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This work investigates a natural convection flow occurring in a differentially heated cavity.

The main purpose of this paper is to analyze the influence of the cavity depth variation

on heat transfers and flow dynamics. Three-dimensional numerical simulations are con-

ducted. The working fluid is air, the vertical aspect ratio (cavity height over width) is equal

to 4, and the Rayleigh Number is equal to 108. The impact of the rear and front bound-

ary conditions on the flow topology are highlighted. When the cavity depth increases,

three-dimensional effects are encountered that enhance local heat transfer at the isother-

mal walls. In particular, for horizontal aspect ratio (cavity depth over width) greater than

1, an alternation of local maximum and minimum Nusselt numbers can be observed along

the y-direction toward the center of the wall in the lower half part of the isothermal wall,

which are similar to a wave-like behavior. It is shown that they are due to vortex structures

generated by a Görtler instability. The depth variation increases the emergence of those

structures; but paradoxically several characteristics of both flow and heat transfer, such as

the depth-averaged shear stress or the Nusselt numbers, tend to the two-dimensional case

value as the cavity gets deeper.

a)Author to whom correspondence should be addressed: olivier.skurtys@usm.cl
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I. INTRODUCTION

Natural convection in a differentially heated cavity (DHC) has been the subject of intensive

research in recent decades as these flows appear in many technical applications, like cooling of

electronic equipment, solar collectors, air-conditioning, double pane windows and others. Even if

the geometry is simple, buoyancy forces induced by local temperature gradients acting in a con-

fined space can lead to complex flows. To understand the interactions between heat transfer and

fluid dynamics various experimental or numerical investigations were carried out1–6. This config-

uration has served as a prototype for the development of numerical algorithms7,8, to understand

the onset of unsteadiness in fluid flows9–14, or to establish rheological properties of fluids15. Many

flow patterns are observed in vertical DHC depending on flow regimes, geometrical factors (ver-

tical and horizontal aspect ratio), thermophysical properties of the convected fluid, temperature

difference between walls16, and top-bottom boundary conditions (adiabatic, conducting, or any

intermediate possibility)13,17–19. However, due to the effects of radiation20–23, water vapor con-

tent and uncertain thermal boundary conditions, it is still numerically difficult to reproduce the

experimental flows24.

Focussing on pure convection flow, the early numerical studies were performed in two-

dimensional (2D) vertical square cavities where the flows is in the steady regime, i.e. the Rayleigh

number Ra≤ 108 (see references7,25). In vertical DHC flows, beyond the critical Rayleigh number,

flow and heat transfer become time-dependent (periodic, chaotic and eventually fully turbulent).

Considering a vertical rectangular DHC filled with air, the transition is conduced by successive

Hopf bifurcations resulting from traveling waves and instabilities in the vertical boundary layers.

For a cavity with adiabatic horizontal walls and a vertical aspect ratio equal to 4 (Az =
H
W

= 4

where H is the height of the cavity and W the width), Xin and Le Quéré13 reported that the last

Rayleigh number at which a steady-state solution is obtained is RaH = 1.02×108. Most numerical

studies about vertical DHC are performed under the assumption of a two-dimensional flow25–28

or a three-dimensional case with front and rear periodic boundary conditions18,19. These condi-

tions are often far from actual boundary conditions and could provide inconsistent solutions due

to the influence of no-slip condition at the rear and front walls. Indeed, with periodic boundary

conditions, even if the transverse velocity is one order of magnitude smaller than the vertical

velocity in the boundary layers, a flow in the y-direction is observed if there is enough space in

the periodic transverse direction13. So the 2D assumption should be used with caution. Thus, for
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Az = 4 considering a three-dimensional (3D) cavity with no-slip conditions applied to the vertical

adiabatic walls (Dirichlet boundary conditions for the velocity components) could provide more

realistic numerical results. However, to the best of our knowledge, for both laminar and turbulent

regimes, only a few numerical results with no-slip boundary conditions on rear and front walls

have been reported in the literature21,29–31. Furthermore, for a fixed vertical aspect ratio Az and

Rayleigh number Ra, it would be interesting to study the influence of adiabatic walls by varying

the horizontal aspect ratio (Ay =
D
W

where D is the depth of cavity) on the dynamic and thermal

behavior of the flow. Indeed, a different flow behavior can be expected when the vertical adiabatic

walls are close or far from each other.

The aim of this study is to improve our understanding of the dynamics of a natural convection

flow in a differentially-heated cavity of vertical aspect ratio equal to 4 for a set of three-dimensional

direct numerical simulations, considering that the horizontal aspect ratios Ay (depth over width)

varies between 0.13 and 4.0 and a Rayleigh number based on the height of the cavity equal to

108. The boundary conditions on the vertical and horizontal walls are no-slip and adiabatic or

isothermal. The present article is organized as follows: in Sec. II the studied problem, its modelling

as well as a summary of the numerical methods used are presented. In Sec. III the numerical results

obtained are exhibited. Finally, a physical explanation of the flow dynamics is presented in Sec. IV

before giving concluding remarks in Sec. V.

