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EXTENSIONS OF DISSIPATIVE AND SYMMETRIC OPERATORS

W. ARENDT, I. CHALENDAR, AND R. EYMARD

Abstract. Given a densely defined skew-symmetric operators A0 on a real or complex
Hilbert space V , we parametrize all m-dissipative extensions in terms of contractions Φ :
H- → H+, where H- and H+ are Hilbert spaces associated with a boundary quadruple.
Such an extension generates a unitary C0-group if and only if Φ is a unitary operator.
As corollary we obtain the parametrization of all selfadjoint extensions of a symmetric
operator by unitary operators from H- toH+. Our results extend the theory of boundary
triples initiated by von Neumann and developed by V. I. and M. L. Gorbachuk, J.
Behrndt and M. Langer, S. A. Wegner and many others, in the sense that a boundary
quadruple always exists (even if the defect indices are different in the symmetric case).
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1. Introduction

A classical subject in Functional Analysis and in Mathematical Physics is the description
of all selfadjoint extensions of a symmetric operator. It was J. von Neumann who gave the
first result in this direction (see Section 5). Generalizations of von Neumann’s Theorem
led to the theory of boundary triples which are described in detail in the monographs
[8] by V.I. and M.L. Gorbachuk and by K. Schmüdgen [15]. Such boundary triples exist
whenever the given symmetric operator has at least one selfadjoint extension. Multiplying
by the complex number i, the problem can be reformulated as follows. Let A0 be a densely
defined skew-symmetric operator on a Hilbert space V . Describe all extensions B of A0

which generate a unitary C0-group.
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2 W. ARENDT, I. CHALENDAR, AND R. EYMARD

More recently, Wegner [17] used boundary triples to parametrize also all extensions B
of A0 which generate a contractive C0-semigroup (which does not necessarily consist of
unitary operators). However, it turns out that for this task the notion of boundary triples
is too narrow and does not cover all cases.
In the present article we introduce boundary quadruples, a notion with weaker assump-
tions, which covers all cases. Moreover, we give quite short proofs which might make the
new setting attractive.
Let us describe in more details some of the main results. Let V be a Hilbert space over
K = R or C, and let A0 be a skew-symmetric operator with dense domain. Then A0 is a
restriction of A := −A∗

0.
A boundary quadruple (H-, H+, G-, G+) consists of pre-Hilbert spaces H-, H+ and surjec-
tive linear mappings G- : D(A) → H- and G+ : D(A) → H+ such that

(1.1) 〈Au, v〉V + 〈u,Av〉V = 〈G+u,G+v〉H+ − 〈G-u,G-v〉H-
for all u, v ∈ D(A), with the additional condition

(1.2) kerG- + kerG+ = D(A).

It is remarkable that the purely algebraic assumptions (1.1) and (1.2) imply that the
mappings G- and G+ are continuous and that the images H-, H+ are actually Hilbert
spaces. Our main result is the following.

Theorem 1.1. Let B be an extension of A0. The following are equivalent:

(i) B generates a C0-semigroup of contractions;
(ii) there exists a linear contraction Φ : H- → H+ such that

D(B) = {w ∈ D(A) : ΦG-w = G+w} and Bw = Aw, w ∈ D(B).

Moreover, B generates a unitary C0-group if and only if Φ is unitary. In this case we
refind the known extension results for symmetric operators in a more general setting.
The literature on boundary triples is very rich. We refer to the references and historical
notes in the article [17] by Wegner, the two monographs mentioned above, and also
to the monograph of Behrndt, Hassi and de Snoo [6], where extension results are part
of an elaborate theory (cf. [6, Corollary 2.1.4.5]), and we refer also to the articles of
Behrndt–Langer [4] and Behrndt–Schlosser [5]. In a previous article [2], the present
authors studied extensions of derivations in a quite different spirit, the main motivation
being non-autonomous evolution equations. Even though some ideas used here have their
origine in [2], the present article is completely self-contained. It is organized as follows.
In Section 2 we investigate dissipative operators including a simple proof of Phillips’
Theorem. Boundary quadruples are introduced and investigated in Section 3. Extensions
which generate a unitary group are characterized in Section 4. These results can be
transferred to extension results for symmetric operators (Section 5). Examples are given
in Section 6. Section 7 is devoted to the wave equation. Finally we compare boundary
triples as they occur in the literature with boundary quadruples in Section 8.
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2. Dissipative and skew-symmetric operators

Let V be a Hilbert space over K = R or C. We first recall the definitions of several
notions associated with dissipativity. By an operator A on V we always understand a
linear mapping, defined on a subspace D(A) of V , its domain, which takes values in V .

Definition 2.1. a) An operator A with domain D(A) ⊂ V is closed if its graph
G(A) := {(x,Ax) : x ∈ D(A)} is closed in V × V .

b) An operator B is an extension of A, in symbols A ⊂ B, if D(A) ⊂ D(B) and
Bx = Ax for x ∈ D(A).

c) An operator A is called closable if there exists a closed operator A such that G(A) =
G(A). Then A is the smallest closed extension of A. It is called the closure of A.

d) An operator A on V is called dissipative if

Re〈Ax, x〉V ≤ 0 for all x ∈ D(A).

e) An operator A on V is called maximal dissipative if A ⊂ B with B a dissipative
operator implies that A = B.

f) An operator A on V is called m-dissipative if A is dissipative and (Id−A)D(A) =
V .

We now collect well-known properties to see the link between all the notions defined above.

Proposition 2.2. Let A be an operator on V .

1) The operator A on V is dissipative if and only if

(2.1) ‖x− tAx‖ ≥ ‖x‖ for all x ∈ D(A), t > 0.

2) If A is m-dissipative, then D(A) is dense in V .
3) If A is m-dissipative, then A is maximal dissipative.
4) If A is dissipative and D(A) is dense in V , then A is closable and A is dissipative.
5) If A is dissipative and closed, then, for all t > 0, (Id−tA)D(A) is closed.

Proof. 1) follows from the equivalence

‖(Id− tA)x‖2V ≥ ‖x‖2V ⇐⇒ t‖Ax‖2V − 2Re〈Ax, x〉V ≥ 0,

Then, letting t→ 0, we prove the well-known characterization of dissipativity.
2) is proved in [1, Proposition 3.3.8].
3) Let A ⊂ B where B is dissipative. Let x ∈ D(B). The surjectivity of Id−A implies that
there exists y ∈ D(A) such that x−Bx = y−Ay = y−By. Therefore B(y− x) = y−x.
By 1) applied with t = 1, we get x = y, and then A = B.
4) follows from [1, Lemma 3.4.4] and 1).
5) Suppose that (Id−tA)(xn) → y for (xn)n ⊂ D(A). Therefore ((Id−tA)(xn))n is a
Cauchy sequence and by 1) (xn)n is also a Cauchy sequence, which converges to say
x ∈ V . It follows that Axn → x−y

t
. Since the graph of A is closed, Ax = x−y

t
and thus

y = (Id−tA)x. �
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Phillips [12, Corollary of Theorem 1.1.1] obtained the equivalence between m-dissipativity
and maximal dissipativity on a Hilbert space using the Cayley transform. We give a simple
direct proof (see also [17, Theorem 3.1] for still another argument).

Theorem 2.3 (Phillips). Let V be a Hilbert space and A an operator on V . Then A is
m-dissipative if and only if A is maximal dissipative and D(A) is dense.

Proof. One implication follows from 3) in Proposition 2.2.
Conversely, if A is dissipative with dense domain, then, by 4) in Proposition 2.2, A
is closable and A is dissipative. Since A is maximal dissipative, A = A. By 5) in
Proposition 2.2 with t = 1, we get (Id−A)D(A) is closed in V . Assume that R :=
Ran(Id−A) 6= V . Let us prove that D(A) ∩ R⊥ = {0}. Let x ∈ D(A) ∩R⊥. Then

〈x− Ax, x〉V = 0.

Hence ‖x‖2V = Re〈Ax, x〉V ≤ 0 and so x = 0. Define Â on V by

D(Â) := D(A)⊕ R⊥, Â(x+ u) = Ax− u where x ∈ D(A), u ∈ R⊥.

