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In seasonal environments, the timing of reproduction often matches with
the peak of food resources. One well-known effect of global warming is an
earlier phenology of resources, leading to a possible mismatch between
the timing of reproduction for consumers and food peak. However, global
warming may also change the dynamics of food resources, such as the inten-
sity and frequency of pulsed mast seeding. How quantitative changes in
mast seeding influence the timing of reproduction of seed consumers
remains unexplored. Here, we assess how yearly variation in mast seeding
influences mating time in wild boar (Sus scrofa), a widespread seed consu-
mer species. We took advantage of the intensive monitoring of both
female reproduction (1636 females) and acorn production over 6 consecutive
years across 15 populations of wild boar in the wild. We found that mating
time occurs earlier when acorn production increases in most but not all
populations. In two out of 15 populations, heavy females mated earlier
than light ones. Our findings demonstrate that mast seeding advances the
mating time in some populations, which could perhaps impact how boars
respond to climate change.
1. Introduction
In seasonal environments, the timing of energy-demanding reproduction should
match the resource peak [1,2]. There is increasing evidence in the literature for an
earlier peak of resources in many ecosystems due to global warming, potentially
leading to a mismatch between reproductive timing and resource peak when
females cannot breed earlier [2–4]. This phenological mismatch can have negative
demographic consequences through increased offspringmortality (e.g. in roe deer
(Capreolus capreolus) [5] or muskoxen (Ovibos moschatus) [6]). However, earlier
spring and increased food availabilitymayalso benefit females through improved
reproductive success (e.g. reindeer (Rangifer tarandus) in Fennoscandia [7]).

In pulsed-resource environments, global warming is expected to change the
dynamics of food resources. For instance, both the intensity and frequency of
mast seeding, a well-known example of pulsed-resources, are influenced by
warmer environmental conditions (see [8] for review). Higher frequencies of
seed production for European beech (Fagus sylvatica L.) [9,10] and oak (Quercus
sp.) [11–14] and lower frequency for Norway spruce (Picea abies) [15] are expected
under warmer conditions in some places. However, heterogeneity in the response
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Figure 1. Location of the study sites in France. Displayed are the number of culled pregnant females, the study period and the distribution of mating dates during
the study period for each site.
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of trees towarmer conditions does exist across the globe [16]. In
turn, these changes in resources may influence the reproduc-
tive output of consumer species. Brown bears (Ursus arctos)
rely on berries, a pulsed-resource, during the summer and
autumn [17] to build fat reserves, which are then allocated to
reproduction [18,19]. Any changes in the amount of berries
available may thus impact bears’ reproduction. Likewise,
high seed production positively influences the reproductive
output of seed consumer species such as eastern chipmunk
(Tamias striatus) [20] or wild boar (Sus scrofa) [11,21]. For the
latter, improved reproductive performance following high
acorn availability positively influences population growth
rate [11,21–23], with potentially important implications for
management and conservation [24]. Understanding howquan-
titative changes in mast seeding influence the timing of
reproduction of seed consumers, not only their reproductive
output, is crucial in the current context of global warming
and remains to be investigated.

Here, we fill this knowledge gap using a widespread seed
consumer species, the wild boar as a case study. This wide-
spread species [25–28] is of high concern to biodiversity [29].
The species is omnivorous, but mainly feeds on pulsed-
resources such as acorns when this resource is available
[30–35]. Therefore, the level of acorn production in a given
year at a given place reliably reflects wild boar consumption.
From the analyses of reproductive tracts in 15 populationswide-
spread across France, with detailed information on annual seed
production [36], we assess the influence of acorn production on
mating time. We predict earlier mating dates with increasing
acorn production in all the studied populations.
2. Material and methods
(a) Study areas and data collection
Fifteen sites have been monitored in France from 2015 to 2021
(figure 1). Oak (Quercus sp., which included different oak species
like Quercus ilex or Quercus petraea) was consistently present.
Acorns fall between August and mid-November [37,38], and
their production was measured annually on each site. From 1
August to 30 September, the canopy of 30 to 100 trees were
sampled with binoculars by the same observers during 3 min. A
seed production indexwas given to each tree [39], ranging between
0 (no seed) and 4 (high seed production, when hundreds of fruits
were counted—see [38] for the whole protocol). The annual acorn
production index was calculated for each site as the average of the
tree-specific acorn production index in a given year.