II. PROBLEM FORMULATION AND NUMERICAL METHODS

Consider a three-dimensional differentially heated (DHC) cavity of height H, width W and

depth D filled with air (assumed to be a Newtonian fluid) of kinematic viscosity ν , thermal diffu-

sivity α , thermal expansion coefficient β and density ρ . The Prandtl number, Pr = ν
α is supposed

to be constant and equal to 0.71. The vertical aspect ratio Az =
H
W

is equal to 4. The two oppo-

site vertical walls of the cavity (x-direction) are maintained at uniform but different temperatures

Thot at x = 0 and Tcold at x = 1
Az

= 0.25. The gravitational acceleration ~g acts in the negative

z-direction. A schematic view of the cavity is presented in Fig. 1a. Heat and fluid flows can be de-

scribed by the unsteady Navier-Stokes equations under the Oberbeck-Boussinesq hypothesis. The

Oberbeck-Boussinesq approximation ignores all density variations of the fluid in the governing

equations, except when associated with the gravitational term. Using the temperature difference

∆T = Thot−Tcold and the mean temperature Tmean =
Thot+Tcold

2
, the reduced temperature θ can then

4
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be defined as θ = T−Tmean

∆T
. Using the cavity height H as the reference length, the thermal diffu-

sivity of air α and the Rayleigh number based on the cavity height Ra = gβ∆T H3

αν , we define the

reference velocity as ure f =
α
H

√
Ra, the convection time tre f =

H2

α
√

Ra
and the reference pressure

Pre f = ρu2
re f .
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FIG. 1: a) Schematic diagram of the differentially heated cavity; b) The mesh in the xz-plane. An

example of the temperature field is superimposed.

The dimensionless form of the Navier-Stokes equations under the Oberbeck-Boussinesq hy-

pothesis yields:



















































∂u
∂x

+ ∂v
∂u

+ ∂w
∂ z

= 0

∂u
∂ t

+u∂u
∂x

+ v∂u
∂x

+w∂u
∂ z

=−∂ p
∂x

+ Pr√
Ra

(

∂ 2u
∂x2 +

∂ 2u
∂y2 +

∂ 2u
∂ z2

)

∂v
∂ t
+u∂v

∂x
+ v∂v

∂x
+w∂v

∂ z
=−∂ p

∂y
+ Pr√

Ra

(

∂ 2v
∂x2 +

∂ 2v
∂y2 +

∂ 2v
∂ z2

)

∂w
∂ t

+u∂w
∂x

+ v∂w
∂x

+w∂w
∂ z

=−∂ p
∂ z

+ Pr√
Ra

(

∂ 2w
∂x2 +

∂ 2w
∂y2 +

∂ 2w
∂ z2

)

+Prθ

∂θ
∂ t

+u∂θ
∂x

+ v∂θ
∂y

+w∂θ
∂ z

= 1√
Ra

(

∂ 2θ
∂x2 +

∂ 2θ
∂y2 +

∂ 2θ
∂ z2

)

(1)

where (x, y, z) are non-dimensional coordinates, t the non-dimensional time, and (u, v, w) are

the velocity components in respectively x, y and z directions. As the Prandtl number Pr and

the vertical aspect ratio Az =
H
W

are fixed, the solution of the equations is only dependent on
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the Rayleigh number Ra and the horizontal aspect ratio Ay =
D
W

. In the present study, vertical

cavity of vertical aspect ratio Az = 4 is chosen because the 3D critical Rayleigh numbers and the

structures of the unstable modes are similar to those observed in the 2D case. Indeed, Xin and

Le Quéré 13 showed that the last Rayleigh number at which a steady-state solution is obtained is

Ra= 1.02×108. The influence of the horizontal aspect ratio Ay which varies between 0.13 and 4.0

(i.e. 0.13W ≤D≤ 4W ) for Ra = 108 is explored in the present work. At such a Rayleigh number,

the flow should be in a steady state since the value of the Rayleigh number is slightly lower than

the critical value to reach instationnarity. Vertical isothermal walls are held at imposed uniform

temperatures θ(x = 0,y,z) = θhot = 0.5 and θ(x = 1
Az
,y,z) = θcold = −0.5, respectively. The top

and bottom walls (z = 0 and z = 1) as well as the front and rear walls (y = 0 and y = Ay/4) are

adiabatic (the Neumann boundary condition is ∂θ
∂n

= 0). Finally, on the six walls, the velocity field

satisfies the no-slip condition: u = v = w = 0. Initial velocities are set to zero in all directions.

Initial temperature values are usually a linear conduction profile (in the x direction) ranging from

θ = 0.5 to θ =−0.5. For simulations that take an extended time to find a steady state (especially

for higher Ay), the initial conditions are set to a settled state from a previous simulation for a lower

Rayleigh number (with the same aspect ratio).

The system of equations (1) is solved by the computational fluid dynamics open-source pro-

gram Nek5000 developed and maintained by Paul Fischer32 at the Argonne National Laboratory.

Nek5000 is a Navier-Stokes solver, which uses a spectral element method proposed by Patera33,

to accurately resolve the velocity field ~u(x,y,z, t) and temperature field θ(x,y,z, t). This method

combines the benefits of high-order spectral methods with finite element methods. The computa-

tional domain is made of Nx×Ny×Nz hexahedral spectral elements, in the x, y and z-directions,

respectively. On each spectral element, the Navier-Stokes equations (see Eq. 1) are rewritten in

the weak formulation and discretized by a Galerkin method, where test and trial functions are

sought in different polynomial spaces. Indeed, a PN−PN−2 formulation is used: the velocity and

temperature fields are discretized using Nth degree Lagrange interpolants, defined on the Gauss-

Lobatto-Legendre (GLL) quadrature points, as basis and trial functions, while the pressure field is

discretized using Lagrange interpolants of degree N− 2 defined on the Gauss-Legendre quadra-

ture points. The time-derivative terms are discretized by the third-order backward differentiation

formula (BDF3). The nonlinear convective terms are computed explicitly using a third-order ex-

trapolation scheme (EXT3), while the linear terms are treated implicitly. This high-order splitting

method (BDF3-EXT3) leads to a Poisson equation for pressure and Helmholtz equations for tem-
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perature and velocity components that are solved using a generalized minimal residual method

