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Note on the early thermoelastic stage preceding Rayleigh-Bénard convection in soft materials

In this paper, we focus on the first stage of transition to Rayleigh-Bénard convection in softjammed systems (yield stress fluids) confined in a parallelepiped box heated from the bottom. Up to yielding, the material is at solid-state with constant elastic modulus. By means of a linear thermoelastic model, an analytical solution for stresses and strains induced by the gravity and the temperature gradient is derived. The analytical solution allows to emphasize the appropriate dimensionless parameters. The onset of plastic deformation is then investigated using the classical yield criteria (Tresca, von Mises, Drucker-Prager). This analysis is subsequently applied to experimental data of the literature dealing with Rayleigh-Bénard convection in Carbopol micro gels.

I. INTRODUCTION

When a horizontal fluid layer is heated from below and cooled from above, a density stratification appears because of the thermal expansion of the fluid. The fluid at the bottom will be lighter than the fluid at the top and this top-heavy arrangement is potentially unstable.

When the temperature difference between the bottom and the top exceeds a threshold value controlled by the viscosity and heat diffusivity, by a small amount, convection sets in. The balance between buoyancy, and viscous and thermal diffusion is described by the Rayleigh number:

Ra = ρgα∆T H 3 ηD t , (1) 
where, ρ is the fluid density, g the acceleration due to gravity, ∆T the temperature difference between the bottom and top walls, H the thickness of the fluid layer, α is the volume expansion coefficient, η the viscosity and D t the thermal diffusivity.

Yield stress fluids represent a large class of materials which display a solid-like behavior as long as the applied stress does not exceed a critical value, τ y , called a yield stress and a fluid-like behavior beyond this threshold. The physical origin of the yield stress is related to the microscopic nature of these systems (soft objects suspensions, polymer solutions or emulsions). A review on yield stress fluids can be found in [START_REF] Balmforth | Yielding to stress: Recent developments in viscoplsatic fluid mechanics[END_REF][START_REF] Coussot | Bingham's heritage[END_REF][START_REF] Bonn | Yield stress materials in soft condensed matter[END_REF]. The onset of convection in such materials is the subject of controversy in the literature. The main theoretical and experimental results on this problem are reviewed in the following section.

A. Rayleigh-Bénard convection in a yield-stress fluid: Literature review

The first theoretical study of Rayleigh-Bénard convection in a yield stress fluid was performed by Zhang et al. [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF]. They have considered an inelastic yield stress fluid model (Bingham model). Using an energy method, they have shown that for a finite yield stress, the basic state (conductive regime) is linearly stable at all Rayleigh numbers and is conditionally stable otherwise. In other words, convective instabilities cannot grow from a static conductive state submitted to infinitesimal perturbations regardless the finite value of the yield stress. The same problem was studied by Balmforth and Rust [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF] using a weakly nonlinear stability analysis in the limit of a small yield stress. They have shown that there is an unstable sub-critical branch for nonlinear convective states that bifurcates from infinite Rayleigh number. Moreover, the threshold in amplitude above which the system must be kicked to initiate convection becomes increasingly lower as the Rayleigh number increases.

Vikhansky [START_REF] Vikhansky | Thermal convection of a viscoplastic liquid with high Rayleigh and Bingham numbers[END_REF] adapted a lattice-Boltzmann method to numerically study convection in yield stress fluids heated from below. His works are mainly concerned with onset and stoppage of convection in cavity. It is shown that if a perturbation is applied to the base state, it will decay in a finite time.

Turan et al. [START_REF] Turan | Influences of boundary conditions on laminar natural convection in rectangular enclosures with differentially heated side walls[END_REF] have used the regularized bi-viscosity model available in FLUENT to study the Rayleigh-Bénard convection in a square enclosure. Due to the regularization of the Bingham model, the motionless state corresponds to a shear-thinning fluid with a large viscosity at zero shear-rate. The authors found that the critical Rayleigh number for the onset of convection increases with Bingham number. The same approach was used for rectangular and trapezoidal enclosures in [START_REF] Turan | Critical condition for Rayleigh-Bénard convection of Bingham fluids in rectangular enclosures[END_REF] and [START_REF] Aghighi | Rayleigh-Bénard convection of a viscoplastic liquid in a trapezoidal enclosure[END_REF] respectively and also extended to Herschel-Bulkley and Casson fluids in [START_REF] Aghighi | Aspect ratio effects in Rayleigh-Bénard convection of Herschel-Bulkley fluids[END_REF][START_REF] Aghighi | Rayleigh-Bénard convection of Casson fluids[END_REF].

