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Stability of hexagonal patterns in Rayleigh-Bénard convection for shear-thinning fluids

with temperature dependent viscosity is studied in the framework of amplitude equa-

tions. The rheological behavior of the fluid is described by the Carreau model and the

relationship between the viscosity and the temperature is of exponential type. Ginzburg-

Landau equations including nonvariational quadratic spatial terms are derived explicitly

from the basic hydrodynamic equations using a multiple scale expansion. The stability of

hexagonal patterns towards spatially uniform disturbances (amplitude instabilities) and

to long wavelength perturbations (phase instabilities) is analyzed for different values of

the shear-thinning degree α of the fluid (defined in equation 2.12) and the ratio r of the

viscosities between the top and bottom walls. It is shown that the amplitude stability

domain shrinks with increasing shear-thinning effects and increases with increasing the

viscosity ratio r. Concerning the phase stability domain which confines the range of sta-

ble wavenumbers, it is shown that it is closed for low values of r and becomes open and

asymmetric for moderate values of r. With increasing shear-thinning effects, the phase

stability domain becomes more decentered towards higher values of the wavenumber.



2 T. Varé et al.

Beyond the stability limits, two different modes go unstable: longitudinal and transverse

modes. For the parameters considered here, the longitudinal mode is relevant only in a

small region close to the onset. The nonlinear evolution of the transverse phase instability

is investigated by numerical integration of amplitude equations. The hexagon-roll tran-

sition triggered by the transverse phase instability for sufficiently large reduced Rayleigh

number ǫ is illustrated.

1. Introduction

Convection of a fluid confined between two parallel horizontal plates and heated from

below (Rayleigh-Bénard convection, RBC) is a paradigm of pattern-forming instabilities

in spatially extended nonlinear systems (Bodenschatz et al. 2000). When the control pa-

rameter, i.e. the temperature difference across the fluid layer or the Rayleigh number,

exceeds a critical value, the rest state is replaced by motions that organize themselves

to form a convective pattern. Increasing further the control parameter, a transition be-

tween convective patterns of different symmetries may occur at a second threshold. For

modelling processes in geoscience as well as in many industrial systems, the variation of

the viscosity with temperature has to be taken into account. A spatially varying viscosity

causes additional nonlinear coupling between the temperature and the velocity field and

breaks the up-down reflection symmetry with respect to the midplane of the fluid layer.

This breaking symmetry modifies the onset of convection and affects the selection of the

pattern convection.
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1.1. Effect of temperature-dependent viscosity on the onset of convection

The effect of a temperature dependent viscosity on the onset of convection was first

studied by Palm (1960) in the case of free-free boundary conditions. Palm (1960) assumed

that the kinematic viscosity ν varies as ν = ν1 + ∆ν cos (b (T − T1)) where ∆ν is the

difference in the viscosity between the top and the bottom boundaries, b a constant and

T1 is the temperature at the bottom of the fluid layer. In his analysis, it is required

that ∆ν/ν1 << 1. It is found that the critical Rayleigh number Rac defined with the

average viscosity ν0 as well as the critical wavenumber kc decrease with increasing the

viscosity variation ∆ν. They differ by O (∆ν/ν0)
2
from that obtained with constant

viscosity. The decrease of Rac and kc with increasing ∆ ν was confirmed by Stengel et al.

(1982) in Free-Free and Rigid-Rigid boundary conditions when a cosine law is used for

the dynamic viscosity µ(T ). Busse & Frick (1985) assumed, for numerical convenience, a

linear dependence of the viscosity on temperature. The onset of convection is determined

in the case of rigid boundary conditions. The variation of Rac and kc as a function of

the viscosity ratio r = µmax/µmin is quite similar to that obtained by Palm (1960)

using cosine law for µ(T ). As pointed out by Busse & Frick (1985), for cosine and linear

functions µ(T ), the viscosity at the midplane equals to the average viscosity of the static

layer, this is why Rac decreases with increasing r. However, if an exponential viscosity

variation is used, the average viscosity exceeds the value used in the definition of Rac. In

this case, the critical Rayleigh number Rac increases, reaches a maximum of Rac ≈ 2200

at a viscosity ratio r ≈ 3000 and then decreases (Stengel et al. 1982). This result was

confirmed by White (1988). It can be explained by a simple physical argument based on

the idea that convection begins first in the sublayer with maximum Rayleigh number.

Actually, for a large viscosity contrast, the convection is confined to the sublayer near

the hot boundary, and a stagnant zone develops near the cold (top) boundary (Stengel
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et al. 1982; Solomatov 1995; Davaille & Jaupart 1993). Whereas, for cosine and linear

laws µ(T ), the convection occurs throughout the entire fluid layer. The onset of two-

dimensional convection with strongly temperature dependent viscosity has been also

considered by Bottaro et al. (1992), assuming Arrhenius law. In this case, the viscosity

ratio depends on the temperature difference across the fluid layer and on the temperature

level, while for exponential law, the viscosity ratio depends only on the temperature

difference. Bottaro et al. (1992) found that depending on the reference temperature, the

dependence of the critical Rayleigh number Rac on the viscosity ratio across the layer,

may have one of the two behaviors described previously. Either, Rac decreases with

increasing the viscosity ratio as predicted by Palm (1960) and Busse & Frick (1985), or

Rac increases initially with increasing the viscosity ratio, reaches a maximum and then

decreases as predicted by Stengel et al. (1982). Actually, there are two controlling factors

that play opposing roles. The reduced thickness of the active layer on one hand requires

a larger Rayleigh number for the onset of convection. On the other hand, the fluid layer

near the heated wall is less stable because of the decrease of the viscosity.

1.2. Influence of temperature-dependent viscosity on the planform near the onset

In Rayleigh-Bénard convection, under Boussinesq conditions, i.e. when only the temper-

ature variations of the density across the fluid layer are kept, convection in the form

of rolls emerge at the onset via a supercritical bifurcation. However, in situations with

sufficiently large temperature differences, such that the temperature dependence of the

material cannot be neglected, i.e. in non Oberbeck-Boussines (NOB) convection, the pri-

mary bifurcation is transcritical and the nonlinear state that forms beyond it consists

of hexagonal cells. The occurrence of hexagonal pattern can be explained by the triadic

wavevector interactions enabled by the quadratic term in the amplitude equations. The

temperature dependence is usually the dominant case of asymmetry in convection layers,
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and its importance for the preference of hexagons was supported theoretically by Palm

(1960), Palm et al. (1967), Segel & Stuart (1962), Busse (1967),Palm (1975) and experi-

mentally by Hoard et al. (1970), Somerscales & Dougherty (1970), Stengel et al. (1982),

Richter (1978), White (1988), Pampaloni et al. (1992). Note that for liquids where the

viscosity decreases with increasing temperature, the fluid ascends in the central part of

the hexagon and descends in the peripherical parts.

According to weakly nonlinear theory, the primary bifurcation to hexagons is associated

with a saddle node located at Ra < Rac. With increasing the heating, a Rayleigh number

Rar is reached beyond which rolls and hexagons can exist, until Rah where hexagons be-

come unstable. This classical NOB scenario was quantified in a pioneering paper of Busse

(1967). Actually, at Rar < Ra < Rah, hexagons and rolls are not equally stable, because

they are characterized by different values of the specific potential (Lyapunov functional),

which depend on the amplitude of rolls sets that constitute the pattern. The transition

should occur at RaT where the potential is the same for rolls and hexagons. Near RaT ,

the metastable state is replaced by the absolute stable state when a sufficiently strong

disturbance is imposed. The range of Ra, where the metastable state coexists with the

absolute state defines a region of hysteretic transition (Getling 1988; Pampaloni et al.

1992). Some discrepancies exist between theoretical predictions made for an unbounded

layer of liquid and experiments in convective cells with a finite aspect ratio (Ciliberto

et al. 1988).

Besides rolls and hexagons, a new planform in the form of squares was observed when

the viscosity contrast between upper and lower boundaries exceed a value of order ten

(Stengel et al. 1982; White 1988). The planform selection problem between rolls and

squares was analyzed by Busse & Frick (1985) with the assumption that the viscosity

varies linearly with temperature. They found that near the critical conditions, rolls are
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preferred for low values of r, but squares are preferred for large values of r. The change

from rolls to squares occurs at r ≈ 2. Jenkins (1987) used a weakly nonlinear method to

investigate the stability of squares. In the case of a linear variation of the viscosity with

temperature, he found that the transition from rolls to squares occurs at r ≈ 3.2. The dis-

agreement with Busse & Frick (1985) was not clarified in the literature. For exponential

fluids, Jenkins (1987) found that the transition occurs at r ≈ 3.

1.3. Secondary instabilities

Above onset, there is a range of wavenumbers for which stationary convecting patterns

can exist. The existence of these stationary states does not guarantee their physical rel-

evance; they must also themselves be stable to infinitesimal disturbances. A variety of

secondary instabilities occur and restrict the domain of stable convection.

In a series of papers, Busse and co-workers Busse (1967), Busse & Whitehead (1971),

Clever & Busse (1974) and Busse (1978) gave a complete classification of secondary in-

stabilities that restrict the region of stable straight convection rolls in Rayleigh Bénard

convection. The region of stable roll convection is often referred to as the “Busse Balloon”.