(GMRES) where the tolerance is set to 10−8. More details on the numerical scheme and appro-

priate grid resolution can be found in Fischer et al.34. The spatial resolution is selected using as a

guideline, the mesh reported in Trias et al. 18 for Ra = 6.4×108 (Nx×Ny×Nz = 156×128×312

for Ay = 2). In the streamwise and spanwise directions, the distribution of spectral elements is

chosen uniform, while to obtain a well refined mesh near the isothermal walls, spectral elements

(Ex) j in the x-direction are distributed using a hyperbolic-tangent function:

(Ex) j =
1

8



1+
tanh

[

γx

(

2( j−1)
Nx
−1
)]

tanhγx



 (2)

where γx is the concentration parameter fixed to 2.5. Ex and Ez are fixed to 7 and 20 respectively

(see Fig. 1b) while Ny varies with Ay according to the following relationship:











Ey = Ay×5+2 if Ay ≥ 0.1

Ey = 3 if Ay < 0.1
(3)

Thus, Ny ranges from 3 to 22. A mesh convergence study was performed using a p-refinement

technique in which the grid polynomial order N was increased: N = 22,24,26. It has been shown

that N = 24 is sufficient to obtain an accurate Nusselt number at the isothermal wall and that

increasing the polynomial order does not affect the simulation results. For Ay = 2, Nx×Ny×Nz =

168× 288× 480 gives a better resolution than the mesh reported in Trias et al. 18 for a higher

Rayleigh number. We have also checked that the cold and hot Nusselt numbers are equal. Thus,

close to the isothermal walls, the smallest wall-normal distance is
(∆x)min

H
= 1.3×10−4. A constant

time-stepping with a target Courant-Friedrichs-Lewy number of 0.25 is used, which is in practice

more than sufficient to guarantee the stability during the simulation. Each calculation is extended

until the flow reaches a steady stage.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. A reference case: the square based DHC (Ay = 1)

The horizontal aspect ratio, Ay = 1 (i.e. D = W ), is firstly chosen as a reference case because

several experimental2,35,36 and numerical13 data (temperature and velocity fields) are available.

For this geometry, steady flow is considered with a fixed Rayleigh number Ra = 108 just below
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the first critical Rayleigh number. To identify and visualize flow structures, and in particular the

vortex-dominated regions, the Q criterion is used. It was defined by Jeong and Hussain 37 as:

Q =
1

2

(

Ωi jΩi j−Si jSi j

)

(4)

where Ωi j = (ui, j− u j,i)/2 and Si j = (ui, j + u j,i)/2 are respectively the antisymmetric and sym-

metric components of velocity gradient tensor. In other words, Q is the balance between the

rotation rate Ω
2 = Ωi jΩi j and the strain rate S2 = Si jSi j. Thus, the rotation motion dominates for

isosurfaces where Q > 0, while the deformation motion dominates for isosurfaces where Q < 0.

Therefore, the isosurface Q = 0 represents the boundary of the region in which the rotation rate

dominates.

(a)
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FIG. 2: For a square based cavity Ay = 1: a) the isosurfaces Q = 0 are colored by the magnitude

of velocity; b) local Nusselt number, Nu, at the hot wall for front and rear no-slip boundary

conditions; c) idem as b) but for front and rear periodic BCs.

8

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
0
0
2
1
8



Accepted to Phys. Fluids 10.1063/5.0100218

Figure 2a shows the isosurface Q= 0 colored by the magnitude of velocity. The following char-

acteristics can be observed: the vertical boundary layers are connected by horizontal flows which

take place along the top and bottom walls; the core of the cavity remains motionless; recirculation

cells can be distinguished at the bottom and top part of the cavity. In addition, two velocity peaks

are also present in the vertical edges between the hot wall and the rear and front walls, respectively.

For natural convection flows, as the coupling between temperature and velocity fields is strong,

the dynamic boundary conditions have a fundamental influence on the velocity fields but also on

the temperature fields. To highlight the influence of the fluid dynamics on heat transfer, the local

Nusselt number, Nu = −∂θ

∂x
(x = 0,y,z), calculated at the hot wall is presented in Fig. 2b. It is

clear that Nu is not constant with respect to y. The maximum values of the Nusselt numbers are

located at the bottom of the hot wall (red area); this is due to the cold air coming from the cold wall

and impacting the hot wall. Nusselt numbers are more uniform in the central and upper half part of

the wall (z ∈ [0.5;1]). However, the rear and front walls play a significant role not only on the flow

structures but also on the heat flux at the isothermal walls: for a constant z, the Nusselt numbers are

lower close to the adiabatic rear and front walls, and the heat transfer is predominant in the central

part of the hot wall. In Fig. 2c, the Nusselt number at the hot wall is presented for front and rear

periodic boundary conditions. Clearly, these periodic boundary conditions in the y−direction sig-

nificantly modify the spatial distribution of the heat flux at the isothermal walls. This phenomenon

was mentioned by Xin and Le Quéré 13 for a Rayleigh number greater than 2.141× 107. Indeed,

if there is enough space in the periodic y−direction, a flow in the y−direction is observed where v

velocity is one order of magnitude smaller than u and w velocities.

Although there are many experimental studies on natural convection in air-filled cavities, it can

be stressed that those works have only reported velocity and temperature fields in the mid-plane

which is a plane of symmetry2,36. Indeed, experimentally it is very difficult to measure 3D fields

in the whole cavity38. In Fig. 3a, the horizontal profiles of the time-averaged vertical velocity 〈w〉
are measured by Laser Doppler Anemometry (LDA) along the y-direction in planes x = 0.0125

and x = 0.2375 (see Skurtys 35). Note that this cavity is not a perfectly square based cavity since

Ay = 1.167. In order to check whether there is any dissymmetry between the profiles, we have

superimposed the profiles for each of the isothermal walls. Due to center-symmetry, the values for

the cold wall are related to the measured values for the hot wall: w(x,y,z)←→−w( 1
Az
−x,y,1−z).

