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Abstract

Although different fluid pressure diffusion mechanisms caused by fractures have been extensively studied using analytical
and numerical methods, there is little to no experimental work completed on them in laboratory conditions. In this paper,
hydrostatic-stress oscillations (frequency — 0.04 to 1 Hz) are used on an intact and saw cut sample, in dry and water saturated
conditions, in a triaxial cell at different effective pressures in undrained conditions. The objective is to study the fracture’s
effect on the elastic properties of the sample and validate some computational fracture models, that have been explored in
the literature. Experimental results highlight dispersion and attenuation in saturated conditions due to the fracture, which
diminishes in amplitude as the effective pressure is increased, i.e. as the fracture is closed. From local strain gauge meas-
urements, it is found that there is a local negative phase shift between stress and strain in water saturated conditions for the
fractured sample, due to the location of the strain measurements. No attenuation observed in dry conditions. A simple 1D
model using mass balance and mechanical equilibrium equations for a linear isotropic poroelastic homogeneous medium
give prediction in very good agreement with the experimental results. A 3D model was also developed to allow a comparison
between analytic, numerical and experimental results.

Highlights

e Using innovative microvalves in an experimental setup on a fractured rock sample, to reach undrained conditions, in
seismic frequency range.

¢ Local strain measurements, for the first time experimentally, show local negative phase shift between stress and strain in
water saturated conditions.

¢ A 1D analytical and 3D numerical model were created which are in good agreement with the experimental results.
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1 Introduction may also be created due to anthropogenic activities such

as geothermal exploitation (Fleuchaus and Blum 2017).

Fractures are commonplace in reservoirs. Natural fractures
are the consequence of geologic processes (cycle of burial,
diagenesis, uplift, tectonic, erosional unloading...) but
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Even if they only account for a small amount of the total
porosity of a geological formation, they may control the
reservoir permeability (Walsh 1981; Paillet et al. 1987)
and elastic properties (Matonti et al. 2015; Bailly et al.
2019); thus, a better knowledge of the effect of fractures
on the physical properties of a reservoir is fundamental
for deep geological repositories (Min et al. 2013), the
exploitation of hydrocarbons (Gudmundsson and Lgtveit
2014), CO, sequestration (Mazumder et al. 2006; Ulven
et al. 2014) and geothermal exploitation.
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Fractures can be defined as a type of porosity with small
aspect ratios which is more compliant than equant pores
and as such is more sensitive to stress. As a consequence,
elastic properties and thus P- and S- wave velocities are
strongly affected by the fracture density, orientation, con-
nectivity and geometry (Walsh 1981; Brajanovski et al.
2005; Gurevich et al. 2009; Galvin and Gurevich 2009,
2015; Quintal et al. 2014; Guo et al. 2018a, b; Lissa et al.
2020). The elastic wave velocities for fluid-saturated
rocks, in the absence of mesoscopic (cm scale) fractures,
can be frequency dependent resulting in attenuation and
dispersion. This behavior has been shown to be attrib-
uted to different mechanisms. One of these fluid pressure
diffusion (FPD) mechanisms is at a mesoscopic scale,
between different regions and is dependent on the change
in properties, such as compressibility, permeability and
pore fluid viscosity, between regions (Miiller et al. 2010).
Heterogeneous rocks and multiple pore fluids can also cre-
ate volumes of different compressibility which may trig-
ger a similar viscoelastic response (White 1975). Squirt
flow is another FPD mechanism which happens at pore
scale, within the representative elementary volume (REV),
between stiff and more compliant pores (Batzle et al.
2006; Gurevich et al. 2010). The characteristic frequency
is related to the aspect ratio of the different microscopic
pores, the elastic properties of the sample and is inversely
proportional to the dynamic viscosity of the pore fluid.

In saturated condition, the presence of mesoscopic frac-
tures can also change the elastic properties of samples by
promoting dissipation through FPD. This has been shown
through analytical modelling (Brajanovski et al. 2005;
Gurevich et al. 2009; Galvin and Gurevich 2009, 2015), and
also through numerical modelling with simple cases of a sin-
gle fracture and simple stress fields applied (Chapman and
Quintal 2018; Caspari et al. 2019), to slightly more compli-
cated geometries of fractures intersecting each other at 90°
(Vinci et al. 2014, Lissa et al. 2020), to even more complex
geometries, such as multiple parallel fractures (Cai and Zhao
2000; Carcione et al. 2012) or even fractures intersecting at
45° (Quintal et al. 2014). Some work has also been done
in situ at the Grimsel Test Site in the Swiss alps by Barbosa
et al. (2019), who investigated the effect of fractures in a
borehole, using a sonic logging tool, which allowed for P
and S wave velocities as well as their attenuation measure-
ments, with intrinsic background attenuation estimated and
removed by studying the intact regions of the borehole.

However, there is a lack of data that investigates in the
laboratory, under pressure and in undrained conditions, the
frequency dependence of fractured porous rocks. Naka-
gawa (2013) was able to measure normal and shear fracture
attenuation at a range of seismic frequencies (between 1 and
100 Hz) with different axial stresses applied normal to the
fracture. This setup was not in a pressure vessel, therefore,

limiting the stress oscillations to be purely axial and limit-
ing the tests to have a very low pore pressure in the sample
to prevent fluid migration between the jacket and the sam-
ple. Amalokwu et al. (2014) showed results on man-made
intact sandstones and sandstones with aligned penny-shaped
voids at different water saturation levels at 40 MPa effec-
tive pressure and measurements made at a single frequency
of 650 kHz, which showed more attenuation in the sand-
stone with aligned penny-shaped voids. Amalokwu et al.
note, however, that there can be microstructural differences
between the intact and fractured samples due to manufac-
turing processes, which makes it hard to compare absolute
attenuation peaks between both samples.

One needs to be careful regarding the definition of a local
and global measurement, in a laboratory setting, when an
isotropic medium has a fracture introduced to the sample.
As a matter of fact, Chapman and Quintal (2018) investi-
gated numerically the mechanical properties of a fully sat-
urated Berea sandstone sample with a single fracture and
distinguished (1) the elastic modulus of the whole fractured
sample from (2) the apparent elastic modulus of the matrix
(local measurement), both affected by the pore pressure vari-
ation induced by the fracture. In the second case, the results
showed different attenuation peaks depending on where the
local strain was measured (more or less close to the frac-
ture). They also show that in this case, a negative phase shift
between stress and strain is expected.

