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Introduction

Understanding the processes that determine the spatial structure of biodiversity is one of the overarching goals of ecology (Ricklefs 1987). In particular, the study of β-diversity, the change in species (or species groups) identities across sampled locations, sheds light on different ecological, evolutionary, and biogeographic processes (e.g. [START_REF] Graham | Phylogenetic beta diversity: Linking ecological and evolutionary processes across space in time[END_REF][START_REF] Anderson | Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist[END_REF]. For a given regional species pool, the processes responsible for β-diversity are usually assumed to be environmental filtering, dispersal limitations, and biotic interactions [START_REF] Hillerislambers | Rethinking Community Assembly through the Lens of Coexistence Theory[END_REF][START_REF] Meynard | Disentangling the drivers of metacommunity structure across spatial scales[END_REF].

Previous studies have sought to analyze β-diversity by teasing apart the effects of environmental filtering from biotic interactions along environmental gradients on a single group of species (e.g. [START_REF] Peay | Dimensions of biodiversity in the Earth mycobiome[END_REF] for fungi; [START_REF] Hanson | Beyond biogeographic patterns: Processes shaping the microbial landscape[END_REF] for bacteria; [START_REF] Mazel | The Geography of Ecological Niche Evolution in Mammals[END_REF] for mammals; Chalmandrier et al. 2015 for plants). However, biotic interactions across groups are also expected to drive the structure and distribution of biodiversity. For example, plant-pollinator, trophic (e.g. prey-predator or plant-decomposers) and host-symbiont (including pathogens, mutualistic and commensal organisms) interactions strongly impact diversity distribution and ecosystem functioning (Brose & Hilleband 2016). These interactions among groups of species, although they are not necessarily species-specific [START_REF] Walker | Diverse helotiales associated with the roots of three species of arctic ericaceae provide no evidence for host specificity[END_REF][START_REF] Peay | Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient[END_REF], harbor some degree of specificity due to trait constraints and shared habitat preferences (e.g. [START_REF] Allesina | A General Model for Food Web Structure[END_REF]Gonzales-Varo 2016). This interdependence among groups implies that the β-diversity of a single group is likely to be contingent to that of the other groups. Hence, studying how the βdiversity of multiple groups covaries along environmental gradients should help better understand their spatial distribution and uncover their interactions.

Soil ecosystems are ideal for documenting these multi-group β-diversity patterns. Indeed, they provide several examples of coupled biological systems [START_REF] Wardle | The influence of biotic interactions on soil biodiversity[END_REF][START_REF] Bardgett | Aboveground-belowground linkages : biotic interactions, ecosystem processes, and global change[END_REF], for example plant-mycorrhiza associations [START_REF] Smith | Mycorrhizal symbiosis[END_REF], direct plant control on fungal communities [START_REF] Broeckling | Root exudates regulate soil fungal community composition and diversity[END_REF], predator-prey relationships [START_REF] Hedlund | Tritrophic interactions in a soil community enhance decomposition rates[END_REF] or plant-decomposer relationships (Hattenschwiler et al. 2005). Empirical evidence suggests that these biological couplings do indeed produce spatial dependencies between the β-diversity of the different groups (e.g. plants and fungi or bacterial turnover, [START_REF] Zinger | Contrasting diversity patterns of crenarchaeal, bacterial and fungal soil communities in an alpine landscape[END_REF][START_REF] Prober | Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide[END_REF][START_REF] Geremia | Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands[END_REF]. However, data on soil meta-communities remain scarce and there are no appropriate statistical tools for exploring the β-diversity patterns in multiple soil groups (i.e. more than two or three) while taking into account environmental variation.

Here we develop a generic method for analysing how the β-diversity of one group depends on the β-diversity of the other groups and on the spatial variation in environmental conditions. This is challenging due to potential confounding effects between different groups, which can generate spurious correlations. Variance partitioning methods aim to disentangle the influence of several explanatory variables on a response variable and they are, in principle, able to deal with confounding effects by providing partial correlations among partitions [START_REF] Borcard | Partialling out the Spatial Component of Ecological Variation[END_REF][START_REF] Dray | Community ecology in the age of multivariate multiscale spatial analysis[END_REF]. However, the number of partitions grows exponentially with the number of explanatory variables, making the method impractical for studies encompassing a large number of species groups. This is problematic since the amplicon-based DNA analysis of environmental samples (i.e. environmental DNA) holds the promise of more streamlined and consistent all-biodiversity environmental surveys [START_REF] Taberlet | Environmental DNA[END_REF][START_REF] Kress | DNA barcodes for ecology, evolution, and conservation[END_REF] and, consequently, new statistical tools are needed. One possible solution to this problem is to use statistical tools called graphical models [START_REF] Koller | Probabilistic Graphical Models: Principles and Techniques -Adaptive Computation and Machine Learning[END_REF], in which each node is a random variable and edges represent conditional dependencies between these random variables. Partial correlation networks represent a particular type of graphical model where the edges of the network are weighted by the partial correlation coefficients (i.e. the correlation between two variables while controlling the others).

Here, we propose studying multi-group β-diversity patterns in soil communities using partial correlation networks. Specifically, we hypothesise that interrelated β-diversity patterns among groups are partly explained by biotic interactions along abiotic gradients, and that these spatial dependencies can be detected using a method called graphical lasso to infer a partial correlation network [START_REF] Friedman | Sparse inverse covariance estimation with the lasso[END_REF]. Using simulated multi-trophic communities in a given, known trophic network, we first test and validate our hypothesis and statistical method. We show that biotic interactions may indeed produce interrelated β-diversity patterns (i.e. non-zero partial correlation coefficients) that can be uncovered using a partial correlation network. We then apply our method to an empirical dataset including bacteria, microeukaryotes, meso/macrofauna, plants and abiotic factors along an elevation gradient in the French Alps. We jointly explore the co-variation between the β-diversity of multiple functional and trophic groups to unravel known and unknown potential biotic interactions, while controlling for the relative role of the abiotic environment and the β-diversity of the other groups.

Material and Methods

The method: applying the Graphical lasso to multi-group β-diversity patterns From species to relevant groups -Species grouping can be defined by known trophic position (e.g. symbiotic fungi), or by taxonomy (e.g. bacteria) or function. This step is essential and has to be implemented in light of the prior knowledge of the study system (see our case study for an example).

