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Abstract

Investigating  how  trophic  interactions  influence  the  β-diversity  of  metacommunities  is  of

paramount importance to understanding the processes shaping biodiversity distribution. Here, we

propose a statistical  method for inferring the strength of spatial  dependencies between pairs  of

species groups. Using simulated data generated from a model of trophic community assemblage, we

showed that this method can recover the global structure of the trophic network from the β-diversity

patterns of multiple trophic groups. When applied to multi-trophic communities in the soil along an

elevational  gradient  in  the French Alps,  we found that  fungi  make a  major  contribution to  the

structuring of β-diversity across trophic groups, that there were strong spatial dependencies between

groups known to interact specifically (e.g. plant- symbiotic fungi, bacteria-nematodes), and that the

influence of environmental gradient was less significant than expected. Our method should help

interpret a wide range of multi-trophic biodiversity patterns and yield new testable hypotheses.
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Introduction

Understanding the processes that determine the spatial structure of biodiversity is one of the

overarching goals of ecology (Ricklefs 1987). In particular, the study of β-diversity, the change in

species (or species groups) identities across sampled locations, sheds light on different ecological,

evolutionary, and biogeographic processes (e.g. Graham & Fine 2008; Anderson et al. 2011). For a

given regional species pool, the processes responsible for  β-diversity are usually assumed to be

environmental filtering, dispersal limitations, and biotic interactions (HilleRisLambers et al. 2012;

Meynard et al. 2013).

Previous  studies  have  sought  to  analyze  β-diversity  by  teasing  apart  the  effects  of

environmental filtering from biotic interactions along environmental gradients on a single group of

species (e.g. Peay  et al. 2016 for fungi; Hanson  et al. 2012 for bacteria; Mazel  et al. 2017 for

mammals; Chalmandrier et al. 2015 for plants). However, biotic interactions across groups are also

expected  to  drive  the  structure  and  distribution  of  biodiversity.  For  example,  plant-pollinator,

trophic  (e.g.  prey-predator  or  plant-decomposers)  and  host-symbiont  (including  pathogens,

mutualistic  and  commensal  organisms)  interactions  strongly  impact  diversity  distribution  and

ecosystem functioning (Brose  & Hilleband 2016).  These  interactions  among groups of  species,

although they are not necessarily species-specific (Walker  et al. 2011; Peay  et al. 2015), harbor

some degree of specificity due to trait constraints and shared habitat preferences (e.g. Allesina et al.

2008; Gonzales-Varo 2016). This interdependence among groups implies that the  β-diversity of a

single group is likely to be contingent to that of the other groups.  Hence,  studying how the  β-

diversity of multiple groups covaries along environmental gradients should help better understand

their spatial distribution and uncover their interactions.

Soil ecosystems are ideal for documenting these multi-group  β-diversity patterns. Indeed,

they  provide  several  examples  of  coupled  biological  systems (Wardle  et  al. 2006;  Bardgett  &

Wardle 2010), for example plant-mycorrhiza associations (Smith & Read 2008), direct plant control

on  fungal  communities  (Broeckling  et  al. 2008),  predator-prey  relationships  (Hedlund & Öhrn
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2000) or plant-decomposer relationships (Hattenschwiler et al. 2005). Empirical evidence suggests

that these biological couplings do indeed produce spatial dependencies between the β-diversity of

the different groups (e.g. plants and fungi or bacterial turnover, Zinger  et al. 2011; Prober  et al.

2015; Geremia et al., 2016). However, data on soil meta-communities remain scarce and there are

no appropriate statistical tools for exploring the  β-diversity patterns in multiple soil groups (i.e.

more than two or three) while taking into account environmental variation.

Here we develop a generic method for analysing how the β-diversity of one group depends on

the β-diversity of the other groups and on the spatial variation in environmental conditions. This is

challenging  due  to  potential  confounding  effects  between  different  groups,  which  can  generate

spurious correlations.  Variance partitioning methods aim to disentangle the influence of several

explanatory  variables  on  a  response  variable  and  they  are,  in  principle,  able  to  deal  with

confounding effects by providing partial correlations among partitions (Borcard et al. 1992; Dray et

al. 2012). However, the number of partitions grows exponentially with the number of explanatory

variables,  making  the  method  impractical  for  studies  encompassing  a  large  number  of  species

groups. This is problematic since the amplicon-based DNA analysis of environmental samples (i.e.

environmental  DNA)  holds  the  promise  of  more  streamlined  and  consistent  all-biodiversity

environmental surveys (Taberlet  et al. 2012; Kress  et al. 2015) and, consequently, new statistical

tools are needed. One possible solution to this problem is to use statistical tools called graphical

models (Koller & Friedman 2009), in which each node is a random variable and edges represent

conditional dependencies between these random variables. Partial correlation networks represent a

particular  type of graphical model where the edges of the network are weighted by the partial

correlation coefficients (i.e.  the correlation between two variables while controlling the others).

Here,  we  propose  studying  multi-group  β-diversity  patterns  in  soil  communities  using  partial

correlation networks.   

Specifically,  we hypothesise that interrelated  β-diversity patterns  among groups are  partly

explained by biotic interactions along abiotic gradients, and that these spatial dependencies can be
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detected using a method called graphical lasso to infer a partial correlation network (Friedman et al.

2007). Using simulated multi-trophic communities in a given, known trophic network, we first test

and validate our hypothesis and statistical method. We show that biotic interactions may indeed

produce interrelated  β-diversity patterns (i.e. non-zero partial correlation coefficients) that can be

uncovered using a partial correlation network. We then apply our method to an empirical dataset

including bacteria, microeukaryotes, meso/macrofauna, plants and abiotic factors along an elevation

gradient in the French Alps. We jointly explore the co-variation between the β-diversity of multiple

functional and trophic groups to unravel known and unknown potential biotic interactions, while

controlling for the relative role of the abiotic environment and the β-diversity of the other groups.

Material and Methods

The method: applying the Graphical lasso to multi-group β-diversity patterns

From species to relevant groups –  Species grouping can be defined by known trophic position (e.g.

symbiotic fungi), or by taxonomy (e.g. bacteria) or function. This step is essential and has to be

implemented  in  light  of  the  prior  knowledge  of  the  study  system  (see  our  case  study  for  an

example).  

Measuring β  -diversity and environmental distances – One possible measure of β-diversity between

two local communities, A and B, is the Jaccard dissimilarity index, defined as one minus the ratio of

the number of species present in both A and B over the number of species present in either A or B.