From experimental point of view, Balmforth and Rust [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF] Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] have also used Carbopol 940 at different concentrations filling a cylindrical cavity with a depth of 2 cm. They did not apply any finite amplitude perturbation and observed convection for 0.005 Pa < τ y < 0.1 Pa. They found that the onset of convection occurs when the yield number, Y defined by the ratio of the yield stress to buoyance force,

Y = τ y ρgα∆T H , (2) 
is about 0.01. Further experiments using Carbopol 980 heated from below in a rectangular cavity with a depth of the fluid layer of 2 cm were performed by Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF]. Again, without introducing any external perturbation, a convection regime is observed. In their experiments, the yield stress varies in the range [0.007, 1.7 Pa]. They found that at criticality, Y c ≈ 0.2, much larger than that given by Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF]. This discrepancy is probably due on one hand to the boundary conditions in the experiments of Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF], where the thermal conductivity of the wall is lower than that of the fluid and on the other hand to a possible slippage of the fluid at the wall. It is well known in the literature [START_REF] Hurle | On the solution of the Bénard problem with boundaries of finite conductivity[END_REF][START_REF] Piau | Carbopol gels: Elastoviscoplastic and slippery glasses made of individual swollen sponges: Meso-and macroscopic properties, constitutive equations and scaling laws[END_REF][START_REF] Cloitre | A review on wall slip in high solid dispersions[END_REF][START_REF] Cerisier | Thermal influence of boundaries on the onset of Rayleigh-Bénard convection[END_REF][START_REF] Bouteraa | Weakly nonlinear analysis of Rayleigh-Bénard convection in shear-thinning fluids: nature of the bifurcation and pattern selection[END_REF] that these two parameters contribute to the reduction of the criticality.

Experimental estimation of the critical value of the yield number in a cavity with differentially heated side walls was obtained by Jadhav et al. [START_REF] Jadhav | Motion onset in simple yield stress fluids[END_REF]. Carbopol microgels with a yield stress 0.01 Pa < τ y < 0.16 Pa and a depth of 0.146 m are considered. They have found that the onset of motion occurs at Y ≈ 0.01.

Another type of experimental study of natural convection of viscoplastic fluids was performed by Davaille et al. [START_REF] Davaille | Thermal instabilities in a yield stress fluid: existence and morphology[END_REF]. In their experiments, the convection is driven by a localized heater positioned on the bottom wall of a rectangular tank. Three different regimes were identified: conductive regime, cellular motion and plumes. The transition between the different regimes is characterized by the Yield number. The onset of convection (appearance of cellular motion) occurs at Y ≈ 0.01, which is in agreement with Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF].

Experimental observations of bifurcation to a convection regime from a motionless state in RBC, implies the linear instability of this state. This is in contradiction with the theoretical studies of Zhang et al. [START_REF] Zhang | Yield stress effects on Rayleigh-Bénard convection[END_REF] and Balmforth & Rust [START_REF] Balmforth | Weakly nonlinear viscoplastic convection[END_REF]. Variety of explanations of the disagreement between the theory and the experiments have been proposed in the literature.

According to Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] and Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] this disagreement is due to the fact that the Bingham model used in the theoretical approach does not capture the solid-liquid transition. Ahmadi et al. [START_REF] Ahmadi | Rayleigh-Bénard convection of carbopol microgels: Are viscoplastic models adequate?[END_REF] hypothesize that this disagreement may be associated with the difficulties of measuring the yield stress accurately or creating ideal boundary conditions in experiments. The authors [START_REF] Ahmadi | Rayleigh-Bénard convection of carbopol microgels: Are viscoplastic models adequate?[END_REF] have conducted numerical simulations of two dimensional natural convection of regularized Herschel-Bulkley model in a long rectangular cavity. They illustrated that uncertainties in the temperature boundary conditions can eliminate this conductive regime. Finally, regarding the microstructure of Carbopol gels, used in their ex-known in the literature that for RBC of a Newtonian fluid saturating a porous medium, the critical conditions are independent of the permeability of the porous medium [START_REF] Horton | Convection currents in a porous medium[END_REF][START_REF] Lapwood | Convection of a fluid in a porous medium[END_REF][START_REF] Nield | Convection in porous media[END_REF].

