track observations for the 10 stations of the array at
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Table 3. VLBA rms astrometric errors (in µas) for a relative source separation (α−α0) cos δ0 = 1◦. Individual astrometric error contributions from
calibrator position, Earth orientation parameter, station coordinate, and dry and wet troposphere uncertainties are given separately, while the last
two lines indicate the total astrometric errors when all model parameters are perturbed together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦
Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Calibrator position (1 mas error) 8 7 1 9 8 16 20 26 59 68 196 193
Calibrator position (0.25 mas error) 2 7 1 3 2 5 3 5 12 11 49 50
Earth orientation 1 8 1 5 1 6 1 5 1 4 1 4
Antenna position 2 8 2 4 2 4 2 3 2 3 2 3
Dry troposphere 15 45 9 16 7 9 10 11 18 23 14 16
Wet troposphere (mean) 53 182 34 57 33 28 31 45 54 72 79 88
Wet troposphere (max) 87 219 46 66 42 38 49 56 65 78 81 91
Total (mean wtrp) 60 175 36 50 33 32 37 53 87 103 227 258
Total (max wtrp) 85 217 43 74 42 44 46 66 100 117 226 240

Table 4. VLBA rms astrometric errors (in µas) for a relative source separation δ−δ0 = 1◦. Individual astrometric error contributions from calibrator
position, Earth orientation parameter, station coordinate, and dry and wet troposphere uncertainties are given separately, while the last two lines
indicate the total astrometric errors when all model parameters are perturbed together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦

Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Calibrator position (1 mas error) 7 8 1 7 8 11 21 2 59 2 199 1
Calibrator position (0.25 mas error) 2 7 1 3 2 4 5 2 20 1 43 1
Earth orientation 5 7 5 3 5 4 4 3 3 1 3 1
Antenna position 2 9 2 6 2 5 3 3 2 2 2 2
Dry troposphere 17 54 6 19 2 12 5 9 11 9 12 13
Wet troposphere (mean) 80 272 32 98 11 41 12 32 43 41 60 62
Wet troposphere (max) 112 358 43 114 19 61 17 46 59 55 74 71
Total (mean wtrp) 84 284 30 99 16 42 25 33 81 36 189 67
Total (max wtrp) 121 481 44 134 20 56 26 46 92 65 212 74

Fig. 1. Distribution of total astrometric errors for a 1◦ relative source
separation along declination at declination 50◦. All perturbating errors
(calibrator position, Earth orientation parameters, station coordinates,
dry and wet troposphere parameters) are considered together in this
simulation.

8.4 GHz. The adopted errors for the reference source coordi-
nates and Earth orientation parameters were identical to those
used in the VLBA simulations. Station coordinate errors were
similar to the VLBA ones (1–6 mm), with the exception of those
for Westerbork which are at the level of 50 mm (Charlot et al.
2002). The same scheme as that adopted for the VLBA was used

Table 5. Reduced chi-square χ2
ν and probability p of Gaussian distribu-

tion for the astrometric errors ∆α cos δ and ∆δ using the Pearson test.

(α − α0) cos δ0 = 1◦
Declination ∆α cos δ ∆δ

χ2
ν p χ2

ν p

−25◦ 1.51 1.43 × 10−2 2.10 9.59 × 10−6

0◦ 1.67 1.29 × 10−2 1.73 1.95 × 10−3

25◦ 2.33 8.12 × 10−8 1.97 1.12 × 10−3

50◦ 0.97 0.511 1.18 0.309
75◦ 0.84 0.783 1.22 0.273
85◦ 1.06 0.659 1.02 0.424

(δ − δ0) = 1◦
Declination ∆α cos δ ∆δ

χ2
ν p χ2

ν p

−25◦ 1.19 0.286 0.76 0.885
0◦ 1.62 2.24 × 10−2 1.35 6.01 × 10−2

25◦ 3.22 4.62 × 10−4 1.91 5.57 × 10−4

50◦ 2.23 5.19 × 10−6 2.18 1.28 × 10−4

75◦ 1.38 0.116 2.05 1.99 × 10−3

85◦ 1.22 0.260 2.98 5.62 × 10−12

to define zenith dry and wet tropospheric delay errors at each
EVN station and the corresponding values are given in Table 6.

