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Methods  Combining the recent data on land cover 
and land use intensities, we applied an expert-based 
hierarchical classification approach and identified 
land systems that are common in Europe and mean-
ingful for studying biodiversity. We tested the ben-
efits of using this map as compared to land cover 
information to predict the distribution of bird species 
having different vulnerability to landscape and land 
use change.
Results  Next to landscapes dominated by one land 
cover, mosaic landscapes cover 14.5% of European 
terrestrial surface. When using the land system map, 
species distribution models demonstrate substantially 
higher predictive ability (up to 19% higher) as com-
pared to models based on land cover maps. Our map 
consistently contributes more to the spatial distribu-
tion of the tested species than the use of land cover 
data (3.9 to 39.1% higher).
Conclusions  A land systems classification includ-
ing essential aspects of landscape and land manage-
ment into a consistent classification can improve upon 
traditional land cover maps in large-scale biodiversity 
assessment. The classification balances data availabil-
ity at continental scale with vital information needs 
for various ecological studies.

Keywords  Land system · Land management · Land 
use intensity · Biodiversity assessment · Species 
distribution model · Large-scale

Abstract 
Context  While land use change is the main driver 
of biodiversity loss, most biodiversity assessments 
either ignore it or use a simple land cover representa-
tion. Land cover representations lack the representa-
tion of land use and landscape characteristics relevant 
to biodiversity modeling.
Objectives  We developed a comprehensive and 
high-resolution representation of European land sys-
tems on a 1-km2 grid integrating important land use 
and landscape characteristics.

Supplementary Information  The online version of this 
article contains supplementary material which is available 
at (https://​doi.​org/​10.​1007/​s10980-​021-​01227-5).
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Introduction

Landscape ecology envisions the landscape as 
the outcome of the complex relationship between 
humans and nature (Opdam et al. 2018). Land sys-
tem science defines land systems, similarly, as the 
terrestrial component of the Earth system encom-
passing all processes and activities related to the 
human use of land, including socioeconomic, 
technological and organizational investments and 
arrangements (Verburg et  al. 2013a). Land system 
change is seen as both a cause and consequence of 
socio-ecological processes, rather than as a sole 
outcome, or emergent property, of human–envi-
ronment interactions (Verburg et  al. 2015). Land 
system science and landscape ecology share a lot 
of concepts of interest: the acknowledgement of 
human activities as a main actor of land use and 
landscape change (Lambin et  al. 2001; Turner II 
et al. 2007; Roy Chowdhury and Turner 2019); the 
importance of addressing multiple spatial and tem-
poral scales (Veldkamp and Lambin 2001; Dear-
ing et al. 2010); the attention for human benefits of 
nature through the concepts of ecosystem services 
and Nature’s contributions to People (Wu 2013) and 
the attention for sustainability solutions (Nielsen 
et al. 2019). At the same time, landscape ecologists 
have been putting a strong emphasis on character-
izing landscape pattern across spatial and temporal 
scales (O’Neill et  al. 1988; Li and Wu 2004; Wu 
2004), and understanding how landscape structure 
and composition emerge from socio-ecological pro-
cesses and impact the functioning and performance 
of ecosystems (Nagendra et al. 2004). Land system 
science has, in contrast, often focused on the char-
acterization and explanation of land use change at 
the level of individual pixels (observed from remote 
sensing), plots or at the level of individual or collec-
tive actors (Overmars and Verburg 2006; Manson 
2007), with less specific attention for the landscape 
patterns and structures. Despite common analytical 
methods, these different foci can lead to different 
representations of the landscape and its dynamics, 
having repercussions for interpretation and assess-
ment of drivers and impacts of land use and land-
scape changes.

While both disciplines acknowledge the role 
of human use of land, both often represent land 

use and landscapes in empirical studies mostly by 
land cover. This is a direct result of the relative 
ease of observing land cover from remote sensing 
while land use intensity or land use management 
is more difficult to characterize and data are often 
absent (Kuemmerle et  al. 2013; Erb et  al. 2017). 
This is especially the case for larger scale assess-
ments (Verburg et al. 2013b). Rather than represent-
ing the landscape and its composition, the dominant 
land cover is used to represent the land system and 
landscape. Some approaches use a representation 
that describes the different land cover fractions, 
but ignoring their spatial configuration. It is well-
known that many of the Earth’s landscape are mosa-
ics of different land covers, encompassing novel 
ecosystems (Perring and Ellis 2013). Although 
coarse-scale land cover representations are always 
constrained in thematic resolution, ignoring these 
important mosaic landscapes is an important 
omission.

More recently land system representations have 
been proposed to better capture human use of the 
land, or some aspects of landscape configuration. For 
example, Ornetsmüller et  al. (2018) distinguished 
permanent agricultural use from shifting cultiva-
tion in a land systems classification for Laos while 
Debonne et  al. (2018) represented smallholders vs 
large scale land acquisitions explicitly given their dif-
ferent drivers and social and environmental impacts. 
On a global scale, Ellis and Ramankutty (2008) and 
Václavík et  al (2013) used a wide range of environ-
mental and demographic conditions to identify arche-
typical combinations of socio-ecological conditions 
defining land use, while van Asselen and Verburg 
(2012) used information on land cover, input inten-
sity and livestock to subdivide global land cover into 
land systems. These land system representations have 
been created for various purposes and, while mak-
ing the best use of available data, improved over land 
cover classifications by including specific aspects rel-
evant to landscape ecology and land system science. 
However, in spite of this progress, most global assess-
ments for biodiversity such as for IPBES and IPCC 
are still based on relatively rough and classical land 
cover representations.