However, in Metivier et al. [START_REF] Metivier | Origin of the onset of Rayleigh-Bénard convection in a concentrated suspension of microgels with a yield stress behavior[END_REF], the experimental assessments depend on the permeability and largely underestimates the critical conditions (by more than three magnitude orders).

B. Objectives, methodoloy and outline of the paper

The yield stress is generally regarded as the transition between elastic solid-like behaviour and viscous liquid-like behaviour, and is related to the internal particulate network structure. However, As indicated by Tiu et al. [START_REF] Tiu | Yielding behaviour of viscoplastic materials[END_REF] this transition typically occurs not at a single point, but instead over a range of stresses starting at a lower limit, corresponding to progressive transition between elastic and plastic deformation and ultimately ending at a higher limit, corresponding to the transition between plastic deformation and purely viscous fluid. Therefore, in order to understand the onset of convection in soft jammed systems, it is necessary to consider the different steps in the transition between elastic solid-like and viscous liquid-like. Here we want to focus on the first step: transition between elastic and plastic deformation. The hydrogel used in the experiments described previously behaves as an elastic solid when the applied stress is below a critical value.

Under small strain assumptions, we consider that the material can be described by a linear thermoelastic law. The onset of yielding will be analyzed on the basis of different criteria provided by the literature. The paper is structured as follows. In Section 2, the effect of a temperature gradient on stresses and strains field is highlighted by artificially cancelling the gravity. In section 3, the full problem is considered. The onset of plastic deformation is studied in section 4 and the analysis is applied to the particular case of experiments of RBC in Carbopol microgels. In the conclusion section, we summarize the most relevant results

and we give some perspectives to our work.

II. PROBLEM FORMULATION

We consider a viscoplastic fluid filling a rigid parallelepiped container of dimensions 2ℓ × 2L × H along x, y and z axes respectively (see figure 1). The z-axis is directed upwards with the origin located at the bottom wall. The acceleration due to gravity reads g = -ge z , where e z is a unit vector along z. The viscoplastic fluid is modeled as a continuous medium obeying, under hypothesis of small transformations, a linear thermoelastic constitutive equation. Initially, the temperature is uniform T = T 2 throughout the viscoplatic fluid layer. This state represents the initial configuration of the system in the sense of continuum mechanics theory. Then the bottom wall temperature T 1 is slowly increased in a quasistatic manner, and the upper wall temperature is maintained at T = T 2 . At each step, it is assumed that a temperature gradient is established under equilibrium conditions. The objective is to determine conditions for the appearance of the first signs of irreversible (plastic) flow. For this, we express the basic thermoelastic equilibrium equations and constitutive equation (i.e. stress-strain relationship) in terms of displacements, strains and stresses. Subsequently, a second order ordinary differential equation for the vertical displacement is derived and solved leading to an analytical solution. Subsequently, the stress field in the viscoplatsic layer is calculated. The main yield criteria can therefore be used to determine the limit of elasticity and the onset of plastic deformation.

A. Governing equations

In the framework of linear thermoelasticity [START_REF] Salençon | Mécanique des milieux continus: Thermoélasticité linéaire[END_REF], the Cauchy's equation of motion reads:

ρ ∂ 2 u ∂t 2 = ∇ • σ + ρ g , (3) 
with the constitutive equation

σ = λ T r (ǫ) I + 2µǫ -k (T -T 2 ) I , (4) 
where

k = (3λ + 2µ) α . (5) 
In equations ( 3)-( 5), λ is the elastic modulus (first Lamé's parameter), µ the shear modulus (second Lamé's parameter), σ the Cauchy stress tensor, ǫ the strain tensor and u = u x e x + u y e y + u z e z the displacement vector. In equation ( 4), it is assumed implicitly that there are no residual stresses. The strain tensor is related to displacement gradient u by the relation:

ǫ = 1 2 ∇u + (∇u) T . (6) 
Combining ( 3), ( 4) and ( 5), the problem can be written in displacement formulation (Navier equations) as:

ρ ∂ 2 u ∂t 2 = (λ + µ) ∇ (∇ • u) + µ∇ 2 u + ρ g -k∇T . (7) 
These equations are completed by mass and energy conservation equations:

ρ = ρ 0 (1 -T r(ǫ)) (8) 
and

ρC v ∂T ∂t = K∇ 2 T + σ : ǫp + r, (9) 
where ρ 0 is the density at the reference temperature T 2 , C v the specific heat at constant volume, ǫp the plastic strain rate, K the thermal conductivity and r a possible internal heat source.