Then A ⊂ Â and

Re〈Â(x+ u), x+ u〉V = Re〈Ax, x〉V + Re〈Ax, u〉V − Re〈u, x〉V − ‖u‖2V
≤ Re(〈Ax, u〉V − 〈u, x〉V )
= Re(−〈x− Ax, u〉V ) + Re(〈x, u〉V − 〈u, x〉V )
= Re(〈x, u〉V − 〈x, u〉V )
= 0.

Thus Â is dissipative. Hence D(A) = D(Â), i.e. R⊥ = {0}. We have shown that R = V ;
i.e. A is m-dissipative. �

By Zorn’s lemma, each densely defined dissipative operator has a maximal dissipative
extension.
By the Lumer–Phillips Theorem [1, Theorem 3.4.5 and Proposition 3.3.8], an operator A
on V generates a C0-semigroup of contractions if and only if A is m-dissipative.
Now we introduce the basic objects of this article, a skew-symmetric operator which
can be characterized as follows. We continue to consider the real and complex case
simultaneously.

Proposition 2.4. Let A be an operator on V . The following assertions are equivalent:

(i) Re〈Au, u〉V = 0 for all u ∈ D(A);
(ii) ±A is dissipative;
(iii) A is skew-symmetric, i.e.

〈Au, v〉V + 〈u,Av〉V = 0

for all u, v ∈ D(A).
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Proof. (i) ⇐⇒ (ii) is obvious.
(iii) ⇒ (i) Take u = v.
(i) ⇒ (iii) Note that

0 = Re〈A(u+ v), u+ v〉V
= Re (〈Au, v〉V + 〈Av, u〉V )
= Re (〈Au, v〉V + 〈u,Av〉V ) .

This proves (iii) in the real case. If K = C, then replacing u by λu we see that

Reλ (〈Au, v〉V + 〈u,Av〉V )
for all λ ∈ C and hence 〈Au, v〉V + 〈u,Av〉V = 0 for all u, v ∈ D(A). �

If B is a densely defined operator on V , the adjoint B∗ of B is defined as follows. For
v, f ∈ V ,

v ∈ D(B∗) and B∗v = f ⇐⇒ 〈Bu, v〉V = 〈u, f〉V for all u ∈ D(B).

Using this definition we see that a densely defined operator A0 on V is skew-symmetric
if and only if A0 ⊂ (−A0)

∗.
Our aim is to describe all dissipative extensions of such an operator A0. It turns out that
they all are restrictions of (−A0)

∗. A proof using Cayley transform is given in [8, Chapter
3, Theorem 1.3 p. 150] and [17, Proposition 2.8]. We give a much shorter direct proof.

Theorem 2.5. Let A0 be a densely defined skew-symmetric operator and B a dissipative
operator such that A0 ⊂ B. Then B ⊂ (−A0)

∗.

Proof. Let y ∈ D(B). Let x ∈ D(A0). Then

Re〈Bx, x〉V = Re〈A0x, x〉V = 0.

Hence, for t > 0,

0 ≥ Re〈B(x+ ty), x+ ty〉V
= tRe〈Bx, y〉V + tRe〈By, x〉V + t2Re〈By, y〉V .

Dividing by t and letting t→ 0, we get

0 ≥ Re〈A0x, y〉V + Re〈By, x〉V .
Since the above inequality holds for ±x, it follows that

0 = Re〈A0x, y〉V + Re〈By, x〉V .
If K = R, since x ∈ D(A0) is arbitrary, this implies that y ∈ D(A∗

0) and By = (−A0)
∗y.

If K = C, replacing t by λt with λ ∈ C, the above argument shows that

(2.2) Re
(
λ〈A0x, y〉V + λ〈By, x〉V

)
= 0

for all λ ∈ C and x ∈ D(A0). Choosing λ = 1 and then λ = i, we get

〈A0x, y〉V + 〈x,By〉V = 0,

and the conclusion follows as in the case K = R. �
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3. Boundary quadruples and m-dissipative restrictions

In this section we introduce and study the basic notion of this article. Let V be a Hilbert
space over K = R or C and let A0 be a densely defined skew-symmetric operator on V .
Let A = (−A0)

∗. Then, as a consequence of the definition of the adjoint

(3.1) A0 ⊂ A.

Definition 3.1. A boundary quadruple (H-, H+, G-, G+) for A0 consists of pre-Hilbert
spaces H-, H+ and linear maps G- : D(A) → H-, G+ : D(A) → H+ satisfying

(3.2) 〈Au,w〉V + 〈u,Aw〉V = 〈G+u,G+w〉H+
− 〈G-u,G-w〉H-

for all u, w ∈ D(A),

(3.3) kerG+ + kerG- = D(A),

and

(3.4) H- = G-D(A), H+ = G+D(A).

We will see below that these assumptions imply that H- and H+ are actually complete
and that G-, G+ are continuous (with respect to the graph norm on D(A)).
Boundary quadruples do always exist. Below are two possible constructions which always
work. However, for concrete examples, other choices might be convenient. We let

(3.5) b(u, v) = 〈Au, v〉V + 〈u,Av〉V , u, v ∈ D(A).

Then b : D(A) × D(A) → K is a symmetric sesquilinear form. We call it the boundary
form associated with A0.
We first show that Condition (3.3) implies the following interpolation property.

Lemma 3.2. Let x- ∈ G-D(A), x+ ∈ G+D(A). Then there exists w ∈ D(A) such that
G-w = x- and G+w = x+.

Proof. There exist w1, w2 ∈ D(A) such that x- = G-w1, x+ = G+w2. By (3.3), w1 = w1−+
w1+ and w2 = w2−+w2+ with w1−, w2− ∈ kerG-, w1+, w2+ ∈ kerG+. Let w = w1++w2−.
Then

G-w = G-w1+ = G-(w1+ + w1−) = G-w1 = x-.

Similarly

G+w = G+(w1+ + w2−) = G+w2− = G+(w2− + w2+) = G+w2 = x+.

�

Remark 3.3. The interpolation property of Lemma 3.2 is equivalent to (3.3). Indeed,
given w ∈ D(A) and assuming the interpolation property, we find w1 ∈ D(A) such that
G+w1 = G+w and G-w1 = 0. Thus w1 ∈ kerG- and w−w1 ∈ kerG+, w = (w−w1)+w1 ∈
kerG+ + kerG-.
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We consider D(A) with the graph norm

‖u‖2D(A) := ‖u‖2V + ‖Au‖2V .
Then D(A) is a Hilbert space with ‖ · ‖D(A) as corresponding norm. We first prove that
G- and G+ are automatically continuous for this norm.

Lemma 3.4. The operators G- : D(A) → H-, G+ : D(A) → H+ are continuous.

Proof. Consider the mapping G : D(A) → H- ×H+ given by

G(w) = (G-(w), G+(w)) ∈ H- ×H+,

where H-, H+ are the completions of H- and H+ respectively. It suffices to show that G
has a closed graph. For that let wn → w in D(A) such that G(wn) → (x-, x+) ∈ H-×H+.
Note that b is symmetric and hence automatically continuous as a consequence of the
Closed Graph Theorem. Thus

〈x+, G+v〉H+ − 〈x-, G-v〉H- = lim
n→∞

(
〈G+wn, G+v〉H+ − 〈G-wn, G-v〉H-

)

= lim
n→∞

b(wn, v)

= b(w, v)

= 〈G+w,G+v〉H+ − 〈G-w,G-v〉H-
for all v ∈ D(A). Thus

〈x+ −G+w,G+v〉H+ + 〈G-w − x-, G-v〉H- = 0

for all v ∈ D(A). Let z- ∈ G-D(A), z+ ∈ G+D(A). By the interpolation property of
Lemma 3.2, there exists v ∈ D(A) such that z- = G-v, z+ = G+v. Thus

〈x+ −G+w, z+〉H+ + 〈G-w − x-, z-〉H- = 0.

Passing to limits this remains true for all z- ∈ H-, z+ ∈ H+.
Choosing z+ = x+ −G+w and z- = G-w − x-, it follows that

‖x+ −G+w‖2H+
+ ‖G-w − x-‖2H- = 0.

Hence x+ = G+w, x- = G-w.
�

Next we show that H- andH+ are complete. We could deduce it from [2, Proposition 4.10]
but we prefer to give a direct proof.