The nature of secondary instabilities in more complex patterns such as squares or hexagons

is not as well studied as rolls. In the case of hexagonal pattern, it is shown that the

secondary instability is induced by long wavelength modulation of the phase of the pat-

tern. In Bénard-Marangoni problem, estimates of the size and shape of stable band of

wavenumbers have been made by Echebarŕıa & Pérez-Garćıa (1998) and Young & Riecke

(2002) using amplitude equations.
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1.4. Case of non-Newtonian fluids: Influence of shear-thinning effects

Compared to the Newtonian case, very few studies were devoted to non-Newtonian fluids

despite their common occurrence in natural systems, food, chemical and petrochemical

engineering processes. Most non-Newtonian fluids have two common properties: viscoelas-

ticity and shear-thinning. The influence of the elastic response, in particular the possibil-

ity of oscillatory convection due to elastic restoring forces are discussed in the literature,

see for instance Larson (1992) and the references therein. Compositional effects may also

exist as advocated by Kolodner (1998). The pattern selection has been also considered

in the literature, e.g. Li & Khayat (2005).

Here, we neglect the elastic response. We focus only on the shear-thinning effects, i.e. the

influence of nonlinear decrease of the viscosity with the shear-rate. This feature, when it

is sufficiently strong leads to a subcritical bifurcation (Lamsaadi et al. 2005; Solomatov

& Barr 2006, 2007; Balmforth & Rust 2009; Albaalbaki & Khayat 2011; Alloui et al.

2013; Benouared et al. 2014; Jenny et al. 2015; Bouteraa et al. 2015). Indeed, in presence

of a finite amplitude perturbation, the viscosity decreases reducing by this way the vis-

cous damping. In the case of RBC in Carreau fluids between two plates of infinite extent

maintained at two different temperatures, the shear-thinning degree α =

∣

∣

∣

∣

dµ

dΓ

∣

∣

∣

∣

Γ=0

above

which the bifurcation becomes subcritical has been determined using a weakly nonlinear

analysis. The critical value of shear-thinning degree is αc =
24

601π4
for stress-free bound-

ary conditions (Balmforth & Rust 2009) and αc = 2.15 × 10−4 for no-slip boundary

conditions. In the previous expression, the viscosity µ and the second invariant of the

strain rate deformation Γ (defined by (2.7)) are rendered dimensionless using the zero-

shear-rate viscosity and thermal diffusion time as characteristic scales. Bouteraa et al.

(2015) have also studied the stability of the convective patterns near the onset. They

show that the only stable patterns are rolls in the supercritical bifurcation. Using 2D
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nonlinear computations of rolls solutions in Carreau fluids with α > αc, the threshold

value of Rayleigh number has been determined by Benouared et al. (2014) and Jenny

et al. (2015) for a large range of rheological parameters.

Very few experimental studies dealing with RBC in shear-thinning fluids exist in the

literature. Liang & Acrivos (1970) were the first to study experimentally the onset of

convection in horizontal layers of dilute aqueous solutions of polyacrylamide. These flu-

ids are shear-thinning with approximately constant viscosity at low shear-rates. The

shear-thinning degree α is less than αc. The experimental setup consists of a rectangu-

lar cavity with the length to the height aspect ratio AR ≈ 25. Liang & Acrivos (1970)

found that the critical Rayleigh number is practically the same as for a Newtonian fluid.

The flow patterns detected by visualizations using aluminium flakes as tracers, consist of

two dimensional rolls with a transition to a three-dimensional structure at much higher

Rayleigh number. To our knowledge, since Liang & Acrivos in the 70’s, there is no more

experimental data until 2016. Darbouli et al. (2016) investigated experimentally the RBC

in shear-thinning fluids in a cylindrical cell using MRI technique. The aspect ratio of the

cylindrical cavity, i.e. diameter-to-height ratio is AR = 6. Actually, the aspect ratio value

is imposed by the diameter of the MRI resonator (Darbouli et al. 2016). The fluids used

are xanthan-gum solutions at different concentrations, which rheological behavior can be

described by the Carreau model. In these experiments, α < αc. For a concentration of

1000 ppm, the patterns observed above the criticality consist of patches of fairly regular

rolls linked by lines of disclinations. With increasing the concentration of xanthan gum,

the shear-thinning effects as well as the viscosity plateau at low shear-rates increase. A

larger temperature difference is therefore needed for the onset of convection. The non-

Oberbeck-Boussinesq effects become significant and convection in form of “polygons”

occurs at the onset. With increasing Ra, a transition to rolls is observed. This study was
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supplemented by Bouteraa (2016) using shadowgraph method for pattern visualization.

The experimental setup is identical to that in (Darbouli et al. 2016). For a sufficiently

high concentration of xantan-gum, hexagonal patterns are clearly observed at the onset,

followed by a range of Rayleigh numbers where the two solutions rolls and hexagons

coexist with topological defects. A deeper analysis indicates that the wavenumber of the

hexagonal pattern increases with Ra.

In another context, RBC in shear-thinning fluids with strong variation of the viscosity

with temperature has been studied numerically in two-dimensional layers by Solomatov

& Barr (2007), Solomatov & Barr (2007) and Kaddiri et al. (2012). The viscosity ratio

r between the top and the bottom walls is greater than 103. In this case, the convection

takes place in the so-called stagnant-lid regime. The objective was to understand the

convection in the interiors of Earth and other planets whose viscosity is a much stronger

function of temperature. In these studies, power-law model is adopted for the rheological

behavior. The primary bifurcation is subcritical and it is shown that the threshold value

of the Rayleigh number Ra1 for the onset of convection decreases with inceasing shear-

thinning effects and viscosity contrasts. A correlation relating Ra1 to the shear-thinning

index and the viscosity ratio is proposed.

To summarise

(a) In the frame of Boussinesq approximations, theoretical studies show that for suffi-

ciently strong shear-thinning effects, the primary bifurcation becomes subcritical. In this

case, the threshold values of the Rayleigh number for the onset of convection have been

determined from numerical computations in two-dimensional layers.

(b) In the frame of Boussinesq approximations, and in the supercritical regime, theo-
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retical studies show that near the onset, only rolls are stable and shear-thinning effects

reinforce convection in the form of rolls.

(c) Recent experimental investigations of Rayleigh-Bénard convection in shear-thinning

polymer solutions show that steady hexagonal patterns with upflow at the centre arise at

the onset, because of NOB effects, followed by a range in Ra, where rolls and hexagons

coexist. Furthermore, for the hexagonal pattern, the wavenumber selected by the system

increases with increasing Ra.

1.5. Objectives, methodology and outline of the paper

It is clear that the theoretical predictions of Rayleigh-Bénard convection in shear-thinning

fluids done within the framework of Boussinesq approximations cannot be used to de-

scribe at least qualitatively the experimental results.

The objective of the present work is to investigate the influence of shear-thinning effects

and the variation of the viscosity with temperature on the pattern selection, its stability

and the range of stable wavenumbers. The rheological law introduces an additional non-

linear coupling between the flow variables. A weakly nonlinear analysis is used as a first

approach to study nonlinear effects. Amplitude equations are derived and the instabili-

ties of hexagonal patterns with respect to homogeneous and longwave perturbations are

calculated.

The present work considers a laterally infinite system. Therefore, it is difficult to have

a direct correspondance with the experimental results obtained with an apparatus of

a small aspect ratio such as that used by Darbouli et al. (2016) and Bouteraa (2016).

Indeed, the finite size and the no-slip boundary conditions at the lateral walls affect

the Rayleigh number at the convective threshold (Charlson & Sani 1970) and intoduces

topological defects such as dislocations and disclinations which play a significant role

in the roll-hexagon competition (Ciliberto et al. 1990) as well as on the mechanism of
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wavenumber selection (Pocheau & Croquette 1984). Nonetheless, we expect a qualitative

comparison.

Note that for moderate values of the viscosity ratio r, a competition between rolls and

hexagons is concerned. When the viscosity ratio exceeds a limit value rℓ, rolls become

unstable to squares. Except in the linear stability analysis where a large range of r is

considered, in the rest of the paper, we consider only the case where 1 < r 6 rℓ as in

Darbouli et al. (2016) and Bouteraa et al. (2020).

This paper is organized as follows. We start with the governing equations in Sec. 2.

The linear stability analysis is presented in Sec. 3. The weakly nonlinear analysis using

a multiple scale method is presented in Sec. 4. The amplitude equations for hexagons

are derived and the different coefficients are determined as a function of shear-thinning

effects and the viscosities ratio. In Sec. 5, the limit value of the viscosity ratio above

which rolls become unstable to squares is determined as a function of shear-thinning

effects. The relative stability of homogeneous hexagons and rolls is discussed in Sec. 6.

Then, in Sec. 7, the stability of hexagons with respect to long wavelength perturbations

is addressed. The phase equations are derived and the range of stable wavenumbers is

determined. Numerical simulations of the amplitude equations are presented in Sec. 8.

The nonlinear evolution of the instabilities and the formation of defects are investigated.

Finally, a brief summary of the results is given in Sec.9.

2. Basic equations

Hereafter, quantities with hats are dimensional quantities. We consider a layer of shear-

thinning fluid of depth d̂ confined between two impermeable horizontal plates, infinite

in extent, which are perfect heat conductors. The bottom and top plates are kept at

constant temperatures, respectively T̂0 + δ T̂ /2 and T̂0 − δ T̂ /2, with δT̂ > 0. The fluid
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has density ρ̂, thermal diffusivity κ̂, thermal expansion coefficient β̂ and viscosity µ̂0 at

zero-shear-rate. In the absence of convection, the heat conducting state is described by

û = 0 ,
dP̂

dẑ
= −ρ̂0ĝ

[

1− β̂
(

T̂cond − T̂0

)]

, T̂cond − T̂0 =
δT̂

2

(

1− 2ẑ

d̂

)

, (2.1)

where û is the fluid velocity, P̂ the pressure and T̂0 the mean of the boundary tem-

peratures. The z-axis is directed upwards, with its origin located at the bottom plate.