B. Boundary conditions

The displacement vector u and the temperature have to satisfy the following boundary conditions:

u x (x = ±ℓ/2, y, z) = 0 , (10) 
u y (x, y = ±L/2, z) = 0 (11) 
u z (x, y, 0) = u z (x, y, H) = 0 (12) T (x, y, z = 0) = T 1 , T (x, y, z = H) = T 2 (13) ∂T ∂x (x = ±ℓ/2, y, z) = ∂T ∂y (x, y = ±L/2, z) = 0 . ( 14 
)
In the following, we consider mechanical and thermal equilibrium states such that we may drop time derivatives. We assume that there is no internal heat source in energy equation nor irreversible deformation, i.e. ǫp = 0. The energy reduces to the uncoupled conduction equation.

To highlight the contribution of the temperature gradient on stresses and deformations generated inside the viscoplastic fluid layer, the acceleration gravity is cancelled artificially.

Sufficiently, far from the lateral walls, it can be assumed that the temperature T depends only on z, with

T = T 1 -∆T z H , (15) 
where ∆T = T 1 -T 2 . Navier equations reduce to:

(λ + µ) ∂ 2 u x ∂x 2 + ∂ 2 u z ∂z∂x + µ ∂ 2 u x ∂x 2 + ∂ 2 u x ∂z 2 = 0 (16) 
(λ + µ) ∂ 2 u y ∂y 2 + ∂ 2 u z ∂z∂y + µ ∂ 2 u y ∂y 2 + ∂ 2 u y ∂z 2 = 0 (17) 
(λ + µ) ∂ 2 u x ∂x∂z + ∂ 2 u y ∂y∂z + ∂ 2 u z ∂z 2 + µ ∂ 2 u z ∂x 2 + ∂ 2 u z ∂y 2 + ∂ 2 u z ∂z 2 + k(T 1 -T 2 ) H = 0 . ( 18 
)
To get an analytical solution, we consider as a first approach, a solution which satisfies the boundary conditions and depends only on z. Based on these assumptions, the solution of the Navier equations leads to the following expression of the displacement:

u = χ 2 z(1 - z H )e z , (19) 
where,

χ = k∆T /(λ + 2µ) (20) 
accounts for the uniaxial deformation due to thermal stresses. The strain-tensor is then given by

ǫ = χ 1 2 - z H e z ⊗ e z . (21) 
It is worthy to note that ǫ zz is positive for 0 < z < H/2 and negative for H/2 < z < H, as it is illustrated in figure 1. The gel undergoes an expansion near the heated wall, between 0 and H/2 and a compression near the cooled wall, between H/2 and H. The gel layer is therefore subjected to thermal stresses. They are determined by substituting (21) into the constitutive equation ( 4). We obtain:

O O x z z H H -ℓ/2 ℓ/2 T 1 T 2 H/2 - + σ xx σ zz σ zz ǫ zz u z (z)
FIG. 1. Illustration of the strain ǫ zz , stress σ and displacement u z induced by a temperature gradient.