Proposition 3.5. The spaces G-D(A) =: H- and G+D(A) =: H+ are complete.

Proof. a) We show that G-D(A) is closed in the completion H- of H-. Let x0 ∈ G-D(A).
Define the continuous linear form F : D(A) → K by

F (u) = 〈G-u, x0〉H-.
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Since D(A) equipped with the graph norm is a Hilbert space, there exist w1, w2 ∈ V such
that

F (u) = 〈u, w1〉V + 〈Au,w2〉V
for all u ∈ D(A). In fact, by the definition of the graph norm, the mapping u 7→ (u,Au)
is an isometric isomorphism from D(A) to the graph G(A) of A. By the Hahn–Banach
Theorem, the linear from (u,Au) 7→ F (u) on G(A) has an extension to a linear form on
V × V . This gives us the vectors w1 and w2 in V . In particular,

0 = 〈u, w1〉V + 〈A0u, w2〉V
for all u ∈ D(A0). Thus w1 = Aw2. Consequently,

〈G-u, x0〉H- = F (u)

= 〈u,Aw2〉V + 〈Au,w2〉V
= 〈G+u,G+w2〉H+ − 〈G-u,G-w2〉H-

for all u ∈ D(A). In particular,

〈G-u, x0 +G-w2〉H- = 0

for all u ∈ kerG+. Since, by (3.3), G- kerG+ = G-D(A), it follows that

〈y, x0 +G-w2〉H- = 0

for all y ∈ G-D(A) = H-. Since x0 + G-w2 ∈ H-, it follows that x0 + G-w2 = 0. Hence
x0 = −G-w2 ∈ G-D(A) = H-.
b) Note that (H+, H-, G+, G-) is a boundary quadruple for −A0. Thus it follows from a)
that H+ is complete. �

Now we give two examples of boundary quadruples which always exist.

Example 3.6 (First example). Consider W := D(A) with the graph norm, as be-
fore. Since b is symmetric there exists a selfadjoint operator B ∈ L(W ) such that
b(u, v) = 〈Bu, v〉V for all u, v ∈ V . By the spectral theorem [14, VIII.3], up to a
unitary equivalence, W = L2(Ω, µ) and Bf = mf for all f ∈ W and some real-

valued m ∈ L∞(Ω, µ) where (Ω,Σ, µ) is a measure space. Define G+f =
√
m+f and

G-f =
√
m−f for all f ∈ L2(Ω, µ), where m+ = max(m, 0) and m− = −min(m, 0). Then

(G-L
2(Ω, µ), G+L

2(Ω, µ), G-, G+) is a boundary quadruple.

Example 3.7 (Second example). The second construction depends on the following de-
composition

(3.6) D(A) = D(A0)⊕ ker(Id−A)⊕ ker(Id+A),

where A0 is the closure of A0 (which is again skew-symmetric). A proof can be found in
[17, Lemma 2.5] or [8, Chapter 3, Theorem 1.1, p. 148] or [13, X.1 Lemma]. We give
a proof to be as self-contained as possible, and we treat again the real and complex case
simultaneously. First we note the decomposition

(3.7) V = Ran(Id−A0)⊕ ker(Id+A)
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which is a Hilbert direct sum since Ran(Id−A0) = Ran(Id−A0) (a consequence of dissi-
pativity) and

Ran(Id−A0)
⊥ = ker(Id−A∗

0) = ker(Id+A).

Proof of (3.6). a) Linear independence. Let 0 = x0 + x+ + x- with

x0 ∈ D(A0), x+, x- ∈ D(A), Ax+ = x+, Ax- = −x-.
Then 0 = (Id−A0)x0 + 2x-. Since 2x- ∈ ker(Id+A), it follows from (3.7) that 2x- = 0
and (Id−A0)x0 = 0. From dissipativity we obtain now

0 = Re〈(Id−A0)x0, x0〉V = ‖x0‖2V − Re〈A0x0, x0〉V ≥ ‖x0‖2V ,
hence x0 = 0. Thus also x+ = 0.
b) Let x ∈ D(A). By (3.7) there exist x0 ∈ D(A0) and y0 ∈ ker(Id+A) such that

(Id−A)x = (Id−A0)x0 + y0 = (Id−A)(x0 +
y0
2
).

Thus x− x0 − y0
2
∈ ker(Id−A) and

x = x0 + (x− x0 −
y0
2
) +

y0
2

∈ D(A0) + ker(Id−A) + ker(Id+A).

�

Proposition 3.8. For w ∈ D(A), let w = w0+w++w- be the decomposition according to
(3.6), where w0 ∈ D(A0), w+, w- ∈ D(A), Aw+ = w+, −Aw- = w-. Then G+w :=

√
2w+,

G-w :=
√
2w- defines a boundary quadruple (H-, H+, G-, G+), with H- = ker(Id+A) and

H+ = ker(Id−A).
Proof. a) Let u, v ∈ D(A). Then

b(u, v) = 2〈u+, v+〉V − 2〈u-, v-〉V
with the notation defined above. In fact, using that,

〈A0u0, w〉V = 〈−u0, Aw〉V
for all w ∈ D(A), this is straightforward.
b) kerG+ + kerG- = {w ∈ D(A) : w+ = 0} + {w ∈ D(A) : w- = 0} = D(A). Thus (3.2)
and (3.3) are satisfied. �

Let (H-, H+, G-, G+) be a boundary quadruple, which is fixed for the remainder of this
section. We will decribe all m-dissipative extensions of A0 in terms of this quadruple.
Recall that A0 is closable and that A0 is skew-symmetric again. The domain of A0 may
be described by the boundary quadruple as follows.

Proposition 3.9. One has D(A0) = kerG+ ∩ kerG- and A0w = Aw for all w ∈ D(A0).

Proof. ” ⊂ ” Let u ∈ D(A0). Then for all v ∈ D(A),

0 = 〈G+u,G+v〉H+ − 〈G-u,G-v〉H-.
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By Lemma 3.2 there exists v ∈ D(A) such that G+u = G+v and G-v = −G-u. Thus

0 = ‖G+u‖2H+
+ ‖G-u‖2H-.

Hence u ∈ kerG+∩kerG-. Since G+ and G- are continuous for the graph norm on D(A),
it follows that

D(A0) ⊂ kerG+ ∩ kerG-.

” ⊃ ” Let w ∈ kerG- ∩ kerG+. Then

〈Aw, u〉V + 〈w,Au〉V = 〈G+w,G+u〉H+ − 〈G-w,G-u〉H- = 0

for all u ∈ D(A). Hence

〈w,A∗
0u〉V = −〈w,Au〉V = 〈Aw, u〉V

for all u ∈ D(A∗
0). By [1, Proposition B10, p. 472] this implies that w ∈ D(A0) and

A0w = Aw. �

Now we can describe all m-dissipative extensions of A0. Recall that H+ := RanG+ and
H- = RanG- are complete. If Φ ∈ L(H-, H+) is a contraction, then we define the operator
AΦ on V by

D(AΦ) := {w ∈ D(A) : ΦG-w = G+w} and AΦw := Aw.

Then clearly A0 ⊂ AΦ ⊂ A.

Theorem 3.10. Let B be an operator on V such that A0 ⊂ B. The following assertions
are equivalent:

(i) B is m-dissipative;
(ii) there exists a linear contraction Φ : H- → H+ such that B = AΦ.

To say that Φ : H- → H+ is a contraction means, by definition, that‖Φx‖H+ ≤ ‖x‖H- for
all x ∈ H-. Since for w ∈ D(AΦ), one has

2Re〈AΦw,w〉V = b(w,w)

= ‖G+w‖2H+
− ‖G-w‖2H-

= ‖ΦG-w‖2H+
− ‖G-w‖2H- ≤ 0,

each operator AΦ is dissipative. Before proving Theorem 3.10 we show that AΦ determines
Φ. More precisely the following holds.

Proposition 3.11. Let Φ1,Φ2 : H- → H+ be two contractions. If AΦ1
⊂ AΦ2

, then
Φ1 = Φ2.

Proof. Let x ∈ H-. By Lemma 3.2 there exists w ∈ D(A) such that G-w = x, G+w =
Φ1(x). Thus w ∈ D(AΦ1

). It follows from the hypothesis that w ∈ D(AΦ2
), i.e.