The Jaccard dissimilarity index equals 0 when A and B share the same species, and 1 when they do

not share any. We used the R package ‘vegan’ (Ricklefs 2008) to compute the Jaccard dissimilarity

index for multiple species groups independently (see below). Moreover, we partitioned the Jaccard

index into the true turnover component and the nested component (Baselga 2010),  using the R

package  'betapart'  (Baselga  &  Orme  2012).  Environmental  distances  between  pairs  of  local

communities were computed using Euclidean distances.

The  graphical  lasso  method –  The  overarching  goal  of  our  approach  is  to  use  a  network  to

parsimoniously represent the correlations between the β-diversity of each group as a function of the
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others and the environmental distances. This is challenging due to potential confounding effects (i.e.

collinearity  among multiple  variables),  which can generate  spurious  correlations.  Working with

partial  correlations  (correlation  between  two  variables  when  knowing  the  value  of  the  others)

instead  of  marginal  correlations  (Pearson  correlation)  avoid  these  confounding  effects.

Consequently,  a  suitable  description of  the system consists  of  using a  class  of models that  (1)

represent the conditional dependencies between random variables (here the β-diversity of multiple

species groups) using partial correlations while (2) allowing for a parsimonious representation of

the dependencies using a network. The Lasso approach (Tibshirani 1994) has been developed to

produce precisely this type of parsimonious set of variables. More recently, its multivariate form,

the Graphical  lasso (Glasso),  has  made it  possible  to  represent  the partial  correlations  between

multiple  variables in  a  network (here the  β-diversity  of  multiple  groups and the environmental

distances, Friedman et al. 2007; Mazumder & Hastie 2011). As a consequence, Glasso should be an

appropriate tool for representing the structure of the partial correlations between multi-trophic  β-

diversity patterns.

In short, the Glasso uses the empirical variance-covariance matrix S (computed from the β-

diversity values of multiple species groups and the environmental distances) to estimate a partial

correlation matrix that quantifies the degree of association between pairs of variables conditional to

the other variables. In order to estimate the partial correlation matrix in Glasso, the S matrix is

inverted to produce the precision matrix P with the particular constraint that P must be sparse (i.e.

have  many  zeros).  This  is  equivalent  to  the  variable  selection  step  in  conventional  statistical

approaches (see Friedman  et al. 2007 for mathematical details). The partial correlation matrix is

then computed from P as follows (Eq. 1):

(Eq.1)

where   represents  the  partial  correlation  between the  components  i  and j  of  a

random variable Y given  all the other components, and , ,  are the elements of P.
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As the precision matrices have been inverted with the constraint  in  order to  ensure sparsity,  it

follows  that  the  partial  correlation  matrix  is  also  sparse.  This  sparse  representation  of  the

relationships  between  the  β-diversity  of  multi-trophic  groups  and  the  environmental  distances

means it can be represented simply and intuitively using a network. In the Glasso, this parsimonious

representation (i.e. the number of 0 coefficients in the partial correlation matrix) is not optimally

determined but is arbitrary and depends on a coefficient  λ. Here, we used the Extended Bayesian

Information Criterion (Foygel & Drton 2010) to select optimal λ. We used the R package ‘qgraph’

to estimate the partial correlation matrix with graphical lasso (Epskamp & Fried 2016).    

 

Representing conditional dependencies between    β  -diversity using a network representation – We

plotted  the  inferred  network  using  Gephi  (Bastian  et  al. 2009)  and  analysed  its  properties.  In

particular, we quantified the connectivity of each group by analysing the degree and the weighted

degree for each group in the partial correlation network. The degree represents the number of times

the β-diversity of a given group is conditionally dependent on the β-diversity of other groups. If the

β-diversity  of  two  groups  is  conditionally  independent  (i.e.  has  a  zero  partial  correlation

coefficient),  they cannot  causally  influence each other  (Murphy 2012). Consequently,  the more

connected a group is, the more central it is to structuring the β-diversity of all groups. The weighted

degree represents the total sum of partial correlations in β-diversity between a given group and all

other connected groups. The higher the sum, the more important the group.

Validating the method using simulations

In order to test whether the Glasso approach was able to recover known interactions among species

groups from local community β-diversity patterns, we first built a set of simulated data. We did so

by constructing a regional trophic web (step 1) from which local multitrophic communities were

sampled using a stochastic model (step 2). Then, we measured the partial correlation between the β-
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diversity of each trophic level (step 3) and tested whether these patterns matched the simulated

regional trophic web.

Step 1 – The regional web was assumed to have six trophic levels (one basal level and five

consumer levels), containing twenty species each. We assumed some degree of specialization in the

relationships between trophic levels: each consumer species had a number of prey equals to one

plus a random number drawn in a  Poisson law of parameter 1 (Fig.  1a).  Thus,  each consumer

species had one prey species at least, and on average two prey species.  Once the number of prey

species had been drawn for a given consumer species, prey were drawn randomly from the lower

trophic level.

Step  2  –  Based  on  this  regional  network,  we  generated  1,000  local  multi-trophic

communities. Communities were simulated using a stochastic model of multi-trophic community

assembly inspired by the Trophic Theory of Island Biogeography (TTIB, Gravel et al. 2011; Massol

et al. 2017). The TTIB assumes bottom-up sequential dependencies (Holt 1997, 2009; Dunne et al.

2002) with two phases. In phase 1, each species can colonise a local community if at least one of its

prey species is present. In phase 2, a species which has lost its last prey species goes extinct. For the

sake of clarity, we assumed a homogeneous environment. The probability of each basal species

being  present  in  the  local  community  was  assumed  to  be  constant  and  set  to  p 0 =  0.5.  The

probability  of  each consumer species  C being present  in  the local  community is  related to  the

fraction of its prey available through the relation pC=(k/g)r where g is the diet breadth of C (i.e. the

number of potential prey species), k is the number of its prey species present in the community, and

r is a constant that controls the shape of the relation. In the TTIB, having more prey species present

in the community does not increase the probability of consumer presence, and  the probability of

survival is either 0 (when k=0) or 1 (when k>0). This corresponds to the limit case r=0. For the

simulation, we used r=1, assuming that pC grows linearly with the number of prey species present in

the community. We also studied the case r=1/3 presented in the appendices.   
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Step 3 – We then computed β-diversity patterns for each trophic level and inferred the partial

correlations between these β-diversities using the Glasso method explained above. We thus obtained

a  distribution  of  partial  correlations  between the  β-diversity  at  the  different  trophic  levels.  We

expect these partial correlations to be high between trophic levels which interact directly and low

between trophic levels which do not interact. Since here only two successive trophic levels interact

(see  Fig.  1a),  we  expect  the  partial  correlation  between  successive  trophic  levels  to  be  high

compared to the partial correlation between non-successive trophic levels. We expect these partial

correlations to be more informative than marginal correlations (Pearson correlations), because they

avoid spurious correlations due to confounding effects.