σ xx = σ yy = k∆T λ + 2µ 2µ z H - λ + 4µ 2 , (22) 
σ zz = - 1 2 k∆T , (23) 
σ ij = 0 if i = j . (24) 
Given the well known relationships between the Lamé parameters , Youg's modulus E and Poisson's ratio ν,

λ = Eν (1 -2ν) (1 + ν) and µ = E 2 (1 + ν) , (25) 
it can be shown straightforwardly that for an incompressible elastic material, where ν = 1/2, one recovers the state of hydrostatic pressure

σ xx = σ yy = σ zz = - k 2 ∆T. (26) 

IV. STRAIN AND STRESS FIELDS INDUCED BY GRAVITY COMBINED WITH A TEMPERATURE GRADIENT

As indicated previouly, for small deformations, the mass conservation equation reduces to

ρ(z) = ρ 0 (1 -ǫ zz ) ≈ ρ 0 1 - ∂u z ∂z (27) 
(λ + 2µ) ∂ 2 u z ∂z 2 + k∆T H -ρ 0 g 1 - ∂u z ∂z = 0 , (28) 
with the boundary conditions

u z = 0 at z = 0, H . (29) 
The solution u z is then given by

u z (z) = (1 -κ) z H - 1 -exp -1 Λ z H 1 -exp -1 Λ H , (30) 
and the only non-zero component of the deformation tensor is

ǫ zz (z) = (1 -κ) 1 - 1 Λ exp -z ΛH 1 -exp -1 Λ . (31) 
The dimensionless parameter κ defined by

κ = k∆T ρ 0 gH (32) (33) 
is the ratio of thermal stresses to gravitational stresses, and

1 Λ = ρ 0 gH λ + 2µ (34) (35) 
represents the uniaxial deformation due to gravitational stresses.

The components of the stress tensor are obtained by using the linear thermoelastic consititutive equation:

σ xx (z) = (1 -κ) 3Ψ -Λ 2 1 - 1 Λ exp -z ΛH 1 -exp -1 Λ - κ 1 -κ 1 - z H ρ 0 gH , (36) 
σ yy (z) = σ xx (z) , (37) 
σ zz (z) = (1 -κ) Λ 1 - 1 Λ exp -z ΛH 1 -exp -1 Λ - κ 1 -κ 1 - z H ρ 0 gH (38) 
where The hydrostatic pressure p = (1/3)T r(ǫ) is then

Ψ = 3λ + 2µ 3ρ 0 gH ( 
p = (1 -κ) Ψ 1 - 1 Λ exp -z ΛH 1 -exp -1 Λ - κ 1 -κ 1 - z H ρ 0 gH (40) 
The dimensionless parameter 1/Ψ accounts for the volume variation induced by gravitational stresses. In figure 2 the components σ zz and σ xx represented as a function of z/H in figure 3. One notes that σ zz and σ xx are of the same order.

V. ONSET OF PLASTIC DEFORMATION: MAIN YIELD CRITERIA

A number of yield criteria have been developed in the literature to determine the limit of elasticity and the onset of plastic deformation. In this section, three criteria of yielding:

namely, the criteria of Tresca, von Mises and Drucker-Prager will be considered.

A. Tresca criterion

From the Mohr's circle, it can be shown straightforwardly that the maximum of shearstress τ max at any point in the gel layer is given by:

τ max = |σ xx -σ zz | 2 = µ |ǫ zz | . ( 41 
)
In dimensionless form, we have

τ max /ρ 0 gH = 3 4 |Λ -Ψ| |1 -κ| 1 - 1 Λ exp -z ΛH 1 -exp -1 Λ . ( 42 
)
τ max = τ y , (43) 
where τ y is the shear yield stress. The variation of τ max /ρ 0 gH as a function of the dimensionless vertical position z/H is depicted in figure 4 The maximum shear-stress decreases with increasing Λ and Ψ, that can be obtained for instance by increasing the Poisson's ratio. The figure 4(a) shows that the yielding in the gel layer starts when the yield shear stress τ y is smaller than τ max (z = 0). In figure 4(b), the thermal effects are cancelled by setting ∆T = 0. Comparatively to figure 4(a), the curves (1), ( 2) and ( 3) are slightly modified. Actually, τ max /ρ 0 gH decreases slightly in presence of thermal effects. Indeed, for the rheological parameters considered here, thermal effects are much weaker than gravitational effects and act in opposite way on strain and stress fields in the gel layer. In other words, if for ∆T = 0, τ max < τ y then the gel layer will remain in the elastic domain when the temperature difference between the top and bottom walls increases in a reasonable range.