Measuring β -diversity and environmental distances -One possible measure of β-diversity between two local communities, A and B, is the Jaccard dissimilarity index, defined as one minus the ratio of the number of species present in both A and B over the number of species present in either A or B.

The Jaccard dissimilarity index equals 0 when A and B share the same species, and 1 when they do not share any. We used the R package 'vegan' [START_REF] Ricklefs | Disintegration of the ecological community[END_REF] to compute the Jaccard dissimilarity index for multiple species groups independently (see below). Moreover, we partitioned the Jaccard index into the true turnover component and the nested component [START_REF] Baselga | Partitioning the turnover and nestedness components of beta diversity[END_REF], using the R package 'betapart' [START_REF] Baselga | betapart : an R package for the study of beta diversity[END_REF]. Environmental distances between pairs of local communities were computed using Euclidean distances.

The graphical lasso method -The overarching goal of our approach is to use a network to parsimoniously represent the correlations between the β-diversity of each group as a function of the others and the environmental distances. This is challenging due to potential confounding effects (i.e. collinearity among multiple variables), which can generate spurious correlations. Working with partial correlations (correlation between two variables when knowing the value of the others) instead of marginal correlations (Pearson correlation) avoid these confounding effects.

Consequently, a suitable description of the system consists of using a class of models that (1) represent the conditional dependencies between random variables (here the β-diversity of multiple species groups) using partial correlations while (2) allowing for a parsimonious representation of the dependencies using a network. The Lasso approach [START_REF] Tibshirani | Regression Shrinkage and Selection Via the Lasso[END_REF] has been developed to produce precisely this type of parsimonious set of variables. More recently, its multivariate form, the Graphical lasso (Glasso), has made it possible to represent the partial correlations between multiple variables in a network (here the β-diversity of multiple groups and the environmental distances, [START_REF] Friedman | Sparse inverse covariance estimation with the lasso[END_REF][START_REF] Mazumder | The Graphical Lasso: New Insights and Alternatives[END_REF]. As a consequence, Glasso should be an appropriate tool for representing the structure of the partial correlations between multi-trophic βdiversity patterns.

In short, the Glasso uses the empirical variance-covariance matrix S (computed from the βdiversity values of multiple species groups and the environmental distances) to estimate a partial correlation matrix that quantifies the degree of association between pairs of variables conditional to the other variables. In order to estimate the partial correlation matrix in Glasso, the S matrix is inverted to produce the precision matrix P with the particular constraint that P must be sparse (i.e. have many zeros). This is equivalent to the variable selection step in conventional statistical approaches (see [START_REF] Friedman | Sparse inverse covariance estimation with the lasso[END_REF] for mathematical details). The partial correlation matrix is then computed from P as follows (Eq. 1):

(Eq.1)

where represents the partial correlation between the components i and j of a random variable Y given all the other components, and , , are the elements of P.

As the precision matrices have been inverted with the constraint in order to ensure sparsity, it follows that the partial correlation matrix is also sparse. This sparse representation of the relationships between the β-diversity of multi-trophic groups and the environmental distances means it can be represented simply and intuitively using a network. In the Glasso, this parsimonious representation (i.e. the number of 0 coefficients in the partial correlation matrix) is not optimally determined but is arbitrary and depends on a coefficient λ. Here, we used the Extended Bayesian Information Criterion [START_REF] Foygel | Extended Bayesian Information Criteria for Gaussian Graphical Models[END_REF] to select optimal λ. We used the R package 'qgraph'

to estimate the partial correlation matrix with graphical lasso [START_REF] Epskamp | A Tutorial on Regularized Partial Correlation Networks[END_REF].

Representing conditional dependencies between β -diversity using a network representation -We plotted the inferred network using Gephi [START_REF] Bastian | Gephi: An Open Source Software for Exploring and Manipulating Networks[END_REF]) and analysed its properties. In particular, we quantified the connectivity of each group by analysing the degree and the weighted degree for each group in the partial correlation network. The degree represents the number of times the β-diversity of a given group is conditionally dependent on the β-diversity of other groups. If the β-diversity of two groups is conditionally independent (i.e. has a zero partial correlation coefficient), they cannot causally influence each other [START_REF] Murphy | Machine Learning: A Probabilistic Perspective[END_REF]. Consequently, the more connected a group is, the more central it is to structuring the β-diversity of all groups. The weighted degree represents the total sum of partial correlations in β-diversity between a given group and all other connected groups. The higher the sum, the more important the group.

Validating the method using simulations

In order to test whether the Glasso approach was able to recover known interactions among species groups from local community β-diversity patterns, we first built a set of simulated data. We did so by constructing a regional trophic web (step 1) from which local multitrophic communities were sampled using a stochastic model (step 2). Then, we measured the partial correlation between the β-diversity of each trophic level (step 3) and tested whether these patterns matched the simulated regional trophic web.

Step 1 -The regional web was assumed to have six trophic levels (one basal level and five consumer levels), containing twenty species each. We assumed some degree of specialization in the relationships between trophic levels: each consumer species had a number of prey equals to one plus a random number drawn in a Poisson law of parameter 1 (Fig. 1a). Thus, each consumer species had one prey species at least, and on average two prey species. Once the number of prey species had been drawn for a given consumer species, prey were drawn randomly from the lower trophic level.

Step 2 -Based on this regional network, we generated 1,000 local multi-trophic communities. Communities were simulated using a stochastic model of multi-trophic community assembly inspired by the Trophic Theory of Island Biogeography (TTIB, [START_REF] Gravel | Trophic theory of island biogeography[END_REF][START_REF] Massol | Chapter Four -Island Biogeography of Food Webs[END_REF]. The TTIB assumes bottom-up sequential dependencies [START_REF] Holt | From Metapopulation Dynamics to Community Structure: Some Consequences of Spatial Heterogeneity[END_REF][START_REF] Holt | Towards a trophic island biogeography: reflections on the interface of island biogeography and food web ecology[END_REF][START_REF] Dunne | Network structure and biodiversity loss in food webs: robustness increase with connectance[END_REF] with two phases. In phase 1, each species can colonise a local community if at least one of its prey species is present. In phase 2, a species which has lost its last prey species goes extinct. For the sake of clarity, we assumed a homogeneous environment. The probability of each basal species being present in the local community was assumed to be constant and set to p0 = 0.5. The probability of each consumer species C being present in the local community is related to the fraction of its prey available through the relation pC=(k/g) r where g is the diet breadth of C (i.e. the number of potential prey species), k is the number of its prey species present in the community, and r is a constant that controls the shape of the relation. In the TTIB, having more prey species present in the community does not increase the probability of consumer presence, and the probability of survival is either 0 (when k=0) or 1 (when k>0). This corresponds to the limit case r=0. For the simulation, we used r=1, assuming that pC grows linearly with the number of prey species present in the community. We also studied the case r=1/3 presented in the appendices.