Analysing multi-trophic patterns in multi-trophic soil ecosystems in the French Alps.

Study site and soil sampling – The study was conducted in the northern French Alps (Arves Massif,

45.12°N, 6.40°E) along a 977 m elevation gradient (1748m to 2725m a.s.l.) located in a single cow-

grazed pasture, above the tree-line. The vegetation at the bottom of the gradient corresponds mainly

to subalpine grasslands, while alpine meadows with sparse vegetation dominate at high elevation

(Chalmandrier et al. 2017). Ten plots were established at 100m altitude intervals along the gradient,

each of them composed of two 10 x 10 m sub-plots. All plots were placed on the same south-facing

slope with a similar bedrock type and land-use to ensure a relatively homogeneous gradient. Mean

annual temperature along the gradient ranges between 8°C at the bottom and 3°C at the top, while

mean annual rainfall is 473mm over the period 2000-2012. The soil sampling field campaign was

conducted in September 2012.

We collected twenty-one soil samples per sub-plot following the two diagonals with the distance

increasing exponentially from the corners to the centre on one diagonal and from the centre to the

corners  on  the  other.  Central  points  were  sampled  only  once.  This  sampling  scheme  was

implemented to cover as much local biodiversity as possible at the sub-plot scale (Taberlet  et al.

2012; Chalmandrier  et al. 2017) and provided an almost regular distribution of pairwise spatial

distances between points. Each sample contained 50g of soil from the uppermost 10 cm of soil and
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was  placed  in  individual  plastic  bags  to  be  processed  individually.  Corers  were  cleaned  and

sterilised using a blowtorch between each sample to prevent cross-contamination (Taberlet  et al.

2012). Extracellular DNA was extracted from 15g of soil as previously described (Taberlet  et al.

2012; Zinger et al. 2016) within four hours after sample collection to prevent microbial growth.

DNA was extracted twice for each sample. Blank extraction controls were included in the extraction

process (using solely phosphate buffer as the template).

Molecular analyses – Soil biodiversity was estimated using four DNA markers. Universal markers

such as 18S (amplifying all Eukaryotes, 18S nuclear rDNA) and 16S (amplifying all Bacteria, 16S

rRNA)  were  used  to  obtain  a  general  overview of  the  multi-trophic  composition  of  the  sites.

Another two markers focus on Eukaryota diversity by targeting fungi (ITS1) and vascular plants

(Chloroplast trnL-P6 loop), respectively. For each DNA extract, PCRs were run in duplicate leading

to four PCR replicates per core sample. For each marker, PCM products were purified (MinElute™

PCR purification kit, Qiagen) with extraction and PCR blank controls included in the mix. High-

throughput sequencing of eukaryotes and plant amplicons was performed on an Illumina HiSeq

2500 platform (2x150 bp paired-end reads for Eukaryotes and 2*200pb for plants) while fungal,

archae and bacterial amplicons (200-350 bp) were sequenced on an Illumina MiSeq (2 x 250 bp

paired-end reads)  platform.  Data  curation  is  presented  in  Appendix  1.  We pooled  the  samples

together per subplot in order to obtain a single community per sub-plot and converted the data into

presence-absences.  The  raw  and  curated  sequencing  data  as  well  as  associated  metadata  are

available on the Dryad Digital Repository under accession XXX (to be provided on manuscript

acceptance) and the summary statistics are presented in table S1.  As explained above, we computed

β-diversity using the Jaccard dissimilarity index. Since this index is sensitive to sequencing depth

difference  between  samples,  we  also  used  the  true  turnover  component  of  the  Jaccard  index

(Baselga  2010),  to  remove  this  potential  bias.  The  results  obtained  using  the  true  turnover

component of the Jaccard index are similar to those using the Jaccard index so we only refer to the
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Jaccard index in the main text, and present the results of the true turnover component of the Jaccard

index in Appendix 3.

Defining trophic groups of species

We selected a priori groups of soil taxa based on their distinctive role in the functioning of the soil

ecosystem, and in biogeochemical cycles (especially the carbon and nitrogen cycles). Our focal taxa

were: plants, fungi, bacteria, oribatid mites, nematodes, and springtails(Bardgett 2005). We included

plants since they are the primary producers and their diversity and identity drive the functioning and

the stability of most terrestrial ecosystems (Hooper, 1997; van der Heijen 1998). We also included

litter  feeders  that  contribute  to  dead  material  fragmentation,  in  a  particular  oribatid  mites  and

springtails. Oribatid mites form one of the most abundant groups of arthropods in soil,  (Behan-

Pelletier 1999) with up to several hundreds of thousands of individuals per square meter (Norton

1990).  Springtails  are  the  most  numerous  group  of  hexapods  in  most  terrestrial  ecosystems

(Deharveng 2004). We also included a group of taxa that mineralise the fragmented litter, such as

saprophytic fungi and bacteria (Bardgett 2005). Fungi are found in different compartments of the

soil trophic web so we classified fungal OTUs into three main functional groups, namely, symbiotic

fungi, saprophytic fungi and pathogenic fungi using the FUNguild database (Nguyen et al. 2016).

Symbiotic fungi represent a pivotal group in the soil ecosystem because over 90% of terrestrial

plant  families benefit  from symbiotic  associations  between their  roots  and fungi (Wang & Qiu

2006). Moreover, in arctic and alpine systems, 60% to 80% of the nitrogen available for plants is

supplied by mycorrhizal fungi (Bjorbækmoet et al. 2010). Bacteria also contribute to this supply by

fixing atmospheric nitrogen (Bonfante & Anca 2009; Haq et al. 2014). Finally, we included a group

of  predators,  here  nematodes,  the  most  abundant  belowground  multicellular  animals  (Bardgett

2005).  Nematode  OTUs  were  divided  into  bacterivore  nematodes  and  herbivore/fungivore

nematodes using the NEMAguild database (Nguyen  et  al. 2016).  In summary,  the nine groups

included  in  this  study  were:  plants,  symbiotic  fungi,  pathogenic  fungi,  saprophytic  fungi,
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bacterivore nematodes, herbi/fungivore nematodes, bacteria, springtails, and oribatid mites. Most of

these  groups  interact  via  trophic  interactions,  so  that  this  study  case  matches  the  simulations

described above, but not all of them. For the sake of clarity, we will hereafter refer to them as

trophic groups.