In particular, most large-scale biodiversity mod-
elling (especially those using species distribution 
modelling, SDM) have so far either focused on the 
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impacts of climate change (Thuiller et  al. 2019) 
or on climate change with some broad land cover 
classes (Thuiller et  al. 2014). This has been done 
in SDM by simple filtering species distributions by 
land cover classes (Maiorano et  al. 2013; Powers 
and Jetz 2019) or land use types (Newbold 2018). 
Another approach in biodiversity assessments is to 
assign expert based values to land use, based on the 
observed or expected effect it has on biodiversity, 
or based on the level of naturalness (Pouzols et al. 
2014; Di Minin et  al. 2016). Such approaches not 
only require a well-established relationship between 
different species and the land use impact, but also 
neglect some landscape characters and land man-
agement that play important roles in biodiversity. 
While some large-scale biodiversity assessments 
account for nitrogen application and habitat frag-
mentation as additional stressors (Schipper et  al. 
2020), these are independently addressed from land 
cover information without using an integrated land-
scape approach.

There were several reasons to ignore land use 
or land cover in these models that relate species 
occurrence (or abundance) to environmental vari-
ables. The first one was that since land cover and 
land use are mainly driven by climate, they do not 
bring much additional information, and rather cre-
ate some multi-collinearity issues when combined 
with climatic variables in SDMs (Thuiller et  al. 
2004). The second reason is that past land cover 
or land use maps were generally of poor thematic 
resolution (e.g. forest, urban, cropland, grassland 
and other) which prevent to estimate the tight asso-
ciation that could arise between a given species and 
for instance extensive croplands. Still, some recent 
exercises have shown the interest of using detailed 
land use classification to predict species extinction 
at global scale (Powers and Jetz 2019). IPBES (Diaz 
et  al. 2019) also identified land use change as the 
main driver of biodiversity loss and several papers 
have argued for inclusion of land use change as 
part of biodiversity assessments (Titeux et al. 2016; 
Randin et al. 2020).

A way to possibly advance large-scale biodiver-
sity assessments is to provide a land system clas-
sifications map that includes more ecologically 
relevant variables describing landscape and land 

management conditions. In this paper we aim to 
present a continental-scale land system classifica-
tion for Europe making best use of available data 
that moves beyond the many assessments of biodi-
versity that are using rough land cover classes and 
relationships between land cover and habitat for 
species (Newbold 2018; Powers and Jetz 2019). We 
focus our analysis on including aspects of landscape 
structure and land use intensity. There is sufficient 
evidence that land use intensity (Beckmann et  al. 
2019) and landscape structure (Walz and Syrbe 
2013; Boesing et al. 2017) are strong determinants 
of the land use impact on biodiversity. Recent stud-
ies showed the impact of forest management types 
on species richness (Chaudhary et al. 2016) and the 
differences of accounting for forest management in 
addition to forest cover change on global biodiver-
sity (Schulze et  al. 2020). Other studies indicated 
the role of agricultural management (Beckmann 
et  al. 2019) and livestock grazing (Zhang et  al. 
2017; Li et al. 2019), as well as the importance of 
landscape mosaic for conservation (Harvey et  al. 
2008) and ecosystem service provisioning (Dainese 
et al. 2019). While land use studies often character-
ize urban area by the amount of build-up land (Seto 
et  al. 2012; van Vliet et  al. 2019) the structure of 
urbanization has a strong impact on biodiversity 
(Malkinson et  al. 2018). In peri-urban areas the 
build-up land cover is often not vast, but the wide-
spread disturbance through human activities and 
infrastructure causes much larger declines in bio-
diversity than the overall build-up area would sug-
gest (Buczkowski and Richmond 2012; Concepción 
et al. 2016).

The land system typology presented in this paper 
aims at incorporating important elements of the land-
scape and land system relevant to biodiversity. To 
demonstrate the added value of such representation 
compared to the often-used land cover classifications, 
we used bioclimatic variables and the land system map 
to model the species distribution on nine selected bird 
species that have wide habitat range across Europe 
with different vulnerability to land use and landscapes. 
We hypothesized that the predictive ability of models 
and variable contribution to the spatial distribution is 
improved by the new land system typology.
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Table 1   Overview of land systems

Land system Subdivisions Description of systems

1. Settlement sys-
tems

1.1 Low-intensity settlement Low-medium density, far away from urban cores
1.2 Medium-intensity settlement Medium density or adjacent to urban core
1.3 High-intensity settlement High imperviousness

2. Forest systems 2.1 Low-intensity forest High probability as primary forest and low/medium wood production
2.2 Medium-intensity forest Low probability as primary forest and medium wood production
2.3 High-intensity forest Low probability as primary forest and high wood production

3. Cropland systems 3.1 Low-intensity arable land Low inorganic fertilizer input, small field size
3.2 Medium-intensity arable land Medium inorganic fertilizer input, medium field size
3.3 High-intensity arable land High inorganic fertilizer input, large field size
3.4 Low-intensity permanent crops Vineyards, olive graves, fruit gardens, with understory vegetation, 

this class also has mixed annual and permanent crops
3.5 High-intensity permanent crops Vineyards, olive graves, fruit gardens, without understory

4. Grassland systems 4.1 Low-intensity grassland Low density of livestock, low inorganic fertilizer input, and low 
mowing frequency

4.2 Medium-intensity grassland Medium density of livestock, medium use of inorganic fertilizer, and 
medium mowing frequency

4.3 High-intensity grassland High density of livestock, high inorganic fertilizer input, and/or high 
mowing frequency

5. Shrub Areas dominated by shrub land cover or similar
6. Rocks and bare 

soil
Areas dominated by rocks, bare soil, or similar

7. Mosaic systems 7.1 Forest/shrub and cropland mosaics Areas with small parcels of forest/shrubs and cropland
7.2 Forest/shrub and grassland mosaic Areas with small parcels of forest/shrubs and grassland
7.3 Forest/shrubs and bare mosaics Areas with small parcels of forest/shrubs and bare land
7.4 Forest/shrubs and mixed agricul-

ture mosaics
Areas with small parcels of forest/shrubs and mixed areas of cropland 

and grassland
7.5.1 Low-intensity agricultural 

mosaic (cropland and grassland)
Low density of inorganic fertilizer input, small field size, and low 

livestock density
7.5.2 Medium-intensity agricultural 

mosaic (cropland and grassland)
Medium use of inorganic fertilizer, medium field size, and medium 

livestock density
7.5.3 High-intensity agricultural 

mosaic (cropland and grassland)
High inorganic fertilizer input, large field size, and/or large livestock 

density
8. Snow, water, 

wetland systems
8.1 Glaciers Areas dominated by glaciers, wetland, or water body
8.2 Water body
8.3 Wetland

