Euclid: Testing the Copernican principle with next-generation surveys - CNRS - Centre national de la recherche scientifique Accéder directement au contenu
Article Dans Une Revue Astron.Astrophys. Année : 2023

Euclid: Testing the Copernican principle with next-generation surveys

D. Camarena , V. Marra , Z. Sakr (1) , S. Nesseris , A. da Silva , J. Garcia-Bellido , P. Fleury (2) , L. Lombriser , M. Martinelli , C.J.A.P. Martins , J. Mimoso , D. Sapone , C. Clarkson , S. Camera , C. Carbone , S. Casas , S. Ilic (3, 4, 1) , V. Pettorino (5) , I. Tutusaus (1) , N. Aghanim (6) , B. Altieri , A. Amara , N. Auricchio , M. Baldi , D. Bonino , E. Branchini , M. Brescia , J. Brinchmann , G.P. Candini , V. Capobianco , J. Carretero , M. Castellano , S. Cavuoti , A. Cimatti , R. Cledassou (4, 7) , G. Congedo , L. Conversi , Y. Copin (8) , L. Corcione , F. Courbin , M. Cropper , H. Degaudenzi , F. Dubath , C.A.J. Duncan , X. Dupac , S. Dusini , A. Ealet (8) , S. Farrens (5) , P. Fosalba , M. Frailis , E. Franceschi , M. Fumana , B. Garilli , B. Gillis , C. Giocoli , A. Grazian , F. Grupp , S.V.H. Haugan , W. Holmes , F. Hormuth , A. Hornstrup , K. Jahnke , A. Kiessling , R. Kohley , M. Kunz , H. Kurki-Suonio , P.B. Lilje , I. Lloro , O. Mansutti , O. Marggraf , F. Marulli , R. Massey , M. Meneghetti , E. Merlin , G. Meylan , M. Moresco , L. Moscardini , E. Munari , S.M. Niemi , C. Padilla , S. Paltani , F. Pasian , K. Pedersen , G. Polenta , M. Poncet (4) , L. Popa , L. Pozzetti , F. Raison , R. Rebolo , J. Rhodes , G. Riccio , Hans-Walter Rix , E. Rossetti , R. Saglia , B. Sartoris , A. Secroun (9) , G. Seidel , C. Sirignano , G. Sirri , L. Stanco , C. Surace (10) , P. Tallada-Crespí , A.N. Taylor , I. Tereno , R. Toledo-Moreo , F. Torradeflot , E.A. Valentijn , L. Valenziano , Y. Wang , G. Zamorani , J. Zoubian (9) , S. Andreon , D. Di Ferdinando , V. Scottez (11) , M. Tenti
D. Camarena
  • Fonction : Auteur
V. Marra
  • Fonction : Auteur
S. Nesseris
  • Fonction : Auteur
A. da Silva
  • Fonction : Auteur
J. Garcia-Bellido
  • Fonction : Auteur
L. Lombriser
  • Fonction : Auteur
M. Martinelli
  • Fonction : Auteur
C.J.A.P. Martins
  • Fonction : Auteur
J. Mimoso
  • Fonction : Auteur
D. Sapone
  • Fonction : Auteur
C. Clarkson
  • Fonction : Auteur
S. Camera
  • Fonction : Auteur
C. Carbone
  • Fonction : Auteur
S. Casas
  • Fonction : Auteur
B. Altieri
  • Fonction : Auteur
A. Amara
  • Fonction : Auteur
N. Auricchio
  • Fonction : Auteur
M. Baldi
  • Fonction : Auteur
D. Bonino
  • Fonction : Auteur
E. Branchini
  • Fonction : Auteur
M. Brescia
  • Fonction : Auteur
J. Brinchmann
  • Fonction : Auteur
G.P. Candini
  • Fonction : Auteur
V. Capobianco
  • Fonction : Auteur
J. Carretero
  • Fonction : Auteur
M. Castellano
  • Fonction : Auteur
S. Cavuoti
  • Fonction : Auteur
A. Cimatti
  • Fonction : Auteur
G. Congedo
  • Fonction : Auteur
L. Conversi
  • Fonction : Auteur
L. Corcione
  • Fonction : Auteur
F. Courbin
  • Fonction : Auteur
M. Cropper
  • Fonction : Auteur
H. Degaudenzi
  • Fonction : Auteur
F. Dubath
  • Fonction : Auteur
C.A.J. Duncan
  • Fonction : Auteur
X. Dupac
  • Fonction : Auteur
S. Dusini
  • Fonction : Auteur
P. Fosalba
  • Fonction : Auteur
M. Frailis
  • Fonction : Auteur
E. Franceschi
  • Fonction : Auteur
M. Fumana
  • Fonction : Auteur
B. Garilli
  • Fonction : Auteur
B. Gillis
  • Fonction : Auteur
C. Giocoli
  • Fonction : Auteur
A. Grazian
  • Fonction : Auteur
F. Grupp
  • Fonction : Auteur
S.V.H. Haugan
  • Fonction : Auteur
W. Holmes
  • Fonction : Auteur
F. Hormuth
  • Fonction : Auteur
A. Hornstrup
  • Fonction : Auteur
K. Jahnke
  • Fonction : Auteur
A. Kiessling
  • Fonction : Auteur
R. Kohley
  • Fonction : Auteur
M. Kunz
  • Fonction : Auteur
H. Kurki-Suonio
  • Fonction : Auteur
P.B. Lilje
  • Fonction : Auteur
I. Lloro
  • Fonction : Auteur
O. Mansutti
  • Fonction : Auteur
O. Marggraf
  • Fonction : Auteur
F. Marulli
  • Fonction : Auteur
R. Massey
  • Fonction : Auteur
M. Meneghetti
  • Fonction : Auteur
E. Merlin
  • Fonction : Auteur
G. Meylan
  • Fonction : Auteur
M. Moresco
  • Fonction : Auteur
L. Moscardini
  • Fonction : Auteur
E. Munari
  • Fonction : Auteur
S.M. Niemi
  • Fonction : Auteur
C. Padilla
  • Fonction : Auteur
S. Paltani
  • Fonction : Auteur
F. Pasian
  • Fonction : Auteur
K. Pedersen
  • Fonction : Auteur
G. Polenta
  • Fonction : Auteur
L. Popa
  • Fonction : Auteur
L. Pozzetti
  • Fonction : Auteur
F. Raison
  • Fonction : Auteur
R. Rebolo
  • Fonction : Auteur
J. Rhodes
  • Fonction : Auteur
G. Riccio
  • Fonction : Auteur
Hans-Walter Rix
  • Fonction : Auteur
E. Rossetti
  • Fonction : Auteur
R. Saglia
  • Fonction : Auteur
B. Sartoris
  • Fonction : Auteur
G. Seidel
  • Fonction : Auteur
C. Sirignano
  • Fonction : Auteur
G. Sirri
  • Fonction : Auteur
L. Stanco
  • Fonction : Auteur
P. Tallada-Crespí
  • Fonction : Auteur
A.N. Taylor
  • Fonction : Auteur
I. Tereno
  • Fonction : Auteur
R. Toledo-Moreo
  • Fonction : Auteur
F. Torradeflot
  • Fonction : Auteur
E.A. Valentijn
  • Fonction : Auteur
L. Valenziano
  • Fonction : Auteur
Y. Wang
  • Fonction : Auteur
G. Zamorani
  • Fonction : Auteur
S. Andreon
  • Fonction : Auteur
D. Di Ferdinando
  • Fonction : Auteur
M. Tenti
  • Fonction : Auteur