The stability of the hydrostatic solution is considered by introducing temperature and

pressure perturbation as well as a fluid motion. Using the units d̂2/κ̂, d̂, κ̂/d̂ and δT̂ for

time, length, velocity and temperature, the dimensionless perturbation equations are:

∇ · u = 0 , (2.2)

1

Pr

[

∂u

∂t
+ (u ·∇)u

]

= −∇p+Ra θ ez +∇ · τ , (2.3)

∂θ

∂t
+ u ·∇θ = u · ez +∇

2θ . (2.4)

Here, ez denotes the unit vector in the vertical direction, p(x, t) and θ(x, t) represent

the pressure and temperature deviations from their values in the conductive state. The

Boussinesq approximations are taken into account, i.e., the variation of the density is

neglected except in the buoyancy term. Denote (x, y, z) the components of the position

vector x, and (u, v, w) the components of the velocity vector u. The Rayleigh number

Ra and the Prandtl number Pr are

Ra =
ρ̂0 ĝ β̂ δT̂ d̂3

κ̂ ˆ̄µ0
; Pr =

ˆ̄µ0

ρ̂0 κ̂
. (2.5)

The reference viscosity, ˆ̄µ0, is the zero-shear-rate viscosity evaluated at T̂0, i.e. the mean

of the boundary temperatures.

2.1. Rheological model and parameters

The fluid is assumed to be purely viscous and shear-thinning. The viscous stress-tensor

τ = µ (Γ) γ̇ with γ̇ = ∇u+ (∇u)
T

(2.6)
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the rate-of-strain tensor, of second invariant

Γ =
1

2
γ̇ij γ̇ij . (2.7)

We assume a Carreau-law fluid where the viscosity depends exponentially on tempera-

ture,

µ− µ∞

µ0 − µ∞
= exp

[

−b̂
(

T̂ − T̂0

)](

1 + λ̂2 Γ̂
)

nc−1

2

, (2.8)

with µ0 = µ̂0/ ˆ̄µ0 and µ∞ = µ̂∞/ ˆ̄µ0 the viscosities at low and high shear rate, b̂ the

thermodependency coefficient which measures the sensitivity of viscosity to variation in

temperature, nc < 1 the shear-thinning index and λ̂ the characteristic time of the fluid.

The characteristic shear rate for the onset of shear-thinning is determined by 1/λ̂. The

infinite shear viscosity, µ̂∞, is generally significantly smaller (103 to 104 times smaller)

than µ̂0, Bird et al. (1987); Tanner (2000). The ratio µ̂∞/µ̂0 will be thus neglected in the

following. The exponential model used for the viscosity thermodependency is referred in

the literature as Frank-Kamenetski model and can be derived from the Arrhenius law

by expanding the arguments of the exponential (in the Arrhenius law) in a Taylor series

about the reference temperature T̂0 (Bottaro et al. 1992).

The dimensionless effective viscosity is then

µ =
µ̂

ˆ̄µ0
= µb (z) exp (−cθ)

(

1 + λ2 Γ
)

nc−1

2 , (2.9)

where, µb(z) = exp (c (z − 1/2)) is the viscosity profile at quiescent state, c = b̂ δT̂ a

measure of the viscosity contrast and λ = λ̂/(d̂2/κ̂) a dimensionless characteristic time

of the fluid. The Newtonian behavior, µ̂ = µ̂0, is obtained by setting nc = 1 or λ̂ = 0.

The viscosity ratio across the fluid layer,

r =
µb(z = 1)

µb(z = 0)
with ln(r) = c = b̂ δT̂ , (2.10)
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depends on b̂ and δT̂ , but not on the temperature level. For a small amplitude disturbance,

the viscosity can be expanded about the hydrostatic solution,

µ = µb [1− cθ + ...]

[

1 +

(

nc − 1

2

)

λ2 Γ + ...

]

(2.11)

At the second order Taylor expansion of
(

1 + λ2Γ
)

nc−1

2 , a relevant rheological parameter,

i.e., the ‘degree of shear-thinning’ appears:

α =

∣

∣

∣

∣

dµ

dΓ

∣

∣

∣

∣

Γ=0

=
1− nc

2
λ2. (2.12)

2.2. Boundary conditions

For the velocity field, no-slip boundary conditions (NSBC) are considered. For the tem-

perature deviation, the thermal conductivity of the boundaries is assumed much larger

than that of the fluid, so that their temperature remains ‘fixed’. The boundary conditions

are then:

θ = u = v = w = 0 on z = 0, 1. (2.13)

2.3. Reduction: elimination of the pressure

Applying twice the curl to momentum equations (2.3) and using the continuity equation,

we get the following evolution equations for the velocity components w, u and v :

1

Pr

∂

∂t
∆w =

1

Pr

[

∂2

∂y∂z
N (v) +

∂2

∂x∂z
N (u)−∆HN (w)

]

+Ra∆Hθ +

µb∆
2w + 2

(

dµb

dz

)

∆

(

∂w

∂z

)

+
d2µb

dz2

(

∂2w

∂z2
−∆Hw

)

+ (2.14)

[

∆HNVz −
∂2

∂x∂z
NVx − ∂2

∂y∂z
NVy

]

,

1

Pr

∂

∂t

[

∆Hu+
∂2w

∂x∂z

]

=
1

Pr

[

∂2

∂x∂y
N (v) − ∂2

∂y2
N (u)

]

+ µb∆

[

∆Hu+
∂2w

∂x∂z

]

+

dµb

dz

∂

∂z

[

∆Hu+
∂2w

∂x∂z

]

− ∂

∂y
NVz (2.15)

1

Pr

∂

∂t

[

∆Hv +
∂2w

∂y∂z

]

=
1

Pr

[

∂2

∂x∂y
N (u)− ∂2

∂x2
N (v)

]

+ µb∆

[

∆Hv +
∂2w

∂y∂z

]

+

dµb

dz

∂

∂z

[

∆Hv +
∂2w

∂y∂z

]

+
∂

∂x
NVz , (2.16)
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where the “horizontal Laplacian” is defined by

∆H =
∂2

∂x2
+

∂2

∂y2
.

The nonlinear inertial terms N (·) and nonlinear viscous terms NVx are defined by

N (·) = (u ·∇) (·) ; NVx = [∇ · ((µ− µb) γ̇)] · ex , (2.17)

similarly for NVy and NVz . The boundary conditions are

θ = w =
∂w

∂z
= u = v = 0 at z = 0, 1 (2.18)

(2.19)

In a matrix notation, the system (2.14)-(2.16), (2.4) can be written formally as

M
∂Ψ

∂t
= LΨ+NI +NV , (2.20)

where Ψ = (w, u, v, θ)
t
, the operators M , L, NI and NV represent the weight matrix,

the linear operator, the nonlinear inertial operator and the nonlinear viscous operator

respectively. The nonlinear operators can also be decomposed as

NI = [NIw, NIu, NIv, NIθ]
t

and NV = [NVw, NVu, NVw, 0]
t
. (2.21)

3. Linear stability analysis

In the linear theory, u(u, v, w) and θ are assumed infinitesimal and the nonlinear

terms in (2.14)- (2.16) and (2.4) are neglected. As the horizontal extent is taken infinite,

the disturbance quantities w, u, v, θ are assumed periodic and of the form:

(w, u, v, θ) = (F11(z), U11(z), V11(z), G11(z)) f(x, y) exp (st) (3.1)
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with f(x, y) = exp (ikxx+ ikyy), k = (kx, ky, 0) the horizontal wavenumber and s = sr + isi

a complex number. This leads to the following eigenvalue problem

s Pr−1
(

D2 − k2
)

F11 = µb

(

D2 − k2
)2

F11 + 2Dµb

(

D2 − k2
)

DF11 + (3.2)

D2µb

(

D2 + k2
)

F11 − k2RaG11 ,

sG11 = F11 + (D2 − k2)G11, (3.3)

with D the derivative with respect to z and k the norm of the vector k. Note that at this

order, no non-Newtonian effects enter the problem and the thermodependency appears

through the viscosity profile of the base state µb(z). The boundary conditions are

F11 = DF11 = G11 = 0 at z = 0, 1 . (3.4)

The eigenvalue problem (3.2) and (3.3) where s is the eigenvalue and X11 = (F11, G11)

the eigenvector can be written fomally as

sM̃ ·X11 = L̃ ·X11 . (3.5)

It is easy to show that the principle of exchange of stability still holds, i.e. si = 0, when

the viscosity profile is not uniform. Since any multiple of the eigenvector X11 is also a

solution of (3.5) X11 has to be normalized. We have adopted the same normalization as

in Bouteraa et al. (2015):

G11(z = 1/2) = 1. (3.6)

A spectral Chebyshev method is used to determine the critical Rayleigh number and

the critical wave number (Bouteraa et al. 2015). The marginal stability curve Ra(k)

is obtained by the condition s(Ra, k) = 0. Using 20 Chebyshev polynomials, the first

eigenvalue, i.e. that for which the real part is the largest, is calculated with an accuracy

of 10−4. The minimum of the marginal stability curves gives the critical Rayleigh number

Rac and critical wave number kc. In the case of exponential fluids, figure 1 displays the
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(a) (b)

Figure 1. Exponential fluid. Critical Rayleigh number (a) and critical wavenumber (b) as

function of the viscosity ratio. (1) NSBC, (2) SFBC.

variation of the critical Rayleigh number for the onset of convection, Rac, as well as

the critical wave number, kc, as a function of the viscosity ratio r for no-slip boundary

conditions (NSBC) and stress-free boundary conditions (SFBC). This later was added

only as a validation test. Our results are in very good quantitative agreement with those

obtained by Stengel et al. (1982). As indicated by these authors, three different ranges

of the viscosity ratio can be distinguished: (i) At low viscosity ratio, 0 6 r 6 1.5, Rac

and kc are almost constant; (ii) at moderate viscosity ratio, 1.5 6 r 6 8, Rac increases

with increasing r and kc is nearly constant or decreases slightly for SFBC. The viscosity

variation in the moderate viscosity ratio stabilizes the conductive state; (iii) for large

viscosity ratio, Rac decreases with increasing r and kc increases rapidly. In this regime,

the convection is governed by a sublayer that is more unstable than the full layer (Stengel

et al. 1982).