Materials and methods

Classification overview

We used an expert-based land system classification 
approach based on variables for which there is evi-
dence of the effect on biodiversity. We operation-
alized land systems as areas that host one or more 
land use activities at the landscape level having an 
impact on species occurrence and biodiversity. We 
focused, consistent with traditional classifications, on 

the following major land systems groups (Table  1): 
water and wetland systems, human settlement sys-
tems, forest systems, grassland systems, cropland 
systems, and mosaic systems. These land systems 
are selected based on common land uses in Europe, 
are represented by major groups in the continent’s 
land use and land cover datasets (ESA and UCLou-
vain 2010; European Environment Agency 2018) and 
by expert opinions towards their importance to study 
the impacts of land use on biodiversity. Particularly, 
the inclusion of mosaic system and the separation 
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of forest mosaics and agricultural mosaics is aimed 
at better capturing the fragmented forest habitat and 
agricultural composition that certain forest and agri-
cultural species are sensitive to (García-Navas and 
Thuiller 2020). We also have permanent crops as 
a sub-system in the cropland category because they 
can provide vital habitat for certain species and the 
management styles for permanent crops can gener-
ate distinctive biodiversity consequences (Bruggisser 
et al. 2010; Winter et al. 2018). The threshold of land 
cover extent for each land system was determined 
based on two criteria: it indicates the composition of 
land cover of the system (e.g., covers the majority of 
the pixel, or the mosaic combinations are meaning-
ful for certain species), and it captures small habitat 
area requirements. Residential systems also include 
those with relatively low fractions of build-up land as 
the impact of associated activities and infrastructure 
on species is often proportionally large (Buczkowski 
and Richmond 2012; Concepción et  al. 2016).These 
land systems were further classified based on differ-
ent land use intensity indicators. We also aggregated 
classes with small areas (the full expert-based hier-
archical classification procedure is included in Fig. 
S3). Our expert-based procedure, although tailored 
to the European conditions and for use in biodiver-
sity assessments, follows common patterns with other 
global and regional land system classifications (e.g. 
Ellis and Ramankutty 2008; van Asselen and Verburg 
2012; Herrero et al. 2014; Malek and Verburg 2017; 
Kikas et al. 2018).

We chose the spatial extent of the European Union 
(EU) with the United Kingdom (EU28 +), Norway, 
Switzerland, and the Western Balkans (Serbia, Kos-
ovo, North Macedonia, Montenegro, Albania, and 
Bosnia and Herzegovina). However, we excluded 
Iceland, Turkey and Europe’s Outermost regions and 
Overseas Countries (mostly islands not present on the 
European continent) due to data issues, the analytical 
interests, and their limited importance for assessing 
continental species and biodiversity. To the best of 
our knowledge, this is the most complete coverage of 
land cover and land use analysis at the European scale 
while most studies do not cover non-EU countries 
such as Switzerland, Norway, and the Balkans. Such 
continuity of coverage is important for modeling spe-
cies migration and projected changes due to climate 
change. We refer to this region as the non-EU region 
and the other parts as EU region.

We operated on a 1-km2 spatial resolution. 
Although some land cover data may have a more 
detailed resolution (e.g., Corine at 100  m or Glob-
Cover at 300  m), the pursuit for a finer resolution 
than 1-km2 is hampered by a lack of the high-reso-
lution data on land use intensity and management. 
Meanwhile, bio-climatic variables used for the large-
scale biodiversity assessment and species distribu-
tion modeling are derived from global interpolations 
across the multitude of existing climatic stations. 
These interpolations have been made at global scale 
at 1-km2 and are provided from web portals like 
WorldClim or CHELSA. Some species may be able 
to thrive in habitat patches smaller than 1-km2, how-
ever this character, at least in some cases, can be cap-
tured by the mosaic land systems that we represent in 
our typology. Therefore, a spatial resolution of 1-km2 
is an optimal choice for this study, considering data 
availability and usage for biodiversity assessment.

We complied and harmonized data of land cover 
composition and intensity indicators using a Geo-
graphic Information System based approach. Data 
were chosen based on the following principles: (1) 
they are publicly available, (2) we prioritized the 
highest spatial resolution and most recent date, (3) 
data produced at the European scale have priority 
over global datasets, (4) if the data were a result of 
downscaling, we ensure that no co-variates are used 
in the downscaling that would induce multi-colline-
arity with other variables often used in biodiversity 
modeling. (5) Global data were only used if previous 
criteria cannot be achieved and data gaps are appar-
ent in particular regions. We mostly relied on global 
data for the non-EU region. All maps were resampled 
to a 1-km2 spatial resolution using the Lambert azi-
muthal equal-area projection that is frequently used 
for European maps. The details of data and methods 
used for each system are discussed below (Overview 
see Tables 1, S3 and S4, Fig. S3).

Extent of land systems

For land cover extent, we used Copernicus products 
derived from remote sensing data, such as CORINE 
land cover 2018 (CLC) (European Environment 
Agency 2018) and Pan-European High Resolution 
Layer (HRL) thematic maps (i.e., imperviousness, 
forests, grassland, water & wetness) (European Envi-
ronment Agency 2015a, b, c, d). A global glacier 
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database was used for the extent of glaciers (Global 
Land Ice Measurements from Space (GLIMS) and 
National Snow and Ice Data Center 2012) (Table S3). 
We aggregated the HRL thematic maps from 20 m to 
1 km to derive the extent of (1) human settlement, (2) 
forests, (3) water and wetlands, and (4) grasslands. 
For the remaining land covers, including croplands 
(annual and permanent) and other land cover classes 
(e.g., shrubs, bareland and rocks) we used CLC maps 
to resample.