Step 3 -We then computed β-diversity patterns for each trophic level and inferred the partial correlations between these β-diversities using the Glasso method explained above. We thus obtained a distribution of partial correlations between the β-diversity at the different trophic levels. We expect these partial correlations to be high between trophic levels which interact directly and low between trophic levels which do not interact. Since here only two successive trophic levels interact (see Fig. 1a), we expect the partial correlation between successive trophic levels to be high compared to the partial correlation between non-successive trophic levels. We expect these partial correlations to be more informative than marginal correlations (Pearson correlations), because they avoid spurious correlations due to confounding effects.

Analysing multi-trophic patterns in multi-trophic soil ecosystems in the French Alps.

Study site and soil sampling -The study was conducted in the northern French Alps (Arves Massif, 45.12°N, 6.40°E) along a 977 m elevation gradient (1748m to 2725m a.s.l.) located in a single cowgrazed pasture, above the tree-line. The vegetation at the bottom of the gradient corresponds mainly to subalpine grasslands, while alpine meadows with sparse vegetation dominate at high elevation [START_REF] Chalmandrier | Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands[END_REF]. Ten plots were established at 100m altitude intervals along the gradient, each of them composed of two 10 x 10 m sub-plots. All plots were placed on the same south-facing slope with a similar bedrock type and land-use to ensure a relatively homogeneous gradient. Mean annual temperature along the gradient ranges between 8°C at the bottom and 3°C at the top, while mean annual rainfall is 473mm over the period 2000-2012. The soil sampling field campaign was conducted in September 2012.

We collected twenty-one soil samples per sub-plot following the two diagonals with the distance increasing exponentially from the corners to the centre on one diagonal and from the centre to the corners on the other. Central points were sampled only once. This sampling scheme was implemented to cover as much local biodiversity as possible at the sub-plot scale [START_REF] Taberlet | Environmental DNA[END_REF][START_REF] Chalmandrier | Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands[END_REF] and provided an almost regular distribution of pairwise spatial distances between points. Each sample contained 50g of soil from the uppermost 10 cm of soil and was placed in individual plastic bags to be processed individually. Corers were cleaned and sterilised using a blowtorch between each sample to prevent cross-contamination [START_REF] Taberlet | Environmental DNA[END_REF]. Extracellular DNA was extracted from 15g of soil as previously described [START_REF] Taberlet | Environmental DNA[END_REF][START_REF] Geremia | Contrasting microbial biogeographical patterns between anthropogenic subalpine grasslands and natural alpine grasslands[END_REF] S1. As explained above, we computed β-diversity using the Jaccard dissimilarity index. Since this index is sensitive to sequencing depth difference between samples, we also used the true turnover component of the Jaccard index [START_REF] Baselga | Partitioning the turnover and nestedness components of beta diversity[END_REF]), to remove this potential bias. The results obtained using the true turnover component of the Jaccard index are similar to those using the Jaccard index so we only refer to the Jaccard index in the main text, and present the results of the true turnover component of the Jaccard index in Appendix 3.

Defining trophic groups of species

We selected a priori groups of soil taxa based on their distinctive role in the functioning of the soil ecosystem, and in biogeochemical cycles (especially the carbon and nitrogen cycles). Our focal taxa were: plants, fungi, bacteria, oribatid mites, nematodes, and springtails [START_REF] Bardgett | The Biology of Soil: A Community and Ecosystem Approach[END_REF]. We included plants since they are the primary producers and their diversity and identity drive the functioning and the stability of most terrestrial ecosystems [START_REF] Hooper | The Effects of Plant Composition and Diversity on Ecosystem Processes[END_REF]van der Heijen 1998). We also included litter feeders that contribute to dead material fragmentation, in a particular oribatid mites and springtails. Oribatid mites form one of the most abundant groups of arthropods in soil, (Behan-Pelletier 1999) with up to several hundreds of thousands of individuals per square meter [START_REF] Norton | Acarina: Oribatida[END_REF]). Springtails are the most numerous group of hexapods in most terrestrial ecosystems [START_REF] Deharveng | Recent advances in Collembola systematics[END_REF]). We also included a group of taxa that mineralise the fragmented litter, such as saprophytic fungi and bacteria [START_REF] Bardgett | The Biology of Soil: A Community and Ecosystem Approach[END_REF]. Fungi are found in different compartments of the soil trophic web so we classified fungal OTUs into three main functional groups, namely, symbiotic fungi, saprophytic fungi and pathogenic fungi using the FUNguild database [START_REF] Nguyen | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[END_REF].

Symbiotic fungi represent a pivotal group in the soil ecosystem because over 90% of terrestrial plant families benefit from symbiotic associations between their roots and fungi [START_REF] Wang | Phylogenetic distribution and evolution of mycorrhizas in land plants[END_REF]. Moreover, in arctic and alpine systems, 60% to 80% of the nitrogen available for plants is supplied by mycorrhizal fungi (Bjorbaekmoet et al. 2010). Bacteria also contribute to this supply by fixing atmospheric nitrogen [START_REF] Bonfante | Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions Rhizosphere: the narrow zone of soil surrounding living roots[END_REF][START_REF] Haq | The interactions of bacteria with fungi in soil: emerging concepts[END_REF]. Finally, we included a group of predators, here nematodes, the most abundant belowground multicellular animals [START_REF] Bardgett | The Biology of Soil: A Community and Ecosystem Approach[END_REF]. Nematode OTUs were divided into bacterivore nematodes and herbivore/fungivore nematodes using the NEMAguild database [START_REF] Nguyen | FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[END_REF]. In summary, the nine groups included in this study were: plants, symbiotic fungi, pathogenic fungi, saprophytic fungi, bacterivore nematodes, herbi/fungivore nematodes, bacteria, springtails, and oribatid mites. Most of these groups interact via trophic interactions, so that this study case matches the simulations described above, but not all of them. For the sake of clarity, we will hereafter refer to them as trophic groups.