Finally, one needs to be especially careful that the meas-
ured attenuation is related to the fracture and not to other
mechanisms like squirt-flow (Gurevich et al. 2010; Chap-
man and Quintal 2018), partial saturation (Chapman et al.
2016; Spencer and Shine 2016; Chapman et al. 2019),
drained—undrained transition (Pimienta et al. 2016) or even
mesoscopic FPD (Carcione and Picotti 2006).

The goal of this work is to validate numerical models by
experimentally showing FPD caused by fractures, such as
the simulation by Chapman and Quintal (2018). To accom-
plish this, the elastic properties of an intact sample were
monitored during hydrostatic oscillations at a frequency
range of 0.04-1 Hz in dry and water saturated conditions,
with undrained boundaries, and at three effective pressures.
The effective pressure is defined as the difference between
the confining and pore pressure, with the confining and pore
pressure defined as the pressure in the triaxial cell and the
pressure in the pore fluid of the sample, respectively. The
sample was then cut in half, to create a simple known frac-
ture geometry. The fractured sample was then tested again
following the same procedure as for the intact sample.
Although, the fracture strain cannot be directly measured
due to the experimental limitations, we measured the strain
in the matrix—affected by pore pressure change due to the
fracture—similar to what was investigated in Chapman and
Quintal’s work (2018), allowing comparisons to numerical
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models in the literature. Permeability tests were completed
on the intact and saw cut sample at varying effective pres-
sures to estimate the hydraulic aperture and stiffness of the
fracture in undrained conditions, using innovative micro-
valves. A 1D model was developed, using the hydraulic
aperture and stiffness measured. The model is used to cal-
culate the pore pressure field with frequencies as well as the
bulk modulus and attenuation with frequency. In addition,
a numerical model was made in COMSOL multiphysics
to take into account the 3D geometry and validate the 1D
model. Finally, the numerical and analytical models were
compared to the experimental data.

2 Experimental Procedure

The dispersion and attenuation of the bulk modulus was
measured using the stress—strain method (Adelinet al. 2011;
David et al. 2013; Pimienta et al. 2015), in a TOP Indus-
tries™ triaxial cell (Fig. 1) installed at the ENS Paris geol-
ogy laboratory (Borgomano et al. 2020). It is outfitted with
three pumps, two of which are oil filled and control cell pres-
sure and the axial piston, and the final pump is a Quizix dual
pump (QX1500HC model), which is water filled and con-
trols upstream and downstream pore pressures in the sample.

Four strain gauge pairs are attached to the surface of the
sample at mid-height (Fig. 2) and are used to measure local
strain during the hydrostatic-stress oscillations. The strain
gauge pairs are two directional and have one axial and one
radial component at 90° from each other. They have a resist-
ance of 350 Q and have a gauge length of 5 mm. The sample

is held between a top and bottom cap, and is separated from
the confining oil by a black neoprene jacket.

The strain gauges and the pressure transducers are con-
nected to the data acquisition system (DAQ), which can
record up to a frequency of 4 kHz. The cell pump con-
trols the cell pressure and can reach a maximum pressure
of 100 MPa with a hydrostatic oscillating mean amplitude
of 0.2 MPa and a minimum and maximum oscillating fre-
quency of 0.001 and 1.3 Hz, respectively.

It is important to underline that every test completed
under pore fluid saturation in this paper was done in und-
rained conditions. This was accomplished using microvalves
which are placed in the bottom and top end platen, which
when closed reduce the dead volume to~20 pl. The dead
volume can be defined experimentally as the volume of fluid
between the inlet and outlet of the sample and the pump or
as an excess of water which acts as a fluid reservoir outside
of the sample. This implies that the mass of fluid inside
the sample during the oscillation is constant, a necessary
condition to measure directly the undrained moduli (Fortin
and Guéguen 2021). More details of the experimental set up
regarding these microvalves are documented in Borgomano
et al. (2020).

2.1 Hydrostatic Stress Oscillations

The confining pump, which is connected to the main
chamber of the triaxial cell, is able to oscillate around a
confining pressure at a frequency of 0.01-1.3 Hz, which is
measured using a pressure transducer attached to the main
chamber of the triaxial cell using a 1/8" NPT tube. When a
sample is put into the triaxial cell, the hydrostatic pressure

Fig.1 Top industry triaxial cell: (left) when cell is closed, (right) cell is open, close up on jacketed sample. Modified after Borgomano et al.

(2020)
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in the cell is cycled between 5 and 25 MPa three times to
ensure all compliant pores are closed. The strain induced
by these oscillations are measured using the strain gauges
attached to the sample. The magnitude of the confining
pressure oscillation is 0.2 MPa to ensure that the strain is
within the linear elastic range (&~ 107%) (Winkler and Mur-
phy III 1995). The apparent bulk modulus is calculated as:
=AP,

K= = 1
Eval ( )

where K is the bulk modulus, AP, is the change in confining
pressure and g,,; is the volumetric strain. The volumetric
strain is calculated as 2&,,4 + €, Where €4 and €, are
the mean values of all strain gauges glued at mid-height on
the sample in the axial and radial directions, respectively
(Fig. 2). Using a MATLAB program, fast Fourier transforms
(FFTs) are used to determine the stress and strain amplitude
for each signal.

2.2 Attenuation (Q")

In the case of porous rocks, the skeleton of the rock itself is
none dispersive. However, the pore fluid diffusion induced
by a change in the stress field is time dependent. This can
cause dissipation of elastic energy within the sample, similar
to that of the rheology of a viscoelastic material (O’ Connell
and Budiansky 1977). This anelastic behavior is highlighted

-——;
Y
A P (MPa)

-1 _
QKM = tan(qb_ ap, =

in Fig. 2B, where the stress—strain curve forms an ellipse, with
the area within the ellipse representing the energy lost. This
attenuation can be characterized by calculating the phase shift
between the stress and the strain, when expressed as a complex
stress & = oe!(21¢:) and complex strain £ = £¢/?7+4:) for
a dynamic oscillation of frequency f, where ¢, and ¢, are the
stress and strain phases.

The stress is related to the strain through its complex modu-
lus M.