Classification thresholds based on the share of par-
ticular land cover within the 1-km2 pixel were chosen 
based on expert opinions for each system (Table 1). 
First, this enabled us to study land cover types that 
may affect species largely but appear on a smaller 
scale, such as settlement systems. In addition, we 
used indicators other than land cover composition 
to characterize these classes, among which one par-
ticular example is the peri-urban and villages that 
may have less built-up land than cropland and forest 
cover  (van Vliet et  al. 2019). Despite the small per-
centage, these classes may cause profound effects on 
species activities due to the continuity and irrevers-
ibility of human disturbances. Second, compared 
to most land cover classification that determines the 
class by the largest land cover, we used a threshold 
of 70% to classify areas dominated by forest, crop-
land, and grassland. This is to better describe these 
classes with homogeneity while defining landscapes 
with several different land cover classes as mosaics. 
A pixel that contains multiple land cover components 
smaller than 70% of the cell is classified as a mosaic 
system, which is further subdivided by its main land 
cover type. As we acknowledge that all these thresh-
olds are arbitrary and set to balance the importance of 
the land system components for biodiversity and the 
number of complex compound classes, we conducted 
a sensitivity analysis of the thresholds on the extent 
of land systems (Supplementary Material). We found 
only small changes in the overall patterns of land sys-
tems upon changing the thresholds within reasonable 
ranges.

Intensity of land systems

We used a range of metrics to measure land use inten-
sity and landscape characteristics (detailed intensity 
classification of each system can be found in the sup-
plementary material).

Human settlement systems

Urbanization in Europe undergoes multiple dimen-
sional changes in land cover, land use, and socio-eco-
logical activities (Shaw et al. 2020), and most recent 
changes are small incremental increases (van Vliet 
et  al. 2019). In comparison to current practices that 
use “built-up” land or a binary classification of urban 
and rural area (Seto et  al. 2012), we classified three 
intensity levels for settlement systems: urban core 
(high intensity), peri-urban (medium intensity), and 
villages (low intensity) based on the degree of imper-
viousness and spatial connectivity to urban core. 
We used the intensity of imperviousness (i.e., each 
cell has a value from 0 to 100%), namely artificial 
impermeable cover of soil, as a proxy of urbanization 
degree, following similar mapping exercises (Linard 
et al. 2012; van Asselen and Verburg 2012; Demuzere 
et al. 2019). In addition, we considered the adjacency 
to urban core areas when distinguishing peri-urban 
and rural settlements (Linard et al. 2012; Stürck et al. 
2018) (Fig. S4).

Forest systems

Forest management and forest types are important to 
accurately assess biodiversity (Chaudhary et al. 2016; 
Schulze et  al. 2020). We used wood production of 
Europe (Verkerk et  al. 2015) and the probability of 
finding primary forest (Sabatini et al. 2018) to charac-
terize the intensity of forest use in the EU region (Fig. 
S5). For the non-EU region, we extracted the forest 
classes from a global dataset (Schulze et  al. 2019). 
The three classes (i.e., primary, naturally regrown, 
and planted) were reclassified as low-intensity, 
medium-intensity, and high-intensity to fit our forest 
classification (while acknowledging these classes do 
not fully correspond).

Grassland systems

Three indicators were used to map the intensity of 
grazing grassland: livestock unit density, nitrogen 
input, and mowing frequency. We selected three 
ruminant livestock groups (i.e., cattle, goat, and 
sheep) from the global dataset on livestock density 
(Gilbert et al. 2018) and converted them to livestock 
unit (LSU) density (Eurostat 2013), which is the 
number of animals equivalent to one adult dairy cow 
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producing 3000 kg of milk annually (LSU/km2). The 
nitrogen application rate was calculated using a novel 
downscaling of statistical data by the Joint Research 
Center, which included mineral fertilizer input, the 
manure application and deposition by grazing ani-
mals. The indicator of mowing frequency represents 
the average number of annual mowing events in the 
period of 2000–2012 (Estel et  al. 2018). The LSU 
density and nitrogen application rates were reclas-
sified into three levels as low, medium, and high. 
This is based on the biodiversity dynamics relevant 
to nitrogen application rate (Kleijn et  al. 2009) and 
supported by other studies (van der Zanden et  al. 
2016; Estel et  al. 2018). When combining the three 
indicators, LSU was used as the primary indicator 
and then complemented by nitrogen and finally the 
mowing frequency (Fig. S6). For the non-EU region, 
we could only use LSU as the indicator due to data 
unavailability.

Cropland systems

Erb et al. (2013) and Kuemmerle et al. (2013) inven-
toried the conceptual basis of cropland intensity and 
provided a range of potential input and output indi-
cators. We focused on agricultural input alone, and 
chose nitrogen input and field size as indicators with 
high relevance for many species, to quantify the agri-
cultural intensity.

The nitrogen application rate was retrieved from 
the same source and reclassified into the same lev-
els as used in grassland system. For the field size, 
we used the field size map created by Tieskens et al. 
(2017) and reclassified into small, medium, and large 
fields. We used the nitrogen as primary intensity fac-
tor and the field size as secondary indicator (Fig. S7). 
If a cropland pixel had high nitrogen input it was clas-
sified as high-intensity cropland unless the field size 
was in the small class, and vice versa.

For the non-EU region, we used two global data-
sets. One is the global nitrogen application rate data-
set from EarthStat (Mueller et  al. 2012; West et  al. 
2014). The other one is the global field size map 
(Lesiv et  al. 2019). For Switzerland, we assumed 
cropland above 800 m as medium-intensity and below 
as high-intensity.