Environmental  characteristics  –  Mean  annual  soil  temperature  was  estimated  from  field

meteorological stations placed at the centre of each plot. We also estimated growing season length

(GSL) and number of frost days based on daily maps of snow cover at 15 m resolution for 5 years

falling  between  2000  and  2014  and  air  temperature  values  extracted  from  the  SAFRAN

meteorological model developed by Meteo France for the French Alps (Durand et al. 2009). More

methodological details and validation results for the snow cover model are available in Carlson et

al. (2015). For each sub-plot, topsoil (0-10 cm)  characteristics were determined from the average

values obtained from three soil samples collected in July/August 2012, air-dried and then sieved at

2mm. Fine-scale topography and associated parameters (topographic wetness index and slope) were

inferred from airborne LIDAR data acquired the year of  sampling. Mean soil pH over the gradient

was  5.40  (sd  0.300)  whereas  mean  soil  temperature  over  the  year  was  6.06°C (sd  2.84).  The

environmental distances between sub plots were estimated with Euclidean distances from the first

two axes of a principal component analysis run for all produced (and normalised) environmental

variables (the variance captured by the first two axes was 34% and 25% respectively, the first axis

roughly represented the climatic conditions whereas the second axis roughly represented the soil

conditions, see Appendix 2 for more details).

Results

Validation of the statistical method –  Our simulations showed that trophic interactions produce

significant relationships between  β-diversity on consecutive trophic levels. Moreover, the Glasso

method detected the conditional relationships between the β-diversity of the different trophic groups

corresponding to their trophic position in the network (Fig. 1b) contrary to the marginal correlations
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(Fig. 1c). The median of both marginal and partial correlation coefficients between pairs of trophic

levels decreases with the shortest path length between these trophic levels. Nevertheless, while the

median  of  the  marginal  correlation  coefficients  (Fig.  1e)  decreased  slowly  (the  distribution  of

marginal correlation coefficients overlapped), the median of the partial correlation coefficients (Fig.

1d) was close to 0 once the trophic level distance was higher than 1. In other words, marginal

correlation analyses detected spurious correlation between non-adjacent trophic levels, but this bias

was strongly alleviated when considering partial  correlations.  Although these simulation results

remain qualitative, they demonstrate that specialised biotic interactions between trophic group leave

detectable imprints on compositional patterns and that these patterns can be detected using our

method. Changing the shape of the relationship linking the probability of presence of a consumer

species with its number of available prey species did not alter this conclusion (Fig. S4).

β-diversity modelling of empirical soil communities –  In the French Alps, the partial correlations

estimated between the  β-diversity of each predefined trophic group and environmental distances

were all positive (Fig. 2, Fig. S5, Fig. S6, table S2). The estimated partial correlation network had a

connectance of 0.618 and was composed of 34 undirected edges (i.e. partial correlation coefficients

> 0) out of 55 possible edges and 11 nodes (9 trophic groups and 2 environmental variables).

Saprophytic  fungi  were  the  most  influential  group in  conditioning the  β-diversity  of  the  other

groups (highest degree value, 8, and highest weighted degree value, 1.30, Figure 3). Plants and

oribatid mites also had a strong influence on the β-diversity of other groups, as did pathogenic and

symbiotic  fungi.  In  contrast,  environmental  variables  had  a  relatively  small  impact  on  the  β-

diversity of the trophic groups.

The probability of observing a non-null  partial  correlation between the  β-diversity of a trophic

group and the environmental distance was 0.44 (8 edges linking environmental nodes to the trophic

group nodes and 18 potential edges) whereas the probability of observing a link between the  β-

diversity of any two trophic groups was 0.69 (25 edges and 36 potential edges). Since the variables
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associated  with  disconnected  nodes  are  conditionally  independent  and  that  conditionally

independent variables cannot causally influence each other, this highlights the reduced influence of

environmental variables on the β-diversity of the trophic groups.

Discussion

In this study, we proposed a method  for dissecting the joint spatial structure of multiple trophic

groups. This method builds on observed patterns of β-diversity in multiple trophic groups to infer

the  conditional  dependencies  between  pairs  of  groups  and  with  the  environment,  in  order  to

pinpoint potential biotic interactions. Simulations confirmed that our method is able to recover the

overall structure of a trophic network using partial correlations. This method does not directly infer

the interaction network at species level, and the inferred conditional dependencies at the group level

do not imply causality. A similar method for producing directed networks is path analysis (Wright

1921; Shipley 2000 application on soil diversity Schuldt et al. 2017). However, the ability of path

analysis to draw causal inference is controversial (Shipley 2000 but see Dawid 2010; Bollen &

Pearl 2013). The correlative method presented here should help interpret a wide range of multi-

trophic biodiversity  patterns.  Although our  approach is  likely to  be sensitive to  the effect  of a

missing predictor (since the structure of the partial correlation network would be affected by the

addition of a variable), environmental DNA sampling should facilitate comprehensive assessments.

One key issue remains the mapping of OTUs into functional groups, which is only possible using

integrative biology knowledge combined with large and comprehensive databases. An interesting

perspective for this method is that it could also be used to study temporal changes in biodiversity

(i.e., temporal β-diversity) using environmental DNA approaches (Bohan et al. 2017).

When applied to  soil multi-trophic diversity  along an elevation gradient of the French Alps, we

were able to quantify the relative importance of biotic interactions and the environment in shaping

the spatial structure of the meta-communities. Pairwise environmental distances displayed a low

correlation  with  the  β-diversity  of  each  group  (as  measured  with  the  few  non-zero  partial
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correlations). In other words, the ecological community was found to be shaped more by biotic

interactions  than by abiotic environmental  constraints.  This  result  is  rather  surprising given the

sharpness of the elevational gradient, and the expected importance of environmental filtering in

shaping above and below-ground communities along elevation gradients (Meynard  et al. 2013).