Environmental characteristics -Mean annual soil temperature was estimated from field meteorological stations placed at the centre of each plot. We also estimated growing season length 

Results

Validation of the statistical method -Our simulations showed that trophic interactions produce significant relationships between β-diversity on consecutive trophic levels. Moreover, the Glasso method detected the conditional relationships between the β-diversity of the different trophic groups corresponding to their trophic position in the network (Fig. 1b) contrary to the marginal correlations (Fig. 1c). The median of both marginal and partial correlation coefficients between pairs of trophic levels decreases with the shortest path length between these trophic levels. Nevertheless, while the median of the marginal correlation coefficients (Fig. 1e) decreased slowly (the distribution of marginal correlation coefficients overlapped), the median of the partial correlation coefficients (Fig. 1d) was close to 0 once the trophic level distance was higher than 1. In other words, marginal correlation analyses detected spurious correlation between non-adjacent trophic levels, but this bias was strongly alleviated when considering partial correlations. Although these simulation results remain qualitative, they demonstrate that specialised biotic interactions between trophic group leave detectable imprints on compositional patterns and that these patterns can be detected using our method. Changing the shape of the relationship linking the probability of presence of a consumer species with its number of available prey species did not alter this conclusion (Fig. S4).

β-diversity modelling of empirical soil communities -In the French Alps, the partial correlations estimated between the β-diversity of each predefined trophic group and environmental distances were all positive (Fig. 2, Fig. S5, Fig. S6, table S2). The estimated partial correlation network had a connectance of 0.618 and was composed of 34 undirected edges (i.e. partial correlation coefficients > 0) out of 55 possible edges and 11 nodes (9 trophic groups and 2 environmental variables).

Saprophytic fungi were the most influential group in conditioning the β-diversity of the other groups (highest degree value, 8, and highest weighted degree value, 1.30, Figure 3). Plants and oribatid mites also had a strong influence on the β-diversity of other groups, as did pathogenic and symbiotic fungi. In contrast, environmental variables had a relatively small impact on the βdiversity of the trophic groups.

The probability of observing a non-null partial correlation between the β-diversity of a trophic group and the environmental distance was 0.44 (8 edges linking environmental nodes to the trophic group nodes and 18 potential edges) whereas the probability of observing a link between the βdiversity of any two trophic groups was 0.69 (25 edges and 36 potential edges). Since the variables associated with disconnected nodes are conditionally independent and that conditionally independent variables cannot causally influence each other, this highlights the reduced influence of environmental variables on the β-diversity of the trophic groups.

Discussion

In this study, we proposed a method for dissecting the joint spatial structure of multiple trophic groups. This method builds on observed patterns of β-diversity in multiple trophic groups to infer the conditional dependencies between pairs of groups and with the environment, in order to pinpoint potential biotic interactions. Simulations confirmed that our method is able to recover the overall structure of a trophic network using partial correlations. This method does not directly infer the interaction network at species level, and the inferred conditional dependencies at the group level do not imply causality. A similar method for producing directed networks is path analysis [START_REF] Wright | Correlation and causation[END_REF][START_REF] Shipley | Cause and Correlation in Biology: A User's Guide to Path Analysis, Structural Equations and Causal Inference[END_REF] ). The correlative method presented here should help interpret a wide range of multitrophic biodiversity patterns. Although our approach is likely to be sensitive to the effect of a missing predictor (since the structure of the partial correlation network would be affected by the addition of a variable), environmental DNA sampling should facilitate comprehensive assessments.

One key issue remains the mapping of OTUs into functional groups, which is only possible using integrative biology knowledge combined with large and comprehensive databases. An interesting perspective for this method is that it could also be used to study temporal changes in biodiversity (i.e., temporal β-diversity) using environmental DNA approaches [START_REF] Bohan | Next-Generation Global Biomonitoring: Large-scale, Automated Reconstruction of Ecological Networks[END_REF].

When applied to soil multi-trophic diversity along an elevation gradient of the French Alps, we were able to quantify the relative importance of biotic interactions and the environment in shaping the spatial structure of the meta-communities. Pairwise environmental distances displayed a low correlation with the β-diversity of each group (as measured with the few non-zero partial correlations). In other words, the ecological community was found to be shaped more by biotic interactions than by abiotic environmental constraints. This result is rather surprising given the sharpness of the elevational gradient, and the expected importance of environmental filtering in shaping above and below-ground communities along elevation gradients [START_REF] Meynard | Disentangling the drivers of metacommunity structure across spatial scales[END_REF]).

However, many previous studies have focused on intra-guild biotic interactions, or on environmental effect only, and they have ignored the importance of inter-guild interactions (e.g. [START_REF] Chalmandrier | Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community[END_REF]. As our climatic and soil properties were sampled at plot level, they might not have been measured at the appropriate scale to reflect the fine conditions experienced by below-ground organisms [START_REF] Falconer | Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation[END_REF][START_REF] Baveye | Too much or not enough: Reflection on two contrasting perspectives on soil biodiversity[END_REF]Zinger et al. 2017). A single plot-scale measure of abiotic conditions may not be sufficient to explain the β-diversity of organisms with heterogeneous sizes and capture the fine-scale heterogeneity of soil conditions.

Additionally, we cannot rule out the fact that some relatively important missing environmental factors might explain the low predictive power of environmental distances (e.g. phosphorous for symbiotic mushrooms, [START_REF] Liu | Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[END_REF][START_REF] Camenzind | Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest[END_REF]. Nevertheless, while the greater βdiversity was due to true-turnover (a turnover measure independent of variation of species richness;

on average, 80% of the β-diversity across trophic groups), climatic and soil properties had a stronger influence on the true-turnover component of the β-diversity of the different trophic groups.

