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STRUCTURE OF FINE SELMER GROUPS
IN ABELIAN p-ADIC LIE EXTENSIONS

DEBANJANA KUNDU, FILIPPO A. E. NUCCIO MORTARINO MAJNO DI CAPRIGLIO,
AND SUJATHA RAMDORAI

Abstract. This paper studies fine Selmer groups of elliptic curves in abelian p-adic Lie exten-
sions. A class of elliptic curves are provided where both the Selmer group and the fine Selmer
group are trivial in the cyclotomic Zp-extension. The fine Selmer groups of elliptic curves with
complex multiplication are shown to be pseudonull over the trivializing extension in some new
cases. Finally, a relationship between the structure of the fine Selmer group for some CM elliptic
curves and the Generalized Greenberg’s Conjecture is clarified.

1. Introduction

The fine Selmer group (see §2.3) is a module over an Iwasawa algebra that is of interest in
the arithmetic of elliptic curves. It plays a key role in the formulation of the main conjecture in
Iwasawa theory. Moreover, it enables us to propose analogues of important conjectures in classical
Iwasawa theory to elliptic curves over certain p-adic Lie extensions of their field of definition.
J. Coates and the third named author initiated a systematic study of the structure of fine Selmer
groups and proposed two conjectures (see [CS05b, Conjectures A and B]). While Conjecture A is a
generalization of the Iwasawa µ “ 0 Conjecture to the context of elliptic curves, Conjecture B is in
the spirit of generalizing R. Greenberg’s pseudonullity conjecture to elliptic curves. Recently, there
has been a renewed interest in studying pseudonull modules over Iwasawa algebras [BCG`20].
It is thus natural to investigate Conjecture B, and this article makes progress in this direction.
These conjectures have been generalized to fine Selmer groups of ordinary Galois representations
associated to modular forms in [JS11], and their mod p-versions for supersingular elliptic curves
have been studied by the second and third author in [NS21]. This article restricts attention to
the fine Selmer groups of elliptic curves, with good reduction at a prime p, over abelian p-adic Lie
extensions of the base field.

We now outline the main results in the paper. Given a number field F and an odd prime
number p, let E{F be an elliptic curve, with good reduction at all the primes of F that lie above
p. Consider an admissible p-adic Lie extension L of F (see §2.2 for the precise definition) with
Galois group GalpL{F q “: GL{F . The dual fine Selmer group of E at a prime p over L is a finitely
generated module over the associated Iwasawa algebra (see §2.3). While Conjecture A asserts
that the dual fine Selmer group over the cyclotomic Zp-extension Fcyc{F is finitely generated as
a Zp-module, Conjecture B is an assertion on the structure of the dual fine Selmer group over
admissible p-adic Lie extensions of dimension at least 2. This conjecture predicts that the dual
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fine Selmer group over any admissible p-adic Lie extension is pseudonull as a module over the
associated Iwasawa algebra. In this article, both conjectures are established in previously unknown
cases. Using a result of Greenberg, we prove a general theorem that gives sufficient conditions for
the dual fine Selmer group of E over the cyclotomic Zp-extension Fcyc to be trivial. More precisely,
we have the following theorem (we refer the reader to Corollary 3.5 for finer estimates):

Theorem 3.1. Let E{F be the base-change of a rational elliptic curve E{Q. Suppose that it has
rank 0 over F and that the Shafarevich–Tate group of E{F is finite. When E has CM by an order
if an imaginary quadratic field K, assume further that the Galois closure of F , denoted by F c,
contains K. Then, the Selmer group Sel

`

E{Fcyc

˘

is trivial for a set of prime numbers of density at
least 1

rF c:Qs . In particular, Conjecture A holds for E{F at all such primes.

Denote by F pEp8q the field obtained by adjoining the coordinates of all p-power torsion points.
When p is a prime of good ordinary reduction, using a result of B. Perrin-Riou [PR81] we prove
that Conjecture B holds for special classes of admissible p-adic Lie extensions whenever the dual
fine Selmer group over the cyclotomic extension is finite for a CM elliptic curve. We obtain the
following result:

Theorem 4.5. Let E{F be an elliptic curve defined over a number field F . Suppose that F contains
the imaginary quadratic field K and that E has CM by OK . Assume further that p ě 3 is a prime
of good ordinary reduction that splits in K and that GalpF pEp8q{F q » Z2

p. If the fine Selmer group
over the cyclotomic Zp-extension Fcyc{F is finite, then Conjecture B holds for pE, F pEp8qq.

Over the cyclotomic Zp-extension Fcyc of F , there is a connection between the Galois group of
the maximal abelian unramified pro-p extension of Fcyc and the fine Selmer groups of elliptic curves
defined over F , see [CS05b, Theorem 3.4]. This phenomenon can be extended to (both abelian and
non-abelian) admissible p-adic Lie extensions of higher dimension. In fact, Conjecture B can be
viewed as an elliptic curve analogue of an old conjecture of Greenberg on Galois modules associated
with pro-p Hilbert class fields (see §2.4 for the precise statement). It is therefore pertinent to inves-
tigate the precise connections between Conjecture B for admissible, abelian p-adic Lie extensions,
and Greenberg’s conjecture. For CM elliptic curves, the Generalized Greenberg’s Conjecture is
shown to be equivalent to Conjecture B for certain admissible pro-p, p-adic Lie extensions in The-
orem 4.9. This result provides a framework for proving new cases of the Generalized Greenberg’s
Conjecture. In particular, we prove the following result1.

Theorem 5.4 and Corollary 5.5. Let K{Q be an imaginary quadratic field. If there exists
one CM elliptic curve E{K such that the dual fine Selmer group is pseudonull over the trivializing
extension KpEp8q, then the Generalized Greenberg’s Conjecture holds for K and KpEpq.

Little is known about the Generalized Greenberg’s Conjecture. For some evidence towards this
conjecture (both theoretical and computational) see [Tak21, Remark 1.3], as well as [Min86, McC01,
Oza01, NV05, Sha08, Fuj17]. As per the knowledge of the authors, most results in this direction
require the crucial hypothesis that p does not divide the class number of the number field. One
exception is the result of R. Sharifi and W. McCallum, where the conjecture for Qpµpq is proven
under certain assumptions on a cup-product (see [MS03, Corollary 10.5]); another is of Sharifi
[Sha08, Theorem 1.3], where computational evidence for the Generalized Greenberg’s Conjecture
is provided when F “ Qpµpq and p ă 1000 is an irregular prime. Our approach suggests a new

1The proof of Theorem 5.4 does not require E to be defined over K. This formulation is used in this introduction,
for simplicity.
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line of attack for the Generalized Greenberg’s Conjecture even in the case when p divides the class
number of the base field.

The paper consists of five sections and an appendix. Section 2 is preliminary in nature; wherein
we recall the precise assertions of Conjecture A, Conjecture B, and the Generalized Greenberg’s
Conjecture and we introduce the main objects of study. In Section 3, new evidence for Conjecture A
is provided by proving the triviality of the fine Selmer group over the cyclotomic extension. Some
simple cases of Conjecture B are proven in Section 4. In Section 5 the relation between Conjecture B
for CM elliptic curves and the Generalized Greenberg’s Conjecture is clarified. In Appendix A, we
provide a proof of Theorem 4.9 in the non-commutative setting.

2. Preliminaries

Throughout this article, p denotes an odd prime number. For an abelian groupM and a positive
integer n, write Mpn for the subgroup of elements of M annihilated by pn. Put

Mp8 :“
ď

ně1

Mpn , TppMq :“ lim
ÐÝ

Mpn .

and, when M is a discrete p-primary (resp. compact pro-p) abelian group M , its Pontryagin dual
is defined as

M_ “ HomcontpM,Qp{Zpq.

Given any p-adic analytic group G, its Iwasawa algebra is defined as

ΛpGq “ lim
ÐÝ
U

ZprG{U s

for U running through all open, normal subgroups of G. When G is compact and p-valued in the
sense of M. Lazard, ΛpGq is a noetherian Auslander regular ring (see [CSS03, Proposition 6.2]). In
the special case when G is abelian with no elements of order p, there is an isomorphism

ΛpGq » ZpJT1, . . . , TdK.

where d is the dimension of G as a p-adic analytic manifold. If M is a compact (resp. discrete)
ΛpGq-module then its Pontryagin dual is discrete (resp. compact). Given a finitely generated
ΛpGq-module M , its Krull dimension is defined as the Krull dimension of ΛpGq{AnnpMq and it is
denoted dimpMq.