However,  many  previous  studies  have  focused  on  intra-guild  biotic  interactions,  or  on

environmental effect only, and they have ignored the importance of inter-guild interactions (e.g.

Chalmandrier  et al., 2015). As our climatic and soil properties were sampled at plot level, they

might not have been measured at the appropriate scale to reflect the fine conditions experienced by

below-ground organisms (Falconer  et al. 2015; Baveye  et al. 2016; Zinger  et al. 2017). A single

plot-scale  measure  of  abiotic  conditions  may  not  be  sufficient  to  explain  the  β-diversity  of

organisms with heterogeneous sizes and  capture the fine-scale  heterogeneity of  soil  conditions.

Additionally,  we cannot  rule  out  the fact  that  some relatively important  missing environmental

factors might explain the low predictive power of environmental distances (e.g. phosphorous for

symbiotic mushrooms, Liu et al. 2012; Camenzind et al. 2014). Nevertheless, while the greater β-

diversity was due to true-turnover (a turnover measure independent of variation of species richness;

on  average,  80% of  the  β-diversity  across  trophic  groups),  climatic  and  soil  properties  had  a

stronger influence on the true-turnover component of the β-diversity of the different trophic groups.

The  approach  described  here  should  help  interpret  a  wide  range  of  multi-trophic  biodiversity

patterns and yield new testable hypotheses.  For example, in multiple pairs of trophic groups we

found strong spatial associations which can be interpreted in light of functional associations. In the

soil, plants are directly affected by symbiotic/pathogenic fungi and root herbivores, whereas the

complex network of detritivorous organisms affects them indirectly (Bardgett 2005; Wardle  et al.

2011).  Our  method  showed  that  plant  β-diversity  was  strongly  linked  to  the  β-diversities  of

symbiotic fungi, pathogenic fungi, oribatid mites and bacterivore nematodes. While the links with

the two groups of fungi most likely reflect the strong direct associations between these groups and

the vegetation structure, the link with oribatid mites may be explained by the fact that this group
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feeds on plant litter fungi, especially saprophytic fungi (Schneider et al. 2004, Crowther et al. 2012;

2011). The graphical lasso method detected this link showing that changes in the composition of

saprophytic fungi lead to a change in the oribatid mite assemblages. As expected, the β-diversity of

bacteria correlated to that of bacterivore nematodes, which reflects this known trophic interaction

(Ettema 1998; Wardle 2006). Moreover, the β-diversity of herbi/fungivore nematodes correlated to

that of symbiotic fungi. The link between the β-diversity of oribatid mites and springtails might be

explained by mite predation of springtails (Ferguson & Joly 2002). Interestingly, we revealed a link

between  the  β-diversity of  oribatid  mites  and  symbiotic  fungi.  This  result  suggests  that  mite

assemblages could be influenced by fungi spatial distribution through trophic interactions, which

have been so far very poorly documented (Gange & Brown 2003). Interestingly, our analysis also

showed  a  strong  partial  correlation  (the  strongest  partial  correlation:  0.365)  between  the  β-

diversities of saprophytic fungi and bacteria. Many clades of these two groups exploit the same

resource (in particular cellulose, which represents 30-50 % of plant dry weight, Whipps 2001; De

Boer et al. 2005) which thus creates an indirect relationship between bacteria and saprophytic fungi,

through  an  unmeasured  confounding  effect.  The  relationship  uncovered  between  bacteria  and

symbiotic fungi could be attributed to the fact that bacteria can assist mycorrhiza by colonising the

extraradical hyphae or by living in the cytoplasm of mycorrhizal fungi (Bonfante et al. 2009; Haq

et al. 2014).               

Conclusions

The rise of environmental DNA metabarcoding and the ever-increasing availability of databases on

species  co-occurrence  have  opened  up  a  new  era  in  quantitative  and  predictive  ecology.

Comprehensive species lists of taxa are necessary, but not sufficient to provide information on how

co-occurring species interact and whether multi-trophic interactions shape community assembly. We

have developed a method that could reveal how trophic groups influence each other and respond to

environmental variation. As such our method helps uncover potential causes of the compositional
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turnover  of  species  groups  from a  multi-trophic  interaction  perspective.  Gathering  informative

expert knowledge from literature review or using automatic methods should then pave the way to

understanding the fine-scale structure of multi-trophic assemblages and obtaining a more holistic

picture of biodiversity.
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Figure caption

Figure 1: Design and results of the simulation assessing the impact of biotic interactions on the

marginal and partial correlation of the  β-diversity values of different trophic levels.  (a) the

trophic network used for the simulation, composed of six trophic levels. The indegree of each node

is one plus an integer randomly drawn from a Poisson law of parameter 1.0 (except for the basal

species). (b) Partial correlation network built using the median values of the partial correlations

(inferred using the graphical lasso) between the  β-diversity values of different trophic levels. (c)

Marginal correlation networks built using the median values of the Pearson correlations between the

β-diversity values of different trophic levels.  (d) Partial correlation coefficient (inferred using the

graphical lasso) between the  β-diversity values of two trophic levels as a function of the shortest

path length between these trophic levels. (e) Marginal Pearson correlation coefficient between the

β-diversity values of two trophic levels as a function of the shortest  path length between these

trophic levels.

Figure 2: Undirected partial correlation network inferred using the graphical lasso method

between the  β-diversity of  the major trophic groups constituting soil  biodiversity and the

environmental  distances. Each  node  represents  the  β-diversity  of  a  trophic  group  or  an

environmental distance. Here,  only the partial correlations above the median value of the non-null

partial correlation coefficients (0.106) are shown. The non-filtered network is presented in Figure

S1. Edge thickness is proportional to the value of the partial correlation coefficient and the partial

correlation coefficients are all positive.