As another validation of the linear stability analysis, we have also reproduced the results

obtained by Busse & Frick (1985) assuming a linear dependency of the viscosity with

temperature. Figure 2 displays, for an exponential fluid, the profiles of the vertical
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Figure 2. Exponential fluid. (a) Vertical velocity eigenfunction and (b) temperature pertur-

bation at the first order as function of the depth z for different values of the thermodependency

coefficient c. (1) c = 0; (2) c = 1; (3) c = 2; (4) c = 3...increasing c by step 1 until curve (8)

c = 7.

velocity eigenfunction and the temperature perturbation at the first order for different

values of the thermodependency coefficient. With increasing the viscosity contrast c, the

maximum of F11(z) takes place near the bottom plate where the fluid is less viscous,

i.e., the center of the convection rolls is shifted towards the bottom plate, and the fluid

motion is significantly reduced near the top wall. The shear rate increases near the lower

boundary and decreases near the upper. The viscosity contrast between the top and

the lower boundaries could be reinforced by the shear-thinning effects. Similarly, the

temperature perturbation becomes more confined near the heated wall. Of course, when

c = 0, the eigenfunctions, F11(z) and G11(z), are symmetric with respect to the midplane

of the fluid layer.

4. Amplitude equations in a hexagonal lattice

The critical Rayleigh number for the onset of convection determined from the linear

stability analysis depends only on the norm kc of the wavevector. Because of the isotropy

of the extended horizontal plane, the direction of the wavevector is arbitrary. In addi-

tion any linear combination of modes Ap exp (ikp · r) (F11(z), G11(z)) where r = (x, y),
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n3
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(a) (b) (c)

Figure 3. (a) Hexagonal convection with flow up in the center. (b) Basic wave vectors of

hexagonal pattern. (c) Unit vectors: ni parallel and τi perpendicular to the wave vector.

kp = (kpx, kpy), |kp| = kc and Ap’s are constant coefficients is a solution of the lin-

ear problem, i.e. there is also a pattern degeneracy. We consider the case where the

wavevectors lie on a hexagonal lattice

(w, θ) =

3
∑

p=1

Ap (F11, G11) exp (ikp · r) + c.c.+ h.o.t. , (4.1)

where, “c.c.” denotes the complex conjugate of the prior expression and “h.o.t.” means

“higher order terms”. The hexagon patterns (see Fig. 3) are made of three pairs of

wavevectors at 2π/3 angles apart: k1 = kcex, k2 = kc

(

−ex/2 +
(√

3/2
)

ey

)

and k3 =

kc

(

−ex/2−
(√

3/2
)

ey

)

. The objective is to determine the spatio-temporal evolution

of the amplitude Ap, above threshold, due to different nonlinearities of the problem.

4.1. Multiple scales method

As the Rayleigh number is increased above the onset Rac, the growth-rate of the pertur-

bation is positive for any wavenumber within a band
√
ǫ around the critical wavenumber,

where ǫ = (Ra− Rac) /Rac is the distance from the onset. Indeed, Taylor expansion of

the dispersion curve near its maximum shows that s ∝ ǫ and (k − kc) ∝
√
ǫ. For ǫ > 0,

emergent patterns are described by an infinite sum of unstable modes (in a continuous
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band) of the form exp

(

ǫt

τ0

)

exp (ikcx) exp

(

i

√
ǫx

ξ0

)

. Here, τ0 is the characteristic time

for the instability to grow and ξ0 is the coherence length. For small ǫ, we can separate the

dynamics into fast eigenmodes and slow modulation of the form exp

(

ǫ t

τ0

)

exp

(

i
√
ǫx

ξ0

)

.

A similar reasoning can be done for the y-direction.

Let us denote δ =
√
ǫ. The multiple-scales approach is used to obtain the amplitude

equation, which describes the slow temporal and spatial variation of the variables. The

slow scales

X = δx , Y = δy and T = δ2 t (4.2)

are treated as independent of the fast scales x, y and t. The derivatives with respect to

the new variables are

∂

∂t
−→ ∂

∂t
+ δ2

∂

∂T
,

∂

∂x
−→ ∂

∂x
+ δ

∂

∂X
,

∂

∂y
−→ ∂

∂y
+ δ

∂

∂Y
,

∂

∂z
−→ ∂

∂z
.(4.3)

The fast spatial variables vary on the order of a typical wavelength. The slow variables

describe the temporal and the spatial modulations of these fast variables. Furthermore,

as the marginal mode is stationary, then

∂

∂t
−→ δ2

∂

∂T
. (4.4)

The solution of the nonlinear problem in the neighborhood of the critical conditions,

corresponding to the onset of convection is developed with respect to the parameter δ by

Ψ = δΨ(1) + δ2Ψ(2) + δ3Ψ(3) +O(δ4) , (4.5)

Ra = Rac + δRa(1) + δ2Ra(2) +O(δ3) . (4.6)
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The Taylor expansion is also applied to the operators

M = M (0) + δM (1) +O
(

δ2
)

, (4.7)

L = L(0) + δL(1) + δ2L(2) +O
(

δ3
)

, (4.8)

NI = δ2NI(2) + δ3NI(3) +O
(

δ4
)

, (4.9)

NV = δ2NV (2) + δ3NV (3) +O
(

δ4
)

. (4.10)

The explicit expressions ofM , L, NI and their sub-scales are given in Appendices A and

B. The expressions of NV and its sub-scales are too lengthy, and thus are not shown.

4.2. Derivation of the Ginzburg-Landau equation

Taking (4.3)and (4.4) into account, the expansion of variables (4.5), (4.6) and operators

(4.7)-(4.10) are substituted formally into the nonlinear system of equations (2.4), (2.14)-

(2.16). After ordering according to the power of δ, a sequence of systems of equations is

obtained. In the following, the first three orders are determined.

4.2.1. Solution at order δ

At the first order of δ, the linearized problem is obtained

L(0)Ψ(1) = 0 . (4.11)

The system (4.11) corresponds to the linear problem discussed in Sec.3. However, now

Ψ(1) is also a function of the slow variables X, Y and T . These variables do not appear

in the linear stability analysis section. For hexagon patterns, the first order solution

Ψ(1) =
[

w(1), u(1), v(1), θ(1)
]t

is

w(1) = F11(z) [A1 exp (ik1 · r) + A2 exp (ik2 · r) +A3 exp (ik3 · r)] + c.c. , (4.12)

θ(1) = G11(z) [A1 exp (ik1 · r) +A2 exp (ik2 · r) +A3 exp (ik3 · r)] + c.c. , (4.13)

u
(1)
H =

DF11

k2
∇Hx [A1 exp (ik1 · r) +A2 exp (ik2 · r) +A3 exp (ik3 · r)] + c.c.(4.14)
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where ∇Hx denotes the horizontal gradient for the fast variables, uH = (u, v) the hori-

zontal velocity components, and Ap the amplitude of the perturbation:

Ap = Ap (X,Y, T ) p = 1, 2, 3 . (4.15)

4.2.2. Solution at order δ2

At the next order δ2, we have

L(0)Ψ(2) = −L(1)Ψ(1) −NI(2) −NV (2). (4.16)

The forcing terms in the right-hand side of equation (4.16) are computed by introducing

the first order solution (4.12)-(4.14). It is worthy to note that at the second order, the

nonlinear viscous term [NV ]
(2)

is proportional to c = ln(r). Indeed [∇ · (µ− µb) γ̇]

reduces at the second order to [−c∇ · (µb θ γ̇)]. The forcing terms in the RHS of (4.16)

can be separated in four parts:

(a) Terms proportional to |Ap|2 (p = 1, 2, 3), with the wavenumber modulus |k| = 0,

due to the interaction of the eigenmode with its complex conjugate.

(b) Terms proportional to A2
p exp(2ikp · r), |k| = 2kc, due to the interaction of the

eigenmode with itself.

(c) Terms proportional to ApA
∗
q exp (i (kp − kq) · r), |k| =

√
3kc .

(d) Resonant forcing with wavevector kℓ (ℓ = 1, 2, 3 and |kℓ| = kc).

Four separate sets of non homogeneous differential equations are then derived for each

component. They are given in Appendix B. For the fourth component, the right-hand

side of the non-homogeneous differential contains secular terms. A solvability condition,

known as the Fredholm alternative should then be applied for a solution to exist, i.e. the

left hand side of equation (4.16) has to be orthogonal to the null-space of the adjoint
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operator given in Appendix C. We obtain

A∗
2A

∗
3

∫ 1

0

Gad (2F11DG11 +G11DF11) dz + (4.17)

A∗
2A

∗
3

1

Pr

∫ 1

0

Fad

(

2DF11D
2F11 + F11D

3F11 − 3k2cF11DF11dz
)

−

A∗
2A

∗
3

∫ 1

0

Fad [NVw ]
(2)
A∗

2
A∗

3

dz −

2 i (k1 ·∇HX)A1

[

2

∫ 1

0

µb

(

D2F11 − k2cF11

)

Fad dz + 2

∫ 1

0

dµb

dz

dF11

dz
Fad dz

]

−

2 i (k1 ·∇HX)A1

[

−
∫ 1

0

d2µb

dz2
F11Fad dz +Rac

∫ 1

0

G11Fad dz

]

−

k2cRa(1)A1

∫ 1

0

G11Fad dz = 0 .