It can also be seen that each profile of the vertical velocity has 3 maxima (two close to the adiabatic

walls and one in the central part), and 2 minima. The vertical plane y = 0.146 is a plane of
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symmetry for the vertical component of the velocity; in this plane the absolute value of w reaches

its maximum. In Fig. 3b our numerical results for the horizontal profiles of the vertical velocity

w perpendicular to the adiabatic wall (x = 0.0125) are presented for the square based cavity. For

each height, two maxima near the adiabatic walls are also found. However the central velocity

is less prominent, this could be explained by wall radiation effects21,23 that are not encountered

in our simulations, and by a slightly different horizontal aspect ratio. Indeed, experimentally

the front and rear walls are made of polycarbonate, they are opaque for infrared and have thus

strong emissivities35. As very few numerical results including radiative effects are available in the

literature, to facilitate comparison between our results and those of other authors these effects are

not accounted for in our simulations.

Finally, since numerical results obtained with periodic conditions in the y−direction may not

be compared with experimental results, all results presented in the next section are obtained with

no-slip boundary conditions at all cavity faces.
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(a)
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FIG. 3: For Ra = 108, a) Experimental results of Skurtys 35 . Horizontal profiles of the

time-averaged vertical velocity W measured by LDA along the y-direction for three different

heights z. Comparison between the cold wall (x = 0.2375) and the hot wall (x = 0.0125); Az = 4,

Ay = 1.167; b) our numerical results of horizontal profiles of the vertical velocity w perpendicular

to the adiabatic walls (x = 0.0125) for three heights z, Az = 4, Ay = 1.

B. Effect of the horizontal aspect ratio Ay on the heat transfer and the flow

In this section, we present in detail the effects of the horizontal aspect ratio, which varies from

0.13 to 4, first on the heat transfer, and in a second part on the flow dynamics.
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1. Heat transfer

The spatially-averaged Nusselt number 〈Nu〉 at the hot wall, i.e. the global heat transfer is first

investigated. It is calculated by:

〈Nu3D(Ay)〉=
4

Ay

∫ 1

0

∫ Ay/4

0
−∂θ

∂x
(x = 0,y,z)dydz (5)

The values of the averaged Nusselt number (Eq. 5) are gathered in Table I for different horizon-

tal aspect ratio Ay. It can be seen in this table that 〈Nu3D(Ay)〉 increases from 25.01 (i.e. Ay = 0.13)

to 30.72 (Ay = 4) when Ay increases. It also seems that values tend to approach a finite constant

value corresponding to the Nusselt numbers calculated for a 2D cavity 〈Nu2D〉 which corresponds

to Ay→ ∞. The values of Table I can be fitted by the following equation:

〈Nu3D(Ay)〉= 〈Nu2D〉
(−0.024

Ay
+1

)

, R2 = 0.9975 (6)

where R2 is the coefficient of determination. To more clearly illustrate the trend of the averaged

Nusselt number to converge towards the 2D value as Ay increases, Fig. 4 plots the evolution of the

3D Nusselt number 〈Nu3D(Ay)〉 divided by the 2D Nusselt number 〈Nu2D〉 according to Ay. This

plot confirms that
〈Nu3D(Ay)〉
〈Nu2D〉

tends asymptotically to 1.

TABLE I: Values of the averaged Nusselt number 〈Nu3D(Ay)〉 at the isothermal wall according to

the horizontal aspect ratio Ay. The last column reports its value in the 2D configuration39.

Ay 0.13 0.2 0.3 0.4 0.6 0.8 1 2 3 4 ∞ (2D)

〈Nu3D(Ay)〉 25.01 27.21 28.36 29.04 29.66 29.88 30.04 30.41 30.50 30.56 30.72

The fact that 〈Nu3D〉 tends to 〈Nu2D〉 can be linked with the ratio of total isothermal to total

adiabatic surface. The total isothermal surface S3D
T is the sum of the surface of the hot wall and the

surface of the cold wall, that is to say: S3D
T = 2× (H×D). The total adiabatic surface S3D

Q refers

to the sum of the surfaces of the bottom, the top, the rear and front of the cavity, that is to say:

S3D
Q = 2× (H×W )+2× (W ×D). So the ratio of total isothermal to total adiabatic surface in the

3D configuration gives:

S3D
T

S3D
Q

=
HD

HW +WD
=

1
1

Ay
+ 1

Az

(7)
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FIG. 4: Evolution of
〈Nu3D(Ay)〉
〈Nu2D〉

according to the horizontal aspect ratio Ay. A best-fit curve to

these data points is also plotted.

while in the 2D case it is equal to
S2D

T

S2D
Q

= H
W

= Az. Indeed, the total isothermal surface S2D
T and the

total adiabatic surface S2D
Q for the 2D cavity are respectively: S2D

T = 2×H and S2D
Q = 2×W . As a

consequence, as the horizontal aspect ratio Ay tends to infinity, we have:

lim
Ay→+∞

(

S3D
T

S3D
Q

)

7→ Az =
S2D

T

S2D
Q

(8)

This calculation confirms that the 3D averaged Nusselt number should tend to the 2D value

even if 3D structures could influence the Nusselt number patterns.