Since the EVN comprises antennas with different sensi-
tivities, each baseline has been weighted by the reciprocal of
their noise power equivalent

√
SEFD1 × SEFD2 with System
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Table 6. Dry and wet tropospheric zenith path delays (τdtrp and τwtrp) at
the EVN stations along with the adopted rms errors ∆τdtrp and ∆τwtrp in
our Monte Carlo simulations.

Stations Dry trop. Wet trop.
Mean Max

τdtrp ∆τdtrp τwtrp ∆τwtrp τwtrp ∆τwtrp

(cm) (cm) (cm) (cm) (cm) (cm)
Effelsberg 220 0.5 8 2.7 20 6.7
Hartebeesthoek 199 0.5 10 3.3 17 5.7
Medicina 231 0.5 11 3.7 18 6.0
Noto 229 0.5 12 4.0 20 6.7
Onsala 230 0.5 8 2.7 14 4.7
Sheshan 231 0.5 22 7.3 36 12.0
Urumqi 210 0.5 10 3.3 10 3.3
Westerbork 220 0.5 8 2.7 20 6.7
Wettzell 215 0.5 7 2.3 13 4.3
Yebes 208 0.5 5 2.0 5 2.0

Equivalent Flux Densities (SEFDi) for each station according
to Table 2 of the EVN Status Table2 (as available in May 2003).
The Effelsberg-Westerbork baseline is the most sensitive base-
line of the array but also the shortest one and so unfavorable for
high-accuracy astrometry. For this reason, we decided to per-
form the simulations without this baseline, hence using an array
of 44 baselines only. We have applied uniform weighting to the
visibilities similarly to the VLBA. We have tested that in remov-
ing the 12 baselines shorter than 1500 km in this 44 baseline
array, systematic errors decrease by ∼20% but, conservatively,
we have kept them in our simulations. In order to reduce the
number of simulations, calculations were carried out for only
mean values of the wet zenith tropospheric delays since the re-
sults when using mean or maximum values were not found to
be drasticaly different. We also did not calculate individual con-
tributions from calibrator position, dry tropospheric zenith delay
and Earth orientation parameter errors since these were found to
be very small for the VLBA (see Tables 3 and 4). One should
keep in mind, however, that calibrator error dominates at high
declination. The results of the EVN simulations are reported in
Tables 7 and 8 for a 1◦ source separation in right ascension or
declination.

At declination −25◦, many SPRINT maps were found to be
ambiguous, i.e. the main lobe of the point spread function of the
EVN could not be identified because secondary lobes were too
high. This is essentially caused by the relatively high latitude of
the array and hence to the difficulty of observing such low dec-
lination sources due to very limited visibility periods. For this
reason, we do not provide EVN results for this declination. For
other declinations, EVN astrometric errors (Tables 7 and 8) are
similar to those found for the VLBA (Tables 3 and 4) and the
Westerbork position error is not a limiting factor. Declination
accuracies are somewhat better for the EVN than for the VLBA
at low declination (0◦ and 25◦), a consequence of the participa-
tion of Hartebeeshoek (South Africa) in such observations.

4.3. Global VLBI array

We have carried out a similar study for the global VLBI array
which is the combination of the VLBA and EVN. It includes
20 stations, with 190 possible baselines. As discussed above,
the Effelsberg–Westerbork baseline was ignored and the calcu-
lations were thus carried out for 189 baselines only. The adopted

2 http://www.mpifr-bonn.mpg.de/EVN/EVNstatus.txt

systematic error values for the simulations with this array were
the same as those adopted for the individual VLBA and EVN
(Tables 1, 2 and 6) and calculations were performed for full
track observations as previously. The results of these simula-
tions (Tables 9 and 10) indicate that the astrometric errors for the
global VLBI array are consistent with those found for the VLBA
and the EVN. As expected, these errors are generally slightly
better than the ones derived for each individual array.