2.1. Suppose thatG is an abelian p-analytic group without elements of order p. A finitely generated
ΛpGq-module M is torsion (resp. pseudonull) if dimpMq ď dim

`

ΛpGq
˘

´ 1 (resp. dimpMq ď

dim
`

ΛpGq
˘

´ 2). Equivalently (see [Ven02, p. 273]), M is pseudonull if there exists a prime ideal p
such that

AnnΛpGqpMq :“ ta P ΛpGq : aM “ 0u Ď p

and htppq ě 2 (see [NSW08, Definition 5.1.4]).
Let W (resp. M) be a discrete (resp. compact) G-module. The profinite cohomology groups

(resp. homology groups) of W (resp. M) are denoted HipG,W q (resp. HipG,Mq). The subgroup
of elements of W fixed by G is denoted WG, and MG denotes the largest quotient of M on which
G acts trivially.
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2.2. For a number field F , denote by Fcyc its cyclotomic Zp-extension. Suppose that S “ SpF q is
a finite set of primes of F containing the primes above p and the archimedean primes. Let FS be
the maximal extension of F unramified outside S and set GSpF q “ GalpFS{F q. For any (finite or
infinite) extension L{F contained in FS , denote by GSpLq the Galois group GalpFS{Lq. Throughout
the paper, the focus is on S-admissible p-adic Lie extensions L{F , in the following sense:

Definition 2.1. An S-admissible p-adic Lie extension is a Galois extension L{F satisfying the
following conditions:

‚ the group Gal
`

L{F
˘

is a pro-p, p-adic Lie group with no elements of order p;
‚ the field L contains the cyclotomic Zp-extension Fcyc;
‚ the field L is contained in FS.

Next, we record some conjectures pertaining to the modules associated with maximal abelian
unramified pro-p extension of admissible p-adic Lie extensions. The first conjecture we mention was
formulated by K. Iwasawa in [Iwa73, pp. 1–2] for the cyclotomic Zp-extension.

Iwasawa µ “ 0 Conjecture. Let LpFcycq denote the maximal abelian unramified pro-p extension
of Fcyc and set

XFcyc
nr “ GalpLpFcycq{Fcycq.

Then, the µ-invariant associated with XFcyc
nr is trivial.

When F {Q is an abelian extension, the Iwasawa µ “ 0 Conjecture is known to be true by the
work [FW79] by B. Ferrero and L. Washington.

Next, we mention a conjecture of Greenberg (see [Gre01b, Conjecture 3.5]) which is formulated
for certain abelian p-adic Lie extensions.

Generalized Greenberg’s Conjecture. Let rF denote the compositum of all Zp-extensions of F
and let Lp rF q denote the maximal abelian unramified pro-p extension of rF . Then Gal

´

Lp rF q{ rF
¯

is

a pseudonull module over the Iwasawa algebra Λ “ ZpJGalp rF {F qK.

2.3. Fix a number field F and an admissible extension L{F . Write GL{F for the compact, pro-p,
p-adic Lie group GalpL{F q and ΛpGL{F q for the associated Iwasawa algebra. The main objects
of study will be modules over ΛpGL{F q that arise in Iwasawa theory, such as the Selmer group
and the fine Selmer group. Let E be an elliptic curve defined over F . Choose a set S “ SpF q
containing the primes above p, the primes of bad reduction of E{F , and the archimedean primes.
Write S Ě Sp Y Sbad Y S8, where the notation Sp, Sbad, and S8 are self-explanatory. For a finite
extension L{F and a prime v of F , define

(1) JvpLq “
à

w|v

H1 pLw,Eq ppq, and KvpLq “
à

w|v

H1
`

Lw,Ep8

˘

where the direct sum is taken over all primes w of L lying above v. Taking direct limits, define

JvpLq “ lim
ÝÑ
L

JvpLq, and KvpLq “ lim
ÝÑ
L

KvpLq

where L varies over finite sub-extensions of L{F . Given any finite extension L{F contained in L,
the p-primary Selmer group Sel

`

E{L
˘

and the p-primary fine Selmer group R
`

E{L
˘

are defined by
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the exactness of the following sequences:

0 ÝÑ Sel
`

E{L
˘

ÝÑ H1
`

GSpF q,Ep8

˘

ÝÑ
à

vPSpLq

JvpLq,

0 ÝÑ R
`

E{L
˘

ÝÑ H1
`

GS pF q ,Ep8

˘

ÝÑ
à

vPSpLq

KvpLq.

Moreover, by [CS05b, Equation (58)] we can relate these groups as follows

(2) 0 ÝÑ R
`

E{L
˘

ÝÑ Sel
`

E{L
˘

ÝÑ
à

wPSppLq

`

E pLwq bQp{Zp
˘

.

Define SelpE{Lq “ lim
ÝÑL

SelpE{Lq and RpE{Lq “ lim
ÝÑL

RpE{Lq. It can then be shown (see [CS00,
pp. 14–15] and [CS05b, Equation (46)]) that

Sel
`

E{L
˘

– ker

˜

H1
`

GS pLq ,Ep8

˘

ÝÑ
à

vPS

JvpLq

¸

and

R
`

E{L
˘

– ker

˜

H1
`

GS pLq ,Ep8

˘

ÝÑ
à

vPS

KvpLq

¸

.

Taking direct limits of (2), we obtain that

0 ÝÑ R
`

E{L
˘

ÝÑ Sel
`

E{L
˘

ÝÑ lim
ÝÑ
L

à

wPSppLq

`

E pLwq bQp{Zp
˘

.

Finally, we set a notation for the Pontryagin dual of these groups:

(3) XpE{Lq :“ Sel
`

E{L
˘_ and YpE{Lq :“ R

`

E{L
˘_
.

These are compact ΛpGL{F q-modules and it follows from (2) that YpE{Lq is a quotient of XpE{Lq.
In this paper, we are interested in a certain class of S-admissible p-adic Lie extensions generated

by the p-primary torsion points of an elliptic curve. When the elliptic curve E{F is clear from the
context, we write

F8 :“
ď

ně1

F pEpnq.

It follows from the Weil pairing that F8 contains Fcyc and the choice of S ensures that F8 is
contained in FS . The Galois group GalpF8{F q has no p-torsion if p ě 5 (see, for example, [How98,
Lemma 4.7]) and contains an open, normal, pro-p subgroup (see [DdSMS99, Corollary 8.34]). In
fact, the extension F8{F pEpq is always pro-p and hence S-admissible. If E is an elliptic curve with
CM, and F contains the field of complex multiplication, then GalpF8{F q contains an open subgroup
which is abelian and isomorphic to Z2

p.

2.4. Fix a number field F . In this section, we record the two conjectures formulated by Coates
and the third named author in [CS05b] which will be studied in this paper.

Conjecture A. ([CS05b, Section 3]) Let E be an elliptic curve defined over F . Then YpE{Fcycq is
a finitely generated Zp-module.

This conjecture is closely related to the Iwasawa µ “ 0 Conjecture. Their connection can be
made precise:

Theorem 2.2 ([CS05b, Theorem 3.4]). Let E{F be an elliptic curve and suppose that GalpF8{F q
is pro-p. Then Conjecture A for E{F is equivalent to the Iwasawa µ “ 0 Conjecture for F .



6 D. KUNDU, F. A. E. NUCCIO, AND R. SUJATHA

The dimension theory for finitely generated modules over Iwasawa algebras allows framing an
analogue of the Generalized Greenberg’s Conjecture in a more general setting. This is Conjecture B
and concerns the dual fine Selmer group over admissible p-adic Lie extensions (not necessarily
abelian) of dimension ě 2. It asserts that this module is smaller than intuitively expected.

Conjecture B. ([CS05b, Section 4]) Let E{F be an elliptic curve and let L{F be an S-admissible
p-adic Lie extension such that GL{F “ GalpL{F q has dimension strictly greater than 1. Then
Conjecture A holds for E{F and Y

`

E{L
˘

is a pseudonull ΛpGL{F q-module.

2.5. Fix a number field F and let T denote a finitely generated Zp-module, endowed with a
continuous action of GSpF q, where S contains the primes above p, the archimedean primes, and
the primes v such that the inertia group of v does not act trivially on T . Note that if T is the Tate
module TpE of an elliptic curve E{F , then the inertia group of v acts trivially on T for every prime v
of good reduction. Fix an S-admissible extension L{F . Define the i-th Iwasawa cohomology group
as the inverse limit

(4) Zi
S

`

T {L
˘

“ lim
ÐÝ
L

Hi
`

GSpLq, T
˘

, for i “ 0, 1, 2,

where L ranges over all finite extensions of F contained in L and the limit is taken with respect
to the corestriction maps. It is well-known that Z0

SpT {Lq vanishes (see, for example, [CS05b,
Proposition 2.1]). In this article, we consider T “ Zpp1q “ lim

ÐÝn
Z{pnZ or T “ TppEq “ lim

ÐÝn
Epn .

The weak Leopoldt conjecture is known to be true for the cyclotomic Zp-extension, see [NSW08,
Theorem 10.3.25]. In other words,

H2
`

GSpFcycq,Qp{Zp
˘

“ 0.