After presenting the Nusselt number averaged in y and z, we focus now on its dependence

on z. Figure 5a presents the profiles of the Nusselt number averaged in y, 〈Nu(Ay,z)〉y =
4

Ay

∫ Ay/4

0
Nu(x = 0,y,z)dy, versus the cavity height z, for Ra = 108 and various Ay values (0.3,

1, 2, 4). For all curves, the highest Nusselt number, about 90, is close to the bottom of the hot

wall because this wall is impacted by the cold air coming from the cold wall. As the air ascends
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all along the hot wall, it gets heated. As a consequence, the Nusselt number decreases when z

increases. Except for z ∈ [0.05;0.1] (see Fig. 5a), we observe again that, as the horizontal aspect

ratio increases from Ay = 0.3 (doted black line) to Ay = 4 (red line), the mean values of the Nusselt

number tends to approach those of the 2D profile (black line).

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

<
N
u
(
A
y
,
z
)
>
y

z

2D

Ay=4

Ay=2

Ay=1

Ay=0.3

(a)

0

1

2

3

4

5

6

7

8

9

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ
(
N
u
(
A
y
,
z
)
)
y

z

Ay=4

Ay=2

Ay=1

Ay=0.3

(b)

FIG. 5: For various horizontal aspect ratios Ay values: a) profiles of spatially-averaged Nusselt

number 〈Nu(Ay,z)〉y (in the y-direction) in the plane x = 0 versus the cavity height z. The

two-dimensional case is also presented for comparison; b) spatial standard deviations of Nu(Ay)

(i.e. σ(Nu(Ay,z))y) versus z.

Now, it is interesting to study how the y-averaged profile of the Nusselt number is representative

of the Nusselt number profiles at each y−position. Figure 5b shows the spatial standard deviations

calculated from all the mesh points along the y−direction. We first see that the major deviations

occur at the bottom of the hot wall in all cases, that is to say for z ∈ [0;0.2] whatever the value

of Ay. Besides, higher deviation values are achieved when the cavity is flatter i.e. Ay decreases.

It could appear paradoxical: indeed, 3D effects should be more important as Ay increases but the

local y-averaged-Nusselt number fits better and better to the 2D profile when Ay increases. This

trend is concurrent with evolution of the global Nusselt number observed previously. To better

understand this behavior, Figs. 6a-6g display the fields of local Nusselt numbers Nu(x = 0,y,z) at

the hot wall and a cavity ratio Ay ranging from 0.3 to 4.

We can note in Figs. 6a-6g that, once again, the maximum values of the local Nusselt number

are at the bottom of the hot wall (red areas). In the lower part of the hot wall (z ∈ [0;0.5]),

an alternation of local maximum and minimum Nusselt numbers can be observed along the y-
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FIG. 6: Effect of the horizontal aspect ratio Ay on the local Nusselt number, Nu, at the hot wall.

Both dashed green lines are helpful in visualizing the Nusselt behavior along the hot wall: a)

Ay = 0.3, b) Ay = 0.4, c) Ay = 0.8, d) Ay = 1, e) Ay = 2, f) Ay = 3, g) Ay = 4.
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direction toward the center of the wall, which are similar to a wave-like behavior (black contour

lines). We will explain in the next section which phenomenon is responsible for these heat transfer

disparities. In the upper half wall (z ∈ [0.5;1]), Nusselt numbers are more uniform. Indeed, Figs.

6a-6g show that the local Nusselt numbers are higher close to the adiabatic rear and front walls

(for y∈ [0; 1
2Ay

]
⋃

[Ay− 1
2Ay

;Ay]) when Ay is large enough (Ay≥ 1). These fields explain why the 3D

Nusselt number averaged in space tends to the 2D value: at the center of the hot wall, heat transfer

is more homogeneous as the horizontal aspect ratio Ay increases; as a consequence, the weight of

the reduced heat transfer in the corners with the rear or front walls in the averaging process of the

Nusselt number is reduced. That is why, in Fig. 5b, the spatial standard deviations of Nu(Ay),

σ(Nu(Ay,z))y, increases when Ay diminishes. Finally, it is important to note that, even if a flow in

the y-direction is observed (Ra > 2.141×107, see Xin and Le Quéré 13) all fields stay symmetric

about y = Ay/8.

To end the presentation of the effect of the horizontal aspect ratio Ay on the heat transfer, it

is also necessary to present temperature profiles far from the isothermal walls in detail. Figure 7

shows the vertical profile of the y-averaged temperature, 〈θ(Ay,z)〉y =
4

Ay

∫ Ay/4

0
θ

(

x =
Ay

2
,y,z

)

dy

for four different Ay values, in the mid-width plane x = Ax

2
versus the cavity height z. The 2D pro-

file is added to complete the analysis. We observe that for z ∈ [0.25;0.75], all profiles are quite

identical. They exhibit a linear behavior at the center part with a usual slope equal to 1 (see Xin

and Le Quéré 11 , Trias et al. 28). Differences appear at the top (z≥ 0.75), and at the bottom of the

cavity (z ≤ 0.25). This may be due to a modification of the velocity profile in the boundary layer

of the main velocity loop. This aspect could easily be investigated but that this is not the focus of

the paper. Moreover, it again seems to be case that, as the cavity depth increases, the y-averaged

vertical profile of temperature tends to approach the 2D profile (solid line)..

To sum up this part, an increase of the horizontal aspect ratio Ay induces an increase of the

Nusselt number which tends to the value obtained in a 2D DHC. Furthermore a decrease of Ay

reveals spatial inhomogeneities of the heat transfer at the isothermal walls. We will explain those

inhomogeneities in the next section through a dynamics analysis of the flow.