The approach described here should help interpret a wide range of multi-trophic biodiversity patterns and yield new testable hypotheses. For example, in multiple pairs of trophic groups we found strong spatial associations which can be interpreted in light of functional associations. In the soil, plants are directly affected by symbiotic/pathogenic fungi and root herbivores, whereas the complex network of detritivorous organisms affects them indirectly [START_REF] Bardgett | The Biology of Soil: A Community and Ecosystem Approach[END_REF][START_REF] Wardle | Ecological Linkages between Aboveground and Belowground Biota[END_REF]. Our method showed that plant β-diversity was strongly linked to the β-diversities of symbiotic fungi, pathogenic fungi, oribatid mites and bacterivore nematodes. While the links with the two groups of fungi most likely reflect the strong direct associations between these groups and the vegetation structure, the link with oribatid mites may be explained by the fact that this group feeds on plant litter fungi, especially saprophytic fungi [START_REF] Schneider | Feeding biology of oribatid mites: a minireview. Phytophaga XIV: Acarine Biodiversity in the Natural and Human Sphere[END_REF][START_REF] Crowther | Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent[END_REF]2011). The graphical lasso method detected this link showing that changes in the composition of saprophytic fungi lead to a change in the oribatid mite assemblages. As expected, the β-diversity of bacteria correlated to that of bacterivore nematodes, which reflects this known trophic interaction [START_REF] Ettema | Soil Nematode Diversity: Species Coexistence and Ecosystem Function[END_REF][START_REF] Wardle | The influence of biotic interactions on soil biodiversity[END_REF]. Moreover, the β-diversity of herbi/fungivore nematodes correlated to that of symbiotic fungi. The link between the β-diversity of oribatid mites and springtails might be explained by mite predation of springtails [START_REF] Ferguson | Dynamics of springtail and mite populations: The role of density dependence, predation, and weather[END_REF]. Interestingly, we revealed a link between the β-diversity of oribatid mites and symbiotic fungi. This result suggests that mite assemblages could be influenced by fungi spatial distribution through trophic interactions, which have been so far very poorly documented [START_REF] Gange | Actions and Interactions of Soil Invertebrates and Arbuscular Mycorrhizal Fungi in Affecting the Structure of Plant Communities[END_REF]. Interestingly, our analysis also showed a strong partial correlation (the strongest partial correlation: 0.365) between the βdiversities of saprophytic fungi and bacteria. Many clades of these two groups exploit the same resource (in particular cellulose, which represents 30-50 % of plant dry weight, [START_REF] Whipps | Microbial interactions and biocontrol in the rhizosphere[END_REF][START_REF] De Boer | Living in a fungal world: Impact of fungi on soil bacterial niche development[END_REF]) which thus creates an indirect relationship between bacteria and saprophytic fungi, through an unmeasured confounding effect. The relationship uncovered between bacteria and symbiotic fungi could be attributed to the fact that bacteria can assist mycorrhiza by colonising the extraradical hyphae or by living in the cytoplasm of mycorrhizal fungi [START_REF] Bonfante | Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions Rhizosphere: the narrow zone of soil surrounding living roots[END_REF][START_REF] Haq | The interactions of bacteria with fungi in soil: emerging concepts[END_REF].

Conclusions

The rise of environmental DNA metabarcoding and the ever-increasing availability of databases on species co-occurrence have opened up a new era in quantitative and predictive ecology.

Comprehensive species lists of taxa are necessary, but not sufficient to provide information on how co-occurring species interact and whether multi-trophic interactions shape community assembly. We have developed a method that could reveal how trophic groups influence each other and respond to environmental variation. As such our method helps uncover potential causes of the compositional turnover of species groups from a multi-trophic interaction perspective. Gathering informative expert knowledge from literature review or using automatic methods should then pave the way to understanding the fine-scale structure of multi-trophic assemblages and obtaining a more holistic picture of biodiversity. PCA Appendix 3 : Statistical analysis using the true-turnover component of the β-diversity

Figure caption

We ran the statistical analysis on the true turnover component of the β-diversity (Baselga 2010) of each predefined trophic group. while the larger amount of β-diversity was due to true-turnover (Fig. 9) and on average, 80% of the βdiversity across trophic groups.The partial correlations estimated between the true turnover component of the βdiversity of each predefined trophic group and environmental distances were all positive except one coefficient (Fig. S10,Fig. S11, Fig. S12, table S4). The estimated partial correlation network had a connectance of 0.60 and was composed of 33 undirected edges (i.e. partial correlation coefficients>0) out of 55 possible edges and 11 nodes (9 trophic groups and 2 environmental variables). The mean value of non null partial correlation coefficients was 0.133, the median was 0.102 and the maximum 0.459.

Saprophytic fungi seemed to be the most influential group in conditioning the β-diversity of the others group (highest degree value, 9, and highest weighted degree value, 1.37, Fig. S12). Environmental variables had a moderate impact on the β-diversity of the trophic groups (degree of 6 for the first PCA axis, 4 for the second PCA axis and whereas the mean degree of the partial correlation network was 6; weighted degree of 1.13 for the first PCA-axis, 0.381 for the second pca axis node whereas the mean value is 0.759).

The probability of observing a non-null partial correlation between the β-diversity of a trophic group and the environmental distance was 0.44 (8 edges linking environmental nodes to the trophic groups nodes and 18 potential edges) whereas the probability of observing a link between the β-diversity of any two trophic groups was 0.67 (24 edges and 36 potential edges), highlighting the weaker influence of environmental variables on the true turnover component of the β-diversity of the trophic groups. 

(

  GSL) and number of frost days based on daily maps of snow cover at 15 m resolution for 5 years falling between 2000 and 2014 and air temperature values extracted from the SAFRAN meteorological model developed by Meteo France for the French Alps[START_REF] Durand | Reanalysis of 44 yr of climate in the French Alps (1958-2002): Methodology, model validation, climatology, and trends for air temperature and precipitation[END_REF]). More methodological details and validation results for the snow cover model are available in[START_REF] Carlson | Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities[END_REF]. For each sub-plot, topsoil (0-10 cm) characteristics were determined from the average values obtained from three soil samples collected in July/August 2012, air-dried and then sieved at 2mm. Fine-scale topography and associated parameters (topographic wetness index and slope) were inferred from airborne LIDAR data acquired the year of sampling. Mean soil pH over the gradient was 5.40 (sd 0.300) whereas mean soil temperature over the year was 6.06°C (sd 2.84). The environmental distances between sub plots were estimated with Euclidean distances from the first two axes of a principal component analysis run for all produced (and normalised) environmental variables (the variance captured by the first two axes was 34% and 25% respectively, the first axis roughly represented the climatic conditions whereas the second axis roughly represented the soil conditions, see Appendix 2 for more details).

