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4 NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Canada
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Abstract

We present the design and baseline results for a new challenge in the ChaLearn meta-learning
series, accepted at NeurIPS’22, focusing on “cross-domain” meta-learning. Meta-learning
aims to leverage experience gained from previous tasks to solve new tasks efficiently (i.e., with
better performance, little training data, and/or modest computational resources). While
previous challenges in the series focused on within-domain few-shot learning problems, with
the aim of learning efficiently N-way k-shot tasks (i.e., N class classification problems with k
training examples), this competition challenges the participants to solve “any-way” and “any-
shot” problems drawn from various domains (healthcare, ecology, biology, manufacturing,
and others), chosen for their humanitarian and societal impact. To that end, we created
Meta-Album, a meta-dataset of 40 image classification datasets from 10 domains, from which
we carve out tasks with any number of “ways” (within the range 2-20) and any number of
“shots” (within the range 1-20). The competition is with code submission, fully blind-tested
on the CodaLab challenge platform. The code of the winners will be open-sourced, enabling
the deployment of automated machine learning solutions for few-shot image classification
across several domains.

Keywords: Image Classification, AutoML, Few-Shot Learning, Meta-Learning, Cross-
Domain Meta-Learning.
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1. Introduction

Challenges in machine learning have been instrumental in pushing the state-of-the-art and
stimulating participants to tackle new difficult problems. Since 2015, ChaLearn has been
organizing challenges in Automated Machine Learning (AutoML) Guyon et al. (2019) and
Automated Deep Learning (AutoDL) Liu et al. (2021b), with the aim of reducing the need
of human intervention in the design and implementation of machine learning models, to the
greatest possible extent. Our challenge series gave rise to the popular auto-sklearn software
and outlined the importance of good representations (obtained from pre-trained backbone
networks), data augmentation, and meta-learning. These results prompted us to organize a
new ChaLearn challenge series in meta-learning, focusing first on image classification and
few-shot learning. This challenge, the NeurIPS’22 Cross-Domain MetaDL, is the third
edition in the series. Submissions are open between July 1 and August 31, 2022.
The results will be presented at the NeurIPS’22 conference.

Traditionally, image classification has been tackled using deep learning methods whose
performance relies on the availability of large amounts of data Phoo and Hariharan (2021).
Recent efforts in meta-learning Jamal and Qi (2019) have contributed to making a lot of
progress in few-shot learning for image classification problems. Tasks or “episodes” are
made of a certain number of classes or “ways” and number of labeled examples per class or
“shots”. Despite progress made, allowing the community to reach accuracies above 90% in
the last ChaLearn meta-learning challenge El Baz et al. (2022), evaluation protocols have a
common drawback: they focus only on within-domain few-shot learning, i.e., even when
evaluated on multiple domains (e.g., insect classification, texture classification, satellite
images, etc.), models meta-trained on a given domain are meta-tested on the same domain.
As documented in the literature, within-domain few-shot learning approaches have poor
generalization ability to unrelated domains Phoo and Hariharan (2021). Nevertheless, this
kind of generalization is crucial since there are scenarios where only one or two examples
per class are available (e.g., rare birds or plants), and there is no close domain with enough
information to be used as source domain. Therefore, addressing domain variations has
become a research area of great interest. Additionally, in most works about few-shot learning,
the number of ways and shots is fixed, which is not always the case in real application
scenarios.

Currently, the most popular benchmark used for cross-domain meta-learning is Meta-
Dataset Triantafillou et al. (2020). This benchmark tackles the problems mentioned above by
including 10 image classification datasets from several application domains in one collection
and analyzing the impact of using a variable number of ways and shots. Although it has been
widely used to evaluate state-of-the-art methods Dvornik et al. (2020); Liu et al. (2021a);
Triantafillou et al. (2021); Li et al. (2021, 2022), it cannot be used in our competition
because it is already well-known by the meta-learning community. Additionally, the datasets
in Meta-Dataset have a large variance in the number of classes and examples per class,
introducing bias in our competition design.

The main contributions of this paper are the design of a new challenge in the ChaLearn
meta-learning series and the presentation of baseline results. Our new design will challenge
participants to generalize across domains in different regimes in numbers of ways
and shots, and compare “de novo” training with the use of pre-trained backbones.
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Note that “de novo” training means that the algorithm needs to learn from scratch without
using any previous knowledge such as pre-trained backbones, i.e., the backbones must be
initialized randomly. In conjunction with the organization of this challenge, we developed a
large meta-dataset called Meta-Album described in a companion paper Ullah et al. (2022),
including 40 datasets belonging to 10 different domains, relevant to “AI for good”, such as
ecology, medicine, and biology, with the intent of maximizing the economic and societal
impact of the challenge. In this competition, 30 of these datasets will be used for meta-
training and meta-testing, then released publicly as a long-lasting benchmark to further
push the state-of-the-art. A single (final) submission will be evaluated during the final
challenge phase, using ten datasets previously unused by the meta-learning community. The
code of the winners will be open-sourced and enable practical AutoML applications
since the meta-trained learner will be readily usable for few-shot image classification in the
10 domains of the challenge.

2. Problem setting

This challenge has two motivational scenarios: (1) Few-shot image classification and (2)
Meta-learning from limited amounts of meta-learning data. For the former problem, we target
users wishing to create an image classifier from a few pictures of each class (e.g., taken with
a smartphone) in a new domain (e.g., classify clouds). The challenge winning solution(s)
should make this possible for any-way any-shot in the range [2-20] “ways” (classes) and
[1-20] “shots” (training examples per class). For the latter problem, the solution of the
winner should deliver a meta-learning algorithm leveraging knowledge from previous tasks,
without relying on pre-trained backbones, applicable to a wider range of applications than
image classification (encouraged by the prize distribution, see Appendix D). This section
first explains the setting of the previous MetaDL challenge organized for NeurIPS’21 (within-
domain few-shot learning). Then, it explains the new variant we developed for NeurIPS’22
(cross-domain any-way any-shot learning). Both competitions are with code submission and
the participants must supply code following a designated API Liu et al. (2019), featuring
Python objects (see Appendix C): MetaLearner, Learner, and Predictor. MetaLearner

uses meta-training data (a dataset of datasets) to create Learner; Learner in turn uses
training examples (images) to return Predictor; finally, Predictor uses unlabeled test
examples to return predicted class labels. The competitions are composed of 2 main phases,
a feedback phase with many submissions allowed and immediate feedback provided on a
leaderboard, and a final test phase with only 1 submission tested on new datasets. In
both phases, data are not visible to the participants; only the code submitted has access to
evaluation data. Ground truth labels of test data are kept secret and are only visible to the
scoring program.

2.1. Within-domain few-shot learning

The NeurIPS’21 MetaDL competition focused on “within-domain” few-shot learning image
classification in the N -way k -shot setting El Baz et al. (2021). The Learner was meta-tested
on many 5-way 5-shot tasks carved out from several multi-class image datasets, each task
including N = 5 classes drawn at random, with k = 5 examples per class in the support
(training) set and 20 examples per class in the query (test) set. Half of the classes of
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each dataset were reserved for meta-training and the other half for meta-testing. During
meta-training, the MetaLearner could choose the configuration of data received: (1) batch
training with examples of all classes within the domain at hand, (2) episodic training with
examples grouped in tasks having a support and a query set. Importantly, meta-learning
and meta-testing were performed using classes from the same dataset, which we refer to
as within domain meta-learning. Submissions made by participants were then ranked
per dataset, and the final ranking was obtained by averaging such ranks. Five datasets from
5 domains (ecology, bio-medicine, manufacturing, optical character recognition, and remote
sensing) were used in the feedback phase, and 5 other fresh datasets from the same domains
were used in the final evaluation phase. All datasets had at least 20 classes and 40 images
per class El Baz et al. (2022).