2. Flow dynamics

In order to explain the wavy patterns of the Nusselt number fields at the bottom of the hot

wall (see Figs. 6a-6g), the main flow structures are highlighted by iso-surfaces of
√

ωx
2 +ωz

2
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FIG. 7: For various horizontal aspect ratios Ay (0.3, 1, 2, 4), vertical profile of the y-averaged

temperature 〈θ(Ay,z)〉y in the mid-width plane x = Ax

2
versus the cavity height z. The

two-dimensional case is also presented for comparison.

colored by the horizontal velocity component, v, where ωx and ωz refers respectively to the x and

z-component of the vorticity (see Figs. 8a-8d).

Two kinds of structures have to be distinguished: structures along the vertical edges between

the isothermal walls and the adiabatic rear or front face, and more central structures at the top

or the bottom of the DHC whose axes are aligned with the main flow direction. The first kind

of structure corresponds to vortices which have the form of tori along the edges of the vertical

adiabatic wall, that is to say turning between planes parallel to the (x,z) plane. The second kind

of structures are only apparent when the primary flow changes its direction from the top or bottom

face of the DHC to the isothermal wall. This alternation of central structures explains the wave-

like contour lines observed in the Nusselt number fields presented before in Figs. 6a-6g . This

phenomenon may be explained by a Görtler instability at the bottom of the hot plate, and at the top

of the cold wall, which generates vortices when the flow changes its direction from the horizontal
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(a) (b) (c) (d)

FIG. 8: For various horizontal aspect ratios Ay, iso-surfaces of
√

ωx
2 +ωz

2 = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. The horizontal velocity component, v, is

superimposed: a) Ay = 1, b) Ay = 2, c) Ay = 3, d) Ay = 4. The left wall corresponds to the hot

wall. Only the mid-depth cavity is shown (y ∈ [
Ay

2
;Ay]) to highlight the flow structures.

to the vertical plane (see section IV). At the top of the hot plate, these structures probably keep

existing as they still have an influence on the local Nusselt number (see Figs. 6a-6g) but possibly

with a lower intensity and a more complex structure. Indeed, these vortices gradually dissipate

along the vertical walls, on the one hand, since there is no longer any centrifugal force present,

and on the other hand since they are subjected to the buoyancy force. That is why, isovalue lines

of the Nusselt number in Figs. 6a-6g are quite horizontal in the top half part of the hot plate.

Moreover, observing a vertical line at the hot wall, it can be noted that a maximum of an isovalue

line of Nusselt numbers at the bottom of the hot plate becomes a minimum at the upper part of the

plate, and vice versa when the horizontal aspect ratio is large enough (see vertical green dashed

lines in Fig. 6g).

Now we detail these structures through the presentation of the horizontal velocity component

v first in the vertical plane of equation x = W
2

for several values of Ay (see Figs. 9a-9g), and

secondly in various horizontal planes of equation z = {0.1,0.3,0.5} for Ay = 2 (see Fig. 10c).

Figures 9a-9g shows that the number of structures depends on the depth Ay and confirms that two
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kinds of vortices can be distinguished. Indeed, we observe that, up to Ay = 1, it is possible to see

only two main vortices which stay in the corner joining the vertical isothermal and adiabatic walls

(probably Ekman or Eckhaus like vortex, see section IV). Their size, referred as λc, increases from

Ay = 0.3 to Ay = 1 so that λc =
Ay

4
. For deeper cavities (Ay > 1), they seem to reach a maximal

size since λc is a constant: λc = 0.219. This observation for deeper cavities has to be linked with

the presence of a variable number of new structures between the corner vortices. For Ay = 2, we

can note four secondary structures between them. When the depth is multiplied by two, that is to

say for Ay = 4, the number of secondary structures is multiplied by two again. These structures are

pairs of counter-rotating vortices, whose rotation seems to be imposed by the rotation of the corner

vortices which have an higher y-velocity (see Fig. 10c) and a less dissipated structure along the

z-direction (see Figs. 8a-8d). The reduction of kinetic energy of both vortex types can be observed

with increasing z, which is certainly due to the lack of a centrifugal force, but vortex stretching

due to the buoyancy force can also contribute to the gradual dissipation of the Görtler vortices and

the weakening of the corner vortex.

Now, the two-way coupling between those vortices and the heat transfer, has to be described.

We can speak of a two-way coupling because vortices are generated by the convection flow, pro-

voked itself by the temperature difference between the isothermal walls, and at the same time,

these vortices influence the heat transfer. To detail this influence, the analysis of the heat transfer

at the bottom half-part of the hot plate has to be separated from the analysis at the top half-part of

the hot plate because the mechanisms are different. At the bottom half-part of the hot plate, the

interaction between fluid dynamics and heat transfer seems to work as follows (see Fig. 10a): cold

air from the cavity core is transported towards the hot wall due to the angular velocity. The peaks

in the Nusselt number distribution coincide with the stagnation points of this secondary flow. On

the contrary, when both adjacent angular velocities suck hot air from the plate, the Nusselt num-

ber decreases. That is why the Nusselt number fields appear in a wavy form. Besides, Fig. 10a

shows an horizontal distribution of the Nusselt number which could depend on the fluid accelera-

tion which can be deduced from the distances between two streamlines and which also correlates

to the wall shear stress magnitude peak (see Fig. 10b). Peaks of Nusselt number seem to corre-

spond to a lower vertical velocity (see Fig. 10c) or a lower mass flow rate (the distance between

streamlines increases), the minimum to a higher vertical velocity or a higher mass flow rate (the

distance between streamlines decreases). This might lead to the paradoxical conclusion that the

vertical flow velocity and the local Nusselt number are inversely related, and that this would ex-
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FIG. 9: For various horizontal aspect ratios Ay, the horizontal velocity v in the vertical mid-width

plane x = W
2

: a) Ay = 0.3, b) Ay = 0.4, c) Ay = 0.8, d) Ay = 1, e) Ay = 2, f) Ay = 3, g) Ay = 4. The

wavelengths of the vortices are: a-d) λc =
Ay

4
e) λ = 0,141; f) λ = 0,265; g) λ1 = 0,141,

λ2 = 0,234.
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(a) Nusselt (b) Wall shear stress

