

Liberté

Context

Égalité VetAgro Sup Fraternité

Evaluation using latent class models of the diagnostic performances of three ELISA tests commercialized for the serological diagnosis of Coxiella burnetii infection in domestic ruminants

Thibaut Lurier^{1, 2}, Elodie Rousset³, Patrick Gasqui¹, Carole Sala⁴, Clément Claustre¹, David Abrial¹, Philippe Dufour³, Renée de Crémoux⁵, Kristel Gache⁶, Marie Laure Delignette-Muller⁷, Florence Ayral², Elsa Jourdain¹ 1- UMR EpiA; 2- USC 1233; 3- Q fever NRL; 4- EAS Unit; 5- UMT PSR; 6- GDS France; 7- UMR 5558

Context and objectives

ELISA methods are recommended for the serological diagnosis of *Coxiella*

Without Gold Standard, accurate estimates of their Sensitivity (Se) and Specificity (Sp) are lacking

burnetii infection in ruminants

Objectives					
•	Assess Se and Sp of the	ELIS			
	tests available in France	in			
	sheep, goats and cattle				

Estimate optimal sample sizes considering sensitivity and specificity at herd level

Name used in the current study	Test 1	Test 2	Test 3
Commercial name	IDEXX Q fever Ab test	PrioCHECK™ Ruminant Q Fever	ID.Vet ID Screen® Q fever indirect multi-species
Manufacturer	IDEXX	ThermoFisher Scientific	Innovative Diagnostics
Strain used for antigen production	Isolated from ticks (Nine Mile reference strain)	Isolated from an ewe	Isolated from a cow
Conjugate	Secondary antibodies biding to ruminant IgG	G protein	G protein

Characteristics of the three ELISA tests commercialized in France

- Sub-sample of a larger epidemiologic study (Gache et al 2017)
- 1 413 cows from 106 herds
- 1 474 goats from 103 herds
- 1 432 ewes from 99 herds
- Serum collected and analyzed with the three ELISA tests at the NRL for Q fever

Latent class model

- Modeling of the crossclassified test results (n_{ii})
- Accounting for conditional dependence between tests (γ_{se} ... and γ_{sp} ...) One model for each ruminant species

Directed Acyclic Graph of the latent class model

See Lurier et al. 2021* for complete specification of the model

species

Cattle

Goats

Sheep

Se and Sp estimates

- Low Se especially in sheep
- High Sp but lower in 0.75 cattle
- Test 3 was the most sensitive in all species but also the least specific
- Tests were **not** equivalent for each ruminant species

Diagnostic accuracy of the three ELISA tests

Conditional dependence (CD)

- High CD between tests 1 and 2 in seropositive animals
- ⇒ Tests 1 and 2 tended to be falsely negative at the same time
- Negligible CD in seronegative sheep and goats
- ⇒False positive results were rare and independent for the three tests
- Low but positive CD in seronegative cattle *
- ⇒ False positive results were rare but dependent in cattle

(Se_T• T•) or seronegative (Sp_T• T•) animals

Results at herd level

Definitions

HSe = *Probability that* **at least** one animal sampled is positive using one test in a positive herd

HSp = Probability that none of the animals sampled is positive using one test in a negative herd

⇒ Calculated with a sample size varying from 1 to 20 animals

Results

- **HSe increased** with the sample size while **HSp decreased**
- Test 3 had the worse HSp

Sensitivity and specificity at the herd level according to the sample size

⇒ The **optimal sample size** maximizing both HSe and HSp **varied from** 3 to at least 20 animals depending on the test and ruminant species

Discussion

0.15 -

- **Unbiased estimation** of Se and Sp without relying on an imperfect gold standard
- Compared to other studies: similar Sp but lower Se
- ⇒ Account for the high conditional dependence in seropositive animals between tests 1 and 2 (see poster #232)
- Applicability of Se and Sp estimated limited to a seroepidemiological context (different from herds with abortion in which the test is often performed in practice)

Perspectives

- Account for the Se and Sp of the ELISA tests to accurately assess the seroprevalences of Q fever
- Need to reassess Se and Sp of the tests in an abortive context
- Discrepancies between tests and perspectives of application for an harmonization of the ELISA tests

^{*} Lurier, T., Rousset, E., Gasqui, P., Sala, C., Claustre, C., Abrial, D., Dufour, P., de Crémoux, R., Gache, K., Delignette-Muller, M.L., Ayral, F., Jourdain, E., 2021. Evaluation using latent class models of the diagnostic performances of three ELISA tests commercialized for the serological diagnosis of Coxiella burnetii infection in domestic ruminants. Veterinary Research 52, 56. https://doi.org/10.1186/s13567-021-00926-w