In addition to the intensity of annual crops, we sin-
gled out permanent crops because they have different 
management styles and effects on biodiversity. The 

understory between stripes of grapes and olive trees 
are an important indicator both for habitats and man-
agement styles (Bruggisser et al. 2010; Winter et al. 
2018). Therefore, the second land cover type identi-
fied in LUCAS (Eurostat 2018) was selected, repre-
senting the understory vegetation, as a biodiversity 
relevant indicator of management intensity (Fig. S8).

Mosaic systems

Pixels without dominant land cover types were clas-
sified as mosaic systems. Two sub-mosaic systems 
were classified: agricultural mosaics and forest/shrubs 
mosaics. Croplands and grasslands without tree cover 
were aggregated to agricultural mosaic systems. This 
sub-system was further classified into three agricul-
tural intensities: low, medium, and high. Two indica-
tors, LSU and nitrogen application rate from the same 
source as above, were used. LSU was used as the pri-
mary indicator and nitrogen was the secondary indi-
cator (Fig. S9).

The forest/shrub mosaics include mixed land 
cover types with some portion of forest/shrubs. This 
is because forest fragments, remnant trees, and small 
parts of shrubs and bare can serve as valuable habi-
tats for many species. These mixed compositions 
increase landscape connectivity and preserve poten-
tial for restoration (Harvey et  al. 2008; Horák et  al. 
2019). Forest and shrubs were combined as one in 
the mosaic systems, for their similarity in serving 
as habitat in a heterogeneous land system. Classes 
with small areas were assembled into the next class 
that are most resembling their land cover composi-
tion. In total, four forest/shrubs sub-mosaic systems 
were defined: forest/shrub and cropland, forest/shrub 
and grassland, forest/shrub and bare land, and forest/
shrub and mixed agricultural land.

Using land system map for species distribution 
modeling

To demonstrate the effect of adding land system and 
landscape characters for biodiversity assessment, we 
calibrated a set of species distribution models using 
an ensemble approach (Guisan et al. 2017). We con-
sidered nine bird species with different sensitivity to 
land use management: three species sensitive to forest 
management (Columba oenas, Dendrocopos major, 
Lophophanes cristatus), three species sensitive to 
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agricultural land-use intensity (Alauda arvensis, 
Motacilla flava, Tyto alba), and three generalist spe-
cies (Corvus corax, Hirundo rustica, and Phoenicu-
rus phoenicurus) (see S.I. for more details). For each 
species we retrieved all available occurrence points 
from the iNaturalist repository (iNaturalist.org 2020) 
and kept only those of the species that were validated 
by experts. For species resident in the study area we 
retained all occurrences collected during the breeding 
period; for migratory species we retained only loca-
tions collected during the breeding period and fall-
ing within the breeding extent of occurrence (data on 
breeding range from Maiorano et al. 2013). Informa-
tion on the ecology and distribution of the species 
was obtained from the Birds of the World (Cornell 
Laboratory of Ornithology 2020).

We compared the ensemble models calibrated 
with the land system map to models with land cover 
maps. We hypothesized that the land system map 
would improve the model’s predictive ability and 
indicate higher variable contribution (i.e., the rela-
tive contribution of the environmental variables to 
the predicting model) as compared to the use of 
solely land cover information, especially with species 
that have specific habitat requirements. We used two 
land cover maps as comparison: one is an integrated 
Copernicus Global Land Cover layers (Global Land 
Cover) (Buchhorn et  al. 2019) that contains 10 land 
cover types (i.e., closed forest, open forest, shrubland, 
herbaceous vegetation, herbaceous wetland, moss & 
lichen, bare/sparse vegetation, cropland, built-up, 
snow & ice, permanent water bodies), and the other 
one is a map created through reclassifying our land 
system map to the seven dominant land cover classes 
(Land Cover EU) (i.e., water/ice, settlement, forest, 
cropland, grassland, shrubs, bare).

To calibrate all models, we also considered a set 
of bioclimatic variables. Among the 19 bioclimatic 
variables available in the Chelsa climate repository 
(Karger et  al. 2017b, a), we selected six variables 
(i.e., bio2, 4, 8, 10, 15, 19, Table S6) that have low 
collinearity (Variance Inflation Factor test < 4). We 
ran the ensemble for every species using three sets 
of environmental variables respectively: (1) climate 
variables only, (2) land cover/system maps only 
(i.e., Global Land Cover, Land Cover EU, and Land 

System EU), and (3) combined climate with each of 
the land cover/system maps. The three land cover/sys-
tem maps were used as categorical data.

The ensemble modelling procedure was devel-
oped as follows. We combined five state-of-the-art 
statistical models: generalized linear models (GLM), 
generalized additive models (GAM), boosted regres-
sion trees (BRT), Random Forest (RF), and maxi-
mum entropy modeling (Maxent). Since these mod-
els required pseudo-absence (PA) data, we randomly 
drew 10,000 PA across the whole Europe. This pro-
cedure was repeated three times to account for the 
stochasticity of the PA generation. For each of these 
three datasets (presence-PA), we then generated three 
calibration-evaluation sub-datasets for cross-valida-
tion. The calibration data (a 70% random part) were 
used to calibrate the models, and the remaining 30% 
to evaluate them. Again, this procedure was repeated 
three times to account for the stochastic procedure. 
To summarize, for each of the five statistical models, 
nine models were run and evaluated (45 models in 
total for each single species).

Models’ predictive ability were evaluated using the 
true skill statistic TSS, which measures model perfor-
mance on presence-absence data and, unlike Kappa, 
is independent of prevalence (Allouche et  al. 2006). 
The ensemble model was then made of all calibrated 
models with a TSS > 0.3. We further measured the 
TSS of the ensemble model on the evaluation data, 
and then used the ensemble to predict species’ prob-
ability of occurrence across Europe (Marmion et  al. 
2009).

We measured the importance of the variables using 
a standard permutation procedure where each vari-
able is randomly permuted before predictions (while 
the others are retained as they are). The difference 
between the original prediction and the one with the 
variable permuted gives a measure as the importance 
of the variable (i.e., Pearson correlation). The more 
different are the predictions, the more important is 
the variable. This was done for each species, for each 
variable and repeated three times.