Hence H2
`

GSpLq,Qp{Zp
˘

vanishes (see [CS05b, p. 815 (20)]). An argument identical to [CS05b,
Lemma 3.1] but for the module Qp{Zp, shows that this vanishing is equivalent to the fact that
Z2
S

`

Zpp1q{L
˘

is ΛpGL{F q-torsion. Analogously, [CS05b, Lemma 3.1] shows that H2
`

GSpLq,Ep8

˘

“

0 if and only if Z2
S

`

TppEq{L
˘

is ΛpGL{F q-torsion, but the equivalent of the weak Leopoldt con-
jecture is not known in the case of elliptic curves. When GSpLq acts trivially on Ep8 , then
H2

`

GSpLq,Ep8

˘

“ 0 (see for example [CS05b, Lemma 2.4]).
The following notions will be useful in the reformulation of Conjecture B in Section 4.2. For

i ě 0 and T “ Zpp1q, choose S to be a finite set of places of F containing the primes above p and
the archimedean primes. For a finite extension L{F , let OLr1{Ss be the subring of L consisting
of elements that are integral at every finite place of L not lying over S, and let Hi

ét denote étale
cohomology. An equivalent definition of the i-th Iwasawa cohomology group is the following (see
[Kat06, § 2.2 p. 552])

(5) Zi
S

`

Zpp1q{L
˘

“ lim
ÐÝ
L

Hi
ét
`

OLr1{Ss,Zpp1q
˘

where L ranges over all finite extensions of F contained in L and the limit is taken with respect
to the corestriction maps. The dual fine Selmer group of Zpp1q was introduced in [CS05a]. The
precise definition is analogous to the one for elliptic curves and an equivalent definition has been
given in [Kat06, §2.4, p. 554]. In particular,

(6) YpZpp1q{Lq “ lim
ÐÝ
L

Pic
`

OLr1{Ss
˘

p8 .
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Moreover, there is an exact sequence (see for example, [CS05a, p. 330 (2.6)])

0 Ñ Y
`

Zpp1q{L
˘

Ñ Z2
S

`

Zpp1q{L
˘

Ñ
à

vPSpLq
Zp Ñ Zp Ñ 0

and an isomorphism (see [CS05a, p. 328 (1.2)])

(7) YpZpp1q{Lq » Gal
`

M pLq {L
˘

,

where MpLq is the maximal abelian, pro-p unramified extension of L such that all primes above
p split completely. Since the dual fine Selmer group is independent of the choice of S, it is not
included in the notation.

3. Fine Selmer Groups in the Cyclotomic Extension

The results in this section provide evidence for Conjecture A. First, we prove that for a set of
ordinary primes of positive density, the Selmer group is trivial over the cyclotomic Zp-extension
for rank 0 elliptic curves. Next, we provide evidence for Conjecture A for a class of elliptic curves
defined over p-rational number fields.

3.1. Trivial Fine Selmer Groups in the Cyclotomic Tower. Throughout this section, assume
that E{Q is a rational elliptic curve. Fix a number field F and consider the base-change E{F of
the curve to F . Given a prime number p, by slight abuse of notation, we denote by Fcyc{F the
cyclotomic Zp-extension and by Γ “ Gal

`

Fcyc{F
˘

» Zp its Galois group, without mention of the
prime p, as it can be inferred by the context.

At a prime v in F , the reduction of E modulo v is denoted ĂEv; it is a curve over the residue field
κv. Following [Maz72, Section 1(b)], a prime v | p is called anomalous if p divides

∣∣∣rEvpκvq∣∣∣.
In the remaining part of this section, we extend results of Greenberg [Gre99, Proposition 5.1] and

C. Wuthrich [Wut07, Section 9] to base fields other than Q. In Theorem 3.1 we provide evidence
for Conjecture A for elliptic curves over a general number field. We stress that the prime p is not
fixed in the remainder of this section and will vary over primes of good reduction.

In the statement of the next theorem we denote by F c the Galois closure of F {Q.

Theorem 3.1. Let E{F be the base-change of a rational elliptic curve E{Q. Suppose that it has
rank 0 over F and that the Shafarevich–Tate group of E{F is finite. When E has CM by an
order in an imaginary quadratic field K, assume further that F c contains K. Then the Selmer
group Sel

`

E{Fcyc

˘

is trivial for a set of prime numbers of density at least 1
rF c:Qs . In particular,

Conjecture A holds for E{F at all such primes.

Proof. By assumption, the Selmer group over F is finite since both the Mordell–Weil and the
Shafarevich–Tate groups are finite. If we further know that p is a prime of good ordinary reduc-
tion for E, it follows from Mazur’s Control Theorem that the cyclotomic p-primary Selmer group
Sel

`

E{Fcyc

˘

is ΛpΓq-cotorsion (see [Gre01a, Corollary 4.9]). In this setting, let fEpT q be a power
series generating the characteristic ideal of X

`

E{Fcyc

˘

. Since SelpE{F q is finite, fEp0q ‰ 0. Denote
by cv the local Tamagawa number at a prime v and by cppqv the highest power of p dividing it. Then,
[Gre99, Theorem 4.1] asserts that

(8) fEp0q „

¨

˝

ź

v bad

cppqv

˛

‚

¨

˝

ź

v|p

∣∣∣rEvpκvqp∣∣∣2
˛

‚|SelpE{F q|
N∣∣EpF qp∣∣2
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where a „ b for a, b P Qˆp indicates that a, b have the same p-adic valuation.
For a prime number p, consider the following five properties:
(a) p is a prime of good ordinary reduction for E;
(b) E has no non-trivial p-torsion points defined over F ;
(c) E{F has good ordinary reduction at all primes v | p and all these primes are non-anomalous;
(d) the p-primary part XpE{F qp8 of the Shafarevich–Tate group is trivial;
(e) p does not divide the local Tamagawa number, i.e, cppqv “ 1 for every prime v of bad

reduction.
Since E{F is assumed to have rank 0, the condition EpF qp “ 0 implies that SelpE{F q “XpE{F qp8 .
It follows from (8) that for a prime number satisfying (a)–(e) above, fEp0q is a unit.

When fEp0q is a unit, elementary properties of characteristic power series show that X
`

E{Fcyc

˘

(and hence Y
`

E{Fcyc

˘

) is finite, (see notation introduced in (3)). Equivalently, both Sel
`

E{Fcyc

˘

and R
`

E{Fcyc

˘

are finite. When EpF qp “ 0, [Gre99, Proposition 4.14] implies that X
`

E{Fcyc

˘

has
no non-trivial finite ΛpΓq-submodules. In other words, X

`

E{Fcyc

˘

is trivial, whenever it is finite.
Thus, Y

`

E{Fcyc

˘

is also trivial. Hence, Conjecture A holds for E{F when E{F is an elliptic curve
satisfying (a)–(e).

To complete the proof, we show that for E{F satisfying the assumptions of the theorem, proper-
ties (a)–(e) hold for a set of prime numbers of density at least 1

rF c:Qs .
When E{Q is an elliptic curve without CM, we know by [Ser81, Théorème 20] that all primes

in Q outside a set of density 0 have good ordinary reduction. When E{F is an elliptic curve with
CM by an order in K, Deuring’s Criterion (see, for instance, [Lan87, Chapter 13, §4, Theorem 12])
asserts that the primes of ordinary reduction are those lying above rational primes that split in K{Q
and the density of such prime numbers equals 1{2 by the Chebotarev density theorem. Next, it
follows from the celebrated result [Mer96, Théorème] of L. Merel that for all but finitely many prime
numbers, we have EpF qp “ 0. Assuming the finiteness of the Shafarevich–Tate group, condition (d)
holds for all but finitely many prime numbers, and the same is true for (e) since the local Tamagawa
number cv is equal to 1 at the primes of good reduction.

The analysis of (c) requires more care. By definition, a prime v | p is anomalous when av “

1 ` |κv| ´
∣∣∣rEvpκvq∣∣∣ is congruent to 1 pmod pq. Observe that by the Hasse bound, |av| ď 2

a

|κv|.
Therefore, if v | p is a prime in F that splits completely, so that κv “ Fp, then av ” 1 pmod pq
implies that av “ 1 for p ą 5. By the Chebotarev density theorem, the density of rational primes
that split completely in F c is 1

rF c:Qs . Therefore, at least 1
rF c:Qs of the primes in Q split in F , as

well. By the previous discussion, the density of rational primes which split completely in F and
whose divisors are primes of good ordinary reduction for E{F is at least 1

rF c:Qs . Finally, since E is
defined over Q, the Modularity Theorem guarantees that E is associated with an eigencuspform of
weight 2. This allows us to appeal to the work of V. K. Murty [Mur97]. We conclude from [Mur97,
pp. 288–289 or Theorem 5.1 and Remark 5.2] that for E{Q, the set of prime numbers with the
property that ap “ 1 has density 0. Since for all prime numbers p that split completely and for all
v | p, we have avpE{F q “ appE{Qq, we deduce that the set of prime numbers p such that av “ 1 for
at least one v | p is a set of density 0. This completes the proof of the theorem. �

Remark 3.2.
(1) It should be clear from the proof that one can insist that at all primes dividing the prime

numbers in the set of positive density whose existence is stated in the theorem, the reduction
type is good and ordinary.
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(2) The key difficulty in extending this result to elliptic curves defined over F is that we rely
on [Mur97] to show that anomalous primes have density 0. Since these results are proven
for normalized weight 2 eigencuspforms, we need to invoke the Modularity Theorem.