Φ2(x) = Φ2(G-w) = G+(w) = Φ1(x).

�
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Proof of Theorem 3.10. Let B be a dissipative extension of A0. Then by Theorem 2.5,
B ⊂ A. Since

0 ≥ 2Re〈Bu, u〉V = b(u, u) = ‖G+u‖2H+
− ‖G-u‖2H-,

one has ‖G+u‖2H+
≤ ‖G-u‖2H- for all u ∈ D(B). Thus ΦG-u := G+u defines a contraction

from G-D(B) to H+. Then Φ has a contractive extension from H- → H+ which we still
denote by Φ (extend first Φ to the closure of G-D(B) by continuity and then by 0 on
(G-D(B))⊥). From our definition it follows that B ⊂ AΦ. Proposition 3.11 now shows
that the maximal dissipative operators extending A0 are exactly the operators AΦ where
Φ : H- → H+ is a linear contraction. Now the claim follows from Phillips’ Theorem
(Proposition 2.4). �

Corollary 3.12. The mapping Φ 7→ AΦ is a bijection between the set of all contractions
Φ : H- → H+ and the set of all m-dissipative extensions of A0.

Proof. This follows from Theorem 3.10 and Proposition 3.11. �

Let us consider some special cases.

Proposition 3.13. The following assertions are equivalent:

(i) 〈Au, v〉V + 〈u,Av〉V = 0 for all u, v ∈ D(A);
(ii) G- = G+ = 0;
(iii) A0 = A;
(iv) −A∗ = A.

Proof. (ii) ⇒ (i) This follows from (3.2).
(i) ⇒ (iv) Property (i) implies that −A ⊂ A∗. But A∗ = −A∗∗

0 = −A0 ⊂ −A. This
proves (iv).
(iv) ⇒ (iii) One always has A0 = A∗∗

0 and (A0)
∗ = A∗

0. Thus (iv) implies that A0 =
A∗∗

0 = −A∗ = A.
(iii) ⇒ (ii) This follows from Proposition 3.9. �

Proposition 3.13 describes when both operators G+, G- are zero; it turns out that this is
independent of the boundary quadruple. Next we consider the case when G+ = 0.

Proposition 3.14. Assume that G+ = 0. Then A is the only m-dissipative extension
of A0. However, if G- 6= 0, then there exists an infinite number of generators B of a
C0-semigroup such that A0 ⊂ B.

Proof. One has

2Re〈Au, u〉V = ‖G+u‖2H+
− ‖G-u‖2H- = −‖G-u‖2H- ≤ 0

for all u ∈ D(A). Thus A is dissipative. It follows from Theorem 2.5 that A is maximal
dissipative and hence m-dissipative by Phillips’Theorem. If G- 6= 0, then D(A0) =
kerG- 6= D(A). Thus it follows from [11, A-II, Theorem 1.33 p. 46] that A0 has infinitely
many extensions generating a C0-semigroup. �
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Thus in the case where G+ = 0 and G- 6= 0, only one of the infinitely many C0-semigroups
having an extension of A0 as generator is contractive. Next we consider the case when
G- = 0.

Proposition 3.15. If G- = 0, then A0 is the only m-dissipative extension of A0.

Proof. One has H- = {0}. Thus Φ = 0 is the only contraction from H- to H+. Thus

D(AΦ) = {w ∈ D(A) : 0 = G+w}
= kerG+

= kerG+ ∩ kerG-

= D(A0).

�

As a consequence A0 is also the only extension of A0 generating a C0-semigroup.
We conclude this section by establishing isomorphisms between boundary quadruples.

Theorem 3.16. Let (H-, H+, G-, G+) be a boundary quadruple for A0. Let G̃- : D(A) →
H̃- and G̃+ : D(A) → H̃+ be linear where H̃- and H̃+ are Hilbert spaces. The following
assertions are equivalent:

(i) (H̃-, H̃+, G̃-, G̃+) is a boundary quadruple;
(ii) a) G̃-D(A) = H̃- and G̃+D(A) = H̃+;

b) there exists an isomorphism Ψ : H → H̃ where H := H- ⊕ H+ and H̃ :=
H̃- ⊕ H̃+ such that

Ψ(G-u,G+u) = (G̃-u, G̃+u) for all u ∈ D(A)

and

Ψ∗C̃Ψ = C,

where C(x-, x+) = (−x-, x+) for x- ∈ H-, x+ ∈ H+ and C̃(x̃-, x̃+) = (−x̃-, x̃+)
for x̃- ∈ H̃-, x̃+ ∈ H̃+.

Proof. (i) ⇒ (ii) Assume that (H̃-, H̃+, G̃-, G̃+) is a boundary quadruple. Then a) follows
from Proposition 3.5. To prove b), consider the mapping G := (G-, G+) : D(A) → H :=

H- ⊕ H+ given by G(u) = (G-u,G+u) and similarly G̃ := (G̃-, G̃+) : D(A) → H̃ :=
H̃- ⊕ H̃+. By Proposition 3.9, kerG = ker G̃ = D(A0). Thus G0 := G|D(A0)⊥ and

G̃0 := G̃|D(A0)⊥ define two isomorphisms G0 : D(A0)
⊥ → H and G̃0 : D(A0)

⊥ → H̃ . Thus

Ψ := G̃0G
−1
0 ∈ L(H, H̃) is an isomorphism. Since

〈Au, v〉V + 〈u,Av〉V = 0

if u ∈ D(A0) or v ∈ D(A0), it follows that G̃ = ΨG. Notice that

〈Au, v〉V + 〈u,Av〉V = 〈CGu,Gv〉H = 〈C̃G̃u, G̃v〉H̃
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for all u, v ∈ D(A), where Gu = (G-u,G+u) ∈ H- ⊕H+ = H . Similarly G̃u is written as
a vector. Let u ∈ D(A). Then for all v ∈ D(A),

〈CGu,Gv〉H = 〈C̃ΨGu,ΨGv〉H̃ = 〈Ψ∗C̃ΨGu,Gv〉H̃.
Since G is surjective, it follows that CGu = Ψ∗C̃ΨGu for all u ∈ D(A). Consequently,

C = Ψ∗C̃Ψ.
(ii) ⇒ (i) This is shown by reversing the arguments leading to ”(i) implies (ii)”. �

4. Unitary groups

Let V be a Hilbert space over K = R or C. In this section we want to determine all
extensions of a densely defined skew-symmetric operator which generate a unitary group.
We recall the following two well-known facts. An operator B on V generates a C0-group
(U(t))t∈R if and only if ±B generate C0-semigroups (U±(t))t≥0. In that case, U(t) = U+(t)
and U(−t) = U−(t) for t ≥ 0. Moreover, if B generates a C0-semigroup (S(t))t≥0, then
B∗ generates the C0-semigroup (S(t)∗)t≥0. By a unitary C0-group we mean a C0-group of
unitary operators. The following is well-known.

Proposition 4.1. Let B be an operator on V . The following assertions are equivalent:

(i) B generates a unitary C0-group;
(ii) ±B is m-dissipative;
(iii) D(B) is dense and −B = B∗.

Proof. (ii) ⇐⇒ (i)±B arem-dissipative if and only±B generate contractive C0-semigroups
(U±(t))t≥0. This in turn is equivalent to B generating a contractive hence isometric group;
i.e. a unitary C0-group.
(i) ⇒ (iii) Let B be the generator of the unitary group (U(t))t∈R. Then B

∗ generates the
semigroup (U(t)∗)t≥0 and −B the C0-semigroup (U(−t))t≥0. Since U(−t) = U(t)∗ for all
t ≥ 0, it follows that −B = B∗.
(iii) ⇒ (i) If −B = B∗, then B is skew-symmetric and G+ = G- = 0 by Proposition 3.13.
By Proposition 3.14, −B∗ = B generates a contractive C0-semigroup. Applying the same
result to −B instead of B we deduce that also −B generates a contractive C0-semigroup.
Thus B generates a unitary C0-group. �

Now we describe all generators of a unitary C0-group which are extensions of a given
skew-symmetric operator.
Recall that V is a real or complex Hilbert space. Let A0 be a densely skew-symmetric
operator on V and let A = −A∗

0. Let (H-, H+, G-, G+) be a boundary quadruple for A0.
We let H- = RanG-, H+ = RanG+ and if Φ ∈ L(H-, H+) is a contraction, we define
Aφ ⊂ A as before on the domain

D(AΦ) := {w ∈ D(A) : ΦG-w = G+w} by AΦw := Aw.