Figure 1 :

 1 Figure 1: Design and results of the simulation assessing the impact of biotic interactions on the marginal and partial correlation of the β-diversity values of different trophic levels. (a) the trophic network used for the simulation, composed of six trophic levels. The indegree of each node is one plus an integer randomly drawn from a Poisson law of parameter 1.0 (except for the basal species). (b) Partial correlation network built using the median values of the partial correlations (inferred using the graphical lasso) between the β-diversity values of different trophic levels. (c) Marginal correlation networks built using the median values of the Pearson correlations between the β-diversity values of different trophic levels. (d) Partial correlation coefficient (inferred using the graphical lasso) between the β-diversity values of two trophic levels as a function of the shortest path length between these trophic levels. (e) Marginal Pearson correlation coefficient between the β-diversity values of two trophic levels as a function of the shortest path length between these trophic levels.

Figure 2 :

 2 Figure 2: Undirected partial correlation network inferred using the graphical lasso method between the β-diversity of the major trophic groups constituting soil biodiversity and the environmental distances. Each node represents the β-diversity of a trophic group or an environmental distance. Here, only the partial correlations above the median value of the non-null partial correlation coefficients (0.106) are shown. The non-filtered network is presented in Figure S1. Edge thickness is proportional to the value of the partial correlation coefficient and the partial correlation coefficients are all positive.

Figure 3 :

 3 Figure 3: Properties of the inferred network. The degree (left panel) is the number of neighbours of nodes in a graph (here, the undirected partial correlation network). It measures the number of variables that are conditionally dependent on the variable associated with this node. The weighted degree (right panel) is the sum of the partial correlation coefficients attached to the edges adjacent to this node. Dashed lines represent the mean values of degree and weighted degree.

  Figure 1

Figure S1

 S1 Figure S1 Scree plot of eigenvalues on the principal component on environmental variables

Figure S3

 S3 Figure S3Plots represented on the first factorial plan on the principal component analysis. The color of the points correspond to their altitude.

Figure S4

 S4 Figure S4 Design and results of the simulation assessing the impact of biotic interactions on the marginal and partial correlation of the β-diversity values of different trophic levels for another shape of the relationship linking the probability of presence of a consumer species with its number of available preys. (a) Two different shapes of the relationship, the value used in the following plots is r=1/3, while the main text r=1 (b) Partial correlation network built using the median values of partial correlations (inferred using Glasso) between the β-diversity values of different trophic levels. (c) Marginal correlation networks built using the median values of the Pearson correlations between the β-diversity values of different trophic levels. (d) Partial correlation coefficient (inferred using the graphical lasso) between the β-diversity values of two trophic levels in function of the shortest path length between these trophic levels. (e) Marginal Pearson correlation coefficient between the β-diversity values of two trophic levels in function of the shortest path length between these trophic levels.

Figure S5

 S5 Figure S5Undirected partial correlation network between β-diversity of the major trophic groups constituting of soil biodiversity and environmental distances. Each node represent the β-diversity of a trophic group or an abiotic environmental distance. Each edge represent a non-nul partial correlation between the variables associated to each node and was estimated using a graphical lasso. Consequently, if two nodes are disconnected, then the associated variables (β-diversity or environmental distances) are conditionally independent. The connectance of the network is 0.618.

Figure S6

 S6 Figure S6 Histogram of the partial correlation coefficients estimated between β-diversity of major trophic groups constituting of soil biodiversity and environmental distances. Partial correlation coefficients are all positive.

Figure S7

 S7 Figure S7Histogram of the natural logarithm of the numbers of Operational Taxonomic Units (OTUs) assigned to each trophic group.

Figure S8

 S8 Figure S8 Number of OTUs per trophic group in function of the altitude of the plots

Figure S9

 S9 Figure S9Mean true turnover and nested turnvoer components of the Jaccard index for each trophic group.

Figure S10

 S10 Figure S10 Undirected partial correlation network inferred by the graphical lasso method between the true turnover component of the β-diversity of the major trophic groups constituting of soil biodiversity and the environmental distances. Each node represent the β-diversity of a trophic group or an environmental distance. Here, are only shown the partial correlations above the median value of the non-null partial correlation coefficients (0.102). The non-filtered network is presented in Figure S11. Edge thickness is proportional to the value of the partial correlation coefficient and the partial correlation coefficients are all positive.

Figure S11

 S11 Figure S11 Undirected partial correlation network inferred by the graphical lasso method between the true turnover component of the β-diversity of the major trophic groups constituting of soil biodiversity and the environmental distances. Each node represent the β-diversity of a trophic group or an environmental distance. The connectance of the graph is 0.600 . Edge thickness is proportional to the value of the partial correlation coefficient and the partial correlation coefficients are all positive.

Figure S12

 S12 Figure S12 Histogram of the partial correlation coefficients estimated between the true turnover component of the βdiversity of major trophic groups constituting of soil biodiversity and environmental distances. Partial correlation coefficients are all positive.

Figure S13

 S13 Figure S13 Properties of the inferred network. The mean degree (left panel) is the number of neighbors of nodes in a graph (here, the undirected partial correlation network). It measures the number of variables that are conditionally dependent to the variable associated to this node. The weighted degree (right panel) is the sum of the partial correlation coefficients attached to the edges adjacent this node.

  

  

  within four hours after sample collection to prevent microbial growth.DNA was extracted twice for each sample. Blank extraction controls were included in the extraction process (using solely phosphate buffer as the template).

	Molecular analyses -Soil biodiversity was estimated using four DNA markers. Universal markers
	such as 18S (amplifying all Eukaryotes, 18S nuclear rDNA) and 16S (amplifying all Bacteria, 16S

rRNA) were used to obtain a general overview of the multi-trophic composition of the sites.