5. Discussion

5.1. General results

Our simulations show that the astrometric accuracy of the VLBI
phase-referencing technique (defined as

√
(∆α cos δ)2 + (∆δ)2)

is ∼50 µas for mid declinations and is ≤300 µas at low and high
declinations for point sources with a relative separation of 1◦.
The major systematic error components are the wet tropospheric
delay and the calibrator astrometric position, the latter only at
high declination. Station coordinate, Earth orientation parameter
and dry tropospheric zenith delay errors contribute generally to
less than 20 µas in the error budget.

5.2. Simulation of the VLBA without Saint Croix

We speculated that if the VLBA station at Saint Croix in the
Virgin Islands that suffers from dampness were withdrawn from
the array, it should improve the astrometric accuracy of the
VLBA. We thus repeated our VLBA simulations without that
station. The results of this test are given in Tables 11 and 12.
In contrast to our intuition, the astrometric accuracy is actually
degraded when the target-calibrator direction is oriented along
declination. In fact, the addition of Saint Croix strengthens the
geometry of the array and improves the astrometric accuracy de-
spite severe weather conditions. In order to further explore this
question, we ran simulations without Pie Town in the middle of
the array and without Mauna Kea at the far West of the array.
Withdrawing Pie Town does not change the astrometric accu-
racy but the absence of Mauna Kea degrades the accuracy in a
similar way to Saint Croix.

5.3. Linearity of the astrometric accuracy with source
separation

An important question is whether the astrometric accuracy scales
linearly as a function of the source separation. To study this
matter, we repeated all the previous simulations but with source
separations of 0.5◦ and 2◦. Then, we performed a linear fit to
the astrometric errors for the three values of the calibrator-target
separation (0.5◦, 1◦ and 2◦), considering separately each system-
atic error component of the tables above. Figure 2 shows an ex-
ample of such results for the VLBA in the case of a target at +25◦
declination. Overall, our plots show that the astrometric accu-
racy generally scales fairly linearly as a function of the source
separation.

To obtain a quantitative measure of the likehood of the lin-
earity, we determined the regression coefficients for each of the
107 linear fits. Such coefficients should be close to 1 for a linear
behavior while they should decrease as the behavior becomes
less linear. This analysis reveals that 80% of the coefficients are
larger than 0.95, indicating that the astrometric errors behave
linearly. Among all errors, calibrator position systematics are
those that were found to behave the least linearly. An empirical
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Table 7. EVN rms astrometric errors (in µas) for a relative source separation (α − α0) cos δ0 = 1◦. Individual astrometric error contributions from
station coordinate and wet troposphere uncertainties are given separately along with the total astrometric errors when all model parameters are
perturbed together.

Declination of source

0◦ 25◦ 50◦ 75◦ 85◦
Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Antenna position 5 4 5 4 6 5 5 5 5 5
Wet troposphere (mean) 55 11 37 14 52 33 73 40 65 31
Total (mean wtrp) 57 12 44 15 57 45 91 81 206 185

Table 8. EVN rms astrometric errors (in µas) for a relative source separation δ − δ0 = 1◦. Individual astrometric error contributions from station
coordinate and wet troposphere uncertainties are given separately along with the total astrometric errors when all model parameters are perturbed
together.

Declination of source

0◦ 25◦ 50◦ 75◦ 85◦
Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Antenna position 7 6 7 5 4 5 5 5 4 5
Wet troposphere (mean) 51 31 29 54 18 81 31 58 33 68
Total (mean wtrp) 62 29 33 57 27 78 79 61 201 61

Table 9. Global VLBI array rms astrometric errors (in µas) for a relative source separation (α − α0) cos δ0 = 1◦. The individual astrometric error
contribution from wet troposphere uncertainties is given separately along with the total astrometric errors when all model parameters are perturbed
together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦

Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ

Wet troposphere (mean) 71 76 32 42 26 34 23 13 22 6 27 9
Total (mean wtrp) 82 67 34 46 24 44 34 33 64 76 196 203

Table 10. Global VLBI array rms astrometric errors (in µas) for a relative source separation δ−δ0 = 1◦. The individual astrometric error contribution
from wet troposphere uncertainties is given separately along with the total astrometric errors when all model parameters are perturbed together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦

Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Wet troposphere (mean) 60 305 26 71 10 43 9 44 5 21 5 26
Total (mean wtrp) 61 279 24 78 15 45 22 46 61 24 183 27

formula for the astrometric accuracy ∆α cos δ,δ has been further
estimated by averaging the parameters of all the fits:

∆α cos δ,δ =
(
∆1◦
α cos δ,δ − 14

)
× d + 14 (µas) (2)

where ∆1◦
α cos δ,δ is the astrometric error for 1◦ source separation

as provided by our Tables (3 and 4 for the VLBA, 7 and 8
for the EVN, 9 and 10 for the global VLBI array) and d =√

((α − α0) cos δ0)2 + (δ − δ0)2 is the source separation in de-
grees. In Sect. 4.2, we noted that the astrometric accuracies of
the EVN and the VLBA are similar, hence this formula should
apply to the EVN, too.

As a verification of this empirical formula, we computed the
astrometric accuracy for eight target-calibrator pairs observed
with the global VLBI array as part of a project to monitor ab-
solute lobe motions in compact symmetric objects (Charlot et al.
2005). For the source pair J2212+0152/J2217+0220 with a sep-
aration of 1.37◦ along the right ascension direction, we obtained

simulated accuracies ∆α cos δ0 = 42 µas and ∆δ = 63 µas,
versus ∆α cos δ0 = 44 µas and ∆δ = 63 µas when derived
from Eq. (2) and Table 9. In the worst case (target-calibrator
J0754+5324/J0753+5352 with a separation of 0.50◦ along dec-
lination), simulated accuracies were ∆α cos δ0 = 18 µas and
∆δ = 12 µas while Eq. (2) and Table 10 give ∆α cos δ0 = 20 µas
and ∆δ = 24 µas. Thus, overall we found a discrepancy of a fac-
tor of 2 at most between our simple formula (Eq. (2)) and real
simulation of the case considered.

6. Conclusion

We have performed extensive simulations of VLBI data with the
VLBA, EVN and global VLBI array to study the dependence
of the astrometric accuracy on systematic errors in the phase
model of phase-referenced VLBI observations. Systematic er-
rors considered in this study are calibrator position uncertainties,
station coordinate uncertainties, Earth orientation parameters
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Table 11. VLBA without Saint Croix rms astrometric errors (in µas) for a relative source separation (α−α0) cos δ0 = 1◦. The individual astrometric
error contribution from wet troposphere uncertainties is given separately along with the total astrometric errors when all model parameters are
perturbed together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦

Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ

Wet troposphere (mean) 62 171 28 47 27 57 34 65 46 63 37 67
Total (mean wtrp) 63 193 27 41 31 62 42 68 83 82 211 207

Table 12. VLBA without Saint Croix rms astrometric errors (in µas) for a relative source separation δ − δ0 = 1◦. The individual astrometric error
contribution from wet troposphere uncertainties is given separately along with the total astrometric errors when all model parameters are perturbed
together.

Declination of source

−25◦ 0◦ 25◦ 50◦ 75◦ 85◦

Error component ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ ∆α cos δ ∆δ
Wet troposphere (mean) 183 563 62 189 19 55 17 41 39 27 42 44
Total (mean wtrp) 190 534 70 191 24 71 26 42 74 28 216 40

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.5  1  1.5  2

M
e

a
n

 c
o

s
(δ

)∆
α

 (
µ

a
s
)

Relative source separation (°)

Calibrator (1mas)
Calibrator (0.25mas)

EOP
Stations

Dry troposphere
Wet troposphere

All

 0

 10

 20

 30

 40

 50

 60

 0  0.5  1  1.5  2

M
e

a
n

 ∆
δ
 (

µ
a

s
)

Relative source separation (°)

Calibrator (1mas)
Calibrator (0.25mas)

EOP
Stations

Dry troposphere
Wet troposphere

All

Fig. 2. Astrometric accuracy as a function of the relative source separation for a target-calibrator pair observed with the VLBA at a declination of
+25◦. Each error component is represented with a different symbol and the total contributing error is also plotted.

uncertainties and dry and wet troposphere errors. We have
adopted state of the art VLBI values for these errors.