G =Mz 2

The attenuation factor Q;i' is then defined as follows
(O’Connell and Budiansky 1978):

m(¥) (%)

Oy =——
Re()  Re(7)
To calculate the Q;[', fast Fourier transforms (FFTs) were
applied to the stress and strain curves to extract the phases

of each, using MATLAB. Using Egs. (1) and (3) the attenu-
ation of the bulk modulus can be calculated as:

¢£wl )'

tan(¢p, — b, ). 3

@
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2.3 Sample Characterization

The sample came from Rustrel in the Urgonian Limestone
formation in the SE of France (Borgomano et al. 2019). The
Rustrel sample was machined from a core into a cylindri-
cal shape with a diameter of 39 mm and a height of 78 mm
(Fig. 3). Using the triple weight method, the porosity, ¢,
of the sample was found to be 16% + 0.5%. The dry den-
sity of the sample is around 2291.5 kg m™. A thin section
was made from a section right above the sample, which was
then scanned using a digital microscope (Keyence digital
microscope VHX-5000), and a scanning electron microscope
(SEM). Figure 3 shows the digital microscope picture (B)
which is at a larger scale, with an SEM scan (A) at a smaller
scale, as well as pictures of the intact and saw cut samples
(C and D). This limestone is made of calcite cement—(b)
in Fig. 3A—surrounding micritic peloidal grains—(a) in
Fig. 3A—; fragments of rudist shells can also be observed.

The permeability of the intact sample is 3 x 10~'” m? at an
effective pressure of 7.5 MPa (Table 1). After testing the intact
sample, it was then cut down its center, along its length using
a diamond saw with a width of 2 mm. The permeability of the
saw cut sample was measured at varying confining pressures
(2,6,10, 14, 18, 22 and 26 MPa) using a constant flow rate at
the inlet of 1.5 ml/min and having the outlet pressure at 0 MPa.
The effective pressure was then calculated by subtracting half
the inlet pressure from the confining pressure.

2.4 Hydraulic Aperture

The hydraulic aperture of the fracture in the saw cut sample
is calculated assuming the total flow rate through the sample
(Q,,) is equal to the sum of flow rates (i) through the fracture
(Qy) and (ii) through sample matrix (Q,).

Oy =0On + O 5)
Darcy’s law states:
k9P
0=4--1, ©)
n 0z

where k is the permeability (m?), n is the dynamic viscos-
ity of the pore fluid (Pa s), Q is the flow rate parallel to the
fracture (m* s™'), A is the area of the sample perpendicular
to the flow (m?) and P; is the pore fluid pressure (Pa). Equa-
tion 6 was used to calculate the permeability.

Equation 6 leads to:

kwAw = kmAm + kaf" (7)

where k,,, k;, and k; are the whole sample, matrix and frac-
ture permeability, respectively, and A,,, A, and A; are the
whole sample, matrix and fracture areas, respectively.
Apart from the permeability of the fracture, each other
term in Eq. 7, is known or is a function of the hydraulic
aperture (b) of the fracture. In addition, assuming a parallel

Table 1 Intact Rustrel sample and pore fluid characteristics

Intact parameter Values

Sample length L=T78 mm
Sample diameter d=39 mm
Sample's porosity ¢$=0.16
Sample’s permeability K=3x10"m?
Confining oscillation amplitude P,=0.2 MPa
Water bulk modulus K, u=2.2GPa
Water viscosity fua=107Pas

Fig. 3 A SEM scan of the thin section; B digital microscope picture of the same thin section (using Keyence digital microscope VHX-5000); C,

D intact and saw cut Rustrel samples;
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plate model, the permeability of the fracture can also be
related to b and:

b2

kr—ﬁ,

)

Using Egs. 7 and 8, a cubic equation is derived which can
be used to infer the hydraulic aperture at varying effective
pressures.

2.5 Stiffness of the Fracture

The normal stiffness of a fracture (Z,) is defined as (Good-
man 1976):

1
db=Z—n(n-d-n+de), 9)

where #n is normal to the fracture and & the applied stress
field. Note that in the case of hydrostatic loading Eq. 9 is
simplified as

db = -1 (dP, - dP;) = —-dP,
7R 4

n

(10)

where P, is the confining pressure and P is the effective
pressure.

Knowing the hydraulic aperture at several different effec-
tive pressures, m, allows approximation of the fracture stiff-
ness at a given effective pressure P, : the stiffness is calcu-
lated between two loading steps P,_;and P, ,,,

Zm - PH’H'I _Pi'ﬂ—l

(an

bm—l = bm+l ’

where Z" is the stiffness, ,, is the hydraulic aperture meas-
ured at the loading step P,,.

.Y

(a) K\”‘“H-h___—-=~"’/} (b)

Although efforts were made to simplify the geometry of
the fracture, it is important to underline that the stiffness is
an estimation of the true mechanical aperture as the parallel
plate model (Eq. 8) assumes a continuous aperture along the
whole fracture, whereas a more realistic geometry would
be a fracture with distinct contact areas along the fractures,
which is bound to change with increase in effective pres-
sure. Li et al. (2008) showed that as the effective pressure is
increased, the difference between mechanical and hydraulic
aperture diverge, due to the creation of more complex and
tortuous flow paths.

3 Experimental Results

In the first part of this section, the hydraulic aperture, perme-
ability and apparent stiffness of the fracture will be shown.
The second part shows the experimental results on the elastic
properties of the intact and saw cut samples performed at
5, 10 and 20 MPa of effective pressure saturated with air
and water. Figure 4 shows a schematic of the intact and saw
cut samples, with the coordinate system used in the next
sections.

3.1 Hydraulic Measurements

3.1.1 Saw Cut Fracture Permeability and Hydraulic
Aperture

Figure 5 shows, in orange, the permeability of the saw cut
sample versus the effective pressure. The figure shows
that the permeability decreases as confining pressure is
increased, i.e. as the fracture is being closed. The permeabil-
ity of the sample was measured at seven different effective

i

l— Fracture

Sample

"
» v

Fig.4 Intact (a) and saw cut (b) sample with xyz Cartesian coordinate system; (¢) xy representation of saw cut sample
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pressures. Within this range, the permeability dropped
by 1.4 orders of magnitude as the effective pressure was
increased from 1.8 to 22 MPa.

The hydraulic aperture of the fracture was then calculated
following the procedure described in Sect. 2.3, within the
same effective pressure range and is shown in blue. Within
this range, the hydraulic aperture dropped from 14.5 to 5 pm
as the effective pressure was increased from 1.8 to 22 MPa.
However, the slope of change in hydraulic aperture is much
steeper between 1.8 and 11.6 MPa of effective pressure with
a drop in hydraulic aperture from 14.5 to 6.0 yum than it is
between 11.6 and 22 MPa of effective pressure with a drop
in hydraulic aperture from 6.0 to 5.0 pm. This trend shows
that the change in permeability and hydraulic aperture due
to change of effective pressure mainly occurs for an effec-
tive pressure lower than 12 MPa for this specific man-made
fracture.