An analogous statement can be proven in the supersingular case as well.

Theorem 3.3. Let E{Q be an elliptic curve and suppose that SelpE{F q is finite. Then Conjecture A
holds for E{F for all but finitely many primes of supersingular reduction.

Proof. For an elliptic curve E{F it is known that the Selmer group is not ΛpΓq-cotorsion at a prime
p of supersingular reduction, see [CS00, p. 19]. However, there is a notion of ˘-Selmer groups2

when p ą 3, denoted by Sel˘
`

E{Fcyc

˘

. In the setting of the theorem, and under the additional
hypothesis that p ą 3 is an unramified prime in F , it is known that Sel˘

`

E{Fcyc

˘

are ΛpΓq-cotorsion,
see [Kim13, first line of the proof of Corollary 3.15]. Therefore, in this case, we can define a pair of
signed characteristic power series f˘E pT q for the Pontryagin duals XpE{Fcycq

˘ of Sel˘
`

E{Fcyc

˘

. It
follows from the definitions that the fine Selmer group is a subgroup of the signed Selmer groups.
To prove the theorem it thus suffices to show that either of the signed Selmer groups is finite for
all but finitely many primes of good supersingular reduction as this will ensure that the fine Selmer
group is also finite and its corresponding µ and λ invariants vanish.

When Sel
`

E{F
˘

is finite and p ą 3 is an unramified prime in F , we know from [Kim13, Theo-
rem 1.2] that

(9) f˘E p0q „ |SelpE{F q|
ź

v bad

cppqv .

If f˘E p0q „ 1, then it follows from the Structure Theorem that Sel˘
`

E{Fcyc

˘

are finite. To complete
the proof we show that f˘E p0q „ 1 for all but finitely many primes of good supersingular reduction.

(i) Since F is fixed, there are only finitely many primes which can ramify in F . In other words,
(9) holds for all but finitely many primes.

(ii) By assumption, SelpE{F q is finite. There are only finitely many primes which can divide
its order.

(iii) The local Tamagawa number cv is equal to 1 at the primes of good reduction. Therefore,
there are only finitely many primes which can divide

ś

v bad cv.
Therefore, as p varies over all supersingular primes of E, both signed Selmer groups Sel˘

`

E{Fcyc

˘

are finite for all but finitely many such primes. Hence, R
`

E{Fcyc

˘

is also finite for such p. �

Remark 3.4. In fact, more is true. [Kim13, Theorem 1.1 (or Theorem 3.14)] applies in the setting
of Theorem 3.3 and ensures that the X´pE{Fcycq does not contain any non-trivial finite index
submodules. Therefore, if Sel´

`

E{Fcyc

˘

is finite, it must be trivial. Since R
`

E{Fcyc

˘

is a subgroup
of Sel´

`

E{Fcyc

˘

, it must be trivial as well. For the assertion that XpE{Fcycq
` has no non-trivial

finite index submodules, the additional hypothesis that p is completely split in F is required.

Combining Theorems 3.1 and 3.3, the next result is immediate.

Corollary 3.5. Let E be CM rational elliptic curve and let E{F be its base-change to F . Suppose
that E{F has rank 0, that the Shafarevich–Tate group of E{F is finite, and that the Galois closure
F c of F contains K. Then Conjecture A holds for E{F for a set of prime numbers of density
1
2 `

1
rF c:Qs .

2We avoid giving the precise definition of these Selmer groups because their definition is intricate and also not
relevant for the remainder of this paper. For a precise definition, we refer the reader to [Kob03] or [Kim13].
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Proof. By Deuring’s Criterion we know that 1{2 of the primes are supersingular and Theorem 3.3
asserts that there is a contribution of density 1{2. But, there is also a contribution from the primes
of good ordinary reduction by Theorem 3.1. The corollary follows. �

Let us now turn to a special class of number fields, called p-rational number fields.

3.2. Conjecture A over p-Rational Number Fields. For the number field F and a fixed prime
p, choose S to be a finite set of primes of F containing the primes above p and the archimedean
primes. The weak Leopoldt conjecture for L{F is the following assertion (see for example [NSW08,
Theorem 10.3.22])

(10) H2
´

Gal
`

FS{L
˘

,Qp{Zp
¯

“ 0.

It is known to hold for the cyclotomic Zp-extension Fcyc{F (see [NSW08, Theorem 10.3.25]). If (10)
holds for a finite set S as above, it also holds for the set Σ “ SpYS8 (see [NSW08, Theorem 11.3.2]).
Therefore, the weak Leopoldt Conjecture is independent of the choice of S, when S contains Σ.
Henceforth, fix S “ Σ. An equivalent formulation of the Iwasawa µ “ 0 Conjecture for F is the
assertion that GΣ

`

Fcyc

˘

“ Gal
`

FΣppq{Fcyc

˘

is a free pro-p group (see [NSW08, Theorem 11.3.7]).
Moreover, a pro-p group G is free if and only if its p-cohomological dimension cdppGq is less or equal
to 1 (see [NSW08, Corollary 3.5.17]). Combining these results with [Ser13, Chapter I, Section 4,
Proposition 21], one obtains the following equivalent formulation:

(11) the Iwasawa µ “ 0 Conjecture for F is true ðñ H2
´

GΣ

`

Fcyc

˘

,Z{pZ
¯

“ 0.

To state the results in this section, we recall the notion of a special class of number fields, called
p-rational, which were introduced in [MN90]. We refer the reader to [Gra13, Theorem IV.3.5 and
Definition IV.3.4.4] for a detailed discussion.

Definition 3.6. Denote by FSp
the maximal extension of F unramified outside Sp and let FSp

ppq{F

be its maximal pro-p sub-extension. Set GSp
pF q “ Gal

`

FSp
ppq{F

˘

. If GSp
pF q is free pro-p, then F

is called p-rational.

Some examples of p-rational fields include:
(i) the field Q of rational numbers;
(ii) imaginary quadratic fields such that p does not divide the class number (see [Gre16, Propo-

sition 4.1.1]);
(iii) cyclotomic fields Qpµpnq, where p is a regular prime and n ě 1 (combine [Gra13, Exam-

ple II.7.8.1.1] with [Was97, Proposition 13.22]);
(iv) number fields F containing µp with the property that #SppF q “ 1 and such that p does

not divide the class number of F (see [Gra13, Theorem 3.5(iii)]).
p-rational number fields have been studied by Greenberg in [Gre16], where he explains heuristic
reasons to believe that a number field F should be p-rational for all primes outside a set of density 0
(see [Gre16, §7.4.4]). In [BR20, Table 4.1], R. Barbulescu and J. Ray provide examples of non-
abelian p-rational number fields.

The following result is easily deduced from the aforementioned results in Galois cohomology. A
proof is included for the sake of completeness.

Theorem 3.7. Let F be a p-rational number field. Then the following assertions hold.
(1 ) The Iwasawa µ “ 0 Conjecture holds for F .
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(2 ) Suppose that F contains µp and that E{F is an elliptic curve such that EpF qp ‰ 0. Then
Conjecture A holds for E{F .

Proof.
(1) Since p ‰ 2, we can replace Sp by Σ in the definition of p-rational fields. This is because

the archimedean primes are unramified in FSp
ppq{F when p is odd. By definition, if F is

p-rational, GΣpF q “ Gal
`

FΣppq{F
˘

has p-cohomological dimension at most 1. Hence

H2
`

GΣpF q,Z{pZ
˘

“ 0.

Since GΣpFcycq “ GalpFΣppq{Fcycq is a closed normal subgroup of GΣpF q, it follows from
[NSW08, Proposition 3.3.5] that

cdp
`

GΣpFcycq
˘

ď cdp
`

GΣpF q
˘

ď 1.

Thus H2pGΣpFcycq,Z{pZq “ 0, and the result follows from (11).
(2) Since F Ě µp and EpF qp ‰ 0 by assumption, the Weil pairing ensures that F pEpq{F is

either trivial or of degree p. Thus, F pEp8q{F is pro-p. The theorem follows from the first
point together with Theorem 2.2. �

4. Conjecture B for Elliptic Curves with CM: Special Cases

In this section, we provide evidence for Conjecture B. First, in Section 4.1 we provide sufficient
conditions for Conjecture B to hold when p is a prime of good ordinary reduction, see Theorem 4.5.
In Section 4.2 we give a different formulation of Conjecture B for CM elliptic curves and prove
cases of the conjecture when p is a prime of good supersingular reduction. We start with a lemma
about good reduction of CM elliptic curves that can be found extracted from [Rub99, proof of
Theorem 5.7(i)].

Lemma 4.1. Let F be a number field and let E{F be an elliptic curve with CM by an order inside
the ring of integers OK of an imaginary quadratic field K. Let p be an odd prime number and
suppose the following hypotheses hold:

(i) E has good reduction at all primes above p.
(ii) The Galois group G “ GalpF8{F q is isomorphic to Z2

p, where F8 denotes F pEp8q.
Then E has good reduction everywhere over F .