2.1.1. Lessons learned and limitations

The NeurIPS’21 MetaDL competition considered a refined competition protocol developed
for a previous MetaDL competition El Baz et al. (2021), introducing multiple domains,
which added additional sophistication in terms of scoring as well as GPU-time budgeting.
However, the setting remained relatively simplified since the meta-training and meta-testing
were performed within-domain (i.e., non-overlapping classes of the same dataset were used
for meta-training and meta-testing) using meta-test tasks with a fixed number of ways and
shots. The winners Chen et al. (2021) obtained over 92% accuracy on all 5 domains in
the final phase (with complete blind-testing of their code). Thus, this indicates that we
can move to more complicated problems. Following these observations, the Cross-Domain
MetaDL challenge intends to mix tasks from multiple domains and present variable numbers
of ways and shots.

Although the NeurIPS’21 MetaDL competition did not constrain participants to use
deep-learning, de facto, all participants based their solutions on deep-learning models with
convolutions (specifically, either convolutional neural networks or transformer models).
Additionally, fine-tuning on meta-training data turned out to be important. However, there
are indications that off-the-shelf backbones pre-trained with self-supervised learning on
massive datasets might be the most promising approach, essentially making meta-learning
unnecessary for image classification problems. Thus, meta-learning should be benchmarked
in de novo training conditions to prepare for scenarios (in other domains) in which such
backbones are not available.

As reported by several top-ranking teams, meta-learning was possible within domains (in
the form of fine-tuning pre-trained backbones), but MAML-style episodic meta-learning did
not turn out to be more effective than vanilla pre-training with gradient descent. Based on
the embedding generated by the backbones, prototypical classifiers seem more efficient than
linear classifiers. Hence, the Cross-Domain MetaDL challenge also allows further probing of
the effectiveness of various meta-learning solutions.

2.2. From within-domain to cross-domain any-way any-shot learning

Following the lessons learned from the NeurIPS’21 competition, the new Cross-Domain
MetaDL challenge aims to push the complete automation of few-shot learning by demanding
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participants to design learning agents capable of producing a trained classifier in the cross-
domain any-way any-shot setting.

As introduced in Section 2.1, the few-shot learning problems are often referred as N -way k -
shots problems. In these problems, each task Tj = {Dtrain

Tj ,Dtest
Tj } consists of a small training

set Dtrain
Tj and a small test set Dtest

Tj , referred to as support and query sets, respectively.
The number of ways N denotes the number of classes in a task that represents an image
classification problem, the same N classes are present in Dtrain

Tj and Dtest
Tj . The number

of shots k denotes the number of examples per class in the support set. In this challenge,
the tasks at meta-test time have a number of classes varying from 2 to 20 (N ∈ [2, 20]),
the support set contains 1 to 20 labeled examples per class (k ∈ [1, 20]), and the query
set contains 20 unlabeled examples per class, i.e., |Dtrain

Tj | = N × k, and |Dtest
Tj | = N × 20.

Moreover, since in this competition, the tasks come from the cross-domain scenario, the
data contained in one task Tj belongs strictly to one dataset. Nonetheless, different tasks
may come from different datasets because the meta-dataset used to carved out the tasks is
composed of multiple datasets, i.e., MD = {D1, . . . ,Dn}. The number of datasets n in the
meta-dataset MD depends on the phase (see Section 3.1).

The proposed setting consists of three stages: meta-training, meta-validation (optional),
and meta-testing, which are used for meta-learning, model selection, and evaluation, re-
spectively. During the meta-training stage, the participants can choose to use data in
the form of tasks Tj or batches which are a collection of sampled examples from a sin-
gle large dataset resulting of concatenating all datasets of the meta-training dataset,
i.e., Dtrain = concat(D1, . . . ,Dn). Additionally, they can specify their preferred config-
urations for the selected data format at this stage. The meta-validation stage is optional;
therefore, it is up to the participants to use it, but the data for this stage is always in the
form of tasks. Nevertheless, the participants can still specify their preferred configurations
for the meta-validation tasks. Lastly, during the meta-testing stage, the participants have
no control over the data, which always arrives in the form of any-way any-shot tasks with
N ∈ [2, 20] and k ∈ [1, 20]. During meta-testing, the labels of the query set are hidden from
the participants’ codes.

3. Competition design

3.1. Data

The datasets of this competition belong to the Meta-Album meta-dataset, prepared in
conjunction with this competition Ullah et al. (2022). It consists of 40 re-purposed or
novel image datasets from 10 domains: small and large animals, plants and plant diseases,
vehicles, human actions, microscopic data, satellite images, industrial textures, and printed
characters. We preprocessed data in a standard format suitable for few-shot learning. The
preprocessing pipeline includes image resizing with anti-aliasing filters into a uniform shape
of 128x128x3 pixels. For this competition, we selected 30 datasets from the meta-dataset
and partitioned them into 3 sets of 10 datasets, one from each domain, used in the various
competition phases (Set-0, Set-1, and Set-2). All final test phase datasets are novel to the
meta-learning community (not part of past meta-learning benchmarks). Sets 0-2 will be
released on OpenML Vanschoren et al. (2014) after the competition ends.
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3.2. Competition protocol

NeurIPS’22 Cross-Domain MetaDL is an online competition with code submission, i.e., the
participants need to provide their solutions as raw Python code that will be executed on our
dedicated CodaLab site1. Detailed competition rules are found in Appendix A. To guarantee
fairness in the evaluation of the participants, the CodaLab server used in this challenge is
equipped with 10 identical computer workers. Each has the following configuration: 4 CPU
cores, 1 Tesla T4 GPU, 16GB RAM, and 120GB storage.

The competition follows the problem setting described in Section 2.2. It is composed of 3
phases. During the Public phase (June 15-30, 2022), no submissions can be made; instead,
the participants can use the tutorial provided as part of the starting kit (see Appendix B)
and Set-0 to test their solutions on their computers or Google Colab. Then, during the
Feedback phase (July 1 - August 31, 2022), participants can make 2 submissions per day
and a maximum of 100 submissions during the whole phase. Each submission is evaluated on
1000 any-way any-shot tasks carved out from Set-1 (100 tasks per dataset) different from the
ones used for meta-training (Public data). Additionally, each submission cannot take more
than 5 hours of running time. Lastly, during the Final phase (September 1-30, 2022), the
last submission of each participant on the Feedback phase, whose performance is above
the baseline performance (see Section 3.3), will be evaluated on 6000 any-way any-shot tasks
carved out from Set-2 (600 tasks per dataset). Due to the increment of meta-test tasks, the
allowed running time will increase to 9 hours.

The submissions must follow our defined API (see Appendix C), which was designed to
be flexible enough to allow participants to explore any type of meta-learning algorithms. To
encourage a diversity of participants and types of submissions, the Cross-Domain MetaDL
competition has 5 different leagues. Appendix D details the leagues and prizes. Notably,
there is a league to encourage meta-training from scratch (“de novo” training) as
opposed to using pre-trained backbones.