Theorem 4.2. Let B be an operator on V such that A0 ⊂ B. The following assertions
are equivalent:

(i) B generates a unitary C0-group;
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(ii) there exists a unitary operator Φ ∈ L(H-, H+) such that B = AΦ.

Proof. (i) ⇒ (ii) Let B be the generator of a unitary group. Then ±B are m-dissipative.
By Theorem 3.10 there exists a contraction Φ : H- → H+ such that B = AΦ. Apply The-
orem 3.10 to −B instead of B and observe that (H-, H+, G+, G-) is a boundary quadruple
for −A0; here we just interchanged G- and G+. Thus we find a contraction Ψ : H+ → H-
such that

D(−B) = {w ∈ D(A) : ΨG+w = G-w}.
Let x- ∈ H-. We claim that ΨΦx- = x-. In fact, by the Interpolation Lemma (Lemma 3.2)
there exists w ∈ D(A) such that G-w = x- and G+w = Φx-. Thus Φ(G-w) = G+w and
so w ∈ D(AΦ) = D(B). Hence w ∈ D(−B) = D(B). Consequently,

ΨG+w = G-w i.e. ΨΦx- = ΨG+w = G-w = x-.

This proves the claim. One similarly shows that ΦΨx+ = x+ for all x+ ∈ H+. Thus Φ is
unitary.
(ii) ⇒ (i) Assume that Φ : H- → H+ is unitary and B = AΦ. In particular

D(B) = {w ∈ D(A) : ΦG-w = G+w} = {w ∈ D(A) : G-w = Φ−1G+w}.
Thus −B is m-dissipative by Theorem 3.10. We have shown that ±B are m-dissipative.

�

Corollary 4.3. The following assertions are equivalent:

(i) there exists a generator B of a unitary group such that A0 ⊂ B;
(ii) H- and H+ are isomorphic as Hilbert spaces;
(iii) ker(Id−A) and ker(Id+A) are isomorphic.

Proof. (i) ⇐⇒ (ii) follows from Theorem 4.2.
(ii) ⇐⇒ (iii) follows from Proposition 3.8. �

5. Selfadjoint extensions of symmetric operators

In this section we consider a complex Hilbert space V . An operator S on V is called
symmetric if

〈Su, v〉V = 〈u, Sv〉V for all u, v ∈ D(S).

If S is densely defined, then S is symmetric if and only if S ⊂ S∗. An operator T on V
is called selfadjoint if D(T ) is dense in V and T = T ∗.
It is immediate that an operator S is symmetric if and only if iS is skew-symmetric.
Selfadjointness can be characterized by Stone’s Theorem.

Theorem 5.1 (Stone). Let T be an operator on H. The following assertions are equiva-
lent:

(i) T is selfadjoint;
(ii) iT generates a unitary C0-group.

Proof. Let T be densely defined. Then (iT )∗ = −iT ∗. Thus T is selfadjoint if and only if
(iT )∗ = −iT . By Proposition 4.1, this is equivalent to (ii). �
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Theorem 5.1 allows us to transport our results from Section 4 to the characterization of
all selfadjoint extensions of a symmetric operator. To that aim, let S be a densely defined
symmetric operator on V .

Definition 5.2. A boundary quadruple (H-, H+, , G-, G+) for S consists of complex pre-
Hilbert spaces H-, H+ and linear surjective maps G- : D(S∗) → H-, G+ : D(S∗) → H+

such that

(5.1) 〈S∗u, v〉V − 〈u, S∗v〉V = i
(
〈G-u,G-v〉H- − 〈G+u,G+v〉H+

)

for all u, v ∈ D(S∗), and

(5.2) kerG+ + kerG- = D(S∗).

Proposition 5.3. A boundary quadruple (H-, H+, G-, G+) for S always exists. Then H-
and H+ are complete and G-, G+ are continuous if D(S∗) carries the graph norm.

Proof. The operator A0 := iS is skew-symmetric and −A∗
0 = iS∗. Let (H-, H+, G-, G+)

be a boundary quadruple for A0. Then

〈S∗u, v〉V − 〈u, S∗v〉V = −i (〈iS∗u, v〉V + 〈u, iS∗v〉V )
= −i

(
〈G+u,G+v〉H+ − 〈G-u,G-v〉H-

)

for all u, v ∈ D(S∗). Now the existence follows from Example 3.6 and Proposition 3.8.
Proposition 3.5 says that H- and H+ are complete and Lemma 3.4 that G-, G+ are con-
tinuous. �

Let (H-, H+, G+, G-) be a boundary quadruple for S. Then we have the following two
results.

Proposition 5.4. The following assertions are equivalent:

(i) S has a selfadjoint extension;
(ii) H+ and H- are isomorphic, i.e. there exists a unitary operator from H+ onto H-;
(iii) ker(i Id−S∗) and ker(i Id+S∗) are isomorphic.

Theorem 5.5. Assume that H+ and H- are isomorphic. Let T be an operator such that
S ⊂ T . The following assertions are equivalent:

(i) T is selfadjoint;
(ii) there exists a unitary operator Φ : H+ → H- such that

D(T ) = {w ∈ D(S∗) : ΦG+w = G-w}, Tw = S∗w

for all w ∈ D(T ).

Proof of Propostiion 5.4 and Theorem 5.5. Let A0 = iS. Then we have A = −A∗
0 =

iS∗. Thus Proposition 5.4 follows from Corollary 4.3. Let S ⊂ T . Then iS ⊂ iT .
By Theorem 5.1, T is selfadjoint if and only if iT generates a unitary C0-group. By
Theorem 4.2, this is equivalent to (ii) of Theorem 5.5 �
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Specified to the boundary quadruple of Proposition 3.5, Theorem 5.5 is a variant of [13,
Theorem X.2]. A boundary triple for S as defined in [15, Chapter 14] is essentially equiv-
alent to a boundary quadruple in which H+ and H- are isomorphic. Then Theorem 5.5
also follows from the equivalence of (i) and (iii) in [15, Theorem 4.10].

6. Examples

Let H be a Hilbert space over K = R or C and let −∞ ≤ a < b ≤ ∞,

L2((a, b), H) := {u : (a, b) → H measurable;

∫ b

a

‖u(t)‖2Hdt <∞}.

Define the Sobolev space
H1((a, b), H) := {u ∈ L2((a, b), H) : ∃u′ ∈ L2((a, b), H) such that

−
∫ b

a
ϕ′(t)u(t)dt =

∫ b

a
u′(t)ϕ(t)dt for all ϕ ∈ C∞

c ((a, b),R)}.
Then H1((a, b), H) is a Hilbert space for the norm

‖u‖2H1 = ‖u‖2L2 + ‖u′‖2L2 .

Lemma 6.1. One has

a) H1((a, b), H) ⊂ C([a, b], H) if −∞ < a, b <∞.
b) H1((a,∞), H) ⊂ {u ∈ C([a,∞), H) : limt→∞ u(t) = 0} if a > −∞.
c) H1((−∞, b), H) ⊂ {u ∈ C((−∞, b], H) : limt→−∞ u(t) = 0} if b <∞.
d) H1((−∞,∞), H) ⊂ {u ∈ C((−∞,∞), H) : limt→±∞ u(t) = 0}.

This can be proved as in the scalar case, see [7, Theorem 8.2 and Corollary 8.9] and [3,
Sec. 8.5] for a vector-valued version.
Here we identify each u ∈ H1((a, b), H) with the unique ũ ∈ C([a, b] ∩ R, H) such that
ũ(t) = u(t) a.e. (taking the intersection with R is convenient when [a, b] is not compact).
The following integration-by-parts formula holds, see [7, Corollary 8.9 and 8.10].