The application of Tresca criterion to experiments of Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] is shown in In the experiments of Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF], where H = 0.02 m, τ y = 0.1 Pa, µ = 3.25 Pa, α = 7.4×10 -5 K -1 , the whole gel layer is already yielded at ∆T = 0. Indeed, the limit τ y /ρ 0 gH = 5.09 × 10 -4 almost coincides with the abscissa axis. The von Mises yield criterion suggests that the yielding of materials begins when the second deviatoric stress invariant J 2 reaches a critical value. This condition is represented by the equation

3J 2 = σ y , (44) 
where σ y is a tensile yield strength of the material. At the onset of yielding, the magnitude of shear yield stress in pure shear is √ 3 times lower than the tensile yield stress. The von Mises criterion can be viewed as a particular case of the Drucker-Prager Drucker criterion.

The analysis of these criteria is done in the following section.

C. Drucker-Prager yield criterion

The Drucker-Prager yield criterion is a modification of the von Mises criterion, whereby the hydrostatic pressure-dependent first invariant I 1 is introduced. It can be expressed as

3J 2 + A|I 1 | = σ y , (45) 
where I 1 is the first invariant of Cauchy stress tensor and A a material parameter. The following expressions are obtained for √ 3J 2 and I 1 :

3J 2 = |σ xx -σ zz | = 3 2 (Λ -Ψ) (1 -κ) 1 - 1 Λ exp -z HΛ 1 -exp -1 Λ ρ 0 gH, (46) 
I 1 = 1 3 T r(σ) = Ψ (1 -κ) 1 - 1 Λ exp -z HΛ 1 -exp -1 Λ ρ 0 gH -κ 1 - z H ρ 0 gH (47) 
In figure 6 entered the plastic domain. By increasing Λ, i.e. the elastic effects, we increase the central zone where the material remains elastic. By increasing the influence of the hydrostatic pressure in the yield criterion, i.e. by increasing A, the onset of yielding in precipitated.

In figure 6(b), the thermal effects are cancelled by setting κ = 0, the extent of the elastic or the plastic zone is not significantly modified comparatively to figure 6(a). The numerical results show a very slight increase of the elastic zone. In addition, the two branches of the U shape have merged.

The application of Drucker-Prager criterion to experiments of Kebiche et al. [START_REF] Kebiche | Experimental investigation of the Rayleigh-Bénard convection in a yield stress fluid[END_REF] and Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] is illustrated in Figures 7(a 

VI. CONCLUSION

Using the linear theory of thermo-elasticity we have derived an analytical solution for stresses and strains generated in a layer of a viscoplastic fluid confined in a parallelepiped box. The analysis shows that the problem is governed by three dimensionless groups denoted κ, Λ and Ψ, where κ is the ratio between thermal and gravitational stresses and 1/Λ and 1/Ψ account for uniaxial deformation and volume variation respectively due to graviational

stresses. An analytical solution is derived. It is shown that the gravity and the thermal gradient have antagonistic effects. Indeed, the gravity generates a compression at the lower part of the gel layer, whereas a thermal gradient (the layer is heated from the bottom) generates an expansion in the lower part of the gel layer. However, within the range of rheological and geometrical parameters considered and for a reasonable temperature difference, the thermal effects are much weaker than the gravitational effects. The onset of yielding is then investigated using the classical yield criteria (Tresca, von Mises and Drucker-Prager). 

  conducted a set of experiments with Carbopol 940 in a rectangular tank filled to a depth between 4 and 11 cm. Different concentrations of Carbopol were considered. They observed that the convection sets in without imposing any external trigger for concentration of Carbopol of 0.05% where the yield stress τ y < 0.1 Pa. According to the authors, a few air bubbles or a slight lateral variation of temperature might easily be responsible for overcoming the threshold of convection. For intermediate values of τ y , say 0.3 Pa < τ y < 1 Pa, convection can start if a perturbation of substantial amplitude (injection air bubbles for instance) is applied. It is observed that the amplitude of the perturbation required to initiate convection increases with increasing yield strength.

FIG. 2 .

 2 FIG. 2. (a) Illustration of the strain ǫ zz induced by the gravity combined with a temperature gradient for different values of κ, Λ and Ψ: (1) (κ, Λ, Ψ) = (0.0204, 1.092, 0.849), (2) (0.0340, 1.652, 1.416), (3) (0.102, 4.477, 4.247), (4) (0.204, 8.723, 8.495). (b) The strain ǫ zz induced only by a temperature gradient. (1) χ = 0.0187, (2) χ = 0.0206, (3) χ = 0.0228 and (4) χ = 0.0234.