Models and ensemble procedure were performed 
with the BIOMOD2 package in R (Thuiller 2003; 
Thuiller et al. 2009). See R scripts in Supplementary 
Materials.
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Results

Current land systems

Figure 1 presents the spatial distribution of land sys-
tems across Europe, while Fig. 2 presents the propor-
tion of the different land systems across the four main 
geographic regions in Europe. Additionally, we show 
particular land systems and regions in more detail 
(Fig. 3).

High-intensity settlements, conceptualized as 
urban centers, have an average imperviousness degree 
around 42%. The medium and low intensity settle-
ment classes, which can be understood as peri-urban 
and villages, have an average imperviousness degree 
of 12% and 10% respectively, with the rest covered 
by cropland (37 and 36% respectively) and grass-
land (23 and 24% respectively). All three settlement 
classes cover 7.1% of the continent, which is higher 
than the estimation in other studies (e.g., 1.8% urban 
built-up by Levers et al. 2018). The peri-urban class 
is the dominant among three settlement classes in the 
Western and Southern Europe (Fig.  3A), while vil-
lage landscapes cover the largest area among the three 
residential land system classes in Eastern Europe.

Forest systems are characterized by the high tree 
cover of over 70% often mixed with small areas of 
grassland and cropland. The high-intensity forest 
has an average annual wood production of 36.5 m3/
km2, and 15.2 m3/km2 and 4.6 m3/km2 for medium 
and low-intensity forest respectively. Forest systems 
are the largest land system in Europe with a total of 
1.6 million km2 area covering 32.3% land surface. 
Nonetheless, forests of low-intensity level are the 
smallest within the three intensity levels, accounting 
for 30.3% of the total forest classes and 9.8% of the 
total European land surface. The low-intensity forests 
are mostly located in the mountain areas of Europe, 
including the Alps, Pyrenees, the Carpathian Moun-
tains, and in the Scandinavian Mountains. However, 
large areas of forests in Western Europe are used with 
high-intensity, particularly in Germany, France, and 
southern Sweden.

Grassland systems cover about 6.2% of the total 
European land surface, most of which are in Western 
Europe. Most high-intensity grassland areas are con-
centrated in the west and featured by different inten-
sity indicators. For instance, in Ireland high-intensity 
grassland is characterized by high LSU density and 

high mowing frequency, whereas the Netherlands 
has high LSU density and nitrogen application rates 
(Figs.  3B). In the large areas in central France this 
class is featured by different levels of nitrogen input 
but in general frequently mowed and with moderate 
and high density of livestock. Other grassland classes 
are scattered in Southern Europe and Eastern Europe, 
and little grassland in the Northern region.

The annual cropland classes are characterized by a 
high average of 84% cropland cover and some forest 
and grassland. The low and medium intensity levels 
of annual cropland classes have an average nitrogen 
input of 87  kg/ha and 157  kg/ha respectively. The 
average nitrogen input of the high-intensity class is 
as high as 338 kg/ha, almost four times the nitrogen 
value of low-intensity annual cropland. Cropland sys-
tems are the largest systems covering about a third 
of Europe, except the northern region. In Western 
Europe, only 1.1% area coverage is classified as low-
intensity cropland, while medium and high-intensity 
cropland both cover more than 10%. Most croplands 
in Eastern Europe are low to medium-intensity fea-
tured by relatively lower nitrogen applications than 
the rest of Europe. In addition, the majority of exten-
sive permanent crops are found in Southern Europe 
with an area of 75,968 km2 while the majority of 
intensive permanent crops are also found in southern 
Spain and along the coastlines of Italy.

Mosaic systems are diverse systems character-
ized by a mixed low to medium coverage of crop-
land (6%-50%), grassland (10%-48%), and forest 
(6%-44%), without substantial built-up areas. Mosaic 
systems cover 14.5% of Europe. We distinguish two 
subsystems: mosaics with forest/shrub (11.0%) and 
agriculture mosaics (3.4%). The agriculture mosa-
ics are mostly clustered in Western Europe and pre-
dominantly as high-intensity agriculture mosaics 
in Normandy and Brittany in west France (Fig.  3—
left panel). In the east of Europe there is also some 
agriculture mosaics but mostly as low-intensity 
(Fig.  3D). The forest/shrub and grassland mosaics 
show a clear pattern along the main mountain ranges, 
such as the Alps (gaps in Fig. 3A), the Massif Cen-
tral in central France, and the Balkan Mountains. In 
Southern Europe, there is only 1.3% of low-inten-
sity agricultural mosaics and the rest of the mosaic 
land systems are forest/shrub mosaics with cropland 
(6.6%), grassland (3.3%), mixed agricultural land 
(1.3%), and bare land (0.4%). This is because of the 
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Fig. 1   Distribution of land systems in Europe◂

Fig. 2   Area division of land systems in different regions 
(north, west, east, and south) of Europe. The center of each 
circles indicates the region where the land systems are sum-

marized. The first circle (inner) indicates the area share of the 
main class, and the second (outer) circle indicates the area 
share of sub-system classes
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Fig. 3   Mosaic and non-mosaic land systems in Europe and 
sample regions. Left map shows mosaic land systems resa-
mpled to a 2-km resolution for visualization. Right panels: 
A and B show major land systems without mosaics, while C 
and D present mosaic systems without major land systems. A 
Linear clusters of peri-urban and urban core classes (medium 
and intensity settlement systems) in Po Valley, surrounded by 

villages, high-intensity cropland and different intensity forest 
on the mountain; B Clusters of medium (peri-urban) and high 
(urban core) intensity settlement systems, surrounded by high-
intensity grassland; (C) Forest/shrubs with mixed agriculture 
mosaics in Portugal and Spain. (D) Low-intensity agricultural 
mosaics in Romania with forest/shrub and cropland and grass-
land mosaics

common agroforestry landscape in Spain and Portu-
gal, where forestry, grazing animals, and crop cultiva-
tion are found simultaneously in the same landscape 
(Fig. 3C).