The intact permeability was measured during saturation
and was found to be 3 X 1077 m? at an effective pressure
of 7 MPa (orange line in Fig. 5). This result is in agree-
ment with the study of Borgomano (2018), who showed that
between effective pressures of 2.5 and 20 MPa, the perme-
ability of the Rustrel sample changes slightly from 4 x 107
t02.5x 1077 m%.

3.1.2 Stiffness of the Fracture Versus Effective Pressure

Figure 6 shows, the change in stiffness of the fracture, ver-
sus the effective pressure applied to the sample. The stiff-
ness of the fracture was calculated following the procedure
described in Sect. 2.4, which also explains the change in
number and magnitude of effective pressure points (see
Eq. 11). Within this range, the stiffness of the fracture
increased from 9.9 x 10" t0 2.0 x 10" Pam™ as the effec-
tive pressure was increased from 5.3 to 18.4 MPa, which rep-
resents an increase of 1.3 orders of magnitude. This figure

shows, as expected, that the fracture stiffness is increasing
exponentially as the effective pressure is increased. Note
that the fracture stiffness is obtained through permeability
measurements and under the assumption of a parallel plate
model, it is thus a rough estimation of the true fracture stiff-
ness. These results will be compared in the discussion to the
fracture stiffness obtained using analytical methods devel-
oped further on.

3.2 Hydrostatic Measurements

This sub-section focuses on the results derived from the
hydrostatic oscillations, which were performed on the dry and
water saturated, intact and saw cut Rustrel sample, at 5, 10
and 20 MPa effective pressures, at a frequency range between

0.04 and 1.1 Hz.

10"
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1.5 |

Zn (Pam™)

05}

(8.6, 1.3E12) (11.8 , 2.BE12)
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Fig.6 Normal stiffness of the fracture (Zn) versus effective pressure

o
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Permeability

Fig. 5: 1) Left axis: fracture X10 %
aperture and 2) right axis: |
permeability log scale versus 14 |
effective pressure
12 1
— 10
=
£
8
6 Intact Permeability
4
L i i
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3.2.1 Hydrostatic Oscillation—Intact Sample

Figure 7 shows the results for the hydrostatic oscillations at
5, 10 and 20 MPa effective pressure, in dry and water satu-
rated undrained conditions, for the intact Rustrel sample. The
green and blue crosses represent the dry and water intact data,
respectively. The bulk modulus for the dry intact data is con-
stant for all frequencies at 25.3, 25.4 and 26.9 GPa for effective
pressures of 5, 10 and 20 MPa, respectively. The attenuation
for these are close to 0 and are within the precision of our setup
(<0.02). The bulk modulus for the water saturated intact data
is constant at all frequencies at around 30.2, 31.1 and 32.6
GPa for effective pressures of 5, 10 and 20 MPa, respectively.
The prediction of the water saturated bulk modulus from the
dry bulk modulus can be obtained using Gassmann’s equation
(Gassmann 1951):

-1
K, =Kd+a(%+%) ,

5

(12)

where K, and K, are the undrained and dry moduli, K} the
fluid bulk modulus, K the solid mineral bulk modulus, ¢
the porosity and a=1 — K /K, the Biot coefficient. The pre-
dictions of the undrained bulk modulus are given on Fig. 6
(black lines) using a solid mineral bulk modulus of calcite
(77 GPa), which is what is observed in the SEM scan, and
are in good agreement with the measured undrained bulk
modulus.

Effective Pressure: 5 MPa

Effective Pressure: 10 MPa

3.2.2 Hydrostatic Oscillation—Saw Cut Sample

Figure 8 shows the results for the hydrostatic oscillations
at 5, 10 and 20 MPa effective pressure, in dry and water
saturated conditions, for the saw cut Rustrel sample. The
green and blue Xs represent the dry and water saw cut data,
respectively. The apparent bulk modulus is shown in the top
half and the phase shift is shown in the bottom half. The
apparent bulk modulus is calculated in the same way as the
bulk modulus for the intact sample. This bulk modulus is
not the bulk modulus of the fractured sample, as strains are
measured locally by strain gauges glued on the matrix. This
apparent bulk modulus is the bulk modulus of the matrix
(or background) affected by pore pressure changes induced
by the fracture. The phase shift is calculated in the exact
same way as for the bulk attenuation for the intact sample,
however, since the strain measurements are local, it is not
the attenuation of the fractured sample, but a phase shift
between strain and stress due to the time delay for pore fluid
to flow from the fracture to the matrix.,

The apparent bulk modulus for the dry saw cut data is
constant for all frequencies at 26.7, 28 and 28 GPa for effec-
tive pressures of 5, 10 and 20 MPa, respectively. The error
band shown in Fig. § is defined using the mean and standard
deviation of the dry saw cut phase shift data and is within the
typical precision (< 0.02) found for dry samples in this setup.
This is used to compare to the water saturated data. The bulk
moduli for the dry saw cut sample are very close to those
obtained in the intact sample; indeed, the bulk modulus is

Effective Pressure: 20 MPa
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Fig.7 Intact Rustrel's dry and water bulk moduli and attenuation at
5, 10 and 20 MPa P for axial oscillations. In addition, the prediction
of the undrained bulk modulus from Gassmann’s equation is plotted.

A good match is found between the prediction of Gassmann’s equa-
tion and the measured undrained bulk moduli
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Fig.8 Saw cut Rustrel’s dry and water saturated bulk modulus and phase shift between stress and stain at 5, 10 and 20 MPa P g for hydrostatic

oscillations;

obtained from strain gauges glued on the rock: it is a local
measurement.

Under water saturation and for 5 MPa effective pressure,
the apparent bulk modulus reaches a peak at the lowest fre-
quency of 0.07 Hz with a value of 36 GPa. The value for the
apparent bulk modulus decreases with increasing frequency
until 0.4 Hz, at which point it stabilizes around 31 GPa. The
phase shift between the stress and strain is negative at low
frequencies, with values around — 0.08, and increases to
0 at 1 Hz. For 10 MPa effective pressure, again the appar-
ent bulk modulus is at its peak at the lowest frequency of
0.07 Hz with a value of 34.3 GPa. This value decreases with
increasing frequency until 0.4 Hz at which point it stabilizes
around 32 GPa. The phase shift between stress and strain
is negative at low frequencies, with values around — 0.02
and increases to 0 at 1 Hz. For 20 MPa effective pressure,
the apparent bulk modulus is constant for the full frequency
range and there is no attenuation. The dry bulk modulus of
the matrix in the saw cut sample is slightly larger by ~ 1 GPa,
than the one measured in the intact sample. This might be
due to the extra hydrostatic cycling that the saw cut sample
was imposed at the start of every triaxial test, which is com-
mon practice to close microcracks; but note that it is also in
the error bar of the bulk modulus (~ 1 GPa).