Figure 3: Properties of the inferred network.  The degree (left panel) is the number of neighbours

of nodes in a graph (here, the undirected partial correlation network). It measures the number of

variables that are conditionally dependent on the variable associated with this node. The weighted

degree (right panel) is the sum of the partial correlation coefficients attached to the edges adjacent

to this node. Dashed lines represent the mean values of degree and weighted degree.
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Appendices

Appendix 1 : Molecular and bioinformatics analyses 

Data were then curated using the OBITools software package (Boyer et al. 2016) together with customs R scripts (R

Core Team 2015) following the procedure described in Zinger et al. (2017). Paired-end reads were assembled, assigned

to their respective samples/marker and dereplicated. Low-quality sequences were excluded. For the remaining ones we

computed pairwise dissimilarities between sequences (i.e.  the number of mismatches,  allowed to be 0-3) using the

Sumatra  algorithm  (Mercier  et  al.  2013),  and  formed  Operational  Taxonomic  Units  OTUs  using  the  Infomap

community detection algorithm (Rosvall & Bergstrom 2008).  Abundance of OTUs was defined as the sum of read

abundances of sequences belonging to them. In subsequent analyses, each OTU was represented by its most abundant

sequence.  Each OTU was assigned a taxonomic clade using the  ecotag program (Boyer  et al. 2016) using a set of

reference databases to refine taxonomic annotations. (e.g. GENBANK, UNITE database, Abarenkov et al. 2010)  We

paid particular  attention to  minimize  PCR/sequencing errors,  contaminant  and  false  positive  sequences  as  well  as

potential non-functional PCRs by using the procedure described in Zinger  et al. (2017).  PCR replicates were finally

summed for each samples.

 Bacteria Eukaryota Fungi Viridiplantae

Primers set    

Targeted 
region

V5-V6 regions, 16S 
rRNA gene

V7 region, 18S rRNA gene ITS1 P6 loop of the 
chloroplast trnL intron

Forward 
primer (5’–3’)

GGATTAGATACCC
TGGTAGT‡

TTTGTCTGSTTAATTSCG§ CAAGAGATCCGTTGTT
GAAAGTK† 

GGGCAATCCTGAG
CCAA¶

Reverse primer
(5’–3’)

CACGACACGAGCT
GACG‡

TCACAGACCTGTTATTGC§ GGAAGTAAAAGTCGTA
ACAAGG§§

CCATTGAGTCTCT
GCACCTATC¶

    

PCR 
conditions

   

Number of 
cycles

35 45 40 40

PCR cycles 
characteristics†

† 
(Denaturation, 
Annealing, 
Elongation – 
Final 
elongation)

95°C(30s), 57°C(30s),
72°C(90s) – 
72°C(7min)

95°C(30s), 45°C(30s) 
72°C(60s) – 72°C(7min)

95°C (30 sec), 55°C (30 
sec), 72°C (60s) – 72°C (7 
min)

95°C(30s), 50°C(30s),
72°C(60s)  – 
72°C(7min)

    

Illumina 
platform

MiSeq 2x250 HiSeq 2x150 MiSeq 2x250 HiSeq 2x100

Reads and 
Otus statistics

Initial number 
of OTUs

25383 7242 4193 2153

1

2

3

4

5

6

7

8

9

10

11

12

13

14



Final number 
of OTUs

24058 5833 2987 555

Initial number 
of reads

5042640 68893592 4159074 37509301

Final number 
of reads

4357053 61818803 3626819 35950935

† this study

§§ White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA 
genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. 
Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York.

‡ Fliegerova, K., Tapio, I., Bonin, A., Mrazek, J., Callegari, M. L., Bani, P., et al. (2014). Effect of DNA extraction and 
sample preservation method on rumen bacterial population. Anaerobe, 29, 80-84. 

§ Guardiola, M., Uriz, M. J., Taberlet, P., Coissac, E., Wangensteen, O. S., & Turon, X. (2015). Deep-Sea, Deep-
Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS One, 10, e0139633. 

¶ Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding 
regions of chloroplast DNA. Plant Molecular Biology, 17, 1105-1109. 

†† All PCRs were preceded by an initial denaturation at 95°C (10 min) 

Table S1 Markers characteristics, PCR conditions and sequencing technology

Appendix 2 : Climatic and soil variables

Climatic variables: We described the bioclimatic conditions of the gradient using four variables describing both thermal

and nival regimes: soil temperature, solar radiations, Growing Season Length (hereafter “GSL”) and number of frost

days. Mean annual soil temperature was recorded using HOBO stations located at the center of each sampling site.

Solar radiation was averaged from simulations of solar radiation using a 2-m digital elevation model (DEM) (Carlson et

al. 2015) derived from a LIDAR acquisition. The number of frost days, i.e. the number of snow-free days with air

temperature below 0°C, was computed as described in Carlson et al. (2015). GSL, the number of snow-free days with a

daily  mean  air  temperature  over  0°C  between  snow  melt-out  and  August  15,  was  computed  as  described  in

Chalmandrier et al. 2016.

Topographical variables: Slope, Topographic Wetness Index (TWI) and Topographic Position Index (TPI) were inferred

with the DEM derived from the airborne LiDAR data acquired the year of sampling.

Soil analyses were conducted in summer 2012 from soil cores taken at the center of each subplot (1m25x1m25). Each

of them were weighed and 5mm-sieved (Legay et al. 2014) and processed for quantifying soil moisture, soil organic

matter content, pH, soil texture (gravel mass and apparent density after 2mm sieving) and soil nutrients (ammonium

(soil NH4+), nitrates (soil NO3-), total dissolved nitrogen (TDN), and dissolved organic nitrogen (DON)) from 0.5m

K2SO4 soil extracts (Jones et al. 2004; Legay et al. 2014). Soil subsamples were added 100 mL distilled water to

saturate each soil core and calculate the waterfilled pore space (WFPS) and then air dried and ground to measure total
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soil  C and N (Legay et  al.  2014). Microbial biomass nitrogen (N) was measured using the chloroform-fumigation

extraction technique of Vance et al. 1987). Potential N mineralization rates were estimated using anaerobic incubations

of  fresh  soil  subsamples  (Legay  et  al.  2014).  Potential  ammonium and  nitrates  leaching  was  measured  from the

percolate of a site central supplementary core leached in a given volume of distilled water (Legay et al. 2016).