Land system map contribution to species 
distribution modeling

Performance of species distribution models 
with climate and land input

Overall, the models with both climate variables 
and land cover/system maps have the highest pre-
dictive ability  (Fig.  4), except for two species (i.e., 

Lophophanes cristatus and Corvus corax) of which 
the highest TSS appear in models with only climate 
variables. Models with the second highest TSS are 
calibrated with climate variables only and no land 
cover/system maps. Models with the lowest TSS 
appear to be using land cover/system maps only and 
no climate variables. Interestingly, climate variables 
are visibly dominant in these models, while the inclu-
sion of land cover/system maps with climate variables 
only marginally improves TSS. However, for models 
without climate variables, the TSS when using the 
land system classification remains the highest. For 
five species, the land system map can improve the 
model’s predictive ability up to a useful TSS (> 0.3) 
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while models with land cover maps only generate 
poor TSS (< 0.3) hence not reported in the figure. 
For the remaining species, the gap in predictive abil-
ity between models calibrated with land system map 
and land cover maps can be as large as 50%, with TSS 
increasing from 0.34 to 0.53 (e.g., Columba oenas), 
and 38% from 0.30 to 0.42 (e.g., Tyto alba).

Species’ sensitivity to climate and land maps

The variable contribution of different land cover/sys-
tem maps (Fig. 5) shows a clear pattern. For almost 
all nine species, bio 4 (i.e., Temperature Seasonality) 

is the most important variable. Its importance, how-
ever, is reduced when land cover/system maps are 
used in the model. The reduction of its importance 
has an average value of 17.9%, ranging from 6.1% in 
Tyto alba to 25.5% in Motacilla flava depending on 
species.

The land system map always has the largest contri-
bution to the spatial distribution of modeled species 
among the three land cover/system maps. The dif-
ference of variable importance between land system 
map and land cover maps range from 4.9% to 21.6%. 
Despite the dominant explanatory role of climate 
variables, land system map sometimes can account 

Fig. 4   True Skill Statistic (TSS) of selected bird species using 
ensemble of species distribution models calibrated with dif-
ferent environmental variables. Models with TSS < 0.3 are 
not reported in the figure. Species are ordered as: sensitive 
to forest management (Columba oenas, Dendrocopos major, 

Lophophanes cristatus); sensitive to agricultural land-use 
intensity (Alauda arvensis, Motacilla flava, Tyto alba); and 
three generalist species (Corvus corax, Hirundo rustica, and 
Phoenicurus phoenicurus)
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for more than 30% among all variables contribut-
ing to the spatial distribution, such as Dendrocopos 
major, Phoenicurus phoenicurus, and Lophophanes 
cristatus, and even 50% for Motacilla flava (Fig. 5). 
Particularly for species Dendrocopos major and 
Motacilla flava, land system map becomes the most 
important variables, even more so than any climate 
variables.

While for species sensitive to forest management 
(three species as group 1 in the first row in Fig. 5) and 
for generalist species (the last row in Fig. 5), the land 
system map always demonstrates noticeably higher 
contribution than the other two land cover maps. This 
is, however, less profound for the species that are sen-
sitive to agricultural land-use intensity (indicated as 
the middle row in Fig.  5), particularly for Tyto alba 

Fig. 5   Variable contribution to species distribution in models calibrated with climate variables and land cover/system maps. Models 
with only land cover/system maps are not reported in this figure
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that only shows 5% more importance with land sys-
tem map comparing to the global land cover map.

Discussion

Including landscape and land management in land 
use maps

In this study, we have shown a pragmatic approach 
to synthesize available data into a land systems clas-
sification that captures a number of aspects central 
to landscape ecology that are poorly represented in 
traditional land cover classifications: the land man-
agement intensity for grasslands, arable lands and 
forests; the importance of land cover mosaics that 
can be regarded as special land systems in which the 
functioning is dominated by the mosaics rather than 
by the individual land covers; and, the role of human 
disturbance through distinguishing settlement sys-
tems in which built-up land cover is far from domi-
nant but human disturbance is playing a key role. 
We have shown that in an ensemble SDM exercise 
the land system maps consistently have added value 
as compared to using land cover classifications. At 
the same time, data availability at the large scale, the 
urge to keep the classification simple and close to 
well-known classification systems, limits the depth to 
which landscape structure and functional characteris-
tics are included in our land system classification.

Beyond the landscape characteristics that are 
included in our map, there are many other aspects 
such as spatial extent of patches, heterogeneity, and 
connectivity that might be important to ecological 
function, not captured in our land system classifi-
cation. The fragmentation of forest patches is one 
example that could be important for certain species. 
In the supplementary material we reported a spatial-
context analysis of including fragmentation of forests 
in the classification. The results show that, to a lim-
ited degree, the inclusion of such a feature can further 
improve the predicting and explaining power of spe-
cies distribution modeling (Table S2, Figure S1 and 
S2). Many landscape structure and pattern charac-
teristics are largely linked to specific ecological pro-
cesses. Therefore, instead of including multiple char-
acteristics in a generic land system classification and 

ending up with too many classes, land system classifi-
cations should be adapted to the specific purpose and 
include those landscape characteristics relevant to the 
ecological processes studied.

SDM results interpretation

The species distribution modeling results show 
a clear trend with the land system map consist-
ently having added value as indicated by the TSS 
and useful information when compared to other 
land cover maps. This is particularly true when the 
model considers only land cover/use data and no 
climate information. The gain in model predictive 
ability by adding a land cover/system map to cli-
mate variables is limited, and land system map does 
not always contribute to the highest TSS. However, 
the land system map holds important sources of 
explanatory power compared to the other two land 
cover maps as indicated by the higher variable con-
tribution to the models. The limited improvement of 
TSS by adding land information to climate variables 
may be explained by that the European-wide bird 
species distribution is largely determined by climate 
(Thuiller et  al. 2004), and among which the most 
prominent one is the temperature seasonality (bio4).