Lemma 6.2. Let u, v ∈ H1((a, b), H). Then 〈u′(·), v(·)〉H, 〈u(·), v′(·)〉H ∈ L1((a, b), H)
and ∫ b

a

〈u′(t), v(t)〉Hdt+
∫ b

a

〈u(t), v′(t)〉Hdt

=





〈u(b), v(b)〉H − 〈u(a), v(a)〉H if −∞ < a < b <∞;

〈u(b), v(b)〉H if −∞ = a < b <∞;

−〈u(a), v(a)〉H if −∞ < a < b = ∞;

0 if a = −∞ and b = ∞.

Example 6.3. Let V = L2((a, b), H), D(A0) = C∞
c ((a, b), H), A0u = u′. Then A0 is

skew-symmetric with dense domain. Let B be an operator on V such that A0 ⊂ B.

a) Assume that −∞ < a < b < ∞. Then B is m-dissipative if and only if there
exists a contraction Φ ∈ L(H) such that

D(B) = {u ∈ H1((a, b), H) : Φu(a) = u(b)}.
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Moreover B generates a unitary C0-semigroup if and only if Φ is unitary.
b) Let −∞ = a < b < ∞. Then B is m-dissipative if and only if D(B) = {u ∈

H1(−∞, b), H) : u(b) = 0}. In that case the semigroup (S(t))t≥0 generated by B
is given by (S(t)f)(x) = f(x+ t) if x+ t ≤ b and (S(t)f)(x) = 0 if x+ t > b. This
B is the only generator of a C0-semigroup which is an extension of A0.

c) Let −∞ < a < b = ∞. Then B is m-dissipative if and only if D(B) =
H1((a,∞), H). In that case the semigroup (S(t))t≥0 generated by B is given by

(S(t)f)(x) = f(x+ t) for x ∈ (a,∞), t > 0, f ∈ V.

There are infinitely many other non-contractive C0-semigroups having as generator
an extension of A0.

d) −∞ = a, b = ∞. Then D(A0) = H1(R, H) and A0 generates a unitary C0-group
given by (U(t)f)(x) = f(x+ t).

Proof. A boundary quadruple (H-, H+, G-, G+) is given by H- = G-D(A) and H+ =
G+D(A)) where :
G+u = u(b) and G-u = u(a) in the case a),
G- = 0 and G+u = u(b) in the case b),
G+ = 0 and G-u = u(a) in the case c),
G- = G+ = 0 in the case d).
Now a) follows from Theorem 3.10, b) from Proposition 3.14, c) from Proposition 3.13
and d) from Theorem 5.5. �

Next we give an example where arbitrary closed subspaces H1, H2 of H occur as G-D(A)
and G+D(A).

Example 6.4. Let H be a Hilbert space over K = R or C, and let H1, H2 be closed
subspaces of H. We construct a densely defined symmetric operator A0 on a space V and
(H-, H+, G-, G+), a boundary quadruple, such that H+ = H2, H- = H1. For that we let
−∞ < a < c <∞,

V = {u ∈ L2((a, b), H) : u(t) ∈ H1, t ∈ (a, c) and u(t) ∈ H2, t ∈ (c, d)}.
This is a closed subspace of L2((a, b), H). Define the operator A0 on V by

D(A0) := {u ∈ H1
0 ((a, b), H) : u(t) ∈ H1, t ∈ [a, c], u(t) ∈ H2, t ∈ [c, b]}.

Thus u ∈ C([a, b], H) and u(a) = u(b) = 0, u(c) ∈ H1 ∩ H2 for each u ∈ D(A0). Define
A0u = u′ ∈ V . Then D(A0) is dense since

H1
0 ((a, c), H1)⊕H1

0 ((c, d), H2) ⊂ D(A0)

and H1
0 ((a, c), H1) is dense in L2((a, c), H1) and H1

0 ((c, b), H2) is dense in L2((c, b), H2).
The operator A0 is skew-symmetric. This is a consequence of Lemma 6.2 since limx→c,x<c v(x) =
limx→c,x>c v(x) for all v ∈ D(A0). Moreover, A = −A∗

0 is given by:

D(A) = {u ∈ H1((a, b), H) : u(t) ∈ H1, t ≤ c and u(t) ∈ H2, t ≥ c}
and Au = u′.



18 W. ARENDT, I. CHALENDAR, AND R. EYMARD

Define G+, G- : D(A) → H by G+u = u(b) and G-u = u(a). Then we see that
(G-D(A), G+D(A), G-, G+) is a boundary quadruple for A0 and G+D(A) = H2, G-D(A) =
H1. We omit the details of the proof.

Next we consider the second derivative. Let −∞ < a < b <∞, V = L2((a, b), H). By

H2((a, b), H) := {u ∈ H1((a, b), H) : u′ ∈ H1((a, b), H)}
we define the Sobolev space of second order. It follows from Lemma 6.1 that

H2((a, b), H) ⊂ C1([a, b], H).

We define the operators G-, G+ ∈ L(H2(a, b;H), H ×H) by

(6.1) G+u =

√
2

2
(u(a)− iu′(a), u(b) + iu′(b)) ∈ H ×H

and

(6.2) G-u =

√
2

2
(u(a) + iu′(a), u(b)− iu′(b)) ∈ H ×H.

We define the symmetric operator S on V = L2(a, b;H) by

Sv = v′′ and D(S) := C∞
c (a, b;H).

Theorem 6.5. Let T be an operator such that

C∞
c ((a, b), H) ⊂ D(T ) ⊂ H2((a, b), H) and Tv = v′′, v ∈ D(T ).

The following assertions are equivalent:

(i) iT is m-dissipative;
(ii) there exists a contraction Φ ∈ L(H ×H) such that

(6.3) D(T ) = {v ∈ H2((a, b), H) : G+v = ΦG-v}.
Theorem 6.6. Let T be an operator on V such that S ⊂ T . The following assertions are
equivalent:

(i) T is self-adjoint;
(ii) there exists a unitary operator Φ ∈ L(H ×H) such that

D(T ) = {v ∈ H2((a, b), H) : ΦG-v = G+v} and Tv = v′′, v ∈ D(T ).

We find the three classical cases.
a) Neumann boundary conditions: v′(a) = v′(b) = 0 for Φ = Id.
b) Dirichlet boundary conditions: v(a) = v(b) = 0 for Φ = − Id.
c) Periodic boundary conditions: v(a) = v(b), v′(a) = v′(b) for

Φ =

(
0 IdH

IdH 0

)
.

In each of these three cases the operator T given by Tv = v′′ with the domain (6.3) is
selfadjoint.
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d) Robin boundary conditions: (IdH −Φ1)u(a) = i(IdH +Φ1)u
′(a),

(IdH −Φ2)u(b) = −i(IdH +Φ2)u
′(b) for

Φ =

(
Φ1 0
0 Φ2

)
.

If Φ1,Φ2 ∈ L(H) are contractions then the operator iT with domain (6.3) given by
iT v = iv′′ is m-dissipative. If Φ1,Φ2 ∈ L(H) are unitary, then the operator T with
domain (6.3) given by Tv = v′′ is selfadjoint.
For the proof of Theorem 6.5 and Theorem 6.6 we need the following.

Lemma 6.7. Let u ∈ L2((a, b), H) such that u′′ ∈ L2((a, b), H); i.e.
∫ b

a

u(t)w′′(t)dt =

∫ b

a

u′′(t)w(t)dt for all w ∈ C∞
c ((a, b),R).

Then u ∈ H2((a, b), H).

Proof. We fix Ψ ∈ C∞
c ((a, b),R) such that

∫ b

a
Ψ(t)dt = 1. Let w ∈ C∞

c ((a, b),R). Then

w̃ := w−
(∫ b

a
w(t)dt

)
Ψ ∈ C∞

c ((a, b),R) and
∫ b

a
w̃(t)dt = 0. Thus ϕ(t) :=

∫ t

a
w̃(s)ds defines

ϕ ∈ C∞
c ((a, b),R) and ϕ′ = w̃, w′ = ϕ′′ +

(∫ b

a
w(t)dt

)
Ψ′. It follows from the hypothesis

that
∫ b

a

u(t)w′(t)dt =

∫ b

a

u′′(t)ϕ(t)dt+

∫ b

a

w(t)dt

∫ b

a

u(t)Ψ′(t)dt

=

∫ b

a

u′′(t)

∫ t

a

w(s)ds−
(∫ b

a

u′′(t)Ψ(t)dt

)∫ b

a

w(t)dt

+

∫ b

a

w(t)dt

∫ b

a

u(t)Ψ′(t)dt

=

∫ b

a

∫ b

s

u′′(t)dtw(s)ds+

∫ b

a

cw(s)ds,

where c = −
∫ b

a
u′′(t)Ψ(t)dt +

∫ b

a
u(t)Ψ′(t)dt. Since w ∈ C∞

c (a, b;R) is arbitrary, this
implies that u ∈ H1((a, b),C) and

−u′(s) = c+

∫ b

s

u′′(t)dt for almost all s.