3.3. Challenge metrics

Since the meta-test tasks have different configurations in the number of ways and shots,
this competition uses the balanced classification accuracy (bac) as the evaluation metric,
normalized with respect to the number of ways (which is the number of classes in the task).
This metric is defined as follows:

Normalized Accuracy =
bac− bacRG

1− bacRG
, (1)

where bac, also known as the macro-averaging recall, is defined as:

bac =
1

num ways

num ways∑
i=1

correctly classified examples of class i

total examples of class i
, (2)

and bacRG is the accuracy of random guessing, i.e., 1
num ways . Note that by (1), a normalized

accuracy of 0 means that the performance of the submission is equivalent to random guessing.

1. CodaLab site for the Cross-Domain MetaDL competition: https://codalab.lisn.upsaclay.fr/compe

titions/3627
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Moreover, the normalized accuracy can be negative, indicating that the submission is worse
than random guessing, and the maximum achievable normalized accuracy is 1.

The error bars correspond to 95% confidence intervals of the mean normalized accuracy
at task level computed as follows:

CI = ±t× σ√
n
, (3)

where t is the t-value depending on confidence level and degrees of freedom (df = n− 1); σ
corresponds to the standard deviation of the normalized accuracy obtained on all meta-test
tasks, and n is the number of such tasks.

In this competition, CI calculations are only indicative and not used to select winners or
declare ties. The baseline performance the participants in the Feedback phase must surpass
to enter into the Final phase depends on the league. The baseline performance for the
Free-style and Meta-learning leagues is 0.587 and 0.361, respectively (see Appendix D for
the definition of leagues). These baseline performances were calculated by averaging the
normalized accuracy achieved by the best methods (see Section 4.3) in each league over 10
runs varying the random seed of the baseline methods.

To select the winners in the Final phase, all eligible entries are run three times, with
various random seeds. The average normalized classification accuracy over all meta-test
tasks is computed in each run, and the lowest of the three runs is used for the final ranking.
Ties are broken according to the first submission made. Note that the baseline performances
quoted in Section 4.3 are obtained by averaging the performance over multiple runs to reduce
variance, while the final evaluation of participants is made based on the worst performance
over three runs.

4. Baseline results

In this section, we present experiments to evaluate the difficulty of the new challenge setting.
We run several baseline methods to evaluate whether: (1) “Cross-domain meta-learning
any-way any-shot” (new setting) is significantly more complicated than “Within domain
5-way 5-shot” (old setting); (2) Baseline methods perform significantly better when using a
backbone pre-trained on ImageNet rather than meta-training (or training) “from scratch”;
(3) the choice of datasets is appropriate to separate method performances.

4.1. Baseline methods

This competition provides six baseline methods as part of its “starting kit”. The first one,
Train-from-scratch, does not perform any meta-training; instead, it directly learns each
meta-testing task using only its support set. The second one, Fine-tuning, is a simple
transfer learning method consisting of pre-training a backbone network with batches of
data from the concatenated meta-training datasets and then only fine-tuning the last layer
at meta-test time. Three of the remaining baselines are popular meta-learning methods:
Matching Networks Vinyals et al. (2016), Prototypical Networks Snell et al. (2017),
and FO-MAML Finn et al. (2017). Furthermore, the last baseline is an adaptation of
MetaDelta++ Chen et al. (2021), which corresponds to the solution of the winners of the
NeurIPS’21 challenge. All the baseline methods were carefully selected, aiming to have
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a variety of approaches in terms of training strategy (batch and episodic training) and
modeling choices (fine-tuning, metric-based, and ensemble). A detailed description of each
method is presented in Appendix E. All baseline methods but MetaDelta++ use a ResNet-18
backbone He et al. (2016) with the best-reported hyperparameters by the original authors on
5-way 5-shot miniImageNet (see Appendix E). For all baselines, the backbone can be either
initialized with random weights or weights pre-trained on ImageNet (as in Meta-learning
league and Free-style leagues, respectively, see Appendix D for league definition).

4.2. Experimental setting

Our experiments aim to compare and contrast the protocol of the NeurIPS’21 challenge
(within-domain MetaDL) with that of the NeurIPS’22 challenge (cross-domain MetaDL).

Data: We report results for Feedback phase data of the Cross-Domain MetaDL challenge.
Accordingly (see Section 3.2), the meta-training and meta-testing datasets correspond to
Meta-Album Set-0 and Set-1, respectively. The 10 datasets of Set-0 were divided into 7 for
meta-training and 3 for meta-validation. This division was randomly made; hence, it was
different in each run because of the random seed variation. For the within-domain protocol,
only Set-1 was used. In this case, each dataset of Set-1 was divided into meta-training,
meta-validation, and meta-testing sets with non-overlapping classes using 70%, 15%, and
15% of the available classes, respectively.

Cross-Domain setting (NeurIPS’22). The meta-learning methods were meta-trained
on 30,000 5-way 10-shot tasks, the Fine-tuning baseline was meta-trained on 30,000 batches
of size 16, and the MetaDelta++ baseline was meta-trained during 3.5 hours with batches
of size 64. The performance of the Learners produced during the meta-training phase
was validated after every 5,000 meta-training tasks (or batches in the case of the Fine-
tuning method) on 300 5-way 5-shot tasks drawn from the meta-validation split except for
MetaDelta++, in which case, the Learner was validated after every 50 meta-training batches
on 50 5-way 5-shot tasks drawn from the meta-validation split. The query set for every task
contained 20 examples per class except for the meta-validation tasks used by MetaDelta++,
which contained 5 examples per class. The Learner with the best validation performance
was evaluated following the protocol of the Feedback phase described in Section 3.2.

Within-Domain setting (NeurIPS’21). We evaluated the same baseline methods
in the same way as for the Cross-Domain setting but with the protocol of the NeurIPS’21
MetaDL competition. However, since in the cross-domain setting the meta-training and
meta-validation sets were composed of 7 and 3 datasets, respectively, and in the within-
domain setting, 1 dataset is divided into meta-training, meta-validation, and meta-testing;
we adapt the number of meta-training and meta-validation iterations to have comparable
results between these two protocols. Thus, the meta-learning methods were meta-trained on
4,290 5-way 10-shot tasks, the Fine-tuning baseline was pre-trained on 4,290 batches of size
16, and the MetaDelta++ baseline was pre-trained for 30 minutes with batches of size 64.
The performance of the Learners produced during the meta-training phase was validated
after every 750 meta-training tasks (or batches in the case of the Fine-tuning method) on 100
5-way 5-shot tasks drawn from the meta-validation split except for MetaDelta++, in which
case the Learner was validated after every 50 meta-training batches on 50 5-way 5-shot tasks
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Figure 1: Comparison of “within-domain” and “cross-domain” few-shot learning
using a randomly initialized backbone and a pre-trained backbone. Both
barplots show the average normalized accuracy over 3,000 meta-test tasks (100
tasks per dataset in each run). In addition, the meta-test task configuration
on the left barplot is 5-way 5-shot while on the right is any-way any-shot. The
corresponding 95% CIs are computed at task level.

drawn from the meta-validation split. To resemble the NeurIPS’21, during meta-testing, the
configuration for the tasks was 5-way 5-shot.