Proof. It follows from the theory of complex multiplication that F contains the Hilbert class field
K 1 of K. Since the extension F8{F is a p-extension and rF pEpq : F s is prime-to-p, it follows that
F “ F pEpq. Therefore, K 1pEpq Ď F .

Since all primes above p are of good reduction, we only need to check that at primes away from p,
the curve E has good reduction. This follows from the criterion of Néron–Ogg–Shaferevich, because
every such prime is unramified in the Z2

p-extension F8{F . �

4.1. Fix a number field F . We will work in the following setting.

Ass 1

(i) p ‰ 2, 3 is a fixed prime which splits in an imaginary quadratic field K;
(ii) E is an elliptic curve defined over F with CM by OK , and K is contained in F ;
(iii) E has good reduction at primes above p;
(iv) the Galois group G “ GalpF8{F q is isomorphic to Z2

p, where F8 denotes F pEp8q.

In the setting of Ass 1, write H “ GalpF8{Fcycq, and fix a finite set S containing Sp Y S8.
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Note that Ass 1 ensures that E has good ordinary reduction at p, see [Lan87, Chapter 13
Theorem 12 (Deuring’s Criterion)]. Observe that given any p-adic Lie group G and a finitely
generated ΛpGq-module M , the group MG :“ H0 pG,Mq is finitely generated as a Zp-module.

Lemma 4.2. Suppose that Ass 1 holds. Then, the following map of ΛpHq-modules is a pseudo-
isomorphism, i.e. it has a finite kernel and cokernel,

Y
`

E{F8
˘

H
Ñ Y

`

E{Fcyc

˘

.

Proof. Let L be a finite extension of F contained in FS . For each v P S, write WvpLq “
À

w|vEpLwq bQp{Zp. We have the maps

rcyc : SelpE{Fcycq ÝÑ
à

v|p

WvpFcycq

and

r8 : SelpE{F8q ÝÑ
à

v|p

WvpF8q

where WvpFcycq (resp. WvpF8)) is the direct limit of WvpLq with respect to the restriction map as
L ranges over all finite extensions of F contained in Fcyc (resp. F8). Write CpFcycq (resp. CpF8q)
for the image of rcyc (resp. r8). Consider the following diagram

0 RpE{Fcycqp SelpE{Fcycqp CpFcycqp 0

0 RpE{F8q
H
p SelpE{F8q

H
p CpF8q

H
p

α β γ

Note that β is an isomorphism (see [PR81, Lemma 1.1(i) and Lemma 1.3]). Therefore kerpβq and
cokerpβq are trivial; hence kerpαq “ 0. Further, observe that there is an inclusion

ker γ Ď ker

¨

˝

à

v|p

Kv

`

Fcyc

˘ δv
ÝÑ Kv pF8q

H

˛

‚.

Now, observe that
à

v|p

kerpδvq “
à

v|p

H1
`

Hv,EpF8,vqp8

˘

.

This latter object is known to be finite by using an argument identical to [CS05b, proof of
Lemma 4.2]. Therefore, by the snake lemma, cokerpαq must be finite. �

Since E is an elliptic curve with CM, both G and H are abelian. Under the assumption that
G » Z2

p, we further know that ΛpHq » ZpJT K. We now state an equivalent condition for a ΛpGq-
module to be pseudonull.

Proposition 4.3. Let M be a finitely generated ΛpGq-module which is also finitely generated as a
ΛpHq-module. Then the module M is ΛpGq-torsion. Further, M is ΛpHq-torsion if and only if it
is ΛpGq-pseudonull.

Proof. Note that G » HˆΓ where Γ » Zp. The first assertion follows from the fact that ΛpGq is not
finitely generated over ΛpHq. The second assertion is a special case of [Ven03a, Proposition 5.4]. �

Lemma 4.4. Let M be a finitely generated ΛpHq-module. If MH is finite, then M is a pseudonull
ΛpGq-module.
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Proof. First, note that a non-zero finitely generated ΛpHq-module is finite if and only if its support
is the maximal ideal. Since higher Tor modules can be computed from a free resolution, the relation

SupppM bΛpHq Zpq “ SupppTor
ΛpHq
0 pM,Zpqq “ SuppM X SuppZp

(see, for instance, [AM69, Exercice 3.19.vi)]) can be extended to SupppTor
ΛpHq
i pM,Zpqq Ď SuppMX

SuppZp for all i ě 0. It follows that ifMH “MbΛpHqZp is finite, then the higher homology groups
HipH,Mq “ Tor

ΛpHq
i pM,Zpq are finite as well, for all i ą 0.

Since ΛpHq is a regular local ring, the ΛpHq-rank of a module is equal to its homological rank
(see [How02, Theorem 1.1 or Equation (47)]). Therefore, when MH is finite, its ΛpHq-rank of M
is 0 and M is ΛpHq-torsion. The lemma follows from Proposition 4.3. �

The main theorem of this section is the following.

Theorem 4.5. Suppose that Ass 1 holds. If YpE{Fcycq is finite, then Conjecture B holds for
pE, F8q.

Proof. By Lemma 4.2, if YpE{Fcycq is finite, then so is Y
`

E{F8
˘

H
. The theorem follows from

Lemma 4.4. �

Another case where we can show Conjecture B is the following.

Proposition 4.6. Suppose that Ass 1 holds. Further assume that XpE{Fcycq is a finitely generated
Zp-module of Zp-rank equal to 1. Then Conjecture B holds for pE, F8q.

Proof. By Ass 1, we know that E{F has good reduction everywhere. Next, it follows from [How02,
Theorem 2.8] that

rankΛpHq XpE{F8q “ rankZp
XpE{Fcycq.

We explain this briefly. To apply [How02, Theorem 2.8] one must assume that Conjecture 2.5 ibid.
holds. As mentioned on p. 649 ibid., this conjecture is equivalent to Conjecture 2.6 ibid. when all
primes above p have good ordinary reduction. This conjecture predicts that XpE{Fcycq is ΛpΓq-
torsion and our hypothesis that XpE{Fcycq is a finitely generated Zp-module accounts for it. For
the final assumption in Theorem 2.8 ibid, the inclusion µp Ď F is ensured by the Weil pairing.

Moreover, if rankΛpHq XpE{F8q is odd, it is shown in [CS05b, Theorem 4.5] that

rankΛpHqYpE{F8q ď rankΛpHq XpE{F8q ´ 1.

Therefore, if XpE{Fcycq is a finitely generated Zp-module and rankZp
XpE{Fcycq “ 1, then YpE{F8q

is ΛpGF8{F q-pseudonull. �

Remark 4.7. We point out that for a given prime p, we cannot conclude that Conjecture B holds
for pE,F8q for a rank 0 elliptic curve E{F with CM by combining Theorems 3.1 and 4.5. This is
because, in the proof of Theorem 3.1 it was required that the elliptic curve does not admit any
non-trivial p-torsion point over F . However, in proving Theorem 4.5, we assume that F8{F is a
pro-p extension; hence F must contain non-trivial p-torsion points.

4.2. Reformulation of Conjecture B. Let E{F be an elliptic curve, and let L be an S-admissible
p-adic Lie extension containing the trivializing extension F8. Throughout this section we suppose
that Conjecture A holds for E{F . Since GSpLq acts trivially on Ep8 , Conjecture B for pE,Lq has
an equivalent formulation in terms of the pseudonullity of the Galois group GalpMpLq{Lq, where
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MpLq is the maximal unramified abelian pro-p extension of L such that all primes above p in L
split completely. To state this reformulation, recall the following isomorphism from Section 2.5,

(12) Y
`

Zpp1q{L
˘

» Gal
`

MpLq{L
˘

.

Reformulation (see [CS05b, p. 827]). Let E{F be an elliptic curve, and let L be an S-admissible,
p-adic Lie extension over F such that GS pLq acts trivially on Ep8 . Then Y

`

Zpp1q{L
˘

is ΛpGL{F q-
pseudonull.

The next result asserts that for an S-admissible p-adic Lie extension L{F containing F8, the
ΛpGL{F q-pseudonullity of the Iwasawa module XL

nr is equivalent to the pseudonullity of a certain
quotient module. (The notation XL

nr was introduced at the beginning of this section). This result is
well-known to experts and follows easily from results available in the literature. For the convenience
of the reader, a proof is provided here. This theorem holds even when L{F is a non-abelian S-
admissible extension, but in the main body we only provide a proof in the abelian case. For a
proof in the non-commutative setting, see Appendix A. For the proof of the theorem, we need the
following lemma, that can be found in J. Minardi’s Ph.D. thesis [Min86, Lemma 3.1] and whose
proof we reproduce here:

Lemma 4.8. For every prime p above p, the decomposition group at p has finite index in G
ĂK{K

.

Proof. Throughout this proof we write Dp (resp. Ip) to denote the decomposition group (resp.
inertia group) at p inside G

ĂK{K
.

If p is the unique prime above p, then the fixed field of Ip is unramified over k. Such an extension
must be finite over k. Thus, Ip (and hence Dp) has finite index in G

ĂK{K
.