(c)

FIG. 10: For Ay = 2, a) streamlines and local Nusselt number along the hot wall; b) wall shear

stress magnitude, WSSmag =
√

σ2
zx +σ2

yx, along the hot wall; c) in various horizontal planes of

equation z = {0.1,0.3,0.5}, the y-velocity component v and the velocity vector fields are also

shown. Only the region x≥ 0.125 and y≥ 0.25 is presented.

plain the wavy form of the Nusselt number isovalue lines. However, the authors are convinced that

the secondary flow is responsible for the wavy behavior, and not the vertical main flow. Indeed, at

the top half-part of the hot plate, the waviness of the Nusselt number contours becomes reversed

(see green dashed lines in Fig. 6g). In this region, where the secondary flows have dissipated, the

expected relationship between vertical flow velocity and Nusselt number becomes apparent, i.e.

that a higher vertical velocity leads to better heat transfer. All these local effects also results in a

modification of the mean shear stress along the isothermal walls 〈τzx(Ay)〉 (see Tab. II and Fig.

10b). As the averaged Nusselt number depicted in Tab. I, the mean shear stress tends to the value

obtained in 2D configuration, i.e. 34.55.

To sum up this part, we show that an increase of the horizontal aspect ratio Ay controls the
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number and the size of vortices, and that these vortices significantly influence local heat transfer.

TABLE II: Values of the mean shear stress 〈τzx(Ay)〉 at the isothermal wall according to the

horizontal aspect ratio Ay. The last column reports its value in the 2D configuration.

Ay 0.13 0.2 0.3 0.4 0.6 0.8 1 2 3 4 2D

〈τzx(Ay)〉 25.09 28.44 30.41 31.17 32.02 32.45 32.8 33.70 33.98 34.24 34.55

IV. PHYSICAL EXPLANATION OF THE FLOW DYNAMICS

In this section, the discussion focuses on the origin and development of the three-dimensional

structures observed in the vertical boundary layers in the form of pairs of counter-rotating longi-

tudinal vortices and the two edge vortices (see previous sections, e.g. Figs. 8a-8d). The main

mechanism is the centrifugal effect induced by the main cavity flow.

A. Discussion about central vortices: a Görtler approach

Pairs of counter-rotating longitudinal vortices like those shown in Figs. 8a-8d and 9a-9g can

be observed in flows where centrifugal forces play an important role like in wall jets on a concave

surface40, in lid-driven cavity41, open cavity42 and close cavity flows30. The centrifugal instability

occurs when the magnitude of the angular velocity decreases with increasing distance to a center

of rotation in regions of the flow where streamlines are closer43. In Figures 10a and 10b, twenty

five streamlines close to the cold wall are drawn from the emission line (x = 0.21;0.25 ≤ y ≤
0.5;z = 0.985) with a constant spatial step ∆y. The z-velocity distribution, which is relevant for

centrifugal instability, is not uniform along the cold wall in the y-direction. In the top part of the

cavity, the horizontal flow in direction x > 0 impacts the cold boundary layer, so that streamlines

are curved with a concave curvature; then they are slightly deflected due to a positive or negative

y-velocity component.

Thus, it appears that three-dimensional structures triggered by a centrifugal instability inducing

counter-rotating vortices exist and may destabilize the boundary layers along the isothermal walls

(for 2 ≤ Ay ≤ 4). The ratio of the destabilizing inertial and centrifugal forces to the stabilizing
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FIG. 11: For three horizontal aspect ratio, Ay = 2, 3 and 4, Görtler number versus the

dimensionless wavenumber, α = kδ2. For comparison, the linearized neutral stability curve

established by Floryan 44 and various experimental results45–48 are also plotted. Insert: Flow

visualization in a vertical plan y = 0 and the lines where Görtler numbers are estimated.

viscous force is expressed in terms of the Görtler number, i.e. a combination of the Reynolds

number and a curvature parameter40,49:

Go = Reδ2

√

δ2

Rc
=

U∞δ2

ν

√

δ2

Rc
(9)

where U∞ is the maximum horizontal velocity at x= 0.125, δ2 is the boundary layer momentum-

loss thickness, ν is the kinematic viscosity and Rc is the radius of curvature of a streamline for

which the center of the circle is chosen to be a stagnation point on the line x = Ax

2
(see point A in

the insert in Fig. 11). In Fig. 11, values of Görtler number are plotted versus the dimensionless

wavenumbers (α = kδ2 =
2πδ2

λ
) for three horizontal aspect ratios, Ay = 2, 3 and 4, along the red

and blue lines (see the insert in Fig. 11). The values of λ are determined using Figs. 9e, 9f and
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9g. A comparison with experimental results and the linearized neutral stability curve established

by Floryan 44 about boundary layers over concave walls are also plotted in Fig. 11. It can be

observed that the six points are well positioned above the theoretical neutral curve, that is to say in

the unstable region, and close to the experimental results obtained in the case of laminar boundary

layers on concave surfaces45–48. This analysis suggests that the pairs of counter-rotating longi-

tudinal vortices developped in DHC with horizontal aspect ratio, Ay = 2, 3 and 4 are generated

via a Görtler instability mechanism. Of course, the counter-rotating longitudinal (and horizontal)

vortices calculated at x = 0.125 are generated by the curvature of the flow from the hot wall (upper

left part of DHC; see the insert in Fig. 11). The values of the Görtler number only increase as a

function of the position in the streamwise direction as long as the flow approaches the corner, and

not afterwards (the calculated values along the red line are greater than those along the blue line).