Computational resources. All experiments are carried out with the same resources
as used in the Cross-Domain MetaDL competition (see Section 3.2).

4.3. Results

We aggregated results in various manners to compare the settings of the NeurIPS’21 and the
NeurIPS’22 challenges with respect to (1) within-domain vs. cross-domain and (2) pre-trained
vs. randomly initialized backbone.

Method comparison. In Figure 1, we compare baseline methods by averaging results
over all tasks from all datasets. Before meta-training, the backbone networks are initialized
with random or pre-trained weights on ImageNet. The figure shows that initializing the
backbones with pre-trained weights helps significantly, indicating that perhaps our meta-
training set is not large enough or that the meta-training time is insufficient. We hope
to see improvements in the Meta-learning league of the challenge regarding using random
initialization. Moreover, the winner of the previous challenge (MetaDelta++) performs
significantly better than other baselines when using a pre-trained backbone. However,
Prototypical Networks is the best option when no pre-training is allowed. Additionally,
we see that the new cross-domain setting is more complicated than the within-domain
setting. In Figure 2, we study the influence of the number of ways and shots on the method
performance in the new “cross-domain” setting. To that end, we averaged results over tasks
with the same configuration (number of ways and shots) from all datasets and plotted the
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Figure 2: Comparison of the influence of the number of ways and shots on the
performance in the “cross-domain” setting using a pre-trained backbone.
We plot the average normalized accuracy achieved by the baselines using pre-
trained weights. The corresponding 95% CIs are computed at task level.

normalized accuracy. Notably, the curves do not cross, indicating that the ranking of
methods is not influenced by the number of ways and shots. We show only results
using pre-trained backbone networks because the curves obtained with randomly initialized
weights are qualitatively similar (only worse, and ordered differently, as in Figure 1). As
expected, performances degrade with the number of ways and increase with the number
of shots. Interestingly, the most significant increment occurs up to 5 shots. Appendix F
contains the detailed results for all figures presented in this section.

Dataset comparison. In Figure 3, we averaged performances per dataset and reported
only the results of the worst baseline (Train-from-scratch without pre-training) and the best
baseline (MetaDelta++ with pre-training, previous challenge winners). These performances
allow us to evaluate the intrinsic difficulty of the datasets (difference between the maximum
achievable performance and the performance of the best baseline method – green bar) and
the modeling difficulty (difference between the best and worst baseline methods – orange
bar). As can be seen, the datasets show a range of difficulty, from dataset 4, which seems
relatively easy, even to the worst baseline, to dataset 5, which is challenging even for the
best baseline. Most datasets (except 5) have a reasonably large orange bar, indicating that
the performance of methods spread over an extensive range, which is desirable in a challenge
to separate methods. Dataset 10 is an interesting case: the best method performed well in
the within-domain setting, but its performance dropped significantly in the cross-domain
setting. We find that this domain does not resemble others; hence this is not so surprising
that meta-learning within the domain should be more favorable. Generally, performances
drop when we move to the new cross-domain setting; thus, the participants of the new
challenge have some margin for improvement.
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Figure 3: Difficulty comparison of feed-back data for “within-domain” and “cross-
domain” few-shot learning, with a randomly initialized or pre-trained backbone.
The top of the blue bar indicates the worst baseline performance (Train-from-
scratch without pre-training). The top of the orange bar indicates the best baseline
performance (MetaDelta++ with pre-training). The top of the green bar indicates
the maximum achievable performance. The larger the green bar, the larger the
intrinsic difficulty. The larger the orange bar, the larger the modeling difficulty.
The average normalized accuracy was computed over 300 meta-test tasks (100
tasks per dataset in each run). Left: 5-way 5-shot; Right: any-way any-shot.

5. Conclusion and further work

We evaluated several baselines covering a variety of approaches to tackle few-shot learning
problems to compare the protocols of NeurIPS’21 and NeurIPS’22 challenge settings. The
experimental results show that the new proposed any-way any-shot cross-domain setting
is more challenging than the previously studied 5-way 5-shot within-domain setting. This
increment in problem complexity will allow us to encourage the participants to aim at finding
methods capable of learning from multiple domains and generalize to all those domains
in a more realistic test environment. Additionally, our findings show that if pre-trained
backbones are allowed, MetaDelta++ is the best option among the baselines. In general, all
baselines (except for FO-MAML) benefit from using pre-trained initialization. However, if
using pre-trained weights is not allowed, which is the case for some real-world applications
where no pre-trained backbone is available, Prototypical Networks is the best option within
the evaluated methods. Moreover, our experiments allowed us to estimate the difficulty level
of each dataset used in the Feedback phase of the new Cross-Domain MetaDL competition.
The observed modeling difficulty is a good motivation for this competition since there is
room for improvement, which is the expected outcome of this challenge. Finally, these results
show that, due to the differences among domains, the difficulty of some datasets increases
significantly in the new setting compared to the previous one.
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While this competition studies cross-domain meta-generalization across 10 domains, it
does not challenge participants to meta-generalize out of these domains since meta-test
data includes new datasets from these exact 10 domains. We plan to organize a “domain
independent” sequel, in which datasets from new domains not seen during meta-training
will be used for meta-testing.
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Appendix A. Competition Rules

• General Terms: This challenge is governed by the General ChaLearn Contest Rule
Terms, the CodaLab Terms and Conditions, and the specific rules set forth.

• Announcements: To receive announcements and be informed of any change in rules,
the participants must provide a valid email.

• Conditions of participation: Participation requires complying with the rules of the
challenge. Prize eligibility is restricted by US government export regulations, see the
General ChaLearn Contest Rule Terms. The organizers, sponsors, their students, close
family members (parents, sibling, spouse or children) and household members, as well
as any person having had access to the truth values or to any information about the
data or the challenge design giving him (or her) an unfair advantage, are excluded from
participation. A disqualified person may submit one or several entries in the challenge
and request to have them evaluated, provided that they notify the organizers of their
conflict of interest. If a disqualified person submits an entry, this entry will not be part of
the final ranking and does not qualify for prizes. The participants should be aware that
ChaLearn and the organizers reserve the right to evaluate for scientific purposes any entry
made in the challenge, whether or not it qualifies for prizes.

• Dissemination: The challenge is part of the official selection of the NeurIPS 2022
conference. There will be publication opportunities for competition reports co-authored
by organizers and top-ranking participants.

• Registration: The participants must register to CodaLab and provide a valid email
address. Teams must register only once and provide a group email, which is forwarded
to all team members. Teams or solo participants registering multiple times to gain an
advantage in the competition may be disqualified.

• Anonymity: The participants who do not present their results at the workshop can
elect to remain anonymous by using a pseudonym. Their results will be published on the
leaderboard under that pseudonym, and their real name will remain confidential. However,
the participants must disclose their real identity to the organizers to claim any prize they
might win. See our privacy policy for details.

• Submission method: The results must be submitted through this CodaLab competition
site. The number of submissions per day and maximum total computational time are
restrained and subject to change, according to the number of participants. Using multiple
accounts to increase the number of submissions in NOT permitted, except that participants
that want to enter the 2 leagues “free-style” and “meta-learning” are allowed to create a
second account under the name “originalID 2” , where originalID is their other account
they use to make submissions (we will ask in the fact sheets which is which). In case of
problem, send email to metalearningchallenge@googlegroups.com. The entries must be
formatted as specified on the Instructions page.