Now suppose that p splits as pOK “ pp̄ in K. Denote by Kab
Sp
ppq the maximal pro-p abelian

extension of K which is unramified outside p and denote the corresponding Galois group by Gab
Sp
pKq.

Note that Kab
Sp
ppq is a finite extension of rK; therefore to prove the lemma it suffices to show that p

is finitely decomposed in Kab
Sp
ppq{K.

Consider the short exact sequence (see, for example, [Was97, Corollary 13.6])

0 ÝÑ Up ˆ Up̄ ÝÑ Gab
Sp
pKq ÝÑ ClppKq ÝÑ 0.

Here, we write ClppKq to denote the p-part of the class group, and write Up (resp. Up̄) to denote
the principal local units in the completions at p (resp. p̄). Set

ϕ˚ : K ãÝÑ Kp̄

to be the canonical embedding and let π be a generator of some power of p with π ” 1 pmod p̄q.
To complete the proof, it suffices to prove the following two claims:
(a) Up ¨ xp1, ϕ˚pπqqy has finite index in Up ˆ Up̄;
(b) Up ¨ xp1, ϕ˚pπqqy is contained in Dp.

Indeed, claim (a) ensures that Up ¨ xp1, ϕ˚pπqqy has finite index in Gab
Sp
pKq. Next, since something

containing a subgroup of finite index must be again of finite index, claim (b) completes the proof.
Proof of claim (a): Up ˆ Up̄ is generated by two elements, say p1, xq and py, 1q where x is a

generator of Up̄ and y is a generator of Up. Note that Up ¨ xp1, ϕ˚pπqqy contains y ¨ p1, 1q “ py, 1q.
Since ϕ˚pπq is of the form xa for some a, because Up̄ » Zp, it follows that the subgroup xp1, xaqy
is contained in Up ¨ xp1, ϕ˚pπqqy and has finite index pvppaq inside xp1, xqy. Since Up ¨ xp1, ϕ˚pπqqy
contains both the generator py, 1q and the a-th power of p1, xq, it has finite index in Up ˆ Up̄.
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Proof of claim (b): The idèles mapping to Dp are those of the form α “ p. . . , 1, αp “ t, αp̄ “

1, . . . q with some t P Kˆp at the p-th place, and 1 elsewhere, see [Mil20, Chapter V, Proposition 5.2].
Moreover, if g is an element in K, the image of α “ p. . . , αp “ t, αp̄ “ 1, . . . q is the same as that of
gα “ pg . . . , gαp “ gt, gαp̄ “ g, . . . , gq because the kernel of the reciprocity map mapping idèles to
Galois automorphisms are the global elements. We now prove that the element p1, ϕ˚pπqq (identified
with α “ p. . . , αp “ 1, αp̄ “ ϕ˚pπq, . . . q where ϕ˚pπq in the p̄-th place) has the same image as as an
element of the form β “ p. . . , 1, βp “ z, βp̄ “ 1, . . .q for some z P Up in the p-th place. By definition,
ϕ˚pπq is the image of the global element π. Therefore, the image of α is the same as the image
of γ “ pπ´1, . . . , γp “ π´1, γp̄ “ 1, . . . , π´1q. The unique Z2

p-extension rK{K is unramified at all
places away from p and p̄, and the element π´1 is a unit at these places: by local class field theory,
the reciprocity map in an unramified extension is trivial on the units, hence the image of γ, and of
α, is that of β “ p1, . . . , βp “ π´1, βp̄ “ 1, . . . , 1q and lies in Dp. This completes the proof of the
claim and of the lemma. �

Theorem 4.9. Let E{F be an elliptic curve with CM by an order in an imaginary quadratic field
K such that K Ď F and suppose that GalpF8{F q » Z2

p. Let L{F be an abelian S-admissible p-adic
Lie extension containing F8. Then, the following statements are equivalent

(1 ) The Iwasawa µ “ 0 Conjecture is true for F and XL
nr is ΛpGL{F q-pseudonull.

(2 ) Conjecture B holds for pE,Lq.
(3 ) The Iwasawa µ “ 0 Conjecture is true for F and YpZpp1q{Lq is ΛpGL{F q-pseudonull.

Proof. Since E{F has CM by the imaginary quadratic field K contained in F and F8{F is a
Z2
p-extension, it follows that F contains K 1pErpsq where K 1 is the Hilbert class field of K (see

Lemma 4.1). Moreover, since L{F is an abelian extension containing F8 and, by definition of being
admissible, it contains no element of order p, it must be a Zdp-extension for some d ě 2. It follows
that the only primes that can ramify in this extension are the primes above p and therefore we can
assume that S “ Sp Y S8.

Equivalence of (1 ) and (3 ): We need to show that

Y
`

Zpp1q{L
˘

is ΛpGL{F q-pseudonull ðñ XL
nr is ΛpGL{F q-pseudonull.

Write XL
cs to denote the Galois group Gal

`

MpLq{L
˘

. It is known by the work of U. Jannsen (see
for example [NSW08, Theorem 11.3.10(ii)]) that there is an exact sequence

à

vPScsYSram

Ind
GL{F,v

GL{F

`

Zp
˘

ÝÑ XL
nr ÝÑ XL

cs ÝÑ 0.

Here, Scs denotes the set of non-archimedean primes in S which are completely split in L{F and
Sram denotes the set of non-archimedean primes in S which are ramified in L{F . Note that in our
setting Scs “ H because every prime above p is finitely decomposed in Fcyc{F , and Sram “ Sp. We
have seen in (12) that

XL
cs “ Gal

`

MpLq{L
˘

» Y
`

Zpp1q{L
˘

.

Therefore, to complete the proof of the equivalence it is enough to show that XL
nr and XL

cs are
pseudo-isomorphic. In other words, it suffices to prove that

(13)
à

vPSp

ZpJGL{F KbZpJGL{F,vK Zp “
à

vPSp

Ind
GL{F,v

GL{F

`

Zp
˘
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is a ΛpGL{F q-pseudonull module. It is a consequence of Lemma 4.8 that for all v | p, the decom-
position group at v inside GL{F has dimension at least 2. It follows that

À

vPSp
Ind

GL{F,v

GL{F

`

Zp
˘

is
ΛpGL{F,vq-pseudonull. This completes the proof of the equivalence.

Equivalence of (2 ) and (3 ): It follows from the discussion in [CS05b, p. 825] that

(14) Y
`

E{L
˘

» Y
`

Zpp1q{L
˘

b E_p8 .

HereGL{F acts diagonally on the tensor product and E_p8 is a Zp-module with aGL{F -action induced
by the GSpF q-action. This latter action makes sense because F8 is the trivializing extension of
Ep8 . In this setting, Conjecture A for E{F is equivalent to the Iwasawa µ “ 0 Conjecture for
F (see Theorem 2.2). Therefore, using [Ven03b, Proposition 2.12] and [OV02, Proposition 3.4],
the isomorphism in (14) yields that Y

`

E{L
˘

is ΛpGL{F q-pseudonull if and only if Y
`

Zpp1q{L
˘

is
ΛpGL{F q-pseudonull. Note that in the proof of this equivalence, we did not use the fact that E is
an elliptic curve with CM. �

We now prove a special case of Conjecture B in the supersingular reduction setting and provide
applications pertaining to universal norms. For the remainder of this section, we work in the
following setting:

Ass 2

(i) K is an imaginary quadratic field of class number 1;
(ii) E is an elliptic curve defined over K, and with CM by OK ;
(iii) p is an odd prime of good supersingular reduction for E;
(iv) p does not divide the class number of F “ KpEpq;
(v) Conjecture A holds for E{F ;
(vi) The Galois group G “ GalpF8{F q is isomorphic to Z2

p and we write H “

GalpF8{Fcycq.
Corollary 4.10. Suppose that Ass 2 holds. Then Conjecture B holds for pE, F8q.

Proof. Since p is a prime of supersingular reduction for E{K, we know that there exists a unique
prime above p in K. Moreover, p is totally ramified in the extension GalpF8{Kq, see for example
[PR04, Section 1]. In particular, there is a unique prime above p in F . Since p does not divide the
class number of F , it follows from (6) that YpZpp1q{F8q “ 0 (see [Och09, Proposition 4.2]). From
the proof of the equivalence of statements (2) and (3) in Theorem 4.9, it follows that YpE{F8q “ 0.
This completes the proof of the corollary. �

We now discuss an application of the above result. Recall the definition of the i-th Iwasawa
cohomology group over F8 when S “ Sp,

Zi
Sp

`

Zpp1q{F8
˘

“ lim
ÐÝ
L

Hi
ét
`

OLr1{ps,Zpp1q
˘

,

where L ranges over all finite extensions of F contained in F8.

Lemma 4.11. Suppose that Ass 2 holds. Then

Z2
Sp

`

Zpp1q{F8
˘

“ 0.