FIG. 3 .

 3 FIG. 3. Illustration of stresses σ zz and σ xx induced by gravity combined with a temperature gradient. (1) (κ, Λ, Ψ) = (0.020, 1.092, 0.8495), (2) (0.034, 1.652, 1.4158), (3) (0.102, 4.477, 4.247), (4) (0.204, 8.723, 8.494).

  (a) for different values of the dimensionless parameters κ, Λ and Ψ. Curves (1), (2) and (3) with the associated dimensionless parameters have been obtained for three values of the Poisson's ratio ν = 0.4, 0.44 and 0.48 respectively and by setting E = 100 Pa, H = 0.02 m, ρ 0 = 10 3 kg/m 3 , ∆T = 40 • C, α = 2 × 10 -4 K -1 .
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 5 figure 5(a). The experimental parameters are H = 0.02 m, ρ = 10 3 kg/m 3 , µ = 10 Pa, α = 2 × 10 -4 K -1 and τ y = 1 Pa. The onset of convection has been observed at ∆T ≈ 8 • C. As the Poisson's ratio is not given, we have fixed two values ν = 0.4 and 0.48. This leads to two triplets (κ, Λ, Ψ): (1.14 × 10 -3 , 0.306, 0.238) curve 1 and (6.03 × 10 -3 , 1.325, 1.257) curve 2. Again, the low values of κ indicate that the thermal effects are negligible. Indeed, curves 1 and 2 are almost unchanged if one sets ∆T = 0. The figure clearly shows that at the beginning of the experiment, i.e. at ∆T = 0, in a large part of the Carbopol gel layer, τ max /ρ 0 gH > τ y /ρ 0 gH, i.e. the material has already crossed the threshold of plasticity.
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 45 FIG. 4. Variation of τ max /ρ 0 gH as a function of z/H for different triplets (κ, Λ, Ψ). (a) (1): (0.0204, 1.092, 0.849), (2) (0.034, 1.652, 1.416), (3): (0.102, 4.477, 4.247) (b) Same parameters Λ and Ψ with κ = 0.

3 FIG. 6 .

 36 figure 4(a). The curves have a U shape. The lowest value of |σ zz -σ xx | is reached at the central part of the gel layer. The Drucker-Prager yield criterion is represented by setting σ y = 10 √ 3 Pa and two values of A: 0.05 and 0.2. The von Mises yield criterion corresponds to A = 0. Below the lines representing the yield criterion, the material behaves as an elastic solid. Above, the material enters the plastic domain. Depending on the experimental conditions, the gel in the central area may be in the elastic domain whereas outside it has already

FIG. 7 .

 7 FIG. 7. Variation of √ 3J 2 /ρ 0 gH as a function of |I 1 |/ρ 0 gH. (a) Experiments of Kebiche et al. [13]: (1) κ = 1.14 × 10 -3 , Λ = 0.306, Ψ = 0.238, (2) κ = 6.03 × 10 -3 , Λ = 1.325, Ψ = 1.257, σ y /ρ 0 gH = 8.83 10 -3 . (dashed line) is Drucker-Prager criterion for A = 0.1. (b) Experiments of Darbouli et al. [12]: (1) κ = 8.58×10 -4 , Λ = 9.94×10 -2 , Ψ = 7.73×10 -2 , (2) κ = 4.53×10 -3 , Λ = 0.431, Ψ = 0.409, σ y /ρ 0 gH = 8.83 10 -4 .

whereas in Darbouli et al. [START_REF] Darbouli | Rayleigh-Bénard convection for viscoplastic fluids[END_REF] almost all the gel layer is yielded. In these experiments, κ = 0(10 -3 ), i.e. the thermal stresses are 10 3 weaker than the gravitational ones.

When the stresses state enters the plastic regime due to an increase in thermomechanical stresses (imposed by the temperature gradient and the gravitation), plastic flow occurs with a specific distribution of displacements, strains and stresses. In our future work, we intend to analyze this step, close to the onset of yielding and the beginning of the plastic flow process. A simple model would be considered assuming that the thermoelastoplastic behavior of the medium is independent of the strain rate.