• Reproducibility: The participant should make efforts to guarantee the reproducibility
of their method, which in particular implies that they should use everywhere in their
code the same random seed, as exemplified in the starting kit. In the Final Phase, all
submissions will be run three times with various random seeds, and the worst performance
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will be used for final ranking. The participants will be given 2 weeks when results are
released to scrutinize the evaluation procedure and the code of the winners.

• Prizes: The three top ranking participants in each league in the Final phase (blind testing)
may qualify for prizes. The last valid submission in Feedback Phase will be automatically
submitted to the Final Phase for final evaluation. The participant must fill out a fact
sheet briefly describing their methods. There is no other publication requirement. The
winners will be required to make their code publicly available under an OSI-approved
license such as, for instance, Apache 2.0, MIT or BSD-like license, if they accept their
prize, within a week of the deadline for submitting the final results. Entries exceeding the
time budget will not qualify for prizes. In case of a tie, the prize will go to the participant
who submitted his/her entry first. Non winners or entrants who decline their prize retain
all their rights on their entries and are not obliged to publicly release their code.

Discussion: The rules have been designed with the criteria of inclusiveness for all
participants and openness of results in mind. We aim to achieve inclusiveness for all
participants by allowing them to enter anonymously and providing them cycles of computation
(for the feedback and final phases) on our compute resources. This way, participants that
do not have ample computing resources will not be limited by this and have a fair chance
to win the challenge. We aim to achieve openness of results by requiring all participants
to upload their base code and, afterward, fill in a fact sheet about the used methods. The
information from the fact sheets will allow us to conduct post-challenge analyzes of the
winners’ methods.

Cheating prevention: We will execute the submissions on our compute cluster to
prevent participants from cheating, and the testing datasets will remain hidden in the
CodaLab platform. Peeking at the final evaluation datasets will be impossible since those
datasets are not even installed on the server during the feedback phase. Improperly using the
data during the final phase will be prevented by never revealing the true test labels to the
Learners but only showing them to the scoring program on the platform. Moreover, different
sets of datasets (Set 0-2) are used in each phase to avoid domain-specific cheating and
overfitting. We will also monitor submissions and reach out to participants with suspicious
submission patterns. Finally, the winners will have to open-source their code to claim their
prize. All other participants will individually scrutinize their code before they earn their
prize.
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Appendix B. Starting kit and important links

The starting kit for this competition contains all the baseline methods described in this
paper. Additionally, since anyone interested in meta-learning can participate, we also provide
a tutorial with three difficulty levels:

• Beginner level (no prerequisites)

• Intermediate level (some knowledge of Python and meta-learning)

• Advanced level (solid knowledge of Python and meta-learning)

Each level includes information from previous levels. The idea of the tutorial is to explain
to the participants all the necessary details about the competition, the data, and the
submissions. To facilitate the usage of the starting kit, we distribute it in three different
ways:

• Google Colab: https://colab.research.google.com/drive/1ek519iShqp27hW3xt
RiIxmrqYgNNImun?usp=sharing

• GitHub Repository: https://github.com/DustinCarrion/cd-metadl

• Zip file: https://codalab.lisn.upsaclay.fr/my/datasets/download/a3476a08

-a190-4455-adc2-3db175799c98

In addition to the starting kit, the important links are:

• Competition Site: https://codalab.lisn.upsaclay.fr/competitions/3627

• Forum of the competition: https://codalab.lisn.upsaclay.fr/forums/3627

• Contact email: metalearningchallenge@googlegroups.com

• Meta-learning challenge series website: https://metalearning.chalearn.org/

• Twitter account: https://twitter.com/MetaAlbum
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Appendix C. Competition Submission API

The participants must overwrite three pre-defined classes:

• MetaLearner: It contains the meta-algorithm logic and only the method meta fit(

meta train gen, meta valid gen) has to be overwritten. In general, a MetaLearner
is meta-trained and returns a Learner to be meta-tested. However, it is not mandatory
to meta-learn in this method; instead, participants are allowed to return a “hard-coded”
learning algorithm (Learner).

• Learner: It encapsulates the logic to learn from a new unseen task. Several methods
need to be overwritten:

– fit(support set): Fits the Learner to a new unseen task.

– save(path): Saves the Learner in the specified path.

– load(path): Loads the Learner from the saved file(s).

In general, a Learner is trained on the support set of a meta-test task and returns a
Predictor to be tested on the unlabeled query set of that same task.

• Predictor: It contains the logic used by the Learner to make predictions once it is
fitted. The predict(query set) method must be overwritten to receive the unlabeled
query set of a task, process it with the fitted Learner, and return the predicted labels.
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Appendix D. Competition Leagues

• Free-style league: Submit a solution obeying basic challenge rules (pre-trained
models allowed).

• Meta-learning league: Submit a solution that meta-learns from scratch (no pre-
training allowed).

• New-in-ML league: Be a participant with less than 10 ML publications, none of
which have ever been accepted to the main track of a major conference.

• Women league: Special league to encourage women since they rarely enter challenges.

• Participant of a rarely represented country: Be a participant of a group that is
not in the top 10 most represented countries of Kaggle challenge participants.

The same participant or team can compete in several leagues. For the leagues New-in-ML,
Women, and Participant of a rarely represented country, in the case of teams, all team
members must fulfill the specific requirements of the league to participate in it. Additionally,
in these leagues, the participants are free to use either randomly initialized or pre-trained
backbones.

The total pool prize is 4000 EUR, and it will be evenly distributed among the leagues
as follows: 400 EUR for the 1st place, 250 EUR for the 2nd place, and 150 EUR for the
3rd place. Furthermore, we will invite the winning participants to work on a post-challenge
analysis collaborative paper.

19

https://towardsdatascience.com/kaggle-around-the-world-ccea741b2de2


Carrión-Ojeda Chen El Baz Escalera Guan Guyon Ullah Wang Zhu

Appendix E. Baselines description and hyperparameters

This appendix provides a high-level description of each baseline method with the correspond-
ing hyperparameters used for computing the results presented in this work.

E.1. Train-from-scratch

This method is the simplest baseline since it does not perform any meta-training. Therefore,
at meta-test time, it trains the backbone with the support set of each unseen task and then
uses the trained backbone to predict the labels of the unlabeled query set. Table 1 shows
the hyperparameters used by this method.

E.2. Fine-tuning

It is a simple transfer learning method that pre-trains a backbone network with batches of
data from the concatenated meta-training datasets. Then, at meta-test time, it freezes all
the backbone layers except for the last one, which is fine-tuned with the support set of each
unseen task. Lastly, the fine-tuned backbone is used to predict the labels of the unlabeled
query set of each meta-test task. Table 2 shows the hyperparameters used by this method.

E.3. Matching Networks

In a nutshell, Matching Networks is a metric-based method that performs the following
steps:

1. Project the images of the support set into the feature space (output embeddings of
the backbone).

2. Normalize the computed projections of the previous step.

3. Apply a one-hot encoding on the labels of the support set.

4. Project the images of the unlabeled query set into the feature space using the same
backbone.

5. Normalize the computed projections of the previous step.

6. Compute the cosine similarity matrix between the normalized projections of the support
and query sets.

7. Multiply the cosine similarity matrix and the one-hot encoding support set matrix.

8. Each image in the query set is assigned the label of the column with the highest value
in the matrix obtained in the previous step.