We collected, in all sites, reproductive tracts of female wild
boar shot during the hunting season (August–March). Shooting
date and live body mass (in kg) were recorded for each female.
Two age-classes (subadults (greater than 1 year and less than
or equal to 2 years) versus adults (greater than 2 years of age)
[40]) were distinguished using tooth eruption patterns [41].
Fetuses were measured (in mm) and the mating date was back-
calculated thanks to the Mauget model [42], which links ges-
tation stage (in days) to mean fetus length (in cm): [gestation
stage = ((6.18 +mean fetus length)/1.85) × 7]. Mating date thus
corresponded to the difference between shooting date and
gestation stage. A total of 1636 pregnant females were analysed.
(b) Data analyses
To identify how the amount of mast seeding influences mating
time, we fitted a linear model with mating time (in days) as the



Table 1. Model selection for the effects of acorn production index (I),
population (P), age (A) and body mass (BM) on the mating time of female
wild boar (N = 1636). Np is the number of parameters, and ΔAICc is the
difference in AICc between each tested model and the best one (in italics).

model Np AICc ΔAICc

A + I + BM + P + I × P 33 16406.3 0.00

I + BM + P + I × P 32 16406.7 0.37

A + I + BM + P + I × A + I × P 34 16408.3 2.03

A + I + BM + P + A × BM + I × P 34 16408.4 2.07

A + I + BM + P + I × BM + I × P 34 16408.4 2.07

Table 2. Effects of acorn production index (I) and body mass (BM) on the
mating time of female wild boar at each site. Predicted mating times (in
days after 18 August) were calculated for a female of 65 kg and with an
acorn production index of 1.4.

site
no.
females model

predicted
mating time

Belval 47 I + BM + I × BM 93.86 ± 7.23

Chambord 323 I 121.42 ± 1.81

Châteauvillain 255 I 41.35 ± 3.19

Chevré 72 1 82.19 ± 5.61

Chizé RBI 61 I 61.07 ± 5.69

Coëtquidan 67 I + BM 95.98 ± 4.84

Crécy 115 I + BM 60.90 ± 6.93

Enghien 59 I 93.1 ± 8.76

Fontainebleau 106 I 65.80 ± 4.80

Grignan 68 1 65.21 ± 6.17

La Petite Pierre 164 I 65.97 ± 2.10

Lemps 39 1 71.44 ± 6.14

Lierru 127 I 49.78 ± 3.35

Marsanne 52 I −11.14 ± 19.90

Quénécan 81 I 94.60 ± 5.87
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response variable. For each female, mating time was calculated as
the difference between the estimated mating date and the first day
of hunting (i.e. 18 August). The annual average acorn production
in the population was included as an explanatory continuous vari-
able (I). We accounted for possible population differences in
mating time (site effect as a categorical variable, P), for a potential
effect of age (categorical variable with two classes, A) and for the
expected allometric effect of female body mass (continuous, BM)
[35]. Interactions between acorn production and population, and
between body mass and population were included to test for a
different effect of acorn production and body mass on mating
time according to the studied population. In the same way, inter-
action between acorn production and body mass was included
to test for a different effect of acorn production on mating time
according to female mass. Age class was added in interaction
with all variables to test for age class differences.

We used the Akaike information criterion corrected for small
sample size (AICc) for model selection and retained the model
with the lowest AICc [43]. When the AICc difference between
competing models was less than 2, we retained the model includ-
ing the lowest number of parameters according to parsimony
rules. Analyses were performed with R (v. 4.1.1) using the lm()
function of the ‘stats’ package for linear model and function
dredge() of the ‘MuMIn’ package [44] for model selection.
3. Results
The overall average mating time was around 79 days after 18
August, i.e. 6 November, but mating occurred during a wide
period of time, in all sites (figure 1). Noticeably, as mating
times were back-estimated from females shot during the
hunting season, females mating too late (after the hunting
season) could not be included in the analysis.

We found little evidence for an effect of the age (i.e. subadult
versus adult) of the female onmating time, but strong evidence
for among-population differences and complex interactions
(table 1). The global model indicated that higher body mass
and acorn production both led to earlier mating time (see
electronic supplementary material, appendix S1). The same
analysis conducted in each population separately, without age
effect, thus allowed a simpler interpretation of these effects.

The best models retained for each population indicated
that acorn production negatively influenced mating time in
12 out of 15 populations (table 2): the higher the acorn pro-
duction, the earlier the mating time (figure 2). For instance,
a change in the acorn production index from 1 to 3 at La
Petite Pierre leads to a 59-day advance in mean mating time.

