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Abstract

The present paper is a thorough study of the flow regime where an asymmetry of the mean

axial velocity profiles is observed for shear-thinning fluids flow in a pipe [? ]. This study is based

on statistical analysis of the axial velocity fluctuations. It is shown that this flow regime exhibits

features of a weak turbulence: chaotic in time and regular in space. More precisely: (i) power

spectra of axial velocity fluctuations decay following a power law with an exponent very close to

−3, (ii) large-scale coherent structures are generated and (iii) there is essentially no intermittency

in this flow regime.

PACS numbers: 47.27.Cn, 47.50.-D, 47.27.De, 83.60.Wc
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Introduction. Transition to turbulence for Newtonian fluid in a pipe flow is still an

important fundamental and practical problem since Reynolds’s (1883) original experiments.

It is ruled by the nonlinear inertia term in the equation of motion. Numerous experimental

and numerical studies were carried out after this pioneering work. A recent literature review

can be found in [? ]. From mathematical point of view, pipe flow is linearly stable, yet

in practice, above a critical Reynolds number an abrupt transition to turbulence occurs:

Turbulent localized patches (so-called turbulent puffs [? ]) generated by the sharp entry

geometry move along the tube at approximately the bulk flow speed. The details on the

structure of the turbulent-puff have been recently revealed [? ]. The azimuthal features

of a cross-sectional view are very similar to the travelling waves discovered by Faisst and

Eckhardt [? ] and Wedin and Kerswell [? ]. These new solutions, based on the self-

sustaining process proposed by Waleffe[? ] and the subsequent continuation approach [? ],

are thought to connect to form an attractor.

Concerning the transition to turbulence for non-newtonian fluids, very little is available in

the literature, despite the importance of this problem in the design and control of several

industrial processes, such as in oil-well cementing, extrusion of molten polymers, paper

coating, etc. Nevertheless, the existing literature reveals an interesting and yet unexplained

effect. In a certain range of Reynolds numbers, the mean flow presents an asymmetry,

while in the laminar and turbulent regimes the flow is axisymmetric. Here, mean refers to

time-averaged. The departure from axisymmetry was observed independently by Escudier

and Presti [? ] for a flow of Laponite suspension (thixotropic shear-thinning fluid) at

1275 ≤ Rew ≤ 3000 and Peixinho et al. [? ] for a flow of Carbopol (shear-thinning yield

stress fluid) at 1800 ≤ Rew ≤ 4000. The Reynolds number Rew is defined with the wall shear

viscosity, the diameter D of the pipe and the bulk velocity Ŵb. These two groups jointly

published these and additional observations in [? ]. The results of such asymmetric velocity

profiles in the transitional regime are reported for a wide range of shear-thinning polymer

solutions: Xanthan gum, polyacrylamide, Carboxymethylcellulose, and also for Carbopol

and Laponite. For a Newtonian fluid (aqueous Glycerine solution) the time averaged velocity

profiles measured are invariably axisymmetric. Further observations of asymmetry in the

transitional pipe flow of Xanthan gum and Carbopol solutions have been reported by Guzel

et al [? ]. It was clearly indicated in [? ] that this asymmetry must be a consequence of a

fluid-dynamics mechanism rather than imperfections in the flow facilities. This mechanism
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has to be linked to the non-newtonian behaviour of the fluid. All non-newtonian liquids

investigated display two common rheological properties: shear-thinning and viscoelasticity.

Actually, the experimental results indicate that the asymmetry is shear-thinning dependent.

Indeed, non-newtonian liquids with similar shear-thinning and different elastic behavior

show similar degree of asymmetry, while elasticity seems not to influence the asymmetry

[? ]. In addition, the degree of asymmetry increases with increasing the shear-thinning.

These conclusions are supported by a direct numerical simulation of pipe flow of shear-

thinning fluids (power law model), at moderate Reynolds numbers (5000 < Rew < 8000),

performed by Rudman et al. [? ]. The authors indicated that “the active region of the

flow continually moves along the pipe to preferentially occur at one azimuthal position for

extended times”. We think that these computations were done for Rew where there is an

intermittency between the nonlinear asymmetric state and the fully turbulent regime, cf.

Fig. 6 in [? ]. The azimuthal structure of the asymmetry together with its axial position were

first investigated by Esmael and Nouar [? ]. The experimental results obtained suggest the

existence of a robust nonlinear coherent structure characterized by two weakly modulated

counter-rotating longitudinal vortices.