During meta-training, the backbone is trained in an“episodic” way by maximizing the cosine
similarity between images of the same class in the support and query sets. Please refer to
the original paper to see the full details of this method Vinyals et al. (2016). Table 3 shows
the hyperparameters used by this method.
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E.4. Prototypical Networks

In a nutshell, Prototypical Networks is a metric-based method that performs the following
steps:

1. Project the images of the support set into the feature space (output embeddings of
the backbone).

2. Compute the prototypes for each class. The prototypes are the mean vector of all
examples of the same class.

3. Project the images of the unlabeled query set into the feature space using the same
backbone.

4. Create a distance matrix by computing the Euclidean distance between the projections
of the query set and each prototype.

5. Each image in the query set is assigned the label of the closest prototype.

During meta-training, the backbone is trained in an “episodic” way by minimizing the
Euclidean distance between the projections of the query set images and their corresponding
prototypes. Please refer to the original paper to see the full details of this method Snell
et al. (2017). Table 3 shows the hyperparameters used by this method.

E.5. FO-MAML

In a nutshell, FO-MAML is a method that relies on “episodic” training to find, during
meta-training, the best possible weights for the backbone to achieve rapid adaptation when
dealing with unseen tasks (meta-testing). It performs the following steps:

1. Forward the support set through the backbone and compute the loss.

2. Compute the gradients of step 1 and update the weights of the backbone.

3. Repeat steps 1 and 2 T times.

4. Forward the query set through the backbone.

5. If meta-testing, compute the softmax of the output of the previous step and return
the probability matrix; otherwise, continue with the next step.

6. Compute the loss using the output of step 4 and the labels of the query set.

7. Compute the gradients of step 6, but only update the weights of the backbone after
processing m meta-training tasks (meta batch size).

Note that in the original paper Finn et al. (2017), MAML computes second-order deriva-
tives during the gradient calculations; nevertheless, this can be avoided by the first-order
approximation of MAML (FO-MAML), where the second derivatives are omitted. Table 4
shows the hyperparameters used by this method.
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E.6. MetaDelta++

This baseline corresponds to the solution of the winners of the NeurIPS’21 competition on
within-domain few-shot learning. In a nutshell, during meta-training, this method uses batch
training to pre-train an ensemble of meta-learners composed of the same backbone but with
a different classifier. Additionally, hand-crafted data augmentation (like rotation) is designed
to help the pre-training process. Finally, the ensemble of meta-learners is “autoensembled” to
stabilize the performance of the whole meta-learning system. The “autoensembled” backbone
is used during meta-testing. Please refer to the original paper to see the full details of this
method Chen et al. (2021).

E.7. Hyperparameters

Table 1: Hyperparameters used by the Train-from-scratch baseline. Take into account that
the backbone is a ResNet-18.

Hyperparameter
Hyperparameter
name in the code

Value

Optimizer opt fn Adam
Learning rate lr 0.001
Loss function criterion Cross-entropy
Number of training iterations T 100
Batch size batch size 4

Table 2: Hyperparameters used by the Fine-tuning baseline. Take into account that the
backbone is a ResNet-18.

Hyperparameter
Hyperparameter
name in the code

Value

Optimizer opt fn Adam
MetaLearner learning rate lr 0.001
Learner learning rate val lr 0.001
Loss function criterion Cross-entropy
Number of training iterations
for the Learner

T 100

Batch size for the Learner val batch size 4
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Table 3: Hyperparameters used by the Matching Networks and Prototypical Networks
baselines. Take into account that the backbone is a ResNet-18.

Hyperparameter
Hyperparameter
name in the code

Value

Optimizer opt fn Adam
Learning rate lr 0.001
Loss function criterion Cross-entropy
Meta-batch size meta batch size 1

Table 4: Hyperparameters used by the FO-MAML baseline. Take into account that the
backbone is a ResNet-18.

Hyperparameter
Hyperparameter
name in the code

Value

Optimizer opt fn Adam
MetaLearner learning rate lr 0.001
Learner learning rate base lr 0.01
Loss function criterion Cross-entropy
Inner training iterations T 5
Meta-batch size meta batch size 2
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Appendix F. Detailed results

This appendix provides the detailed results for the experiments shown in Section 4.3. Table 5
corresponds to the detailed results for Figure 1. Tables 6, 7, 8, and 9 correspond to the
detailed results for Figure 2. Lastly, Table 10 corresponds to the detailed results for Figure 3.

Table 5: Detailed results for the comparison of “within-domain” and “cross-domain” few-
shot learning using a randomly initialized and a pre-trained backbone. The
corresponding 95% CIs are computed at task level over 3,000 tasks.

Method
Within-Domain Cross-Domain

Random Pre-trained Random Pre-trained

Train-from-scratch 21.1 ± 0.8 33.3 ± 0.8 14.5 ± 0.7 26.9 ± 0.8
Fine-tuning 29.0 ± 0.9 39.4 ± 0.9 26.6 ± 0.8 28.8 ± 0.8
Matching Networks 35.1 ± 0.9 50.0 ± 0.9 25.7 ± 0.8 30.5 ± 0.8
Prototypical Networks 35.2 ± 0.9 51.4 ± 0.9 34.7 ± 0.9 40.6 ± 0.9
FO-MAML 24.8 ± 0.9 41.3 ± 0.9 21.1 ± 0.8 21.2 ± 0.7
MetaDelta++ 23.6 ± 0.8 75.8 ± 0.9 21.9 ± 0.9 62.3 ± 1.0
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Table 6: Detailed results for the analysis of the influence of the number of ways on the
performance of the baselines in the “cross-domain” setting using a randomly
initialized backbone. The corresponding 95% CIs are computed at task level. TFS,
FT, MN, PN, and MD++ stands for Train-from-scratch, Fine-tuning, Matching
Networks, Prototypical Networks, and MetaDelta++, respectively.