4 Modeling for the Saw Cut Samples

Theoretical models of dispersion due to wave-induced fluid
flow between pores and fractures have been developed based
on poroelasticity theory (Chapman 2003; Brajanovski et al.
2005; Gurevich et al. 2009). These models show that the
characteristic frequency of dispersion depends on the matrix
permeability, fluid viscosity, as well as the fracture geom-
etry and properties. The aim, here, is to model the experi-
ment, and in particular the fact that measurements are local
measurements obtained by strain gauges, which has not been
developed analytically to the authors’ knowledge. The pre-
sent approach is consistent with the theory of poroelasticity
and, as in the work of Brajanovski et al. (2005), the mecha-
nism behind the dispersion is fluid flow induced between the
matrix and the fracture.

4.1 Pore Pressure

Here, we develop a 1D analytic solution along x within the
frequency domain (Fig. 4c). A mass balance and mechani-
cal equilibrium equation for a linear isotropic poroelastic
homogeneous medium, leads to a partial differential equa-
tion which involves the pore fluid pressure (e.g. Rice and
Cleary 1976; Zimmerman 2000; Guéguen and Boutéca
2004):
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ap;s kBK,
ot na(l —aB)

BK; 0e,
—aB ot

Vipi+ 5 (13)
where k, Ky, B, p;, @ and €, are the rock’s permeability,
drained bulk modulus, Skempton’s coefficient, pore fluid
pressure, Biot’s coefficient and the volumetric strain,
respectively.

The oscillating hydrostatic pressure is applied so that P_(f)
is sinusoidal and time dependent (P,(f) = P e™"). Again,
the pore fluid pressure is dependent on the location x (1D
model), as well as being time dependent, p(x, f) = f(x)e'".
Substituting the oscillating hydrostatic pressure and pore
fluid pressure equations into Eq. 13 leads to:

f"(x>— +f(x) = BP,, (14)

where V is half of the fracture volume and K; the fluid bulk
modulus. The volume change of the fracture is related
to the change in its aperture, b, and can be expressed as
dV = Adb/2. In addition db is related to the fracture’s nor-
mal stiffness, Z, (Eq. 10).

Thus combining 17, 18 and 10, leads to the boundary
condition at x=r:

OP; A OP, A 0P
Vot | 27, 0t|_, n Ox|e
V A A
=0, with §, =
et o T

(19)

In the estimation of S}, the compressibility of the fluid can
be neglected in comparison to the fracture stiffness. Using
both boundary conditions, the pore fluid pressure p(x, £) can
be solved:

Pix. i) =P, 6™ B+cosh-,/ =8
ZZS\{ D sinh ""r+cosh1.r‘

(20)

where S is the rock’s storage coefficient (S = a/ (BKd)).

Using the fluid hydraulic diffusivity (D = k/(Sn)), the pre-

vious equation can be rewritten as:
1o D

f"®— +fx) = BP,. (15)

The boundary conditions, at x=0 (at the jacket) and x=r

(at the fracture), are used to solve this problem. At x=0,
fluid is not allowed to flow out of the sample, which leads to:

oP;

= 0. (16)

The second boundary condition states that there is a mass
balance between the pore fluid leaving the pore space in the
sample and the pore fluid entering the fracture which hap-
pens at x=r. The mass of pore fluid, m, flowing from the
sample to the fracture is given by Darcy’s law:
om _ kA oP;

il =—p 17
0t |y=r N 0x = ()

where p is the fluid density and A is the surface area of the
fracture in the y—z plane. The change of pore fluid mass
in the fracture is related to the pore fluid pressure, and the
volume change of the fracture:

LA 4 i 3

ax  xa P (18)

Equation 20 highlights the characteristic frequency
fr D which is the time needed for the pore pressure to
equi llbrate between the fracture and pores (Brajanovski et al.
2005).

In the limit case of low frequency w — 0, Eq. 20 reduces
to:

Pi(x,t) =P, (B ;& @D

1-B
1+28Z.r )

In this case, frequencies are low enough to allow equi-
libration of the fluid pressure between fracture and pores.

In the limit case of high frequency @ — o0, Eq. 20 reduces
to:

Py(x < r,t) = BP €™ and P(r,f) = P,e'™. (22)

At high frequencies, the fluid has no time to move from
pores in the matrix into the fractures, or vice versa. In this
case the pore pressure in the matrix (related to the Skempton
coefficient) is lower than the pore pressure in the fracture.

Figure 9a shows the evolution of the pore pressure in the
sample during hydrostatic oscillations, using Eq. 20, from
x=0 to 1, at frequencies of 107, 107!, 10°, 10' and 10* Hz.
The sample characteristics used for this model are given
in Table 2. At a frequency of 10* Hz, the pore pressure in
the sample is constant at p; = BAP_ = 53 kPa and the pore
pressure in the fracture reaches AP, = 0.2 MPa. As the
frequency of the applied stress oscillations is reduced, the
pore pressure in the fracture decreases, indeed the pressure
has time to percolate through the sample, causing a higher
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Fig.9 Pore pressure versus x-location and pore pressure versus frequency (at x=0 and 2 cm)

Table 2 1D model sample characteristics

Sample characteristics for 1D model Values
Stiffness of fracture—Z, (m Pa™') 0.75 % 102
Dry bulk modulus—K; (GPa) 26

Matrix permeability—k (m?) 1077
Porosity—¢ 0.16
Skempton's coefficient—B 0.2407

it
P.e K,

90.7 kPa, then as the frequency is increased, the pore pres-
sure decreases at the strain gauge location and increases in
the fracture.