The previous articles focused mainly on the description of the asymmetry of the mean axial

velocity profiles observed for different shear-thinning fluids. The purpose of the present

study is to provide a deeper analysis of the flow regime where the asymmetry is observed,

from a complete statistical analysis of velocity fluctuations. It is shown that this nonlinear

asymmetric state is a weakly turbulent flow, i.e. chaotic in time and regular in space

[? ] driven by the nonlinear variation of the effective viscosity µ with the shear rate γ̇,

bringing into play the interplay between inertia and shear-thinning. Before presenting the

experimental results one has to note that the Hagen-Poiseuille flow of yield-stress shear-

thinning fluids is linearly stable for all Reynolds number and the optimal perturbations of

the transient growth theory at the same dynamical and rheological parameters as in the

experimental tests bear no resemblance to experimental observations [? ].

Experimental set-up, instrumentation and tested fluid. Full details of the flow facility and

instrumentation have been given in [? ] and so only a brief description is provided here.

The measurements were carried out in a plexiglass tube 30 mm inner diameter and 4.5 m

long from the inlet (150 diameters). The velocity measurements were made using a Dantec

FlowLite LDA system with a measuring volume 0.65 mm in length and 77µm in diameter.
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The fluid used is a 0.2w% neutralized aqueous solution of Carbopol 940: the same as that in

[? ? ]. A complete rheological characterization was made using a TA instrument AR 2000

controlled torque rheometer. The flow curves (shear-viscosity µ vs shear-rate γ̇) are very

well fitted by the Herschel-Bulkley model for the whole range of shear rates encountered in

our experiments. In all our experiments, the shear thinning index n ≈ 0.5 and the ratio of

the radius of the pseudo-plug zone [? ] to that of the pipe is less than 0.1.

Results and discussion. As it has been advocated by [? ] among others, a reliable indication

of the onset and offset of transition is obtained by plotting the turbulence intensity It, i.e.,

the ratio of the root-mean-square of the axial velocity fluctuations ŵ′ to the bulk velocity

Ŵb, against the Reynolds number Rew. Fig. 1(a) displays the evolution of It with Rew at

the azimuthal position θ = −π/4 and different radial positions. Here, the anti-clockwise

orientation is adopted and θ = 0 is the horizontal plane. In the laminar regime and for a

given radial position, It remains practically constant. At Rew = Rec1 ≈ 1800, the laminar

regime ceases to be a global attractor and a new state, called here, nonlinear asymmetric

state, is selected by the fluid. A smooth increase of the turbulence intensity is observed.

It reaches a maximum, at Rew ≈ 3000, then a plateau or decreases slightly. At Rew =

Rec2 ≈ 4000, a sharp increase in It occurs across the pipe section. It reaches a maximum

Itmax at Rew = Rec3 ≈ 6500 and then relaxes to the value corresponding to fully developed

turbulence. Two particular stages in the evolution of It v.s. Rew are identified. The first

stage corresponds to Rec1 ≤ Rew ≤ Rec2 and the second one to Rec2 ≤ Rew ≤ Rec3. The

first stage is not observed for newtonian fluids while the second one is rather “classical”

and starts with the appearance of turbulent puffs. In the first stage, the experimental

measurements of the friction factor are very close to the theoretical laminar solution as shown

in Fig.1(b). Another feature of this first stage is the asymmetry of the mean (time-averaged)

flow, a three-dimensional description of which is given in [? ]. Axial velocity profiles were

measured at three axial positions ẑ = 20D (near the entrance section), ẑ = 54 D (middle

of the pipe) and ẑ = 122D along four diameters shifted of 45 degrees. The mean velocity

profiles obtained W (r, θ, z) = Ŵ (r, θ, z)/Ŵb are then written as the superposition of an

averaged mean axial velocity profile W (r, z) and a streak Ws(r, θ, z). The representation

of Ws as a function of θ shows clearly that Ws(r, θ, z) is well described by the relation:

Ws(r, θ, z) = A(r, z) cos (θ + φ). It is thus possible to draw the contours of iso-Ws in a cross

section of the pipe, at each axial position. The result of this procedure is given in Fig.2 (At
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FIG. 1: (a) Turbulence intensity
(

√

〈ŵ′2〉t/Ŵb

)

versus the Reynolds number Rew at θ = −π/4

and different radial positions. The continuous lines through the data points serve as a guide for

the eye. (b) Friction factor as a function of Reynolds number. The symbols are the experimental

measurements and the continuous line is the theoretical laminar solution.