Ways TFS FT MN PN FO-
MAML

MD++

2 38.0 ± 5.0 49.7 ± 4.4 42.7 ± 4.9 49.8 ± 4.8 38.3 ± 4.7 35.2 ± 5.6
3 29.5 ± 4.5 41.2 ± 4.6 36.9 ± 4.4 45.3 ± 4.6 29.6 ± 4.4 29.3 ± 4.9
4 22.8 ± 3.5 39.9 ± 4.1 34.2 ± 3.7 44.0 ± 3.9 30.0 ± 3.9 28.5 ± 4.4
5 21.0 ± 3.3 35.8 ± 3.6 31.3 ± 3.3 39.4 ± 3.7 26.5 ± 3.5 26.8 ± 3.7
6 18.2 ± 3.2 31.9 ± 3.7 28.6 ± 3.6 38.6 ± 4.0 25.0 ± 3.5 24.4 ± 4.0
7 17.2 ± 3.1 32.8 ± 3.8 28.7 ± 3.6 37.6 ± 4.0 23.9 ± 3.5 24.1 ± 4.0
8 14.5 ± 2.4 27.5 ± 3.4 26.3 ± 3.2 34.3 ± 3.7 22.9 ± 3.2 21.7 ± 3.7
9 15.0 ± 2.8 29.2 ± 3.6 28.0 ± 3.4 37.0 ± 4.1 24.6 ± 3.5 24.4 ± 4.0
10 12.9 ± 2.5 24.4 ± 3.1 23.9 ± 2.9 34.2 ± 3.7 20.4 ± 3.1 20.4 ± 3.4
11 11.0 ± 2.3 23.4 ± 3.2 22.6 ± 3.1 32.0 ± 3.9 18.9 ± 3.0 20.3 ± 3.5
12 10.3 ± 2.1 21.2 ± 2.8 21.7 ± 2.7 31.1 ± 3.4 17.2 ± 2.5 17.6 ± 2.9
13 8.8 ± 1.8 19.4 ± 2.9 20.1 ± 2.8 29.1 ± 3.5 16.3 ± 2.8 17.0 ± 3.2
14 8.6 ± 1.8 20.5 ± 2.6 20.5 ± 2.7 31.2 ± 3.5 16.8 ± 2.6 17.6 ± 3.1
15 7.9 ± 1.8 16.6 ± 2.5 19.4 ± 2.9 26.6 ± 3.6 14.6 ± 2.6 16.2 ± 3.1
16 10.7 ± 2.2 21.8 ± 2.9 23.7 ± 3.3 35.0 ± 4.1 19.0 ± 3.0 21.8 ± 3.8
17 6.0 ± 1.4 16.1 ± 2.6 17.8 ± 2.7 26.7 ± 3.5 13.4 ± 2.4 15.2 ± 3.0
18 6.7 ± 1.5 16.2 ± 2.5 19.2 ± 2.8 27.5 ± 3.7 13.4 ± 2.5 16.9 ± 3.2
19 7.1 ± 1.7 16.2 ± 2.4 18.7 ± 2.9 28.7 ± 3.8 13.3 ± 2.5 17.3 ± 3.3
20 6.3 ± 1.3 17.0 ± 2.3 20.5 ± 2.8 28.5 ± 3.5 13.8 ± 2.2 18.3 ± 3.1
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Table 7: Detailed results for the analysis of the influence of the number of ways on the
performance of the baselines in the “cross-domain” setting using a pre-trained
backbone. The corresponding 95% CIs are computed at task level. TFS, FT, MN,
PN, and MD++ stands for Train-from-scratch, Fine-tuning, Matching Networks,
Prototypical Networks, and MetaDelta++, respectively.

Ways TFS FT MN PN FO-
MAML

MD++

2 48.6 ± 4.4 48.5 ± 4.9 50.1 ± 4.6 58.0 ± 4.3 39.2 ± 4.6 76.0 ± 4.7
3 41.4 ± 4.2 43.3 ± 4.6 43.7 ± 4.5 52.8 ± 4.4 32.8 ± 4.3 72.2 ± 4.7
4 39.1 ± 3.9 41.2 ± 4.0 41.5 ± 3.8 50.3 ± 4.0 32.0 ± 3.7 67.1 ± 4.8
5 36.7 ± 3.7 37.1 ± 3.5 37.2 ± 3.5 46.8 ± 3.6 25.7 ± 3.0 67.7 ± 4.1
6 33.1 ± 3.7 35.3 ± 3.6 34.8 ± 3.7 45.1 ± 4.0 25.2 ± 3.2 64.8 ± 4.5
7 32.5 ± 3.7 34.3 ± 3.7 33.9 ± 3.5 43.8 ± 4.0 25.1 ± 3.2 66.8 ± 4.3
8 29.9 ± 3.3 29.1 ± 3.4 30.0 ± 3.3 40.0 ± 3.9 21.4 ± 3.0 63.0 ± 4.3
9 30.6 ± 3.8 30.9 ± 3.5 31.7 ± 3.4 43.2 ± 4.2 22.1 ± 3.0 65.7 ± 4.3
10 26.2 ± 3.3 27.6 ± 3.1 29.5 ± 3.3 39.8 ± 3.9 20.0 ± 2.8 61.3 ± 4.4
11 22.7 ± 3.2 26.4 ± 3.2 28.0 ± 3.2 38.1 ± 4.0 18.9 ± 2.7 61.0 ± 4.4
12 22.4 ± 3.0 23.1 ± 2.8 25.2 ± 2.8 35.2 ± 3.6 17.0 ± 2.3 56.6 ± 4.1
13 20.6 ± 2.9 22.2 ± 2.9 24.4 ± 3.1 34.3 ± 3.8 16.3 ± 2.5 57.9 ± 4.4
14 19.7 ± 2.6 23.7 ± 2.7 26.1 ± 2.9 36.9 ± 3.7 17.7 ± 2.4 58.5 ± 3.9
15 17.9 ± 2.9 18.7 ± 2.6 22.6 ± 2.9 32.3 ± 3.8 14.5 ± 2.2 53.5 ± 4.6
16 22.7 ± 3.3 24.8 ± 2.9 28.4 ± 3.1 40.7 ± 4.3 18.4 ± 2.5 60.8 ± 4.3
17 15.2 ± 2.4 18.7 ± 2.6 21.1 ± 2.7 31.4 ± 3.6 13.0 ± 2.0 54.4 ± 4.1
18 16.0 ± 2.5 18.7 ± 2.7 21.6 ± 2.8 31.8 ± 3.9 13.0 ± 2.0 56.1 ± 4.3
19 15.3 ± 2.6 19.8 ± 2.6 23.6 ± 3.0 34.3 ± 4.0 14.1 ± 2.1 57.9 ± 4.3
20 15.7 ± 2.2 19.5 ± 2.3 23.2 ± 2.6 34.4 ± 3.7 13.3 ± 1.8 59.4 ± 3.6
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Table 8: Detailed results for the analysis of the influence of the number of shots on the
performance of the baselines in the “cross-domain” setting using a randomly
initialized backbone. The corresponding 95% CIs are computed at task level. TFS,
FT, MN, PN, and MD++ stands for Train-from-scratch, Fine-tuning, Matching
Networks, Prototypical Networks, and MetaDelta++, respectively.