Two other similar relations are obtained by circular permutation of the indices. In the

above equations, ∇HX denotes the horizontal gradient for the slow variables. The inte-

grals in (4.17) are evaluated numerically by means of the Clenshaw and Curtis method.

The calculation leads to a result of the form

Ra(1)A1 + bA∗
2A

∗
3 = 0 . (4.18)

Again, two other similar relations are obtained by circular permutation. These expressions

allow to determine the solution at the second order, Ψ(2) =
[

w(2), u(2), v(2), θ(2)
]t

which

can be written as the sum of four terms. The influence of nonlinear viscous terms pro-

portional to c = ln(r) is clearly highlighted.

The first termΨ
(2)
1 proportional to |Ap|2 correspond to the modification of the base state.

It is shown that u
(2)
1 = 0, i.e. there is no velocity for the zero mode. The correction at the

second order of the conductive temperature profile θ
(2)
1 = T1(z)

[

|A1|2 + |A2|2 + |A3|2
]

is displayed in figure 4. The warm upflow and cold downflow fluid tend to reduce the

vertical temperature gradient. This effect is more significant with increasing the viscosity

ratio.

The second term Ψ
(2)
2 proportional to A2

p exp (2ikp · r) is the first harmonic of the
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Figure 4. Modification of the conductive temperature profile at Pr = 50 and different values

of the viscosity ratio : (1) r = 1; (2) r = 2 and (3) r = 3.

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2
(1)

(2)
(3)

(a) (b)

Figure 5. First harmonic of the fundamental at Pr = 50 and different values of the viscosity

ratio : (1) r = 1; (2) r = 2 and (3) r = 3.

fundamental. Hence, we have
[

w
(2)
2 , θ

(2)
2

]

= [W2(z), T2(z)]
[

A2
1E

2
1 +A2

2E
2
2 +A2

3E
2
3

]

, with

Ep = exp (ikp · r). The influence of the viscosity ratio r on the profils W2(z) and T2(z)

is shown in figure 5.

The third term Ψ
(2)
3 proportional to ApA

∗
qEpE

∗
q results from the quadratic interac-

tion between modes with wavevector kp and (−kq) with p 6= q. We have
[

w
(2)
3 , θ

(2)
3

]

=

[W3(z), T3(z)] [A1A
∗
2E1E

∗
2 +A1A

∗
3E1E

∗
3 +A2A

∗
3E2E

∗
3 ]. The variations of W3 and T3 are

displayed in figure 6. The amplitude of these modes increases with r and are more im-

portant than that of the first harmonic.
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Figure 6. Modes factor of ApA
∗
q exp (i (kp − kq)) at Pr = 50 and different values of r:

(1) r = 1; (2) r = 2 and (3) r = 3.
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Figure 7. Modes factor of exp (ikp · r) at Pr = 50 and different values of r: (1) r = 1; (2)

r = 2 and (3) r = 3.

The fourth term (resonant term) proportional to exp(ikp · r) is given by
(

w
(2)
4 , θ

(2)
4

)

=

(W4, T4) (E1 + E2 + E3)+c.c. Variations of W4 and T4 for different values of r are shown

in figure 7.

4.3. Solution at order δ3

At this order, we obtain the equation for the evaluation of Ψ(3):

L(0)Ψ(3) = M (0) ∂Ψ
(1)

∂T
−L(1)Ψ(2) −L(2)Ψ(1) −NI(3) −NV (3) (4.19)

We need not to solve equation (4.19) but only to write the solvability condition to get

an equation for Ra(2). To obtain the amplitude equations at cubic order, we use equation
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(4.6) combined with ǫ = (Ra − Rac) / Rac, the departure from the linear threshold.

We have

ǫA1 =
δ

Rac
Ra(1)A1 +

δ2

Rac
Ra(2)A1. (4.20)

We substitute in (4.20) Ra(1)A1 and Ra(2)A1 by their expressions derived from the

solvability conditions at orders δ2 and δ3, i.e. equations (4.18) and (D7) in Appendix

D respectively. Finally, returning to the fast variable δAj (X,Y, T ) = A′
j(x, y, t),

∂

∂X
=

1

δ

∂

∂x
, ..., we obtain

∂A1

∂t
=

ǫ

τ0
A1 +

ξ20
τ0

(k1 ·∇Hx)
2
A1 + ζA∗

2A
∗
3 − (4.21)

g1 |A1|2 A1 − g2
(

|A2|2 + |A3|2
)

A1 +

iβ1 [A
∗
2 (k3 ·∇Hx)A

∗
3 +A∗

3 (k2 ·∇Hx)A
∗
2] +

iβ2 [A
∗
2 (k2 ·∇Hx)A

∗
3 +A∗

3 (k3 ·∇Hx)A
∗
2] ,

where, ∇Hx is the horizontal gradient for the fast variables. Companion equations for A2

and A3 are obtained by subindex permutation. In the above equations, we have dropped

the prime in A′
j and we expect no confusion to the reader.

Following Echebarŕıa & Pérez-Garćıa (1998), it is useful to express the derivatives in equa-

tion (4.21) in terms of unitary vectors of the corresponding mode: n2 = −1

2
n3 +

√
3

2
τ3

in the term A∗
2 (k2 ·∇Hx)A

∗
3 and n3 = −1

2
n2 −

√
3

2
τ2 in the term A∗

3 (k3 ·∇Hx)A
∗
2,

where ni is the unitary vector in the direction of ki and τi orthogonal to ni. One obtains

∂A1

∂t
=

ǫ

τ0
A1 +

ξ20
τ0

(n1 ·∇Hx)
2 A1 + ζA∗

2A
∗
3 − (4.22)

g1 |A1|2 A1 − g2
(

|A2|2 + |A3|2
)

A1 +

iα1 [A
∗
2 (n3 ·∇Hx)A

∗
3 +A∗

3 (n2 ·∇Hx)A
∗
2] +

iα2 [A
∗
2 (τ3 ·∇Hx)A

∗
3 +A∗

3 (τ2 ·∇Hx)A
∗
2] ,
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As indicated by (Bragard & Velarde 1998; Brand 1989), there is no Lyapunov functional

for Eqs (4.22), opening the possibility for complex spatio-temporel behavior and it is

possible, for some values of α1 and α2, that the steady state cannot be reached. In

contrast, when α1 and α2 vanish, a Lyapunov functional can be written down in the

form

∂Aj

∂t
= − ∂F

∂A∗
j

(4.23)

with

F =

∫∫ 3
∑

j=1

[

− ǫ

τ0
|Aj |2 +

ξ20
τ0

|(nj ·∇Hx)Aj |2 +
g1
2
|Aj |4

]

dx dy (4.24)

+ g2

[

|A1|2 |A2|2 + |A1|2 |A3|2 + |A2|2 |A3|2
]

− ζ (A1A2A3 + c.c.)

This functional F guarantees that only stationary patterns (given in the following section)

are possible as t → ∞.

The characteristic time for the instability to grow τ0 and the coherence length ξ0 are

shown in figure 8 as a function of r and for different values of Pr. As it can be observed,

τ0 decreases with increasing Prandtl number. Nevertheless, there is no significant effect

from Pr = 50. Furthermore, the viscosity ratio r has pratically no influence on τ0 at least

for r ∈ [1, 3]. Concerning the coherence length ξ0, the curves determined at different

values of Pr collapse onto a master curve where ξ0 decreases slightly with increasing r.

The coefficient ζ arises from non Oberbeck-Boussinesq effects. It increases with increasing

the viscosity ratio, since ζ ∝ c = ln(r), and with increasing the Prandtl number as it

is shown in figure 9. However, it is observed that from Pr = 50, there is no significant

effect of Pr. The coefficient g1 refers to the self-saturation coefficient and g2 the cross-

saturation coefficient. It can be shown straightforwardly that g1 and g2 can be written

as the sum of two contributions. The first one (gN1 , gN2 ) similar to that obtained for a

Newtonian fluid arises from the nonlinear inertial terms and the thermodependency of
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the viscosity. The second contribution (gV1 , gV2 ) arises from the nonlinear variation of the

viscosity with the shear-rate:

g1 = gN1 + gV1 with gV1 = −αgNN
1 , (4.25)

and similarly for g2. Variations of g
N
1 , gNN

1 , gN2 and gNN
2 as a function of the viscosity

ratio for different values of Pr are displayed in figure 10. The coefficients g1 and g2

increase significantly with Prandtl number up to Pr = 50, whereas their dependency on

r is quiet modest. The coefficients α1 and α2 are real. They are displayed in figure 11. The

term with α1 accounts for distortions in the directions of rolls and therefore corresponds

physically to wavenumber dilatation. The coefficient α1 is positive and takes values of the

same order as ζ. Note also that α1 vanishes when r = 1, and increases with increasing r.

The terms with α2 account for distortions in the hexagonal form. The coefficient α2, is

negative and smaller (in absolute value) than α1. Following Echebarria & Perez-Garcia

(2001), a sketch of their action is drawn in Fig. 12.

For the set of coefficients discussed above, the following correlations can be used:

τ0 = 0.0509 + 0.026Pr−1 ; ξ0 = 0.385− 3.57× 10−4r − 1.68× 10−4r2 , (4.26)

ζ =
(

9.90− 4.72Pr−1 + 1.38Pr−2
)

log(r) ,

gN1 = 254.3
(

1.0037− 0.4722Pr−1 + 0.1392Pr−2
) (

1.0067− 0.0037r− 0.002r2
)

,

gNN
1 = 11.86 105

(

1.0038− 0.4808Pr−1 + 0.1422Pr−2
) (

0.9733 + 0.0128r+ 0.0094 r2
)

,

gN2 = 375.9
(

1.0029− 0.3545Pr−1 + 0.1020Pr−2
) (

1.0091− 0.0047 r− 0.0029 r2
)

,

gNN
2 = 1.343 106

(

1− 0.476Pr−1 + 0.146Pr−2
) (

0.9756 + 0.0117r+ 0.0086r2
)

,

α1 = 12.5
(

1− 0.504Pr−1 + 0.148Pr−2
)

log(r) ,

α2 = −2.1
(

1.003− 0.238Pr−1 + 0.069Pr−2
)

log(r) .
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Figure 8. Variation of the characteristic time τ0 (a) and the coherence length ξ0 (b) as a

function of the viscosities ratio, for different values of Prandtl number. (1) Pr = 50; (2) Pr = 5;

(3) Pr = 2; (4) Pr = 1.