4.2 Apparent Bulk Modulus

Recalling that the volumetric strain is given by:
1

‘Ev(x! r) = _K_ [Pc(t) i G'Pr(x, f)] . (23)
d

The local apparent bulk modulus measured by the strain
gauge at x=0 is calculated using Eq. 20:

Konarix = — = .
R Ll e 13
ZZ,,S\/gsinh %’Hmsh ﬁr

pore pressure throughout the sample matrix. The pore pres-
sure found near the jacket (at x=0) is found to be 53 kPa,
when the applied frequency is 10 Hz. As the frequency is
reduced to quasi static conditions, the pore pressure found
near the jacket increases to its highest value of 90.7 kPa
(using Eq. 22). Figure 9B shows the pore pressure evolution
versus frequency at r=0 (where strain gauges are glued)
and 2 cm (inside the fracture). At low frequencies, the pore
pressure in the whole sample is equilibrated and equal to

(24)
In the limit case of high frequency ( @ —o0),
Ky
Koaein = | T2 | = Ko (25)

which is simply the undrained bulk modulus. In this limit
case, the bulk modulus measured by the strain gauge is not
affected by the fracture.

In the limit case (@ — 0), the local apparent bulk modulus
is:
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_ a(l — B)
Ky(1+252,r) )

1
Kmalrix Ku

In this case, the bulk modulus measured by the strain
gauge is larger than the undrained bulk modulus, as the pore
pressure in the matrix is higher.

4.3 Bulk Modulus of the Fractured Sample

The overall goal here is not to develop a complete model for
P-wave dispersion of a porous rock containing a fracture. Such
analytical models can be found in Chapman (2003) or Bra-
janovski et al. (2005). Here, the aim is to show that a negative
phase shift for the apparent bulk modulus predicted in Sect. 4.2
is in agreement with a positive bulk attenuation of the fracture
sample. First of all, as the matrix is an isotropic elastic solid,
the fractured sample is a transversely isotropic elastic solid.
However, it is still possible to define a bulk modulus of the
fracture sample, K, defined as:

AV
P—Pf = —Kﬁ.?,

27
where V is the volume of the fractured sample.

Let us consider the bulk modulus, K, of the fractured
sample in the fluid-saturated case, in the limit case of high
frequency w —oo Egs. 10, 25 and 27 leads to

Kﬁ- — Kus (28)

which is the same as if there was no fracture; in agreement
with previous results (Brajanovski et al. 2005).

Let us consider the bulk modulus, K}, of the fractured
sample in the fluid-saturated case, in the limit case of low
frequency w — 0 Eqgs. 10, 26 and 27 leads to

1 1 Ll 1 1--m
T G O W (=

Figure 10 shows in solid and dashed lines the theoretical
predictions of the apparent matrix bulk modulus (at x=0)
and the bulk modulus of the fractured sample for different
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Fig. 10 Bulk Modulus of local measurement (x=0) and of whole fractured sample versus frequency, with associated phase shift and attenuation
versus frequency
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Table 3 Material properties for the poroelastic equations used in
COMSOL multiphysics, with bulk and shear modulus shown for 3
different scenarios similar to effective pressures of 5, 10 and 20 MPa,
respectively

Intact Fracture
Grain bulk modulus (GPa) K=T71 K.=T77
Grain density (kg/m*) p,=2710 ps=2710
Porosity $=0.16 ¢$=0.9
Permeability (m?) k=101 k=102
Drained bulk modulus (GPa) K;=28 K;=0.2,052,4
Drained shear modulus (GPa) Hy=14 ug=0.1,0.26,2
Fluid bulk modulus (GPa) K;=22 K;=22
Fluid density (kg/m?) pe=1000 py=1000
Fluid viscosity (Pa s) Ry = 1073 =107

value of the normal fracture compliance and using the
poroelastic constants given in Table 3. At high frequency,
the moduli are not affected by the fracture and converge to
the undrained bulk modulus. As the frequency increases the
bulk modulus of the fracture sample increases, in agreement
with Brajanovski et al. (2005). The trend of the apparent
bulk modulus of the matrix shows an opposite trend which
decreases as the frequency increases. Note that using the
low-frequency bulk modulus value, and Eqs. 26 or 29 it is
possible to directly infer the fracture compliance, knowing
the poroelastic properties of the rock.

One needs to remember that the evolution of the apparent
matrix bulk modulus is related to the pore fluid migrating
from the fracture to the pore volume. This creates theoreti-
cally an unusual negative phase shift between stress and
strain (Fig. 10b), which is not seen when looking at the
attenuation of the bulk modulus of the fractured sample
(Fig. 10c).

4.4 1D Analytical Versus 3D Computational

The 1D analytical model allows to understand the mecha-
nisms behind the dispersion and attenuation of the apparent
matrix bulk modulus. However, the 1D model is a geometri-
cally simplified version of the fractured cylindrical sample.
To take into account the 3D geometry of the experiment,
the dispersion and attenuation caused by the fluid pressure
diffusion is modelled numerically in COMSOL by solving
Biot’s (1941) poroelastic quasistatic equations in the fre-
quency domain, using the displacement—pressure formula-
tion (Quintal et al. 2011). These equations are:

V-6=0, (30)

I
v- (_gvpl.) + aV - (iou) + % =0, (31

where u is the vector of solid displacement, with compo-
nents in the x, y and z directions, and o is the stress tensor,

o = 2#65 + 185‘-}- — apﬁg, (32)

where 6;;, €; and e are the Kronecker delta, components
of the strain tensor and cubical dilation given by the strain
tensor, respectively. The 4 and A are the shear modulus for
the dry frame and Lamé’s parameter 4 = K; — 2u/3. The
coefficient M is (Biot and Willis 1957)

-1
M:(%+“;¢') . (33)

]

The fractured sample is modeled with an intact matrix
and a fracture having a higher permeability, porosity and
compliance. The drained bulk modulus for the fracture was
calculated using the normal stiffness of the fracture multi-
plied by the aperture. We also take into account a fracture
shear modulus, estimated and taken as half the value of the
drained bulk modulus, according to the study of Lubbe et al.
(2008) on a carbonate limestone. The geometry is made of
two half cylinders (matrix), with a rectangular cuboid in
between both halves (fracture). The width of the rectangular
cuboid is equal to the diameter of the cylinder at 40 mm. The
height of the fracture is equal to the height of the cylinder
and was taken as 80 mm. The fracture aperture has little
effect in the analytical model or numerical model as long
as the aperture is smaller than 1.1 X 107 m (Eq. 29) and
sensitivity tests were done on the effect of aperture. The
model was run at an aperture of 2 X 10~* m with sensitivity
tests run at 107® m. The parameters used for the intact and
fracture volumes are summarized in Table 3.