PCA axis 1 PCA axis 2

pH -0.417 -0.368

Gravel mass 0.791 -0.277

Apparent density 0.235 -0.781

Total porrosity rate 0.264 0.789

Water Filled pore space -0.76 -0.23

Leaching NO3 -0.398 -0.029

Leaching NH4 0.0901 0.791

N rate 0.0542 -0.933

C rate -0.587 0.713

C/N ratio -0.332 0.896

Rate organic matter 0.332 0.863

N NO3 -0.341 -0.368

N NH4 -0.512 0.264

N TDN 0.257 -0.106

N NH4 product -0.158 -0.0632

Year soil temperature -0.823 0.00538

FrostDays -0.858 -0.196

Growing Season Length -0.983 -0.0919

Topographic wetness 

index
-0.652 -0.0833

slope 0.28 -0.343

Topographic position 

indexPI10m_mean_topo
0.35 0.101

Altitude Digital 

Elevation Model
0.98 0.0867

Mean solar radiation -0.964 -0.058

Variance Growing 

Season Length
0.834 0.347

        

Table S2 Correlations between the environmental variables and the first two axes of the Principal Component Analysis
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Figure S1 Scree plot of eigenvalues on the principal component on environmental variables
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Figure S2Correlation circles of the principal component analysis. Only 6 variable over the 24 variables are represented

here.
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Figure S3 Plots represented on the first factorial plan on the principal component analysis. The color of the points

correspond to their altitude.
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Figure S4 Design and results of the simulation assessing the impact of biotic interactions on the marginal and partial

correlation  of  the  β-diversity  values  of  different  trophic  levels  for  another  shape  of  the  relationship  linking  the

probability of presence of a consumer species with its  number of available preys.  (a) Two different shapes of the

relationship, the value used in the following plots is r=1/3, while the main text r=1 (b) Partial correlation network built

using the median values of partial  correlations (inferred using Glasso)  between the  β-diversity values of different

trophic levels. (c) Marginal correlation networks built using the median values of the Pearson correlations  between the

β-diversity  values  of  different  trophic levels.  (d) Partial  correlation coefficient  (inferred using the graphical  lasso)

between the β-diversity values of two trophic levels in function of the shortest path length between these trophic levels.

(e) Marginal  Pearson correlation coefficient between the  β-diversity values of two trophic levels in function of the

shortest path length between these trophic levels. 
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Figure S5 Undirected partial correlation network between β-diversity of the major trophic groups constituting of soil

biodiversity  and  environmental  distances.  Each  node  represent  the  β-diversity  of  a  trophic  group  or  an  abiotic

environmental distance. Each edge represent a non-nul partial correlation between the variables associated to each node

and was estimated using a graphical lasso. Consequently, if two nodes are disconnected, then the associated variables

(β-diversity or environmental distances) are conditionally independent. The connectance of the network is 0.618.
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Figure S6 Histogram of the partial  correlation coefficients  estimated between  β-diversity  of  major  trophic groups

constituting of soil biodiversity and environmental distances. Partial correlation coefficients are all positive.
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Figure S7 Histogram of the natural logarithm of the numbers of Operational Taxonomic Units (OTUs) assigned to each

trophic group.
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Figure S8 Number of OTUs per trophic group in function of the altitude of the plots
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Frost Soil Plants Bacteria Herbi/Fun
givore

nematodes

Bacterivor
e

nematodes

Oribatida Saprophyt
ic fungi

Symbiotic
fungi

Pathogeni
c fungi

Springtails

Frost 0 0 0 0 0.222 0 0.0358 0.0149 0 0.3 0.327

Soil 0 0 0.0347 0 0 0 0.0807 0 0 0 0.29

Plants 0 0.0347 0 0 0.0274 0.101 0.197 0.0914 0.169 0.166 0.0284

Bacteria 0 0 0 0 0 0.149 0 0.365 0.23 0 0

Herbi/Fun
givore

nematodes

0.222 0 0.0274 0 0 0.0833 0.084 0.084 0.11 0 0.0238

Bacterivor
e

nematodes

0 0 0.101 0.149 0.0833 0 0 0.0708 0.0739 0.0994 0

Oribatida 0.0358 0.0807 0.197 0 0.084 0 0 0.185 0.182 0.14 0.116

Saprophyt
ic fungi

0.0149 0 0.0914 0.365 0.084 0.0708 0.185 0 0.234 0.252 0

Symbiotic
fungi

0 0 0.169 0.23 0.11 0.0739 0.182 0.234 0 0.102 0

Pathogeni
c fungi

0.3 0 0.166 0 0 0.0994 0.14 0.252 0.102 0 0.0541

Springtail
s

0.327 0.29 0.0284 0 0.0238 0 0.116 0 0 0.0541 0

Table S3 Partial correlation between β-diversity values of trophic groups constituting of soil diversity and abiotic 

environmental distances inferred using Glasso.

Frost Soil Plants Bacteria Herbi/Fun
givore

Nematode
s

Bacterivor
e

nematodes

Oribatida Saprophyt
ic fungi

Symbiotic
fungi

Pathogeni
c fungi

Springtails

Frost 1 0.305 0.581 0.405 0.648 0.497 0.672 0.678 0.575 0.772 0.703

Soil 0.305 1 0.392 0.235 0.325 0.0994 0.443 0.33 0.27 0.347 0.545

Plants 0.581 0.392 1 0.644 0.585 0.611 0.775 0.778 0.78 0.774 0.546

Bacteria 0.405 0.235 0.644 1 0.47 0.642 0.688 0.857 0.808 0.687 0.34

Herbi/Fun
givore

nematodes

0.648 0.325 0.585 0.47 1 0.531 0.64 0.664 0.657 0.626 0.513

Bacterivor
e

nematodes

0.497 0.0994 0.611 0.642 0.531 1 0.573 0.675 0.656 0.645 0.346

Oribatida 0.672 0.443 0.775 0.688 0.64 0.573 1 0.836 0.818 0.808 0.622

Saprophyt
ic fungi

0.678 0.33 0.778 0.857 0.664 0.675 0.836 1 0.888 0.864 0.553

Symbiotic
fungi

0.575 0.27 0.78 0.808 0.657 0.656 0.818 0.888 1 0.81 0.476

Pathogeni
c fungi

0.772 0.347 0.774 0.687 0.626 0.645 0.808 0.864 0.81 1 0.628

Springtail
s

0.703 0.545 0.546 0.34 0.513 0.346 0.622 0.553 0.476 0.628 1

Table S4 Marginal (Pearson correlation) between β-diversity values of trophic groups constituting of soil diversity and 

abiotic environmental distances.
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Appendix 3 : Statistical  analysis using the true-turnover component of the  β-diversity

We ran the statistical analysis on the true turnover component  of the β-diversity (Baselga 2010) of each predefined

trophic group.  while the larger amount of β-diversity was due to true-turnover (Fig. 9) and on average, 80% of the β-

diversity  across  trophic  groups.The  partial  correlations  estimated  between  the  true  turnover  component  of  the  β-

diversity of each predefined trophic group and environmental distances were all positive except one coefficient (Fig.