Figure 9. Variation of ζ with the ratio viscosity r for different values of the Prandtl number.

(1) Pr = 50; (2) Pr = 5; (3) Pr = 2; (4) Pr = 1.

5. Competition between rolls and squares

It was shown theoretically by Busse & Frick (1985) and Jenkins (1987), and experimen-

tally by White (1988) that at low values of the viscosity ratio r, rolls are the preferred

pattern of convection, whereas squares are the preferred for larger values of r. For a

Newtonian fluid with an exponential viscosity function, Jenkins (1987) found that the

changeover to squares occurs at rℓ ≈ 3.2. In this section, we investigate the influence of

shear-thinning effects on this limit value rℓ. Here, we consider only competition between
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Figure 10. (a) “Newtonian” and (b) non-Newtonian contribution to the first Landau coefficient

and to the cross-saturation coefficient (c) and (d) respectively as a function of r for different

values of Pr. (1) Pr = 50; (2) Pr = 5; (3) Pr = 2; (4) Pr = 1.

(a) (b)

Figure 11. Coefficients α1 and α2 as a function of r for different values of Pr. (1) Pr = 50; (2)

Pr = 5; (3) Pr = 2; (4) Pr = 1.
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Figure 12. (a) dilatation and (b) distortion of hexagonal pattern (Echebarria & Perez-Garcia

2001).

perfect rolls and squares without spatial modulation. In a square lattice, the solution at

order δ is

w(1) = F11(z) [A1 exp (ik1 · r) +A2 exp (ik2 · r)] + c.c. , (5.1)

θ(1) = G11(z) [A1 exp (ik1 · r) + A2 exp (ik2 · r)] + c.c. , (5.2)

The derivation of amplitude equations without spatial terms, for the two modes A1 and

A2 forming an angle of 90o follows the same procedure as in §4. They are given by

dA1

dt
= sA1 −

[

g1 |A1|2 + g2s |A2|2
]

A1 + ... (5.3)

dA2

dt
= sA2 −

[

g1 |A2|2 + g2s |A1|2
]

A2 + ... (5.4)

Note that Eqs (5.3), (5.4) can be obtained using symmetries introduced by the square

lattice: symmetries of square D4 in addition to the two-torus T2 of translation in the two

horizontal directions (Golubitsky et al. 1984; McKenzie 1988).

A linear stability analysis of stationary rolls and squares, i.e. stationary solutions of Eqs

(5.3), (5.4) is performed. It is shown that squares are stable when g2s < g1 i.e. when the

cross-coupling between two orthogonal modes that describe the square pattern is weak

enough. The numerical results are displayed in figure 13 where we have represented the

variation of rℓ as a function of the shear-thinning degree α at Pr = 10. On the left of the
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Figure 13. Domains of stability of rolls and squares in the plane (α, r).

curve, rolls are stable and on the right of the curve, squares are stable. One note that rℓ

increases with increasing shear-thinning effects.

6. Amplitude instabilities

In this section, we consider homogeneous and stationary solutions of equations (4.22)

by including slightly off-critical wave number in the amplitude (Ap = Ap exp(iqp · r)).

We discuss their domain of existence and their stability with respect to homogeneous

perturbations (amplitude instabilities).

(i) Roll solution with a wavenumber slightly off-critical k = kc + q. It is given by

A1 = R0 exp (iqx) , A2 = A3 = 0, and any circular permutation with R0 =

√

ǫ − ξ20q
2

τ0g1
.

A linear stability analysis of this solution with respect to uniform perturbations A1 =

(R0 + r1) exp (iqx1), A2 = r2 exp (iqx2) and A3 = r3 exp (iqx3), where xp = np · r with

p = 1, 2, 3, shows that the roll solution is stable when g2 > g1 and

ǫ > ǫr(q) =
τ0g1 (ζ + 2α1q)

2

(g2 − g1)
2 + ξ20q

2 . (6.1)
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(ii) Hexagon solutions: three sets of rolls of equal amplitude, Ap = H0 exp (i q xp) with

H0 =
(ζ + 2α1q) +

√

(ζ + 2α1q)
2 + 4 (g1 + 2g2) (ǫ− ξ20q

2)/τ0

2 (g1 + 2g2)
, (6.2)

called up-hexagons, that correspond to up flow in the center, and

H0 =
−(ζ + 2α1q) +

√

(ζ + 2α1q)2 + 4(ǫ− ξ20q
2) (g1 + 2g2) /τ0

2 (g1 + 2g2)
, (6.3)

called down hexagons, that correspond to down flow motion in the center.

Solutions called up-hexagons, exist for

ǫ > ǫa = − (ζ + 2α1q)
2 τ0

4 (g1 + 2g2)
+ ξ20q

2, (6.4)

and are linearly stable for ǫa < ǫ < ǫh, with

ǫh =
τ0(ζ + 2α1q)

2 (2g1 + g2)

(g1 − g2)
2 + ξ20q

2 (6.5)

Note that ǫa and ǫh do not contain α2 since only perfect hexagons are considered.

Solutions called down hexagons, exist for ǫ > ξ20q
2 and are linearly unstable.

(iii) The “mixed states” given by

A1 =
ζ − 2α1q

g2− g1
, A2 = A3 =

√

(ǫ− ξ20q
2)/τ0 − g1A2

1

g1 + g2
(6.6)

and any circulation permutation exist for ǫ >
(ζ + 2α1q)

2g1
(g1 − g2)2

+ ξ20τ0 and are linearly un-

stable with respect to rolls or up-hexagons.

An example of amplitude stability curves in (ǫ, q) space and the associated bifurcation

diagram for q = 0 is given in figures 14 and 15. Hexagons bifurcate transcritically from

the conductive state where they are unstable. Both hexagons and the conductive state

are stable in the range ǫa 6 ǫ 6 0 and both hexagons and rolls are stable in the range

ǫr 6 ǫ 6 ǫh. In this range, rolls and hexagons are linked via a branch of mixed modes
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Figure 14. Amplitude stability curves in (ǫ, q) plane, at r = 2.5, Pr = 50 and two different

values of α: (a) α = 0 Newtonian fluid, (b) α = 10−4 Carreau fluid.
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Figure 15. Bifurcation diagram for hexagons in the case where g2 > g1 with the parameters

r = 2.5, q = 0 and α = 10−4. The amplitude |A1| is plotted against the distance to the threshold

ǫ, for the roll-solution branch (labeled R), for the mixed mode branch (labeled M) and for the

two hexagon-solution branches, up- and down-hexagons. Solid lines indicate stable solutions and

dashed lines represent unstable solutions.

which are always unstable.

Variations of ǫa, ǫr, ǫh and (ǫh − ǫr) as a function of the viscosities ratio, r for different

values of the shear-thinning degree are depicted in figure 16. Overall, the thermodepen-

dency of the viscosity favors convection in form of hexagons and their stability whereas

shear-thinning effects favor convection in form of rolls and their stability. For instance, in
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figure 16(c), the domain of stability of hexagons increases with increasing r and decreases

with increasing shear-thinning effects. In the same way, in figure 16(d), the domain of

bistability rolls and hexagons shrinks with increasing α, and increases with increasing

the viscosities ratio, i.e. the thermodependency effect. One can also note in figure 16(a)

that |ǫa| increases with increasing α as shear-thinning effects favor a subcritical bifurca-

tion (Bouteraa et al. 2015). The correlations proposed by Busse (1967) for a Newtonian

fluid assuming a linear variation of the viscosity with temperature (see Appendix E) are

displayed for comparison. As it can be observed, the difference between the linear and

the exponential models increases with increasing r.

7. Phase instabilities

In this section, we consider perturbations involving spatial modulations over dis-

tances much larger than the basic wavelength. The amplitudes of a slightly distorted

up-hexagons can be written as

Ap = (H0 + rp) exp [i (qxp + φp)] , p = 1, 2, 3 , (7.1)

where xp = np · r. Here, Ap represents the amplitude of a slightly distorted hexagonal

pattern, |rp(x1, x2, x3, t)| << 1 and |φp(x1, x2, x3, t)| << 1 are the amplitude and the

phase of the perturbation respectively. Substitution of (7.1) into (4.22) and linearizing

with respect to rp and φp leads to the following set of equations

∂rp
∂t

= − [2g1H0 + (ζ + 2α1q)]H0rp +
ξ20
τ0

∂2rp
∂x2

p

+ (7.2)

[(ζ + 2α1q)− 2g2H0]H0 (rj + rk)− 2qH0
ξ20
τ0

∂φp

∂xp
+

(

α1 +
α2√
3

)

H2
0

(

∂φj

∂xj
+

∂φk

∂xk

)

+
2α2√
3
H2

0

(

∂φj

∂xk
+

∂φk

∂xj

)
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Figure 16. Variations of ǫa, ǫr, ǫh and (ǫh − ǫr) versus r for three values of the shear-thinning

degree α. The Prandtl number is fixed, Pr = 50. (1) Newtonian fluid, α = 0; (2) Carreau

fluid with α = 0.5 10−4; (3) Carreau fluid with α = 10−4. The dashed line is the correlation

proposed par Busse (1967) for a Newtonian fluid, assuming a linear variation of the viscosity

with temperature.