Görtler values remain independent of Ay (for Ay > 1) while the dimensionless wavenumber, α ,

depends on the streamwise positions.

B. Discussion about central vortices: a Taylor-Couette approach

To explain the central vortices, an analogy can also be done with Taylor-Couette flow50. Indeed,

we can consider an inner region as a rotating cylinder of axis y and centre (x = W
2

, z = H
2

). The ra-

dius of the inner cylinder is determined from the maximum velocity induced by natural convection

in the boundary layer ure f . In this analogy this region can be considered as a rotating solid body.

The velocity decreases radially between (the inner radius) and the cavity wall (the outer radius).

In this way, considering the confined flow between two cylinders is a rough approximation of the

recirculation inside the DHC. In our case, the outer cylinder is at the rest and the Taylor-Couette

cells depend on the Reynolds number which is based on the angular velocity of the inner cylinder

and the gap width51:

Ret =
ure f (Ro−Ri)

ν
(10)

where ure f ≈ 0.25 and Ro = 0.125 and Ri ≈ 0.115 are the radii of the outer and inner cylinder,

respectively. For the small gap limit, i.e. (Ro−Ri)≪ Ri, the critical Reynolds number is given

by51:

Retcr
= 41.18

√

Ri

Ro−Ri
(11)

Using these formulae, we find a maximum Reynolds number, Ret ≈ 39, while the critical Reynolds

number is Retcr
= 133. These values demonstrate that the centrifugal instability in the DHC can-

24

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
0
0
2
1
8



Accepted to Phys. Fluids 10.1063/5.0100218

not be identified with the Taylor-Couette instability. Moreover, the Eq. 11 is established from

Taylor-Couette analysis where the effects of the endwalls on the flow are not taken into account

theoretically by assuming infinitely long cylinder51. In the same way, to simulate counter-rotating

longitudinal vortices on concave surface (Görtler analysis), periodic boundary conditions in the

spanwise direction are often applied52. So it could be expected a strong influence of boundary

conditions on the pairs of counter-rotating longitudinal vortices.

C. Discussion on edge vortices

To explain the two edge vortices, an analogy can be done with the Ekman vortices which are

observed in Taylor-Couette configurations even if the Taylor number is subcritical50,53. In Fig.

12a isosurfaces of the helicity w.ωz per unit of volume of the flow are plotted for visualizing these

edge vortices. The level of helicity appears to be higher in the two edge vortices than for the

pairs of counter-rotating longitudinal vortices positioned in the middle boundary layer (Görtler

vortices). For these isosurfaces, it can be observed again that the edge vortices are more energetic

than Görtler vortices. Moreover, these Görtler vortices show a helicity which decreases as y tends

to
Ay

2
. This high helicity is due to a greater heated surface of a parcel of fluid along the edge (sum

of the constant temperature and the temperature derived from an adiabatic condition) coupled to

the friction along the adiabiatic walls. Thus, these two vortices that remain along the edge, joining

the back or front wall to the hot or cold wall, seems to be Ekman like vortices53,54 (or Eckhaus

like vortices). In order to show the role of boundary conditions on two vortices along the edge,

simulations are performed with slip boundary conditions on rear and front adiabatic walls, and

the helicity is also calculated. The absence of edge vortices can be observed in Fig. 12b. So the

no-slip boundary conditions play an essential role on the generation of edge vortices.
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(a) no-slip boundary conditions (b) slip boundary conditions.

FIG. 12: For Ra = 108 and Ay = 2, isosurfaces of the helicity

w.ωz =±0.3,±0.2 ±0.15 ±0.1±0.05 are plotted for: a) no-slip conditions on rear and front

walls; b) slip conditions on rear and front walls. The magnitude of velocity is superimposed.

V. CONCLUSION

In the present work 3D direct numerical simulations were conducted to study the effect of the

depth of an air-filled differentially heated cavity of vertical aspect ratio, Az, equals to four, by

means of the spectral element method programmed in the code Nek5000. This paper focuses

on a laminar flow in such a DHC (without radiative effect) at a Rayleigh number Ra = 108, just

below the first bifurcation, but greater than 2.141×107 to ensure that a flow in the y−direction is

observed. However, it is noted that all flows are always steady even if the horizontal aspect ratio

Ay increases. This study shows first the impact of the rear and front boundary conditions on the

topology of the flow. Second the influence of horizontal aspect ratio is studied in details. This
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aspect ratio controls the structure number: when Ay ≤ 1, only edge vortices are observed; when

Ay > 1, between the edge vortices some central structures appear whose number increases with Ay.

The structures which are not edge vortices seem generated by a Görtler instability at the bottom

of the hot plate and at the top of the cold plate. They have not enough energy to have a constant

pattern along the isothermal walls. However, they strongly modify the local heat transfer at the

isothermal walls. The edge vortices seem to be Ekman-like vortices, and their existence seems to

increase the strength of the Görtler vortices. Despite those 3D structures, the global heat transfer

and the global flow dynamics are characterized by magnitudes whose values tend to approach

those of a 2D configuration as the depth of the cavity increases. Finally, since the structures are

now well-known just before the first transition, it would be interesting to study the influence of the

Görtler vortices on the cavity flow and heat transfer when the Rayleigh number is increased.
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