Shots TFS FT MN PN FO-
MAML

MD++

1 8.1 ± 2.0 16.4 ± 2.9 14.2 ± 2.9 16.6 ± 3.1 10.8 ± 2.2 12.7 ± 3.4
2 12.5 ± 2.5 20.7 ± 3.2 18.6 ± 3.1 23.8 ± 3.5 15.6 ± 2.8 16.3 ± 3.4
3 12.8 ± 2.9 24.0 ± 3.5 19.6 ± 3.3 26.3 ± 3.6 17.1 ± 3.1 17.1 ± 3.6
4 13.0 ± 2.9 23.8 ± 3.4 22.0 ± 3.2 30.2 ± 3.7 18.0 ± 3.1 18.2 ± 3.6
5 14.2 ± 2.6 28.2 ± 3.3 24.2 ± 3.3 34.3 ± 3.8 20.9 ± 3.0 20.6 ± 3.4
6 15.0 ± 3.1 25.8 ± 3.6 25.0 ± 3.5 32.8 ± 4.0 21.1 ± 3.4 20.0 ± 3.8
7 14.1 ± 3.3 25.5 ± 3.8 24.4 ± 3.6 33.4 ± 4.2 19.7 ± 3.4 20.6 ± 4.0
8 15.8 ± 3.3 28.7 ± 3.9 26.9 ± 3.7 36.8 ± 4.2 22.5 ± 3.7 22.9 ± 3.9
9 16.4 ± 3.8 28.4 ± 4.3 26.6 ± 4.1 37.0 ± 4.5 23.3 ± 4.1 23.4 ± 4.5
10 14.7 ± 3.1 27.0 ± 3.6 27.5 ± 3.2 36.4 ± 3.9 21.2 ± 3.4 23.9 ± 3.7
11 15.9 ± 3.1 29.7 ± 3.5 29.1 ± 3.5 38.7 ± 3.9 24.4 ± 3.6 24.1 ± 4.0
12 14.4 ± 3.0 27.3 ± 3.7 26.8 ± 3.5 36.6 ± 3.9 22.2 ± 3.5 23.0 ± 4.0
13 15.3 ± 3.0 28.3 ± 3.8 28.7 ± 3.5 38.7 ± 4.0 22.9 ± 3.4 25.0 ± 3.9
14 15.7 ± 4.1 28.2 ± 4.3 28.5 ± 4.2 39.5 ± 4.7 23.5 ± 4.1 24.2 ± 4.6
15 15.2 ± 3.3 28.2 ± 4.0 28.0 ± 3.7 38.6 ± 4.6 22.3 ± 3.6 25.6 ± 4.2
16 18.3 ± 4.1 30.8 ± 4.4 30.7 ± 4.3 41.6 ± 4.3 24.5 ± 4.2 25.8 ± 4.8
17 14.1 ± 3.5 28.6 ± 4.0 27.6 ± 4.0 38.3 ± 4.4 22.7 ± 3.9 24.1 ± 4.4
18 13.6 ± 2.5 26.5 ± 3.1 28.1 ± 2.9 38.6 ± 3.5 22.8 ± 3.0 23.2 ± 3.3
19 16.5 ± 3.9 29.4 ± 4.2 31.3 ± 3.7 40.8 ± 4.1 26.2 ± 4.0 25.8 ± 4.3
20 16.6 ± 3.4 29.0 ± 3.9 29.2 ± 3.4 40.6 ± 4.0 23.3 ± 3.6 24.2 ± 4.1
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Table 9: Detailed results for the analysis of the influence of the number of shots on the
performance of the baselines in the “cross-domain” setting using a pre-trained
backbone. The corresponding 95% CIs are computed at task level. TFS, FT, MN,
PN, and MD++ stands for Train-from-scratch, Fine-tuning, Matching Networks,
Prototypical Networks, and MetaDelta++, respectively.

Shots TFS FT MN PN FO-
MAML

MD++

1 16.0 ± 2.8 16.9 ± 3.0 18.1 ± 3.2 23.7 ± 3.5 11.0 ± 2.3 48.5 ± 4.8
2 21.5 ± 3.2 22.0 ± 3.4 24.0 ± 3.4 29.8 ± 4.1 14.9 ± 2.4 50.6 ± 4.7
3 22.9 ± 3.2 24.2 ± 3.5 25.7 ± 3.6 32.2 ± 3.8 17.4 ± 2.8 55.3 ± 4.6
4 23.5 ± 3.4 25.0 ± 3.5 26.4 ± 3.4 35.4 ± 3.9 18.5 ± 2.7 58.4 ± 4.6
5 26.3 ± 3.1 29.7 ± 3.3 30.6 ± 3.4 41.1 ± 3.9 21.0 ± 2.7 62.7 ± 4.3
6 26.6 ± 3.4 27.6 ± 3.5 29.6 ± 3.6 38.7 ± 4.1 19.8 ± 3.1 59.5 ± 4.4
7 27.4 ± 3.7 28.4 ± 3.8 29.4 ± 3.7 39.5 ± 4.2 20.4 ± 3.2 62.8 ± 4.6
8 27.9 ± 3.8 30.7 ± 3.7 32.9 ± 3.6 43.2 ± 4.2 23.3 ± 3.2 60.7 ± 4.4
9 28.9 ± 4.2 32.3 ± 4.1 34.6 ± 4.2 43.6 ± 4.6 25.6 ± 4.1 63.0 ± 5.1
10 28.5 ± 3.7 29.9 ± 3.5 30.8 ± 3.5 43.5 ± 4.1 21.1 ± 3.0 65.2 ± 4.3
11 30.6 ± 3.7 32.9 ± 3.5 34.3 ± 3.6 45.3 ± 4.0 24.6 ± 3.4 66.6 ± 4.1
12 26.2 ± 3.6 30.3 ± 3.7 32.8 ± 3.6 43.3 ± 3.9 23.6 ± 3.4 63.6 ± 4.4
13 30.3 ± 3.8 30.2 ± 3.6 32.1 ± 3.5 44.4 ± 4.0 23.1 ± 3.4 67.6 ± 4.1
14 29.7 ± 4.6 31.0 ± 4.2 32.6 ± 4.1 44.9 ± 4.6 23.0 ± 3.6 65.8 ± 4.8
15 28.6 ± 3.9 30.6 ± 4.0 33.0 ± 3.7 44.1 ± 4.5 22.8 ± 3.4 64.7 ± 4.5
16 29.5 ± 4.4 34.5 ± 4.4 36.0 ± 4.1 47.1 ± 4.6 25.6 ± 4.0 69.2 ± 4.3
17 28.4 ± 4.3 30.9 ± 4.0 33.9 ± 4.1 44.4 ± 4.5 24.0 ± 3.8 65.5 ± 4.3
18 28.0 ± 3.5 29.5 ± 3.2 31.0 ± 3.0 43.4 ± 3.5 21.2 ± 2.6 66.4 ± 3.8
19 30.2 ± 4.3 31.5 ± 4.3 34.1 ± 3.9 45.2 ± 4.3 23.6 ± 3.7 67.0 ± 4.4
20 29.4 ± 4.1 31.0 ± 3.8 33.0 ± 3.6 45.4 ± 4.1 23.0 ± 3.3 66.5 ± 4.4
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Table 10: Detailed results for the comparison of the difficulty level of Feedback phase
datasets for “within-domain” and “cross-domain” few-shot learning. The results
of Train-from-scratch use a randomly initialized backbone, while the results
of MetaDelta++ use a pre-trained backbone. The corresponding 95% CIs are
computed at task level over 300 tasks.

Dataset
Within-Domain Cross-Domain

Train-from-scratch MetaDelta++ Train-from-scratch MetaDelta++

Dataset 1 9.5 ± 0.8 94.0 ± 0.7 7.9 ± 1.1 87.3 ± 1.1
Dataset 2 9.4 ± 0.8 57.0 ± 1.6 7.0 ± 1.0 45.7 ± 1.7
Dataset 3 16.2 ± 1.0 58.4 ± 1.4 9.4 ± 1.2 50.7 ± 1.7
Dataset 4 61.6 ± 1.4 92.6 ± 1.0 50.2 ± 2.1 93.8 ± 0.6
Dataset 5 6.8 ± 0.7 17.3 ± 0.9 5.2 ± 0.9 13.3 ± 1.0
Dataset 6 48.9 ± 1.4 94.5 ± 0.7 31.9 ± 2.7 88.9 ± 1.0
Dataset 7 34.4 ± 1.3 81.8 ± 0.9 18.4 ± 1.8 52.8 ± 1.7
Dataset 8 10.3 ± 0.8 81.6 ± 0.8 6.7 ± 1.0 70.5 ± 1.4
Dataset 9 13.2 ± 0.9 86.7 ± 1.2 7.9 ± 1.3 73.8 ± 1.5
Dataset 10 0.5 ± 0.5 93.7 ± 0.6 0.7 ± 0.6 45.7 ± 3.4
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