%0 Journal Article %T Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiOx‐Based Inverted Solar Cells with 23.5 % Efficiency %+ Hebei University of Technology [Tianjin] %+ Chongqing University [Chongqing] %+ Institut de Recherche de Chimie Paris (IRCP) %A Li, Mengjia %A Li, Haiyun %A Zhuang, Qixin %A He, Dongmei %A Liu, Baibai %A Chen, Cong %A Zhang, Boxue %A Pauporté, Thierry %A Zang, Zhigang %A Chen, Jiangzhao %< avec comité de lecture %@ 1433-7851 %J Angewandte Chemie International Edition %I Wiley-VCH Verlag %V 61 %N 35 %P e202206914 %8 2022 %D 2022 %R 10.1002/anie.202206914 %K Perovskite precursor solution %K Degradation %K Defect passivation %K Functional groups %K Perovskite solar cells %Z Chemical Sciences/Material chemistryJournal articles %X Perovskite solar cells suffer from poor reproducibility due to the degradation of perovskite precursor solution. Herein, we report an effective precursor stabilization strategy via incorporating 3-hydrazinobenzoic acid (3-HBA) containing carboxyl (-COOH) and hydrazine (-NHNH2) functional groups stabilizer. The oxidation of I-, deprotonation of organic cations and amine-cation reaction are main causes of the degradation of mixed organic cation perovskite precursor solution. The-NHNH2 can reduce I2 defects back to Iand thus suppress the oxidation of I-, while the H + generated by-COOH can inhibit the deprotonation of organic cations and subsequent amine-cation reaction. The above degradation reactions are simultaneously inhibited by the synergy of functional groups. 2 The inverted device achieves an efficiency of 23.5% (certified efficiency of 23.3%) with excellent operational stability, retaining 94% of the initial efficiency after maximum power point tracking for 601 hours. %G English %2 https://cnrs.hal.science/hal-03760295/document %2 https://cnrs.hal.science/hal-03760295/file/AngwChemie_22%20HAL%282%29.pdf %L hal-03760295 %U https://cnrs.hal.science/hal-03760295 %~ ENSCP %~ CNRS %~ ENSC-PARIS %~ PARISTECH %~ INC-CNRS %~ PSL %~ ENSCP-PSL %~ TEST2-HALCNRS