∂φp

∂t
= − (ζ + 2α1q)H0 (φp + φj + φk) +

ξ20
τ0

∂2φp

∂x2
p

+
2q

H0

ξ20
τ0

∂rp
∂xp

+ (7.3)

(

α1 +
α2√
3

)(

∂rj
∂xj

+
∂rk
∂xk

)

+
2α2√
3

(

∂rj
∂xk

+
∂rk
∂xj

)

.

In the long wavelength limit, the perturbations rp in the amplitudes follow adiabati-

cally the phase dynamics and are eliminated with the total phase Φ = φ1 + φ2 + φ3.

As a result, only two phases dominate the dynamics of the modulated hexagonal pat-

tern. Instead of using φ2 and φ3 it is convenient to consider φx = −(φ2 + φ3) and

φy =
1√
3
(φ2 + φ3), which are related to the two translational symmetries in the x and

y directions respectively (Echebarria & Perez-Garcia 2001; Echebarŕıa & Pérez-Garćıa
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1998). The resulting equations can then be written as a linear diffusion equation of the

phase vector φ = (φx, φy),

∂φ

∂t
= D⊥∇

2φ+
(

D‖ −D⊥

)

∇ (∇ · φ) , (7.4)

where D⊥ and D‖ are the transverse and longitudinal phase diffusion coefficients, given

by

D⊥ =
1

4

ξ20
τ0

− q2

2ũ

(

ξ20
τ0

)2

+
H2

0

8ũ

(

α1 −
√
3α2

)2

(7.5)

D‖ =
3

4

ξ20
τ0

− q2 (4ũ+ ṽ)

2ũṽ

(

ξ20
τ0

)2

+
H2

0

8ũ

(

α1 −
√
3α2

)2

− (7.6)

H2
0 α1

ṽ

(

α1 +
√
3α2

)

+
H0q

ṽ

ξ20
τ0

(

3α1 +
√
3α2

)

,

with

ũ = H2
0 (g1 − g2) + (ζ + 2α1q)H0 , (7.7)

ṽ = 2H2
0 (g1 + 2g2)− (ζ + 2α1q)H0 . (7.8)

Note that both ũ and ṽ have to be positive for hexagons to be stable against amplitude

instabilities. The phase equation (7.4) allows to split the phase vector φ into a longitudi-

nal φℓ and a transverse φt modes, φ = φℓ +φt, that satisfy ∇×φℓ = 0 and ∇ ·φt = 0

respectively. This leads to the uncoupled phase diffusion equations (Echebarria & Perez-

Garcia 2001; Echebarŕıa & Pérez-Garćıa 1998; Pena & Perez-Garcia 2001; Lauzeral et al.

1993)

∂φℓ

∂t
= D‖∇

2φℓ ,
∂φt

∂t
= D⊥∇

2φt . (7.9)

The normal modes φt and φℓ correspond to Eckhaus rectangular and rhomboidal per-

turbations, respectively. The hexagons are stable to phase modes in the domain defined

by D‖ > 0 and D⊥ > 0. In the figure 17, we show the phase stability diagrams for a

Newtonian fluid and two different values of the viscosities ratio r. Curves (1) and (2)

correspond to D⊥ = 0 and D‖ = 0, respectively. Curve (4) is the upper stability am-
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plitude where a bifurcation to rolls occurs. The minimum of the curve (4) is located in

the region q < 0. Below curve (3), no hexagons exist. Hexagons are stable in the shaded

region. For viscosities ratio 1 6 r 6 2, the region of stability to amplitude and phase

modes is closed. Whereas for larger values of r, the stability domain is open. Note also

that the domain of stability is decentered towards the right. It is delimited mainly by

the stability amplitude curves and the transverse phase instability boundary. Neverthe-

less, the numerical results show that close to the threshold, the longitudinal mode is

the relevant destabilizing mode. The region where the longitudinal mode destabilizes the

pattern increases slightly with increasing r. Qualitatively, a similar description of the

phase stability diagram can be done for a Carreau fluid with low or moderate values of

r as it is shown in figure 18. Once again, the region, the region where the longitudinal

mode is the relevant destabilizing mode remains small and close to the onset. A summary

of the results relating to the influence of r and α on the stability domain of hexagons

is given by figure 19(a). With increasing shear-thinning effects, the stability domain be-

comes more decentered towards the right. Concerning the influence of r, as discussed

before, the thermodependency of the fluid viscosity increases significantly the stability

domain of hexagons. For comparison, we have represented in figure 19(b), the stability

domain of hexagons when α1 = α2 = 0. This domain is symmetrical with respect to the

vertical axis.

8. Numerical solutions of amplitude equations

8.1. Numerical simulation

For numerical integration of the Ginzburg-Landau equations (4.22), we employed a

Fourier pseudo-spectral method on a square mesh with periodic boundary conditions.

Calculations are carried out in spectral space (wavenumber) with the exception of evalu-
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(a) (b)

Figure 17. Hexagon stability diagram for a Newtonian fluid at Pr = 50 and two different

values of the viscosities ratio: (a) r = 1.5 and (b) r = 2.5. Hexagons are stable inside the gray

area. Curve (1): D⊥ = 0, curve (2) D‖ = 0, curve (3) bifurcation from the conductive state to

convection with hexagons, curve(4) bifurcation from hexagons to rolls.

(a) (b)

Figure 18. Hexagon stability diagram for a shear-thinning fluid with α = 10−4 at Pr = 50 and

two different values of the viscosities ratio: (a) r = 1.5 and (b) r = 2.5. Hexagons are stable

inside the gray area.

ating nonlinear and conjugate terms which are performed in physical space. The square

domain [−L/2, L/2]× [−L/2, L/2] is discretized into N×N uniformly spaced grid points

Mℓ,p with xℓ = −L/2 + ℓ∆x, (similarly for yp), ∆x = ∆y = L/N and N even. For

the temporal discretization, the time domain [0, tmax] is discretized with equal time step

of width ∆ t as tm = m∆ t, m = 0, 1, 2... Exponential Time Differencing method of

second order (ETD2) proposed by Cox & Matthews (2002) is used. The pseudospectral
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(a) (b)

Figure 19. Influence of shear-thinning effects and viscosities ratio on the hexagons stability

diagram at Pr = 50. (a) spatial nonvariational terms in equation (4.22) are taken into account,

(b) α1 = α2 = 0. Curves (1), (4) and (7) correspond to a Newtonian fluid and three different

values of r: 2.5, 2.0 1.5 respectively. Curves (2), (5) and (8) correspond to a shear-thinning fluid

with α = 5× 10−5. Curves (3), (6) and (9) correspond to a shear-thinning fluid with α = 10−4.

method is implemented in Matlab. Finally, to check the convergence, several simulations

are carried out with increasing numbers of grid points and refining the time step. For the

results presented in this section, the numerical resolution is 512× 512 in a square of size

L = 5× 2π/q and the time step is fixed at 0.01 .

8.2. Numerical results

Numerical simulations were carried out in order to illustrate the nonlinear evolution of

the transverse phase instability for a hexagonal pattern in both cases: (i) low values of

ǫ, where practically only hexagons are stable for q > 0 and (ii) larger ǫ. We discuss the

impact of the nonvariational quadratic spatial terms on the competition between rolls

and hexagons. Further numerical simulations were done to illustrate the transition rolls-

hexagons when ǫ < ǫr. In the following, the results are presented for three values of the

parameters (ǫ, q), represented by the symbol (+) in figure 20.



Rayleigh-Bénard convection for shear-thinning fluids 41

Figure 20. Hexagon stability diagram for a shear-thinning fluid with α = 10−4, P r = 50 and

r = 2.5. The curve ǫr(q) is a boundary above which rolls are stable with respect to homogeneous

perturbations. (+) Points where numerical simulations were performed.

8.2.1. Nonlinear evolution of the transverse instability at low ǫ

The initial condition is a perfect hexagonal pattern with a wavenumber k = kc + 0.45

at ǫ = 0.1. The point (P1), ǫ = 0.1 and q = 0.45, in figure 20 is outside the domain where

hexagons are stable to phase modes. The other parameters are shear-thinning degree

α = 10−4, viscosity ratio r = 2.5 and Prandtl number Pr = 50. At t = 0, the hexagonal

pattern is slightly disturbed. Figure 21 displays the time evolution of the vertical velocity

w =
3

∑

i=1

Ai(x, y, t) exp (ikc,i · r)+c.c.. It shows how the transverse phase instability leads

to stable hexagonal pattern after passing through intermediate stages. The breakdown

of the initial pattern takes place through the creation of penta-hepta defects, PHDs (two

hexagons are replaced by a pentagon and a heptagon). At t = 10 most of the PHDs

are aggregated along lines perpendicular to wave-vectors. Their number decreases with

time. At t = 1000, the number of PHDs is quite limited and they are circled in figure

21(c). A zoom is given in figure 22(a). The PHDs move and eventually annihilate or

disappear at the boundaries. Figure 22 is a focus on one penta-hepta defect. It is shown,

figure 22(b), (c) and (d), that in this process, the amplitude of two of the three rolls

making up the hexagonal pattern are zero. The phases of the sets of rolls obtained from
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(a) (b)

(c) (d)

Figure 21. Initial condition (P1): hexagons with q = 0.45, ǫ = 0.1, r = 2.5, α = 10−4 and

Pr = 50. Contours of the vertical velocity w =

3∑

i=1

Ai exp (ikc,i · x) + c.c. for a hexagonal

pattern undergoing the transverse instability. The contours are shown at times (a) t = 0; (b)

t = 10; (c) t = 1000 and (d) t = 2000. In the panel (c), the penta-hepta defects are circled.

arctan (Im [Ai(x, y)] /Re [Ai(x, y)]) are represented in figure 23. The phases of two sets

of rolls that vanish at the defect, present a singularity, while the third one does not have

any singularity. Actually, the PHD is pictured as a dislocation in each of the sets of

rolls whose amplitude vanish at the core of the defect (Ciliberto et al. 1990; Sushchik &

Tsimring 1994; Hoyle 1995)
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(a) (b)

(c) (d)

Figure 22. Initial condition (P1): hexagons with q = 0.45, ǫ = 0.1, r = 2.5, α = 10−4 and

Pr = 50. Focus on one penta-hepta defect at q = 0.45, r = 2.5 and α = 10−4: (a) contours of

the “vertical velocity” w at t = 1000 with one penta-hepta defect circled. (b) Modulus of A1

which vanishes at the core of the defect. (c) Modulus of A2, non zero in the circle (|A2 = 0.114|)

and (d) modulus of A3 which vanishes at the core of the defect.