Proof. Consider the exact sequence (see, for example, [CS05a, p. 330 (2.6)])

0 ÝÑ Y
`

Zpp1q{F8
˘

ÝÑ Z2
Sp

`

Zpp1q{F8
˘

ÝÑ
à

vPSppF8q

Zp ÝÑ Zp ÝÑ 0.

By Corollary 4.10, the first term is trivial. As explained in the proof of Corollary 4.10, there is a
unique prime above p in F8. Therefore, #SppF8q “ 1. The lemma follows. �
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Consider the map
τF8{F : Z1

Sp

`

Zpp1q{F8
˘

G
ÝÑ Z1

Sp

`

Zpp1q{F
˘

.

By definition, the universal norms in Z1
Sp
pZpp1q{F q are precisely the elements of the image τF8{F .

Proposition 4.12. Suppose that Ass 2 holds. Then, µp8pF q is a universal norm from F8.

Proof. Since there is a unique prime above p in F , it follows from Nekovar’s spectral sequence (see
[Nek06, Corollary 8.4.8.4-(ii)]) and Lemma 4.11 that

H0

´

G,Z2
Sp

`

Zpp1qq{F8
˘

¯

» Z2pF q “ 0.

Therefore, we have the exact sequence (see [CS05a, p. 335 (3.26)])

0 ÝÑ H2

´

G,Z2
Sp

`

Zpp1q{F8
˘

¯

ÝÑ Z1
Sp

`

Zpp1q{F8
˘

G

τF8{F
ÝÝÝÝÑ Z1

Sp

`

Zpp1q{F
˘

ÝÑ H1

´

G,Z2
Sp

`

Zpp1q{F8
˘

¯

ÝÑ 0.

Lemma 4.11 asserts that Z2
Sp

`

Zpp1q{F8
˘

“ 0; hence, τF8{F is an isomorphism. It follows that
µp8pF q is a universal norm from F8 (see [CS05a, Corollary 3.27] for details). �

The following corollary provides asymptotics for the growth of the p-primary torsion of the fine
Selmer group at each layer of the Z2

p-extension.

Corollary 4.13. Suppose that one of the following conditions holds:
(1 ) Ass 1 holds and YpE{Fcycq is finite.
(2 ) Ass 1 holds and XpE{Fcycq is a finitely generated Zp-module of Zp-rank equal to 1.
(3 ) Ass 2 holds.

Then
ordp

´

R
`

E{F pEpnq
˘

rp8s
¯

“ O ppnq .

Proof. Conjecture A holds by assumption in each case and Conjecture B holds by Theorem 4.5
in case (1), by Proposition 4.6 in case (2), and by Corollary 4.10 in case (3). The claim follows
from [KL22, Corollary 6.14]. �

5. Conjecture B and the Generalized Greenberg’s Conjecture

The aim of this section is to clarify the connection between the Generalized Greenberg’s Con-
jecture and Conjecture B for CM elliptic curves. For the sake of brevity, we henceforth refer to the
Generalized Greenberg’s Conjecture as GGC.

Both conjectures pertain to the pseudonullity of certain Iwasawa modules. Even though Con-
jecture B was proposed as a generalization of GGC, the precise formulation of this connection is
rather intricate. Using Theorem 4.9, we make precise in which sense Conjecture B for CM elliptic
curves is a generalization of GGC (see Theorem 5.4).

Fix an imaginary quadratic field K and denote its Hilbert class field by K 1. Given an elliptic
curve E{K 1 with CM by an order in K, set

F “ K 1pEpq, F8 “ K 1pEp8q “ F pEp8q,

G “ GalpF8{F q, G8 “ GalpF8{Kq, G18 “ GalpF8{K
1q.
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Note that G » Z2
p. Set rK (resp. ĂK 1, rF ) to be the compositum of all Zp-extensions of K (resp. of

K 1, of F ). Since the Leopoldt conjecture is trivially true for imaginary quadratic fields, rK is the
unique Z2

p-extension of K. For the rest of this section, we make the following assumption.

Ass 3
(i) p is an odd prime that is unramified in K;
(ii) the prime p is such that K 1 X rK “ K.

By the theory of complex multiplication, G8 “ G ˆ ∆ and G18 “ G ˆ ∆1 where ∆ » GalpF {Kq
(resp. ∆1 » GalpF {K 1q) is a finite abelian group. Recall from [Ser68, Remark on p. IV-13] that
∆1 is a Cartan subgroup of GL2pFpq and hence it either has order p2 ´ 1 or pp´ 1q2: in any case,
p -

∣∣∆1∣∣.
Remark 5.1.

(1) In fact, it is forced by Ass 3 (i) that p ą 3. This can be seen as follows: by the Weil pairing
µp Ă F . If p “ 3, then K “ Qp

?
´3q; but this contradicts Ass 3 (i).

(2) We now discuss Ass 3 (ii) in a little more detail. This assumption is trivially satisfied
when p does not divide the class number of K. But observe that, in general, K 1 X rK is
contained in the anti-cyclotomic Zp-extension of K, denoted by Kac. For a proof of this
fact, see [Fuj13, Lemma 2.2]. Therefore, Ass 3 (ii) is equivalent to the following condition:

(ii1) The prime p is such that K 1 XKac “ K.

To know more about non-trivial examples where this condition is satisfied, we refer the
reader to [Bri07]. For a specific example, see Example 4 ibid. Moreover, Ass 3 (ii) is
closely related to the notion of p-rationality (see [Bri07, p. 2133]) but we will not discuss
this point any further.

Set the notation K 18 to denote the composite of the fields K 1 and rK. The theory of complex
multiplication guarantees that F8 “ F rK “ FK 18. Recall that F8 is the trivializing extension for
the Galois representation associated to TpE and it is an S-admissible p-adic Lie extension. We note
that F8 Ď rF .

Denote by Lp rF q (resp. LpF8q) the maximal abelian unramified pro-p-extension of rF (resp. of
F8). Denote by FS the maximal abelian pro-p extension of rF unramified outside S. Set the
notation

(15) X
rF

nr “ Gal
´

Lp rF q{ rF
¯

, XF8
nr “ Gal

`

LpF8q{F8
˘

, X
rF
S “ Gal

´

FS{ rF
¯

.

As in the previous sections, given any extension L{F , we denote by MpLq the maximal unramified
abelian p-extension of L where all primes above p in L split completely; this group is related to the
fine Selmer group (see (7)). For most of the discussion, L will either be F8 or rF . For convenience,
the diagram of fields is drawn in Figure 1.

Recall the statement of GGC for F (the statement forK is analogous, by replacing F, rF ,ΛpG
rF {F q

by K, rK,ΛpG
ĂK{K

), respectively).

GGC. With notation as above, X rF
nr is a pseudonull ΛpG

rF {F q-module.

The following results are required to relate GGC to the pseudonullity of the fine Selmer group.
The first lemma assures pseudonullity over a larger tower, once it holds for a proper subextension.
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Q

K

rK

K 1

F

Fcyc

F8

K 18

MpF8qrF

Mp rF q LpF8q

Lp rF q

FS

Z2
p

Zp

Zp

∆1

ClpKq
∆

G

XF8
nr

X
ĂF
S

X
ĂF
nr

Figure 1. The diagram of fields occurring in Theorem 5.4

Lemma 5.2 (Pseudonullity Lifting Lemma). Let n ě 3, let F{Q be a finite Galois extension
containing µp, and denote by rF the compositum of all Zp-extensions of F . Let Galp rF{Fq » Znp and
let F pdq Ĺ rF be such that GalpF pdq{Fq » Zdp for some 2 ď d ă n. If XFpdq

nr is ΛpGFpdq{F q-pseudonull
then GGC holds for rF{F .

Proof. This lemma is a special case of [Ban07, Theorem 12]. Since F contains µp, the technical
conditions in the mentioned theorem are satisfied by [LN00, Theorem 3.2] or [Ban07, Remark 15].

�

The next result studies pseudonullity of Galois modules under base change.

Lemma 5.3 (Pseudonullity Shifting Down Lemma). Let F be a number field and let F pdq{F be a
Zdp-extension. Suppose that F1{F is a finite extension and set K “ F1 ¨F pdq. If XK

nr is a ΛpGK{F1
q-

pseudonull module, then XFpdq

nr is a ΛpGFpdq{F q-pseudonull module.

Proof. For a proof, see [Kle16, Theorem 3.1(i)]. �

The purpose of the next result is to show that Conjecture B is indeed a generalization of GGC.
We resume the notation introduced at the beginning of this section.

Theorem 5.4. In the setting of Ass 3, suppose that there exists an elliptic curve E{K 1 with CM
by an order in K such that Conjecture B holds for pE, F8q. Then GGC holds for both K and K 1.
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Proof. Let E{K 1 be an elliptic curve with CM by an order in K such that Conjecture B holds for
pE, F8q. Using Theorem 4.9, this is equivalent to XF8

nr being ΛpGF8{F q-pseudonull.
Consider the extensions K Ď K 1 Ď F . Applying Lemma 5.3 with F “ K 1, F1 “ F , F p2q “ K 18,

and K “ F8 “ FK 18, the ΛpGF8{F q-pseudonullity of XF8
nr can be shifted down to ΛpGK1

8{K
1q-

pseudonullity of XK1
8

nr . Therefore, we have shown that

Conjecture B for pE, F8q ùñ X
K1

8
nr is ΛpGK1

8{K
1q-pseudonull.