Another two markers focus on Eukaryota diversity by targeting fungi (ITS1) and vascular plants (Chloroplast trnL-P6 loop), respectively. For each DNA extract, PCRs were run in duplicate leading to four PCR replicates per core sample. For each marker, PCM products were purified (MinElute™ PCR purification kit, Qiagen) with extraction and PCR blank controls included in the mix. Highthroughput sequencing of eukaryotes and plant amplicons was performed on an Illumina HiSeq 2500 platform (2x150 bp paired-end reads for Eukaryotes and 2*200pb for plants) while fungal, archae and bacterial amplicons (200-350 bp) were sequenced on an Illumina MiSeq (2 x 250 bp paired-end reads) platform. Data curation is presented in Appendix 1. We pooled the samples together per subplot in order to obtain a single community per sub-plot and converted the data into presence-absences. The raw and curated sequencing data as well as associated metadata are available on the Dryad Digital Repository under accession XXX (to be provided on manuscript acceptance) and the summary statistics are presented in table

Table S2

 S2 Correlations between the environmental variables and the first two axes of the Principal Component Analysis

		axis 1	PCA axis 2
	pH	-0.417	-0.368
	Gravel mass	0.791	-0.277
	Apparent density	0.235	-0.781
	Total porrosity rate	0.264	0.789
	Water Filled pore space -0.76	-0.23
	Leaching NO3	-0.398	-0.029
	Leaching NH4	0.0901	0.791
	N rate	0.0542	-0.933
	C rate	-0.587	0.713
	C/N ratio	-0.332	0.896
	Rate organic matter	0.332	0.863
	N NO3	-0.341	-0.368
	N NH4	-0.512	0.264
	N TDN	0.257	-0.106
	N NH4 product	-0.158	-0.0632
	Year soil temperature	-0.823	0.00538
	FrostDays	-0.858	-0.196
	Growing Season Length -0.983	-0.0919
	Topographic wetness index	-0.652	-0.0833
	slope	0.28	-0.343
	Topographic position indexPI10m_mean_topo	0.35	0.101
	Altitude Digital Elevation Model	0.98	0.0867
	Mean solar radiation	-0.964	-0.058
	Variance Growing Season Length	0.834	0.347

Table S3

 S3 Partial correlation between β-diversity values of trophic groups constituting of soil diversity and abiotic environmental distances inferred using Glasso.

		Frost	Soil	Plants	Bacteria Herbi/Fun	Bacterivor	Oribatida Saprophyt	Symbiotic	Pathogeni	Springtails
						givore	e		ic fungi	fungi	c fungi	
						nematodes	nematodes					
	Frost	0	0	0	0	0.222	0	0.0358	0.0149	0	0.3	0.327
	Soil	0	0	0.0347	0	0	0	0.0807	0	0	0	0.29
	Plants	0	0.0347	0	0	0.0274	0.101	0.197	0.0914	0.169	0.166	0.0284
	Bacteria	0	0	0	0	0	0.149	0	0.365	0.23	0	0
	Herbi/Fun	0.222	0	0.0274	0	0	0.0833	0.084	0.084	0.11	0	0.0238
	givore											
	nematodes											
	Bacterivor	0	0	0.101	0.149	0.0833	0	0	0.0708	0.0739	0.0994	0
	e											
	nematodes											
	Oribatida	0.0358	0.0807	0.197	0	0.084	0	0	0.185	0.182	0.14	0.116
	Saprophyt	0.0149	0	0.0914	0.365	0.084	0.0708	0.185	0	0.234	0.252	0
	ic fungi											
	Symbiotic	0	0	0.169	0.23	0.11	0.0739	0.182	0.234	0	0.102	0
	fungi											
	Pathogeni	0.3	0	0.166	0	0	0.0994	0.14	0.252	0.102	0	0.0541
	c fungi											
	Springtail	0.327	0.29	0.0284	0	0.0238	0	0.116	0	0	0.0541	0
	s											
		Frost	Soil	Plants	Bacteria Herbi/Fun	Bacterivor	Oribatida Saprophyt	Symbiotic	Pathogeni	Springtails
						givore	e		ic fungi	fungi	c fungi	
						Nematode	nematodes					
						s						
	Frost	1	0.305	0.581	0.405	0.648	0.497	0.672	0.678	0.575	0.772	0.703
	Soil	0.305	1	0.392	0.235	0.325	0.0994	0.443	0.33	0.27	0.347	0.545
	Plants	0.581	0.392	1	0.644	0.585	0.611	0.775	0.778	0.78	0.774	0.546
	Bacteria	0.405	0.235	0.644	1	0.47	0.642	0.688	0.857	0.808	0.687	0.34
	Herbi/Fun	0.648	0.325	0.585	0.47	1	0.531	0.64	0.664	0.657	0.626	0.513
	givore											
	nematodes											
	Bacterivor	0.497	0.0994	0.611	0.642	0.531	1	0.573	0.675	0.656	0.645	0.346
	e											
	nematodes											
	Oribatida	0.672	0.443	0.775	0.688	0.64	0.573	1	0.836	0.818	0.808	0.622
	Saprophyt	0.678	0.33	0.778	0.857	0.664	0.675	0.836	1	0.888	0.864	0.553
	ic fungi											
	Symbiotic	0.575	0.27	0.78	0.808	0.657	0.656	0.818	0.888	1	0.81	0.476
	fungi											
	Pathogeni	0.772	0.347	0.774	0.687	0.626	0.645	0.808	0.864	0.81	1	0.628
	c fungi											
	Springtail	0.703	0.545	0.546	0.34	0.513	0.346	0.622	0.553	0.476	0.628	1
	s											

Table S4 Marginal (Pearson correlation) between β-diversity values of trophic groups constituting of soil diversity and abiotic environmental distances.

Table S5

 S5 Partial correlation between the true turnover component of β-diversity values of trophic groups constituting of soil diversity and abiotic environmental distances inferred using Glasso.Table S6 Marginal (Pearson correlation) between the true turnover component of β-diversity values of trophic groupsconstituting of soil diversity and abiotic environmental distances.