FIG. 2: Contours of iso-Ws at (a) ẑ = 54D, Rew = 2420, (b) ẑ = 122D, Rew = 2420 and (c)

ẑ = 122D, Rew = 3650. The flow is faster in the red zone and slower in the blue zone. The degree

of asymmetry evaluated by max(Ws) × 100 is given below each figure.

ẑ = 20 D, Ws values are within experiment uncertainty, and are not represented). The red

color indicates regions where the fluid-flow in the direction of the pipe is faster than average,

while blue denotes regions that are slower. This nonlinear asymmetric state is stable and

persists for the whole duration of the experiments (several weeks). These streaks suggest the

existence of a coherent structure characterized by two counter-rotating longitudinal vortices.

Slow flow is advected from the wall toward the blue zone and fast flow is advected toward
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the red zone. An example of the velocity-time history signal in the nonlinear asymmetric

state is displayed in Fig. 3(a). Frequency power spectra of the axial velocity fluctuations at

r = 0.7, θ = −π/4 (near the center of the high speed streak) for different values of Rew are

shown in Fig. 3(b). These spectra were calculated from stationary time series (of 5 × 105

data points) of the measured axial velocity. The data points are not evenly spaced, so a

refined sample and hold technique was used to compute the power spectra [? ]. The spectra

were calculated with segments of 1024 and 2048 data points and the obtained spectrum

is an average over all segments in the full time series. In the beginning of the first stage,

part of the energy spectrum scales as f−α with α close to 5/3. With increasing Rew, the

spectra have a broad region of frequencies, where the fluctuation energy decays according

to a power law E ∼ f−α with α very close to 3. The flattening of the curves at high f is

due to instrumental noise. The power-law decay region spans about an order of magnitude

in f : 2 ≤ f ≤ 10Hz, which implies excitation of the fluid motion in the whole range of the

corresponding temporal scales. Assuming that the Taylor hypothesis of frozen turbulence

can be used here, because rms(ŵ′)/Ŵ ≤ 10%, we can view the spectra in time as spectra in

space, with the relation between the frequency and the wave number given by k = 2πf/Ŵ .

Then the power-law decay regions in curve 5 of figure 3(b) means that the fluid motion is

excited in the whole corresponding ranges of k : 0.695 ≤ k ≤ 7.2 m−1. This multiplicity

of spatial and temporal scales is one of the characteristic features of turbulence. It is thus

reasonable to suggest that under certain conditions, a truly turbulent flow might be excited

by the nonlinear variation of the effective viscosity with the shear rate. Actually, we have an

interplay between inertia and shear-thinning. This idea was first put forward by [? ]. The

large value of the exponent means that the power of fluctuations decays very quickly as the

size of eddies decreases. Therefore, the fluctuations of the velocity and the velocity gradient

are both determined by the integral scale. The flow can be considered smooth in space and

random in time. This situation is analogous to Batchelor regime [? ]. An estimation of the

characteristic temporal and spatial scales associated to the axial velocity fluctuations can be

obtained using the autocorrelation function Cww(T ) defined by Cww(T ) =
〈ŵ′(t).ŵ′(t + T )〉t

〈ŵ′2〉t
,

where T is the delay time. In figure 4(a) we report the autocorrelation function Cww(T )

for different values of Rew. One can note that Cww(T ) increases with increasing Rew. At

sufficiently large Rew, a strong correlation, indicated by the level of the plateau, is observed.

Using Taylor’s frozen flow hypothesis, we may estimate the integral length scale L̂c, i.e., the
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FIG. 3: (a) Time serie of axial velocity for Rew = 3650 at ẑ = 122D, r = 0.7 and θ = −π/4.

(b) Density energy spectra of axial velocity fluctuations at r = 0.7, θ = −π/4 and different Rew:

(1) Rew = 2010; (2) Rew = 2161; (3) Rew = 2327; (4) Rew = 2680 and (5) Rew = 3650.

For 3000 ≤ Rew ≤ Rec2 ≈ 4000 the spectra are very close. We have represented only that at

Rew = 3650. The dashed and dotted lines represent the power law behavior respectively f−3 and

f−5/3.