Our simulations show that the astrometric accuracy of a
full track phase-referenced VLBI experiment is 50 µas at mid
declination and is ∼300 µas at low (−25◦) and high (+85◦) de-
clinations for point sources angularly separated by 1◦. Not sur-
prinsingly, the major systematic error originates from wet tro-
pospheric zenith delay uncertainties except at high declination
where calibrator position uncertainties dominate. We show that
the astrometric accuracy ∆α cos δ,δ depends linearly on the source
separation and we established the simple formula ∆α cos δ,δ =
(∆1◦

α cos δ,δ − 14) × d + 14 (µas) where ∆1◦
α cos δ,δ is the astromet-

ric error provided by our tables for the various arrays and con-
figurations and d =

√
((α − α0) cos δ)2 + (δ − δ0)2 is the source

separation in degrees. Our study has been carried out for point
sources but variable source structure is likely to degrade the ac-
curacy derived from this formula.

Appendix A: Analytical behavior

The analytical formulae in the Appendix A of Shapiro et al.
(1979) provide the astrometric errors caused by the inaccuracy
of the calibrator coordinates in the case of a single VLBI base-
line. Adopting our notation, these formulae become:

∆α � ((α − α0) tan δ)∆δ0

−
(
(δ − δ0) tan δ + 1/2 × (α − α0)2

)
∆α0,

and

∆δ �
(
−(δ − δ0) cot δ + 1/2 × (α − α0)2

)
∆δ0

+((α − α0) cot δ)∆α0,

where ∆α and ∆δ are the errors in right ascension and declina-
tion introduced by errors ∆α0 and ∆δ0 in the coordinates of the
reference source. The expression above for ∆δ restores correctly



1106 N. Pradel et al.: Astrometric accuracy of phase-referenced observations with the VLBA and EVN

-200

-150

-100

-50

 0

 50

 100

 150

 200

-20  0  20  40  60  80

E
rr

or
 (

µa
s)

Declination (°)

Separation : (α-α0) cos δ =1°, δ-δ0 =0°

∆α cos δ
-200

-150

-100

-50

 0

 50

 100

 150

 200

-20  0  20  40  60  80
E

rr
or

 (
µa

s)
Declination (°)

∆δ

-200

-150

-100

-50

 0

 50

 100

 150

 200

-20  0  20  40  60  80

E
rr

or
 (

µa
s)

Declination (°)

Separation : (α-α0) cos δ =0°, δ-δ0 =1°

∆α cos δ
-200

-150

-100

-50

 0

 50

 100

 150

 200

-20  0  20  40  60  80

E
rr

or
 (

µa
s)

Declination (°)

∆δ

Fig. A.1. Astrometric errors ∆α cos δ and ∆δ (respectively left and right)
as a function of declination. The two upper plots are for the case α−α0 =
(1/ cos δ)◦ and δ − δ0 = 0◦ while the two lower plots are for the case
α − α0 = 0◦ and δ − δ0 = 1◦. The continuous dotted lines show the
errors derived from the Shapiro et al. (1979) formulae. The stars show
the errors from our simulations at six declinations from −25◦ to 85◦.

the last term of the equation which was misprinted in the orig-
inal paper. These simple formulae are, however, valid only for
the special geometry adopted by the authors where the “baseline
declination” is 0◦.

Adopting the same parameters as in our simulations (∆α0 =
1/ cos δ0 mas, ∆δ0 = 1 mas, α − α0 = 0◦ or (1/ cos δ0)◦,
δ − δ0 = 1◦ or 0◦), we obtain the astrometric errors plotted as
a function of declination in Fig. A.1 (dotted lines). The results
of our simulations for declinations of −25◦, 0◦, 25◦, 50◦, 75◦
and 85◦ in the case of the VLBA (first lines of Tables 3 and 4)
are also superimposed on these plots.

The right ascension errors obtained from the simulations
match perfectly those derived analytically, while the declination

errors show a strong discrepancy near declination 0◦ (although
they agree at high declinations). This discrepancy originates
from a singularity in the ∆δ formula at δ = 0◦ (term in cot δ), in-
herent to the approximation used to establish the formula (base-
line declination of 0◦). For a more complex and realistic net-
work, such a singularity does not exist, as also demonstrated by
the results of our simulations.
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