COMSOL multiphysics is used to create a volumetric
mesh with tetrahedral elements and the weak form of Egs. 31
and 32 are solved, using a finite element method. The gra-
dient of fluid pressure is set to 0 along the outside bound-
ary, creating undrained boundary conditions. To induce the
hydrostatic pressure, an oscillatory radial stress amplitude of
2 % 10° Pa is applied along the curved surface of the cylinder
and fracture. An oscillatory stress amplitude of 2 X 10° Pa is
applied to the top of the eylinder in the negative z direction
and to the bottom of the cylinder in the positive z direction.

Figure 10 shows the 1D analytical solution and 3D COM-
SOL multiphysics results of the apparent matrix bulk modu-
lus (at location x=0) and the bulk modulus of the fracture
sample versus frequency, for 3 fracture stiffness’s: 1 x 10'2,
2.6 x 10" and 2 x 10" Pa m™. The solid and dashed lines
show the 1D analytical model results. The Os and Xs are
for the 3D numerical model completed in COMSOL mul-
tiphysics. The solid line and Os are for local measurements
at the “strain gauge” location. The dashed line and Xs are
for global measurements, i.e. matrix and fracture. The black,



A. Gallagher et al.

blue and red colors represent the solution at a normal com-
pliance of 1, 2.6 and 20 x 10" Pa m™, respectively.

In the low-frequency regime, below 1072 Hz, the bulk
modulus of the fractured sample is smaller than the apparent
matrix bulk modulus. In the high-frequency regime above
10° Hz, the apparent matrix bulk modulus are equal and
constant at K, (Eq. 25). Overall, there is a good consistency
between the 1D model and the 3D numerical model: for the
apparent matrix modulus, the low-frequency moduli for the
1D analytical model are 37.6, 35 and 33.2 GPa for a fracture
stiffness of 1 x 10'2,2.6 x 102 and 2 x 10"* Pam™, respec-
tively, whereas for the 3D numerical model these values are
36.7, 34.6 and 33.2 GPa. For the bulk modulus of the frac-
tured sample, the low-frequency moduli for the 1D analytical
model are 24.1, 28.4 and 32.8 GPa for a fracture stiffness
of 1 x10'2,2.6 x 102 and 2 x 103 Pam™, respectively,
whereas for the 3D numerical model, these values are 25,
28.8 and 32.4 GPa.

The critical frequency for the attenuation for the 1D
analytical model and 3D analytical model also match well.
The amplitude of the attenuation (fractured sample) for the
1D analytical model are 0.026, 0.011 and 0.001 for frac-
ture stiffness of 1 x 10'2, 2.6 x 102 and 2 x 10" Pam™",
respectively, whereas for the 3D numerical model, these
values are 0.021, 0.006 and 0.000. The amplitude of the
phase shift (apparent matrix modulus) for the 1D analytical
model is — 0.085, — 0.038 and — 0.005 for a fracture stiff-
ness of 1 x 10'2,2.6 x 10? and 2 x 10"* Pam™’, respec-
tively, whereas for the 3D numerical model, these values are
—0.069, — 0.0307 and — 0.001.

Effective Pressure: 5 MPa

Effective Pressure: 10 MPa

Small differences between the 1D and 3D models are
expected as the solution for pore pressure propagation in the
3D numerical model is more intricate, taking into account
the complex geometry of the sample, whereas the 1D ana-
lytical model is simplistic. That being underlined, the critical
frequency is the same for both the 1D and 3D models, both
models predict almost the same negative phase shift for the
apparent matrix bulk modulus, and both models show an
apparent matrix bulk modulus that converges at K, in the
high-frequency regime.

In the high frequency, and for the fractured sample, the
modulus converges to a value smaller than K, for the 3D sim-
ulation. This is due to the aperture not being small enough:
when modelling with a smaller aperture (107 m), the 3D
numerical model converges to K,,, which is not shown, since
the length of the sample has to be greatly reduced to create a
model that could be run on the servers without crashing the
system. This is further highlighted by the increase in high-
frequency apparent matrix bulk modulus, with an increase
in fracture stiffness, as the fracture stiffness comes closer to
the matrix stiffness.

4.5 Comparing Experimental Results with the 1D
Analytical Model

Figure 11 shows the results presented in Fig. 7, with the
solution to the 1D analytical model, as well as the solution
for the 3D numerical model. The sample properties for the
1D and 3D models can be seen in Table 4. The drained bulk
modulus is taken from Fig. 7. The fracture stiffness was cal-
culated using the low-frequency regime (Eq. 26) for the 1D

Effective Pressure: 20 MPa

107 10° 107 10° 107 10°
38 1 38 | 38 | |
- 36 —0—9—&_9\9\ 1 = 36 s BOR | |
D‘g 34 \@\ g a4 . s Wlﬂu ?_‘; 34 | Rint Gazsmann Lndrained Rulk ]
“_'-,:: 3z Biot Gassmann Undrained BulM«ﬁ' “’; 32 ;’fiiot o Unciaied Bl ‘-.‘E 32 | e 98 |
¥ 30 1 x 30} x 30| 1
28 5 ¢ 28 | AX X X %
26 b g A X X 76
- b f 0.02: - -y !
Error Band %> X ™ Xal 5
9 P~ 5| 0 ‘Erfor Ba %
" ~0_02H}\~9\s { < 0.02| X :
% -0.04 “u | & T -0.04| i
% -0.06 \ - 5 % 006 | HydroDry Sawcut x: |
£ -0.08 ‘e—e/ | £ £ 0s HydroWater Saw cut _
0.1 | 01 1D analytic model == -
-0.12 042 | 3D numerical model < ¢ <| |
102 107 10° 102 107 10 102 10 10°

Frequency (Hz)

Frequency (Hz)

Frequency (Hz)

Fig. 11 Experimental results for hydrostatic oscillations with the predictions of the 1D model superimposed,;
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Table4 1D and 3D model

s Sample characteristics
sample characteristics

Sample effective pressure (MPa)

Stiffness of fracture—Z,(Pam™)
Drained bulk modulus—Kj; (GPa)
Matrix permeability—k (m?)
Porosity—¢

1D analytical 3D computational

5 10 20 5 10 20
1x10% 26x10”% 5x10® 07x10% 1.8x10”? 35x107
26 28 28 26 28 28

10—[7

0.16

analytical model, and was adjusted, in the 3D model, to fit
the experimental data (it is the only unknown parameter).
Figure 11 shows that the experimental data are in good
agreement with the 1D analytical and 3D numerical mod-
els. The inferred value for the fracture stiffness are given in
Table 4. The fracture stiffness increases as effective pressure
increases. The 1D and 3D models predict the same order of
magnitude for the fracture stiffness, however, the 1D model
slightly overestimates the fracture stiffness, and for the three
effective pressures a ratio of ~0.7 is found between the frac-
ture stiffness used from the 3D model to the one deduced
from the 1D model. As the 3D model takes into account the
geometry of the problem, it is probably a better approxima-
tion of the stiffness of the fracture. The 1D model is analyti-
cal, catches the mechanisms behind dispersion and attenu-
ation, and is easy to use to interpret the experimental data.