FIG. 4: Statistics of the axial velocity fluctuations near the center of the high-velocity streak (r =

0.7, θ = −π/4). (a) Autocorrelation function at ẑ = 122D and (1) Rew = 2010, (2) Rew = 2161,

(3) Rew = 2367, (4) Rew = 2420, (5) Rew = 3650, (6) Rew = 2970. (b) Integral scale as function

of the Reynolds number at two axial locations: (1) ẑ/D = 54 and (2) ẑ/D = 122

largest scale on which the velocity is correlated. In figure 4(b) we plot the integral length

scale, normalized by the diameter of the pipe, as a function of the Reynolds number at two

axial locations ẑ/D = 54 and 122. As for the turbulence intensity in Fig.1(a), the integral

length scale increases with increasing Reynolds number, reaches a maximum and saturates.

It increases also along the pipe suggesting a stronger correlation.

Deeper insight on this weakly turbulent flow induced by the shear-thinning behavior of

the fluid is obtained from the statistics based on the longitudinal velocity difference taken
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FIG. 5: (a)Velocity structure functions Sp(T ) for 1 ≤ p ≤ 6 at (r = 0.7, θ = −π/4), ẑ = 122D and

Rew = 3650. (b) Relative exponent ξp/ξ3 as a function of p at Rew = 3650. The continuous line

corresponds to the Kolmogorov scaling.

over the time scale T : δw′(T ) = |w′(t + T ) − w′(t)|. The p-th-order structure function or

the p-th-order moment of longitudinal velocity difference is defined as Sp =
〈

(δw′(T ))
p〉

t
.

Figure 5(a) displays a set of Sp (T ). As shown all moments scale as Sp (T ) ∝ T ξp in the range

corresponding roughly to the power law decay of the velocity spectra. For T greater than

the time integral scale, saturation to constant values is observed. Although the scaling range

is limited, the exponent ξp nonetheless can be extracted from the slopes of the individual

curves. In the Kolmogorov theory of 3D fluid turbulence, assuming self-similar statistics,

〈(δw′(T ))p〉 is predicted to scale as T ξp with ξp = p/3. Benzi et al [? ] have introduced a

new concept known as extended self-similarity (ESS). According to this concept, the scaling

is significantly better if data are presented in the form: Sp = S
ξ∗
p

3
. The deviation from

the linear relation, as p gets large [? ], is attributed to the intermittency of the velocity

fluctuations. In the present study, because of the small range where the power-law holds,

the ESS process is adopted. The dependence of the normalized scaling exponent ξp/ξ3 on

the order of the structure function, p, is presented in Fig. 5(b). The experimental data

hardly depart from the Kolmogorov line. We may thus conclude that there is no substantial

intermittency.

Attempt of interpretation. The starting point is the standard Reynolds decomposition. The

capital letters or an overbar denote time-mean values and small letters with prime designate
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fluctuating quantities. The Reynolds-averaged momentum equation is:

∂Vi

∂t
+

∂

∂xk

(Vi Vk) = −
∂P

∂xi

+
∂

∂xk

(

1

Re
µ′γ̇′

ik − v′

i v
′

k

)

+
1

Re

∂

∂xk

(µ Γik) ,

where Γik are the components of the strain-rate tensor. By comparison with the newtonian

case, there is a new diffusive term µ′γ̇′

ik, which may be called a non-newtonian Reynolds-

stress tensor. If one considers the evolution of the turbulent kinetic energy, a new term

Iµ′ = −µ′γ̇′

rz
∂W
∂r

is found. It arises from the contraction of the non-newtonian Reynolds-

stress tensor with the mean strain-rate tensor. Using first order Taylor approximation for

µ′, it can be shown easily that Iµ′ = −γ̇′2
rzΓrz (∂µ/∂Γrz) > 0, that is to say, it is a source of

growth of fluctuating kinetic energy. Therefore, we can speculate that this source term Iµ′

contributes to sustaining the weak turbulent flow. This is probably one of the pieces of the

puzzle associated to the weakly turbulent flow described here. An other piece could be the

merging of small vortices in a cross-section to form a strong vortex dipole. Currently, the

link between these points of view is not elucidated.

As a conclusion, we have clearly identified what is called here, the nonlinear asymmetric

state. A complete statistical analysis is provided. Experimental evidence of chaotic flow

induced by the shear-thinning behaviour is reported. Finally, a non-newtonian Reynolds-

stress tensor is defined which could be at the origin of this chaotic flow. Acknowledgment.
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