S10,Fig.  S11,  Fig.  S12,  table  S4).  The estimated  partial  correlation  network  had  a  connectance  of  0.60  and  was

composed of 33 undirected edges (i.e. partial correlation coefficients>0) out of 55 possible edges and 11 nodes (9

trophic groups and 2 environmental variables). The mean value of non null partial correlation coefficients was 0.133,

the median was 0.102 and the maximum 0.459.

Saprophytic fungi seemed to be the most influential group in conditioning the β-diversity of the others group (highest

degree value, 9, and highest weighted degree value, 1.37, Fig. S12).  Environmental variables had a moderate impact on

the β-diversity of the trophic groups (degree of 6 for the first PCA axis, 4 for the second PCA axis and whereas the

mean degree of the partial correlation network was 6;  weighted degree of 1.13 for the first PCA-axis, 0.381 for the

second pca axis node whereas the mean value is 0.759).

The  probability  of  observing  a  non-null  partial  correlation  between  the  β-diversity  of  a  trophic  group  and  the

environmental distance was 0.44 (8 edges linking environmental nodes to the trophic groups nodes and 18 potential

edges) whereas the probability of observing a link between the β-diversity of any two trophic groups was 0.67 (24 edges

and 36 potential edges), highlighting the weaker influence of environmental variables on the true turnover component of

the β-diversity of the trophic groups. 
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Figure S9 Mean true turnover and nested turnvoer components of the Jaccard index for each trophic group. 
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Figure S10  Undirected partial correlation network inferred by the graphical lasso method between the true turnover

component  of  the  β-diversity  of  the  major  trophic  groups  constituting  of  soil  biodiversity  and  the  environmental

distances. Each node represent the β-diversity of a trophic group or an environmental distance. Here, are only shown the

partial correlations above the median value of the non-null partial correlation coefficients (0.102). The non-filtered

network is presented in Figure S11. Edge thickness is proportional to the value of the partial correlation coefficient and

the partial correlation coefficients are all positive.
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Figure S11  Undirected partial correlation network inferred by the graphical lasso method between the true turnover

component  of  the  β-diversity  of  the  major  trophic  groups  constituting  of  soil  biodiversity  and  the  environmental

distances. Each node represent the β-diversity of a trophic group or an environmental distance. The connectance of the

graph  is  0.600  .  Edge  thickness  is  proportional  to  the  value  of  the  partial  correlation  coefficient  and  the  partial

correlation coefficients are all positive.
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Figure S12 Histogram of the partial correlation coefficients estimated between the true turnover component of the β-

diversity  of  major  trophic  groups  constituting  of  soil  biodiversity  and  environmental  distances.  Partial  correlation

coefficients are all positive.
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Figure S13 Properties of the inferred network.  The mean degree (left panel) is the number of neighbors of nodes in a

graph (here,  the undirected partial correlation network).  It  measures the number of variables that  are conditionally

dependent to the variable associated to this node. The weighted degree (right panel) is the sum of the partial correlation

coefficients attached to the edges adjacent this node.      
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Frost Soil Plants Bacteria Herbi/Fun
givore

nematodes

Bacterivor
e

nematodes

Oribatida Saprophyt
ic fungi

Symbiotic
fungi

Pathogeni
c fungi

Springtails

Frost 0 0.0122 0.1 0 0 0 0.459 0.129 0 0.0725 0.359

Soil 0.0122 0 0.0161 0 0.0442 0 0 0 0 0 0.164

Plants 0.1 0.161 0 0 0 0 0.0289 0.0314 0.112 0.162 0.0796

Bacteria 0 0 0 0 0.0327 0.0354 0 0.0302 0.275 0 -0.0744

Herbi/Fun
givore

nematodes

0 0.0422 0 0.0327 0 0.139 0 0.104 0.0896 0.00466 0

Bacterivor
e

nematodes

0 0 0 0.0354 0.139 0 0 0.0457 0.2 0.0353 0

Oribatida 0.459 0 0.0289 0 0 0 0 0.122 0 0 0.0181

Saprophyt
ic fungi

0.129 0 0.0314 0.302 0.104 0.0457 0.122 0 0.292 0.321 0.0268

Symbiotic
fungi

0 0 0.112 0.275 0.0896 0.2 0 0.292 0 0.254 0.0366

Pathogeni
c fungi

0.0725 0 0.162 0 0.00466 0.0353 0 0.321 0.254 0 0

Springtail
s

0.359 0.164 0.0796 -0.0744 0 0 0.0181 0.0268 0.0366 0 0

Table S5  Partial correlation between the true turnover component of β-diversity values of trophic groups constituting 

of soil diversity and abiotic environmental distances inferred using Glasso.

Frost Soil Plants Bacteria Herbi/Fun
givore

Nematode
s

Bacterivor
e

nematodes

Oribatida Saprophyt
ic fungi

Symbiotic
fungi

Pathogeni
c fungi

Springtails

Frost 1 0.305 0.503 0.313 0.102 0.117 0.734 0.619 0.471 0.551 0.637

Soil 0.305 1 0.363 0.0432 0.216 -0.0226 0.249 0.255 0.207 0.158 0.367

Plants 0.503 0.363 1 0.276 0.231 0.235 0.416 0.535 0.54 0.557 0.417

Bacteria 0.313 0.0432 0.276 1 0.395 0.439 0.346 0.743 0.732 0.593 0.0491

Herbi/Fun
givore

nematodes

0.102 0.216 0.231 0.395 1 0.398 0.0963 0.468 0.467 0.396 0.158

Bacterivor
e

nematodes

0.117 -0.0226 0.235 0.439 0.398 1 0.196 0.499 0.557 0.456 0.0921

Oribatida 0.734 0.249 0.416 0.346 0.0963 0.196 1 0.556 0.448 0.463 0.461

Saprophyt
ic fungi

0.619 0.255. 0.535 0.743 0.468 0.499 0.556 1 0.835 0.799 0.422

Symbiotic
fungi

0.471 0.207 0.54 0.732 0.467 0.557 0.448 0.835 1 0.768 0.382

Pathogeni
c fungi

0.551 0.158 0.557 0.593 0.396 0.456 0.463 0.799 0.768 1 0.331

Springtail
s

0.637 0.367 0.417 0.0491 0.158 0.0921 0.461 0.422 0.382 0.331 1

Table S6  Marginal (Pearson correlation) between the true turnover component of β-diversity values of trophic groups 

constituting of soil diversity and abiotic environmental distances.
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