Résumé

The Copernican principle, the notion that we are not at a special location in the Universe, is one of the cornerstones of modern cosmology and its violation would invalidate the Friedmann-Lemaître-Robertson-Walker (FLRW) metric, causing a major change in our understanding of the Universe. Thus, it is of fundamental importance to perform observational tests of this principle. We determine the precision with which future surveys will be able to test the Copernican principle and their ability to detect any possible violations. We forecast constraints on the inhomogeneous Lemaître-Tolman-Bondi model with a cosmological constant $\Lambda$ ($\Lambda$LTB), basically a cosmological constant $\Lambda$ and cold dark matter ($\Lambda$CDM) model, but endowed with a spherical inhomogeneity. We consider combinations of currently available data and simulated Euclid data, together with external data products, based on both $\Lambda$CDM and $\Lambda$LTB fiducial models. These constraints are compared to the expectations from the Copernican principle. When considering the $\Lambda$CDM fiducial model, we find that Euclid data, in combination with other current and forthcoming surveys, will improve the constraints on the Copernican principle by about $30\%$, with $\pm10\%$ variations depending on the observables and scales considered. On the other hand, when considering a $\Lambda$LTB fiducial model, we find that future Euclid data, combined with other current and forthcoming data sets, will be able to detect Gpc-scale inhomogeneities of contrast $-0.1$. Next-generation surveys, such as Euclid, will thoroughly test homogeneity at large scales, tightening the constraints on possible violations of the Copernican principle.
Fichier principal
Vignette du fichier
aa44557-22.pdf (1.27 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03758826 , version 1 (10-06-2023)

Licence

Paternité

Identifiants

Citer

D. Camarena, V. Marra, Z. Sakr, S. Nesseris, A. da Silva, et al.. Euclid: Testing the Copernican principle with next-generation surveys. Astron.Astrophys., 2023, 671, pp.A68. ⟨10.1051/0004-6361/202244557⟩. ⟨hal-03758826⟩
193 Consultations
19 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More