5 Discussion

In this paper, the permeability of the sample was used to
calculate the hydraulic aperture of the fracture. For a saw
cut sample with the fracture running parallel to the flow
path, there is an expected decrease in permeability when
the effective pressure is increased, which has been shown
experimentally by others (Kluge et al. 2017; Blocher et al.
2019) and is consistent in this work. The flow rates used for
the hydraulic aperture never exceeded 2.5 x 10~* m*/s, which
is well below the Reynolds number threshold for laminar
flow and the fracture is relatively flat and parallel as it was
cut using a diamond saw, however, there is certainly partial
contact between both halves of the sample, meaning the par-
allel plate model is not completely met. The stiffness of the
fracture calculated using this method has an error of 1, 33
and 92%, at effective pressures of 5, 10 and 20 MPa, when
compared to the stiffness calculated from the 1D analytical
model, and 41, 4 and 26% when compared to the fracture
stiffness from the 3D numerical model. The 3D numerical
model is in better agreement with the hydraulic measure-
ments of fracture stiffness, than the 1D analytical model. Li
et al. (2008) showed that the error between hydraulic aper-
ture and real aperture are on an order of 2.

The pore pressure model presented in Sect. 4.2, shows
the trend of pore pressure along the x axis depending on
the applied hydrostatic frequency. The pore pressure in the
pore matrix is highest at low frequencies and lowest at high
frequencies, the opposite is true for the fluid pressure in
the fracture. At high frequencies (10% Hz and above), the
pore pressure in the fracture does not have time to dissipate
into the matrix. This is analogous to squirt-flow attenua-
tion mechanisms, for which fluid does not have the time to
equilibrate between pores and cracks. Note, however, that in
the case of a fracture medium, poroelasticity can be applied
as the pore pressure is equilibrated at a REV scale, which is
not the case for squirt flow. In addition, the cut-off frequency
related to squirt flow is typically at a much higher frequency
range (> 10 kHz), whereas in this case, the frequency cut-
off is:

4D

fﬁﬁ,

(34)
where L is the distance between two fractures (or two times
the distance r in our experiments), and thus typically occurs
at low frequency. The distance between the fractures (and
thus the fracture density) is a key parameter to estimate the
frequency cut-off. This can be shown by using the 1D ana-
lytical model developed and changing the value of r. When
changing r from 2 to 4 to 8 cm, the cut-off frequency goes
from 0.85 to 0.32 to 0.12 Hz with the attenuation magnitude
going from 0.076 to 0.048 to 0.025, respectively. This is
consistent with the numerical models developed by Hunziker
et al. (2018) which has shown that an increase in fracture
density does increase the magnitude and cut-off frequency
of the attenuation caused by FPD from the fracture to the
pore space.

Figures 10 and 11 show that the critical frequency for
the FPD from the fracture to the matrix changes depend-
ing on the fracture stiffness, with an increase in critical fre-
quency as the fracture stiffness increases. The importance
of the location of the strain measurement is highlighted in
Fig. 10, the local strain measurement shows a critical fre-
quency which is smaller than that of the critical frequency
for the whole sample. The importance of the location of
strain measurement has been shown numerically before by
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Chapman and Quintal (2018), with a change in the cut-off
frequency depending on the location of where the strain
measurement was taken. A negative phase shift was also
shown in their work, when the attenuation was measured
locally at a set distance from a fracture. This negative phase
shift is shown experimentally in Fig. 11, at lower effective
pressures, as the strain gauges used here are local measure-
ments, which shows the effect the fracture has on the local
strain measurements. The ‘global’ bulk strain measurements
would be needed, to calculate directly the bulk dispersion
and attenuation of the fractured sample. The 1D model in
this paper (Fig. 11), as well as the numerical model in Chap-
man and Quintal (2018), show that although some local
measurements can create a negative phase shift between the
stress and strain, the ‘global’ bulk attenuation is still posi-
tive. However, this work shows that it is possible to calcu-
late the fracture stiffness by inversion through the apparent
matrix bulk modulus, and then predict the bulk modulus and
attenuation of the fractured sample.

The dispersion caused by the fracture decreases in magni-
tude with an increase in effective pressure. This is expected
as the fracture closes when there is an increase in effective
pressure. When using the 1D model, the amplitude of the
attenuation is sensitive to the stiffness of the fracture, which
decreases with an increase of effective pressure. This implies
that dispersion and attenuation related to fractures mainly
occurs in shallow reservoirs, or during fluid injection as the
effective pressure is increased leading to opening of pre-
existing fractures.

6 Conclusion

‘With the addition of innovative microvalves, a set of hydro-
static oscillation tests was performed on an intact and saw
cut cylindrical sample at frequencies between (.07 and 1 Hz
in purely undrained conditions. As expected, the intact sam-
ple showed no dispersion for dry or water saturated condi-
tions. Permeability tests were performed at a large range
of effective pressures to measure hydraulic aperture and
stiffness of the man-made fracture. Using the local strain
measurements during the hydrostatic oscillations, the appar-
ent matrix bulk modulus and phase shift were measured. At
an effective pressure of 5 MPa, the apparent matrix bulk
modulus decreased from 36 at low frequency to stabilize at
31 GPa at higher frequencies and a maximum local nega-
tive phase shift of — 0.08 was recorded, with the cut-off
frequency at~0.2 Hz. At an effective pressure of 15 MPa,
the local bulk modulus again decreased with increase in fre-
quency, however only by 2.6 GPa from 34.6 to 32 GPa and a
maximum local negative phase shift of — 0.02 was recorded,
with a cut-off frequency at~0.35 Hz. At an effective pressure

of 20 MPa, there was no change in local bulk modulus and
no phase shift.

A 1D analytical model and 3D numerical model, for
hydrostatic oscillations on a fractured sample, were devel-
oped and fit well the experimental data, which implies a
fracture to matrix leak-off. The models give insight on how
a negative phase shift can be observed locally, and how the
fracture stiffness can be measured. It underlines also the
importance of fracture stiffness and the location of the strain
measurements on the cut-off frequency and the magnitude
of the phase shift.
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