Thus u′ ∈ H1((a, b), H) and consequently u ∈ H2((a, b),C). �

Remark 6.8. Lemma 6.7 is false in higher dimensions. Indeed, there exists u ∈ C(D) ∩
C2(D) such that ∆u = 0 but u /∈ H1(D), where D is the open unit disc in R2. See [3,
Example 6.68], a famous example due to Hadamard.

Proof of Theorem 6.5 and 6.6. It follows from Lemma 6.7 that

D(S∗) = H2((a, b), H)
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and S∗u = u′′ for all u ∈ H2((a, b), H). For u, v ∈ H2((a, b), H), integrating by parts
yields

b(u, v) := i (〈S∗u, v〉V − 〈u, S∗v〉V )

= i

(∫ b

a

〈u′′(t), v(t)〉Hdt)−
∫ b

a

〈u(t), v′′(t)〉Hdt
)

= i (〈u′(b), v(b)〉H − 〈u′(a), v(a)〉H − 〈u(b), v′(b)〉H) +
i〈u(a), v′(a)〉H

= 〈G+u,G+v〉H×H − 〈G-u,G-v〉H×H ,

where G-, G+ ∈ L(H2((a, b), H), H ×H) are defined by (6.1) and (6.2). This is a compu-
tation that we omit. We show that

(6.4) kerG- + kerG+ = H2((a, b), H).

Let u ∈ H2((a, b), H). Choose ψ, φ ∈ C2([a, b], H) such that

φ(a) = −iu′(a), φ′(a) = iu(a), φ(b) = φ′(b) = 0

and
ψ(b) = −iu′(b), ψ′(b) = iu(b), ψ(a) = ψ′(a) = 0.

Then
1

2
(u+ φ− ψ) ∈ kerG+ and

1

2
(u− φ+ ψ) ∈ kerG-.

Thus the sum u is in kerG- + kerG+. Now, Theorem 6.5 is a direct consequence of
Theorem 3.10, and Theorem 6.6 follows from Theorem 5.5. �

7. The wave equation

In this section we treat the wave equation in terms of quadruples. We are most grateful
to Nathanael Skrepek who informed us on the papers [10, 9] by Kurula and Zwart, where
boundary triples are used for similar, but different results. We refer to [16] for further
results on the Maxwell equations. Let Ω ⊂ R

d be a bounded, open set with Lipschitz
boundary. We consider the skew-symmetric operator A0 on V := L2(Ω) × L2(Ω)d given
by

D(A0) = {(u1, u2) : u1 ∈ C∞
c (Ω), u2 ∈ C∞

c (Ω)d}
and

A0(u1, u2) = (div u2,∇u1).
Then A := (−A0)

∗ is given by

D(A) = H1(Ω)×Hdiv(Ω), A(u1, u2) = (div u2,∇u1),
where Hdiv(Ω) := {u ∈ L2(Ω)d : div u ∈ L2(Ω)}. By Γ := ∂Ω we denote the boundary of
∂Ω and by L2(Γ) the Lebesgue space with respect to the surface measure. There exists a
unique operator tr ∈ L(H1(Ω), L2(Γ)) such that tru = u|Γ if u ∈ H1(Ω)∩C(Ω). We write
uΓ := tru for all u ∈ H1(Ω), and call uΓ the trace of u. Then ker tr = H1

0 (Ω), the closure
of C∞

c (Ω) in H1(Ω).
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The space H1/2(Γ) := trH1(Ω) is a Hilbert space for the following norm. Let g ∈ H1/2(Γ).

Then there exists a unique u ∈ (ker tr)⊥ = H1
0 (Ω)

⊥
such that uΓ = g. We let ‖g‖H1/2(Γ) :=

‖u‖H1(Ω). Thus

‖g‖H1/2(Γ) = inf{‖v‖H1(Ω) : v ∈ H1(Ω), tr v = g}.
Let u ∈ Hdiv(Ω). Then

∫

Ω

div uv +

∫

Ω

u · ∇v = 0

for all v ∈ H1
0 (Ω). Thus there exists a unique functional ν · u ∈ H−1/2(Γ) = H1/2(Γ)′

defined by

〈ν · u, vΓ〉 :=
∫

Ω

div uv +

∫

Ω

u · ∇v,

for all v ∈ H1(Ω). Here ν stands symbolically for the outer normal (which is a function
in L∞(Γ)). If u ∈ H1(Ω) such that ∆u ∈ L2(Ω), then ∇u ∈ Hdiv(Ω) and we let ∂νu :=
ν · ∇u ∈ H−1/2(Ω). Thus

〈∂νu, vΓ〉 =
∫

Ω

∆u v +

∫

Ω

∇u∇v

for all v ∈ H1(Ω).
Denote by R : H−1/2(Γ) → H1/2(Γ) the Riesz isomorphism defined by

〈ϕ, vΓ〉H−1/2,H1/2 = 〈Rϕ, vΓ〉H1/2

for all ϕ ∈ H−1/2(Γ), v ∈ H1(Γ).
It is well-known and easy to see that the continuous, linear mapping

(7.1) u ∈ Hdiv(Ω) 7→ R(ν · u) ∈ H1/2(Γ)

is surjective. Now we can formulate the main result of this section.

Theorem 7.1. Let H- = H+ := H1/2(Γ) and define

G-, G+ : D(A) = H1(Ω)×Hdiv(Ω) → H1/2(Γ)

by

G+(u1, u2) =
1

2
u1Γ +R(ν · u2) and G-(u1, u2) =

1

2
u1Γ − R(ν · u2).

Then (H-, H+, G-, G+) is a boundary quadruple for A0.

Let Φ ∈ L(H1/2(Γ)) be a contraction. We define the domain of the operator BΦ on
V = L2(Ω)× L2(Ω)d by

D(BΦ) = {(u1, u2) ∈ H1(Ω)×Hdiv(Ω) : Φ(G-(u1, u2)) = G+(u1, u2)},
where G-(u1, u2) =

1
2
u1Γ −R(ν · u2) and G+(u1, u2) =

1
2
u1Γ +R(ν · u2).

Corollary 7.2. Let B be an operator on V such that A0 ⊂ B. The following assertions
are equivalent:

(i) B is m-dissipative;
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(ii) there exists a contraction Φ ∈ L(H1/2(Γ)) such that B = BΦ.

In view of Theorem 3.10, Corollary 7.2 is a direct consequence of Theorem 7.1.

Proof of Theorem 7.1. It follows from the definition of ν · u2 for u2 ∈ Hdiv(Ω) that for
u = (u1, u2), v = (v1, v2) ∈ D(A) = H1(Ω)×Hdiv(Ω),

b(u, v) = 〈ν · u2, v1Γ〉H−1/2,H1/2 + 〈ν · v2, u1Γ〉H−1/2,H1/2

= 〈R(ν · u2), v1Γ〉H1/2(Γ) + 〈u1Γ, R(ν · v2〉H1/2(Γ)

= 〈G+u,G+v〉H1/2(Γ) − 〈G-u,G-v〉H1/2(Γ).

It remains to show that G := (G-, G+) : D(A) → H1/2(Γ)×H1/2(Γ) is surjective.
Let h-, h+ ∈ H1/2(Γ). Using (7.1) we find u1 ∈ H1(Ω) such that u1Γ = h- + h+, and
u2 ∈ Hdiv(Ω) such that R(ν · u2) = 1

2
(h+ − h-). Thus

G+(u1, u2) =
1

2
u1Γ +R(ν · u2) =

1

2
(h+ + h-) +

1

2
(h+ − h-) = h+

and

G-(u1, u2) =
1

2
u1Γ − R(ν · u2) =

1

2
(h+ + h-)−

1

2
(h+ − h-) = h-.