We also found evidence for an effect of body mass on
mating time in three out of 15 populations (table 2). The
heavier the females, the earlier the mating time for two out
of three populations (figure 2). Thus, a 10 kg increase for a
female of 65 kg in Crécy led to an advance of 5 days in
mating time for a given year.

Predicted mating times were calculated from the best
model retained in each population, for a female of 65 kg and
with an acorn production index of 1.4 (table 2). We found
wide variation in predicted mating times across populations.
For instance, from 11.14 days before 18 August (i.e. 7 August)
in Marsanne to 121.42 days after 18 August (i.e. 17 December)
in Chambord. Noticeably, mating happened after the acorn
crop in most populations.
4. Discussion
We found clear evidence for earlier mating times with increas-
ing acorn production, and earlier mating times for heavier
females in some but not all populations, which revealed
high heterogeneity across populations and females. Variation
in environmental conditions may influence both the timing
and the amount of food resources. Some consumer species
can track these changes by shifting mating time. For instance,
topi (Damaliscus korrigum) and warthog (Phacochoerus aethiopi-
cus) females were in better condition and gave birth earlier [45]
during years with high food availability, and red squirrel
(Tamiasciurus hudsonicus) females gave birth earlier following
a year with high cone abundance [46]. There are some advan-
tages of earlier breeding, such as offspring can take advantage
of resource abundance, grow faster and increase their survival
[47] through, for instance, reducedmortality by predation [48].
Likewise, our findings show that wild boar females can mate
earlier when facing high resource availability, in some, but
not all, populations. For instance, in Chevré, Grignan and
Lemps, food availability had virtually no influence on
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mating time. The heterogeneity of mating time response to
changes in food availability we revealed across different
wild boar populations questions the generality of previous
conclusions based on a single wild boar population that both
ovulation and pregnancy times take place earlier under good
environmental conditions [49]. More generally, our findings
demonstrate the importance of comparative studies.

Several studies have investigated the effect of resource avail-
ability on mating times on one single population [50–52]. For
instance, the painted honeyeater (Grantiella picta) initiates
clutches earlier when the fruit-abundance index increases [51].
For red squirrels, in the year following a high food availability,
females reproduce earlier [50,52], up to 17 days [50]. Other
studies have compared mating time responses to changes in
food availability across species, i.e. at the interspecific level
[53,54], but to the best of our knowledge, very few comparative
studies among populations within a given species have been
conducted (but see [55] for an example in house mouse (Mus
musculus)). Notable exceptions include experiments, where the
influence of supplemental feeding on breeding times in birds
[56,57] and rodents [58–60] has been assessed. In natura, how-
ever, comparative studies on the effect of pulsed-resources on
mating times remainveryscarce (but see [50] fora studyonSiber-
ian flying squirrels (Pteromys volans)). Our comparative study is
thus quite unique and provides novel insights into the effect of
acorn production—a pulsed-resource—on mating times,
demonstrating high heterogeneity in mating time response to
changes in food availability across populations. The high
among-population heterogeneity we report from our compara-
tive analysis of 15 populations with contrasting environmental
conditions indicates that variation in population density [61],
age structure [40], hunting pressure [35,40], weather conditions
([35,62,63,64] for instance), oak species, other food resources
(e.g. beechnuts [35,65]), or interspecific competition [66] are all
potentially fine-tuning mating time in a given population.

Wild boar females can thus adjust the timing of their oes-
trus, allowing earlier or delayed mating times, so that
gestation starts at different times according to environmental
conditions [35]. Although female wild boars reproduce each
year [35], the timing of mating also depends on female
body reserves [35]. Accordingly, we found that heavier
females have earlier mating dates than lighter ones in some
populations. Contrary to previous findings [67,68] (but see
[40,69]), this result indicates that all females are not necess-
arily synchronized in their reproduction within a year [70].
This contrasts with all other ungulates living in seasonal
environments, such as roe deer [71] or red deer [72], or moun-
tain ungulates that all display high mating synchrony leading
to high birth synchrony (with 80% of births in less than 30
days and 13 days, respectively).
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5. Conclusion
In the current context of climate change, the potential of a
species to adjust the timing of reproductive events is extre-
mely beneficial because it can minimize the mismatch
between reproductive timing and food resources. Wild boar
illustrates the case of a species with highly plastic mating
times, which might explain its success as a strongly wide-
spread species nowadays [25–28]. Our research highlights
the importance of comparative studies to better understand
how ongoing climate change is likely to influence populations
in the wild.
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