		Frost	Soil	Plants	Bacteria Herbi/Fun	Bacterivor	Oribatida Saprophyt	Symbiotic	Pathogeni	Springtails
						givore	e		ic fungi	fungi	c fungi	
						nematodes	nematodes					
	Frost	0	0.0122	0.1	0	0	0	0.459	0.129	0	0.0725	0.359
	Soil	0.0122	0	0.0161	0	0.0442	0	0	0	0	0	0.164
	Plants	0.1	0.161	0	0	0	0	0.0289	0.0314	0.112	0.162	0.0796
	Bacteria	0	0	0	0	0.0327	0.0354	0	0.0302	0.275	0	-0.0744
	Herbi/Fun	0	0.0422	0	0.0327	0	0.139	0	0.104	0.0896	0.00466	0
	givore											
	nematodes											
	Bacterivor	0	0	0	0.0354	0.139	0	0	0.0457	0.2	0.0353	0
	e											
	nematodes											
	Oribatida	0.459	0	0.0289	0	0	0	0	0.122	0	0	0.0181
	Saprophyt	0.129	0	0.0314	0.302	0.104	0.0457	0.122	0	0.292	0.321	0.0268
	ic fungi											
	Symbiotic	0	0	0.112	0.275	0.0896	0.2	0	0.292	0	0.254	0.0366
	fungi											
	Pathogeni	0.0725	0	0.162	0	0.00466	0.0353	0	0.321	0.254	0	0
	c fungi											
	Springtail	0.359	0.164	0.0796	-0.0744	0	0	0.0181	0.0268	0.0366	0	0
	s											
		Frost	Soil	Plants	Bacteria Herbi/Fun	Bacterivor	Oribatida Saprophyt	Symbiotic	Pathogeni	Springtails
						givore	e		ic fungi	fungi	c fungi	
						Nematode	nematodes					
						s						
	Frost	1	0.305	0.503	0.313	0.102	0.117	0.734	0.619	0.471	0.551	0.637
	Soil	0.305	1	0.363	0.0432	0.216	-0.0226	0.249	0.255	0.207	0.158	0.367
	Plants	0.503	0.363	1	0.276	0.231	0.235	0.416	0.535	0.54	0.557	0.417
	Bacteria	0.313	0.0432	0.276	1	0.395	0.439	0.346	0.743	0.732	0.593	0.0491
	Herbi/Fun	0.102	0.216	0.231	0.395	1	0.398	0.0963	0.468	0.467	0.396	0.158
	givore											
	nematodes											
	Bacterivor	0.117	-0.0226	0.235	0.439	0.398	1	0.196	0.499	0.557	0.456	0.0921
	e											
	nematodes											
	Oribatida	0.734	0.249	0.416	0.346	0.0963	0.196	1	0.556	0.448	0.463	0.461
	Saprophyt	0.619	0.255.	0.535	0.743	0.468	0.499	0.556	1	0.835	0.799	0.422
	ic fungi											
	Symbiotic	0.471	0.207	0.54	0.732	0.467	0.557	0.448	0.835	1	0.768	0.382
	fungi											
	Pathogeni	0.551	0.158	0.557	0.593	0.396	0.456	0.463	0.799	0.768	1	0.331
	c fungi											
	Springtail	0.637	0.367	0.417	0.0491	0.158	0.0921	0.461	0.422	0.382	0.331	1
	s											
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Appendices Appendix 1 : Molecular and bioinformatics analyses

Data were then curated using the OBITools software package [START_REF] Boyer | obitools: A unix-inspired software package for DNA metabarcoding[END_REF] together with customs R scripts (R Core Team 2015) following the procedure described in Zinger et al. (2017). Paired-end reads were assembled, assigned to their respective samples/marker and dereplicated. Low-quality sequences were excluded. For the remaining ones we computed pairwise dissimilarities between sequences (i.e. the number of mismatches, allowed to be 0-3) using the Sumatra algorithm [START_REF] Mercier | SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences[END_REF], and formed Operational Taxonomic Units OTUs using the Infomap community detection algorithm [START_REF] Rosvall | Maps of random walks on complex networks reveal community structure[END_REF]. Abundance of OTUs was defined as the sum of read abundances of sequences belonging to them. In subsequent analyses, each OTU was represented by its most abundant sequence. Each OTU was assigned a taxonomic clade using the ecotag program [START_REF] Boyer | obitools: A unix-inspired software package for DNA metabarcoding[END_REF]) using a set of reference databases to refine taxonomic annotations. (e.g. GENBANK, UNITE database, [START_REF] Abarenkov | The UNITE database for molecular identification of fungi -recent updates and future perspectives[END_REF] We paid particular attention to minimize PCR/sequencing errors, contaminant and false positive sequences as well as potential non-functional PCRs by using the procedure described in Zinger et al. (2017). PCR replicates were finally summed for each samples. 35950935 † this study § § White, T. J., T. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York. ‡ Fliegerova, K., Tapio, I., Bonin, A., Mrazek, J., Callegari, M. L., Bani, P., et al. (2014). Effect of DNA extraction and sample preservation method on rumen bacterial population. Anaerobe, 29, 80-84. § Guardiola, M., Uriz, M. J., Taberlet, P., Coissac, E., Wangensteen, O. S., & Turon, X. (2015). Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons. PLoS One, 10, e0139633. ¶ Taberlet, P., Gielly, L., Pautou, G., & Bouvet, J. (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17, 1105-1109. † † All PCRs were preceded by an initial denaturation at 95°C (10 min)

Bacteria

Table S1 Markers characteristics, PCR conditions and sequencing technology

Appendix 2 : Climatic and soil variables Climatic variables: We described the bioclimatic conditions of the gradient using four variables describing both thermal and nival regimes: soil temperature, solar radiations, Growing Season Length (hereafter "GSL") and number of frost days. Mean annual soil temperature was recorded using HOBO stations located at the center of each sampling site.

Solar radiation was averaged from simulations of solar radiation using a 2-m digital elevation model (DEM) [START_REF] Carlson | Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities[END_REF] derived from a LIDAR acquisition. The number of frost days, i.e. the number of snow-free days with air temperature below 0°C, was computed as described in [START_REF] Carlson | Modelling snow cover duration improves predictions of functional and taxonomic diversity for alpine plant communities[END_REF]. GSL, the number of snow-free days with a daily mean air temperature over 0°C between snow melt-out and August 15, was computed as described in Chalmandrier et al. 2016. Topographical variables: Slope, Topographic Wetness Index (TWI) and Topographic Position Index (TPI) were inferred with the DEM derived from the airborne LiDAR data acquired the year of sampling.

Soil analyses were conducted in summer 2012 from soil cores taken at the center of each subplot (1m25x1m25). Each of them were weighed and 5mm-sieved (Legay et al. 2014) and processed for quantifying soil moisture, soil organic matter content, pH, soil texture (gravel mass and apparent density after 2mm sieving) and soil nutrients (ammonium (soil NH4+), nitrates (soil NO3-), total dissolved nitrogen (TDN), and dissolved organic nitrogen (DON)) from 0.5m K2SO4 soil extracts (Jones et al. 2004;Legay et al. 2014). Soil subsamples were added 100 mL distilled water to saturate each soil core and calculate the waterfilled pore space (WFPS) and then air dried and ground to measure total