By Remark 3.3, (H-, H+, G-, G+) is a boundary quadruple. �

We want to express Corollary 7.2 in terms of a well-posedness result. Let B := BΦ where
Φ : H1/2(Γ) → H1/2(Γ) is a contraction. We consider the wave equation

(7.2) ü = ∆u.

For our purposes we call u a weak solution if u ∈ C(R+, L
2(Ω)) and

d2

dt2
〈u(t), v〉L2(Ω) = 〈u(t),∆v〉L2(Ω)

for all v ∈ C∞
c (Ω).

Corollary 7.3. Let (u01, u02) ∈ D(B). Then there exists a unique u ∈ C1(R+, L
2(Ω)) ∩

C(R+, H
1(Ω)) such that

(7.3) ü = ∆u weakly

(7.4) u(0) = u01, u̇(0) = div u02 and

(7.5) Φ

(
1

2
u(t)Γ − R

(
ν · u02 + ∂ν

∫ t

0

u(s)ds

))
=

1

2
u(t)Γ+R

(
ν · u02 + ∂ν

∫ t

0

u(s)ds

)
.

Note that by (7.3),

∆

∫ t

0

u(s)ds = u̇(t)− u̇(0) = u̇(t)− div u02 ∈ L2(Ω).

Therefore ∂ν
∫ t

0
u(s)ds ∈ H−1/2(Γ).
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Proof. We first prove the existence of a solution. Let

w(t) := (u1(t), u2(t)) := T (t)(u01, u02).

Then w ∈ C1(R+, L
2(Ω)× L2(Ω)d) ∩ C(R+, D(B)) and ẇ(t) = Bw(t) for t ≥ 0. Thus

u1 ∈ C1(R+, L
2(Ω)) ∩ C(R+, H

1(Ω)),

u2 ∈ C1(R+, L
2(Ω)d) ∩ C(R+, Hdiv(Ω))

and

u̇1(t) = div u2(t), u̇2(t) = ∇u1(t).

Thus, for v ∈ C∞
c (Ω),

d2

dt2
〈u1(t), v〉L2(Ω) =

d

dt
〈u̇1(t), v〉L2(Ω) =

d

dt
〈div u2(t), v〉L2(Ω)

= −〈∇u1(t),∇v〉L2(Ω)d = 〈u1(t),∆v〉L2(Ω)

= − d

dt
〈u2(t),∇v〉L2(Ω).

Thus u1 is a weak solution of (7.3). Since T (0)(u01, u02) = (u01, u02), (7.4) holds. Since
(u1(t), u2(t)) ∈ D(B) we have

Φ

(
1

2
u1(t)Γ − R(ν · u2(t))

)
=

1

2
u1(t)Γ +R(ν · u2(t)).

Observe that

ν · u2(t) = ν ·
(
u02 +

∫ t

0

∇u1(s)ds
)

= ν · u02 + ∂ν

∫ t

0

u1(s)ds.

This shows that u := u1 satisfies (7.5).
To prove the uniqueness, let u be a solution of (7.3), (7.4) and (7.5). Define u1 = u and

u2(t) =
∫ t

0
∇u(s)ds+u02. Then w(t) = (u1(t), u2(t)) ∈ D(B), w ∈ C1(R+, L

2(Ω)×L2(Ω)d)
and w satisfies (7.3), (7.4) and (7.5). Thus w(t) = T (t)(u01, u02). �

Remark 7.4. Let u01 ∈ H1
0 (Ω), u02 = 0, (u1(t), u2(t)) := T (t)(u01, 0), w(t) :=

∫ t

0
u1(s)ds.

Then w ∈ C2(R+, L
2(Ω)) ∩ C1(R+, H

1(Ω)), w(t) ∈ D(B), ẅ(t) = ∆w, w(0) = 0, ẇ(0) =
u01. Since the semigroup is contractive,

E(t) := ‖ẇ(t)‖2L2(Ω) + ‖∇w(t)‖2L2(Ω) = ‖u1(t)‖2L2(Ω) + ‖u2(t)‖2L2(Ω)

is decreasing. If Φ is unitary, then E(t) is constant, the sum of cinetic and potential
energy.
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8. Relation to the literature

In the monographs [8] by V. I. and M. L. Gorbachuk and [15] by Schmüdgen, boundary
triples are used to parametrize selfadjoint extensions of a densely defined symmetric op-
erator. Wegner [17] uses them to investigate m-dissipative extensions of a densely defined
skew-symmetric operator, as we do in the present article. However we use using bound-
ary quadruples. We now explain the relation of our results to those of Wegner and those
presented in the two monographs [8] and [15].
We start with a general algebraic property of triples.

Lemma 8.1. Let W be a vector space, H a pre-Hilbert space and

G-, G+, G1, G2 : W → H linear mappings.

a) Then

(8.1) G- =

√
2

2
(G2 −G1), G+ =

√
2

2
(G2 +G1),

if and only if

(8.2) G1 =

√
2

2
(G+ −G-), G2 =

√
2

2
(G+ +G-),

b) If (8.1) (⇐⇒ (8.2)) holds, then

(8.3) 〈G1u,G2v〉H + 〈G2u,G1v〉H = 〈G+u,G+v〉H − 〈G-u,G-v〉H
for all u, v ∈ W .

c) Let H- = G-W , H+ = G+W , H1 = G1W , H2 = G2W . Then

(G-, G+) :W → H- ×H+ is surjective

if and only if

(G1, G2) : W → H1 ×H2 is surjective.

Recall from Section 3 that

(8.4) (G-, G+) :W → H- ×H+ is surjective if and only if

(8.5) kerG- + kerG+ =W.

The proof of Lemma 8.1 is straightforward.
Now let A0 be a skew-symmetric operator on V with dense domain. Let V be a complex
Hilbert space. Following Wegner [17, Definition 4.1], a boundary triple (K,Γ1,Γ2) for A0

consists of a Hilbert space K and linear mappings Γ1,Γ2 : D(A) → K such that

(8.6) −〈Au, v〉V − 〈u,Av〉V = 〈Γ1u,Γ2v〉H + 〈Γ2u,Γ2v〉H
for all u, v ∈ D(A) and

(8.7) (Γ1,Γ2) : D(A) → K is surjective.
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Let W = D(A), H = K, G1 = Γ2, G2 = Γ1 and define G+, G- by (8.1). Then
(H,H,G-, G+) is a boundary quadruple (in the sense of our definition) with G-W =
G+W = H .
By Theorem 3.10 an operator B ⊃ A0 is m-dissipative of and only if there exists a
contraction Φ ∈ L(H) such that

D(B) = {w ∈ D(A) : ΦG-w = G+w} and Bw = Aw

for all w ∈ D(B). It is straightforward that ΦG-w = G+w if and only if

(Id+Φ)Γ1w + (Id−Φ)Γ2w = 0.

So we refind [17, Theorem 4.2].
In contrast to boundary quadruples, boundary triples in the sense of Wegner do not always
exist. In fact the following holds.

Proposition 8.2. Given a densely defined skew-symmetric operator A0 on V , the follow-
ing assertions are equivalent:

(i) there exists a boundary triple for A0;
(ii) ker(Id−A) and ker(Id+A) are isomorphic;
(iii) A0 has an extension which generates a unitary C0-group;
(iv) if (H-, H+, G-, G+) is a boundary quadruple, then G+W and G-W are isomorphic,

where W = D(A).

Proof. (iv) ⇒ (i) By assumption there exists a unitary operator U : G1W → G-W . Let
K = G-W , Γ- = G-, Γ+ = UG+. Then (Γ-,Γ+) : W → K ×K is surjective and

〈Au, v〉W + 〈u,Av〉W = 〈G+u,G+v〉H − 〈G-u,G-v〉H
= 〈Γ+u,Γ+v〉K − 〈Γu,Γv〉H.

Now using Lemma 8.1 we obtain Γ1,Γ2 : W → K ×K such that (8.6) and (8.7) holds.
(i) ⇒ (iv) This follows from the lines following (8.7).
(ii) ⇐⇒ (iii) ⇐⇒ (iv). This is Corollary 4.3. �
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