Particularly problematic are the results for the spe-
cies sensitive to agricultural intensities. Our results 
of both model performance and variable importance 
indicate the improvement is most limited in this group 
of species. This may be explained by a more nuanced 
sensitivity to land use intensity and management than 
is represented by our classes using common inten-
sity level thresholds that, however, are not optimal 
for all species. On the other hand, the species tested 
here are bird species which actively move in the land-
scape. Species may still be present in those pixels that 
have low suitability caused by land use intensity but 
with suitable pixels nearby. Some species may have 
very specific habitat requirements so that the choice 
of species also matters. Since we only modeled nine 
species as an example of the application of the new 
land systems classification, no large inferences can 
and should be made based on these examples. The 
use of species presence data obtained from iNaturalist 
may also bring some uncertainty in the analysis due 
to the way in which points were reported and stored.
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Comparison with other land cover or land system 
maps in Europe

Quantifying the intensity of human land use activi-
ties and integrating with land cover and land use data 
remain a challenge for land system scientists. Several 
efforts have improved the representation of the spatial 
pattern of human-environmental interactions, includ-
ing the global representation from Ellis & Raman-
kutty (2008) and van Asselen & Verburg (2012), 
the classification of agro-silvo-pastoral mosaic sys-
tems in Mediterranean region (Malek and Verburg 
2017), grassland management (Estel et al. 2018) and 
the archetype maps for Europe (Levers et  al. 2018). 
Each of these efforts selected sensible indicators and 
methods that operate at the corresponding scales and 
serve to the project purposes. For example, the clas-
sification of European archetypical patterns is based 
on 12 land cover and land use intensity indicators, 
including a previous version of nitrogen application 
rate data used in this study. However, rather than an 
expert-based classification an automated clustering 
technique (i.e., self-organising maps, SOMs) that 
calculates the similarities across indicators was per-
formed. van der Zanden et al. (2016) have compared 
automated and expert-based classification methods 
and concluded that although large agreement between 
the two methods exists, sometimes the automated 
method may overlook small differences in certain cat-
egories that are vital for landscape function based on 
the experts’ opinion. Furthermore, expert-based clas-
sification allows a consistent classification for present 
and future projections of the land system while upon 
change an automatic classification would also require 
an update of the classification itself as it is repre-
senting the statistical structure of the data. Although 
our map shares some characteristics with previous 
maps, it is the first time that a classification system 
was developed based on those landscape and land use 
management properties that are important to biodi-
versity assessment and species distribution modeling.

Robustness and uncertainties

It is challenging to assess the performance of any 
land system classification. First, the underlying data 
used for classification include inherent errors and 
uncertainties. For instance, large areas in the coastal 
areas of northern England and Ireland were classified 

as peat bogs in CLC map, hence in our map they were 
aggregated into wetlands. Some of these areas may 
be used as pastures in reality and should be classified 
as grassland systems. Another example is the natu-
ral grassland class in CLC, some of which are used 
as grazing land in mountain areas during part of the 
year. Furthermore, uncertainty within the intensity 
indicators may be more pronounced because they are 
mostly downscaled from statistics or based on differ-
ent proxies and assumptions. For instance, the nitro-
gen application rate we used in this study was based 
on CAPRI (Common Agricultural Policy Regional-
ised Impact) model result. CAPRI allocated nitrogen 
input in NUTS2 region to 1-km2 cells based on envi-
ronment conditions and crop types. The uncertainty 
from this downscaling work was therefore inherited 
in our land system map.

Second, the definition of land systems and land use 
intensity should be evaluated relative to its potential 
use. Therefore, a traditional accuracy-oriented valida-
tion practice will not make sense as a classification is 
anyhow simply a way to partition variation in a data-
set rather than a novel dataset in itself.

In addition to the inclusion of indicators, there is 
little evidence revealing the (non-)linear relationships 
between different indicators and species richness. 
Therefore, some of our thresholds are arbitrary for the 
continuous variables. In some cases, we used top 25% 
quantile (e.g., wood production) that is statistically 
meaningful. In other cases, we used an arbitrary value 
(e.g., 50kgN/ha) as the threshold to keep consistent 
with previous studies. We conducted a series of sen-
sitivity analysis on the measure of intensity of land 
systems. Doing so indicates to what extent the choice 
of threshold influences the land system classification 
outcomes, which in our case shows only marginal dif-
ferences (results in Figs. S10, S11).

Conclusion

The new land system classification, with the most 
complete coverage of Europe at 1-km2 resolution, 
resulted in 26 classes of seven major and mosaic 
land systems. In particular, the forest/shrub mosaic 
systems describe fragmented forest habitats that are 
crucial for species while the different land manage-
ment intensity classes can show profoundly differ-
ent impacts on biodiversity. The spatial distribution 
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of these classes shows distinctive patterns across 
Europe: vast low and medium intensity land systems 
in Eastern Europe, more developed and intensively 
used land in Western Europe, a more heterogeneous 
land systems in Southern Europe, and large areas 
of forest but mostly under medium-intensity in the 
north. Although designed for Europe, this practice 
can also be used as an example for other continental 
and global scale land system classifications that aim 
for biodiversity assessment or other purposes.

The representation of landscape characteristics in 
this new land system classification provides crucial 
information for biodiversity studies. Demonstrated 
by the species distribution modeling results, the 
predictive ability of models and variable contribu-
tion across different species using the land system 
map shows added value as compared to traditionally 
used land cover maps. Although we only analyzed 
a small set of species, the results presented in this 
study are promising, given evidence of the impor-
tance of counting landscape and land system char-
acters when assessing biodiversity at large-scale. 
This way both land system science and landscape 
ecology can better take stock of their human-envi-
ronmental systems approach in improving the way 
they represent landscape characteristics in further 
assessments.
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