Another application of Lemma 5.3 with F “ K, F1 “ K 1, F p2q “ rK, and K “ K 18 “ K 1 rK, shows
that ΛpGK1

8{K
1q-pseudonullity of XK1

8
nr can be shifted down to ΛpG

ĂK{K
q-pseudonullity of XĂK

nr . This
is GGC for K. �

Corollary 5.5. With the same hypotheses of Theorem 5.4, GGC holds also for the field F “ K 1pEpq.

Proof. By the Weil pairing, we know that F contains µp. Using Lemma 5.2 with F “ F and
F p2q “ F8, pseudonullity of XF8

nr as a ΛpGF8{F q-module can be lifted to ΛpG
rF {F q-pseudonullity of

X
rF

nr where rF Ľ F8. Thus, GGC holds for F . �

Appendix A. A general result in the non-commutative setting

In this section, we prove a non-commutative version of Theorem 4.9. Fix a number field F and let
E{F be a non-CM elliptic curve such at all primes v | p the elliptic curve has either potential ordinary
or potential multiplicative reduction. Further suppose that F contains the p-torsion points of E.
We choose a set S “ SpYSbadYS8 and let L be any S-admissible p-adic Lie extension containing
the trivializing extension F8 “ F pEp8q. The following theorem shows that the pseudonullity of
XL

nr is equivalent to the pseudonullity of a certain quotient module. For the ease of exposition, we
provide a proof in the case that L “ F8.

Theorem A.1. With the notation and assumptions introduced above, the following statements are
equivalent

(1 ) The Iwasawa µ “ 0 Conjecture is true for F , and XF8
nr is ΛpGF8{F q-pseudonull;

(2 ) Conjecture B holds for pE, F8q.
(3 ) the Iwasawa µ “ 0 Conjecture is true for F , and YpZpp1q{F8q is ΛpGF8{F q-pseudonull;

If p is the only ramified prime in F8{F then the following statement is equivalent to the above ones:
(4 ) the Iwasawa µ “ 0 Conjecture is true for F , and Z2

Sp

`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull.

Proof. Equivalence of (2 ) and (3 ): It was pointed out in the proof of Theorem 4.9 that the
argument holds irrespective of whether the elliptic curves has complex multiplication or not.

Equivalence of (1 ) and (3 ): We need to show that

Y
`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull ðñ XF8
nr is ΛpGF8{F q-pseudonull.

Let XF8

S denote the Galois group of the maximal abelian unramified outside S pro-p extension over
F8. In our setting, ΛpGF8{F q-pseudonullity of XF8

nr is equivalent to XF8

S being ΛpGF8{F q-torsion-
free (this follows from [Ven03b, Theorem 4.9 combined with Remark 4.12]). Therefore, it is enough
to show that

(16) XF8

S is ΛpGF8{F q-torsion-freeðñ YpZpp1q{F8q is ΛpGF8{F q-pseudonull.



FINE SELMER GROUPS IN ABELIAN p-ADIC LIE EXTENSIONS 21

By [Ven03b, Section 4.1.1] we know that,

XF8

S “ H1
`

GSpF8q,Qp{Zp
˘_
» Gal

`

FS{F8
˘ab

p8 .

The following exact sequence is well-known and comes from the rightmost column of the Powerful
Diagram (see [OV02, Lemma 4.5])

0 ÝÑ XF8

S ÝÑ Y F8

S ÝÑ JF8 ÝÑ 0 :

the terms appearing in the above short exact sequence are defined below. Let G be the maximal
pro-p quotient of GalpFS{F q and let H be the maximal pro-p quotient of GalpFS{F8q. Set IpGq to
denote the augmentation ideal. Define

Y F8

S “
`

I pGq b Zpp1q
˘

H and JF8 “ ker
´

`

Λ pGq b Zpp1q
˘

H Ñ pZpqH
¯

.

Since JF8 has no non-zero torsion submodules (see [OV03, p. 27 point (iv)]), it follows that

(17) XF8

S is ΛpGF8{F q-torsion-freeðñ Y F8

S is ΛpGF8{F q-torsion-free.

Next, we analyze the right hand side of (16).

Claim: Y
`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull if and only if Z2
SpZpp1q{F8q is ΛpGF8{F q-pseudonull.

Proof of the Claim. It follows from the Poitou–Tate sequence that there exists a four term exact
sequence (see [Kat06, (2) on p. 554])

0 ÝÑ Y
`

Zpp1q{F8
˘

ÝÑ Z2
S

`

Zpp1q{F8
˘

ÝÑ
à

vPS

ZpJGF8{F KbZpJGF8{F,vK Zp ÝÑ Zp ÝÑ 0.

To prove the claim it suffices to show that

(18)
à

vPS

ZpJGF8{F KbZpJGF8{F,vK Zp “
à

vPS

Ind
GF8{F,v

GF8{F

`

Zp
˘

is a ΛpGF8{F q-pseudonull module. Recall that [OV02, Proposition 3.4] allows us to interpret the
notion of ΛpGF8{F q-pseudonullity in terms of the vanishing of certain Ext groups. In view of this,
it suffices to show that for all v P S,

EiGF8{F

´

Ind
GF8{F,v

GF8{F

`

Zp
˘

¯

“ 0 for i “ 0, 1.

Recall the running assumption that E{F is an elliptic curve without CM that has either po-
tentially ordinary or potentially multiplicative reduction at every v P Sp Y Sbad. Hence, [Coa99,
Lemma 2.8] shows that GF8{F,v has dimension 2 at such a prime v. For all i ě 0, [Ven02, Proposi-
tion 2.7 (i)] yields the isomorphism

(19) EiGF8{F

´

Ind
GF8{F,v

GF8{F

`

Zp
˘

¯

» Ind
GF8{F,v

GF8{F

´

EiGF8{F,v

`

Zp
˘

¯

.

Since GF8{F,v has dimension bigger or equal to 2 for all v P S, [OV02, Proposition 3.6] guarantees
that Zp is a pseudonull ΛpGF8{F,vq-module or, equivalently, that EiGF8{F,v

`

Zp
˘

“ 0 for i “ 0, 1.
Through the isomorphism (19) the ΛpGF8{F q-pseudonullity of the terms in (18) is established,
concluding the proof of the claim.

By combining (16), (17) and the above claim, the proof of the equivalence between (1) and (3)
is complete if we can show that

(20) Y F8

S is ΛpGF8{F q-torsion-freeðñ Z2
S

`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull.
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We now prove this equivalence. [Ven03b, Proposition 2.16] asserts that Y F8

S » DZ2
S

`

Zpp1q{F8
˘

where D is the transpose of the functor EiG, defined in [Ven03b, Section 2.1 p. 5]. It follows from
the Powerful Diagram that pdΛpGF8{F q

Y F8

S ď 1, see [Ven03b, proof of Theorem 2.15]. Therefore by
[Ven03b, last line of p. 5],

DY F8

S » E1
GF8{F

´

Y F8

S

¯

.

Using that D2 is the identity, we obtain

DY F8

S » D2Z2
S

`

Zpp1q{F8
˘

“ Z2
S

`

Zpp1q{F8
˘

and therefore

(21) E1
GF8{F

´

DY F8

S

¯

– E1
GF8{F

´

Z2
S

`

Zpp1q{F8
˘

¯

.

By [OV02, Definition 3.2], the module Y F8

S is torsion-free if and only if E1
GF8{F

´

DY F8

S

¯

“ 0.

Through (21) this is in turn equivalent to E1
GF8{F

´

Z2
S

`

Zpp1q{F8
˘

¯

“ 0. Recall from §2.5 that

Z2
S

`

Zpp1q{F8
˘

is ΛpGF8{F q-torsion and thus (by definition of the functor E0), we have that

E0
GF8{F

´

Z2
S

`

Zpp1q{F8
˘

¯

“ 0.

Now, applying [OV02, Proposition 3.4] we obtain (20) concluding the proof of the equivalence.

Equivalence of (3 ) and (4 ): By [Kat06, Section 2.5 p. 554], we know that YS

`

Zpp1q{F8
˘

is
independent of the choice of the set S as long as it contains Sp. In particular,

YS

`

Zpp1q{F8
˘

» YSp

`

Zpp1q{F8
˘

.

Under the additional assumption that p is the only prime that ramifies in F8{F , it follows from
the Poitou–Tate sequence that there is a long exact sequence

0 ÝÑ Y
`

Zpp1q{F8
˘

ÝÑ Z2
Sp

`

Zpp1q{F8
˘

ÝÑ
à

vPSp

Zp ÝÑ Zp ÝÑ 0.

Thus, Y
`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull if and only if Z2
Sp

`

Zpp1q{F8
˘

is ΛpGF8{F q-pseudonull.
�
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