8.2.2. Nonlinear evolution of the transverse phase instability at large ǫ

In the previous section, we have considered a rather small ǫ for which hexagons are the

only possible state. A completely different final state of the transverse phase instability is
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(a) (b)

(c) (d)

Figure 23. Initial condition (P1): hexagons with q = 0.45, ǫ = 0.1, r = 2.5, α = 10−4 and

Pr = 50. (a) Contours of the vertical velocity w =

3∑

i=1

Ai exp (ikc,i · x) + c.c. at t = 1000; (b)

phase of A1; (c) phase of A2 and (d) phase of A3.

observed for larger ǫ, i.e. ǫ greater than a threshold value ǫ∗. Figure 24 shows the nonlin-

ear evolution of the convection pattern when the initial condition, point P2 in figure 20,

consists of a perfect hexagon at ǫ = 0.3, with a wavenumber, k = kc + 0.55, outside the

phase stability domain. The other parameters are α = 10−4, r = 2.5 and Pr = 50. In

this case, the transverse phase instability triggers the transition from regular hexagonal

pattern to disordered roll state with several grain boundaries. The threshold value ǫ∗ at
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which the transition to rolls occurs can only be determined by numerical simulations due

to the lack of Lyapunov functional for Eqs. 4.22. For the particular case considered here,

q = 0.55, r = 2.5, α = 10−4 and Pr = 50 we have found ǫ∗ ≈ 0.22.

Although at ǫ = 0.3, hexagons are linearly stable to homogeneous perturbations as

shown in figure 14(b), when first defects appear, the dynamics may change. According

to Sushchik & Tsimring (1994) and Ciliberto et al. (1990), the presence of defects in a

system plays an important role in the dynamics of transition between rolls and hexagons.

In our case, pieces of rolls appear in the beginning. Under cerain conditions, they spread

and destroy the hexagonal pattern. Furthermore, it is observed that the time necessary

to reach the steady state is much lower for large ǫ.

8.2.3. Rolls-Hexagons transition

Figure 25 shows the contours of the reconstructed vertical velocity w at different times

in the case where the initial data, point P3 in figure 20, correspond to perfect rolls at

ǫ = 0.1, q = 0.25 for a Carreau fluid with α = 10−4 and Pr = 50. According to figure

14(b), these rolls are unstable. This is confirmed by the computation, in which the final

state consists of hexagons. We note that the transition from rolls to hexagons undergoes

pearling, which gradually leads to separation into hexagons similarly as in Van-Den-Berg

et al. (2015).

Remark

When there is no distorsions of hexagons, i.e. when α1 = α2 = 0, in Eqs. 4.22, the

competition between uniform rolls and uniform hexagons is governed by the free energy

density difference between them as indicated by Young & Riecke (2002), Sushchik &

Tsimring (1994) and Hoyle (2006). For a given wavenumber k = kc + q, hexagons have
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(a) (b)

(c) (d)

Figure 24. Initial condition (P2): hexagons with q = 0.55, ǫ = 0.3, r = 2.5, α = 10−4 and

Pr = 50. The reconstructed vertical velocity w is shown at different times: (a) t = 0, (b) t = 2,

(c) t = 10 and (d) t = 100.

lower energy than rolls, and therefore are more stable at ǫ lower than a threshold value

ǫf at which rolls and hexagons have the same free energy. Rolls are energetically favored

above ǫf . To determine ǫf , we compare the free energy density for perfect rolls,

Fr = − ǫ− q2ξ20
τ0

R2
0 +

g1
2
R4

0 , (8.1)



Rayleigh-Bénard convection for shear-thinning fluids 47

(a) (b)

(c) (d)

Figure 25. Initial condition (P3): rolls with q = 0.25, ǫ = 0.1, r = 2.5, α = 10−4 and Pr = 50.

The reconstructed vertical velocity w is shown at different times: (a) t = 0, (b) t = 11, (c)

t = 15 and (d) t = 2000.

and for perfect hexagons

Fh = −3
ǫ− q2ξ20

τ0
H2

0 − 2ζH3
0 +

3

2
(g1 + 2g2)H

4
0 . (8.2)

It can be shown that Fr = Fh at

ǫf =
τ0ζ

2
[

g21 + 3g1g2 +
√
2g1 (g1 + g2)

3/2
]

2 (g2 + 2g2) (g1 − g2)
2 + q2ξ20 . (8.3)
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0 2 4 6 8 10
0.1

0.15

0.2

Figure 26. Threshold for hexagon-roll transition in the case where there is no distorsions of

hexagons as a function of the shear-thinning degree, with q = 0.55, r = 2.5 and Pr = 50. (1)

Curve of equal energy for hexagons and rolls, (2) numerical simulations.

Figure 26 shows the variation of ǫf with the shear-thinning degree α for q = 0.55, r =

2.5 and Pr = 50. The nonlinearity of the rheological law favors rolls rather than hexagons.

Values of ǫf are found higher (but in reasonable agreement) than the real threshold

for hexagon-roll transition obtained from our numerical simulations. As explained by

Sushchik & Tsimring (1994), the difference is due to the fact that the simple energetic

analysis used in the determination of ǫf does not take into account the nonuniform

structure of defects. Note that when α1 = α2 = 0, the final state consists of perfect rolls

or perfect hexagons.

9. Conclusion

We have investigated the influence of shear-thinning effects on Rayleigh-Bénard con-

vection for a Carreau fluid, taking into account the variation of the viscosity with tem-

perature. The dependence of the viscosity on temperature was assumed of exponential

type. A weakly nonlinear analysis using a multiple scale is adopted as a first approach to

investigate the nonlinear effects. Generalized Ginzburg-Landau equations are obtained
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including spatial nonvariational terms which account for distortion of hexagons. The co-

efficients of these equations have been explicitly calculated and correlations are proposed.

The steady solutions of these equations that correspond to rolls and hexagons have been

obtained and their relative stability has been determined. Past the onset of convection,

hexagonal cells with upward motion in the centre are selected in agreement with the

experimental results of Darbouli et al. (2016) and Bouteraa et al. (2020). The range of

Rayleigh numbers associated with the subcritical convection is very narrow (|ǫh| << 1)

and difficult to detect experimentally. It is all the more reduced as shear-thinning ef-

fects are strong. For higher supercritical values, coexistence between hexagons and rolls

is predicted in agreement with the experimental observations of Darbouli et al. (2016)

and Bouteraa et al. (2020). The range of Ra for which hexagons are stable increases

with increasing the viscosity ratio and decreases with increasing shear-thinning effects.

This behavior is along the same lines as the conclusion of Bouteraa et al. (2015), where

it is shown that the nonlinearities introduced by the rheological law reinforce the sta-

bility of rolls. The stability of hexagons with respect to long-wavelength perturbations

is then addressed. Phase equations are derived and the band of stable wavenumbers is

determined. Two types of long-wavelengths instabilities are identified: longitudinal and

transverse phase instabilities. It is found that the stable hexagons domain is delimited

mainly by the transverse phase instability. Furthermore, it is shown that the additional

spatial nonlinear terms break the symmetry around kc: the band of stable wavenumbers

is open and decentered to the right, i.e. to wavenumbers larger than the critical one.

This result is likewise in agreement with the experimental observations of Bouteraa et al.

(2020), where the measured wavenumber increases with Ra. The theoretical calculations

predict also that the band of stable wavenumbers becomes more decentered with increas-

ing shear-thinning effects.
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The numerical integration of the amplitude equations supports the theoretical results,

enables to illustrate the nonlinear evolution of the transverse phase instability and high-

lights the role of the nonvariational terms in the dynamics of pattern formation. At low

ǫ, the transition from perfect hexagons, with a wavenumber outside the stable domain,

to a new hexagonal pattern involves penta-hepta defects. Their number, large in the

beginning of the process, decreases with time. For larger ǫ > ǫ∗, the transverse phase

instability triggers the transition from regular hexagons to a disordered state of rolls with

grain boundaries. The impact of the nonvariational terms in the amplitude equations on

the pattern dynamics is discussed. We have also performed a numerical simulation start-

ing from a given initial pattern of rolls at ǫ < ǫr. The rolls-hexagons transition occurs

through a progressive pearling leading to creation of spots.

This study will be continued by considering larger values of the viscosity ratio r, for

which we have a competition between squares and hexagons. In addition it would be

useful to consider the temperature-dependence of other material properties such as the

volumetric thermal expansion coefficient. There are other possible areas of future work.

For instance, an investigation could be carried out to include side wall effects. Also, it

would be interesting to analyse the influence of defects (pentagon-heptagon pair), which

emerge in the hexagonal pattern, on the transition between different symmetries as well

as on the wavenumber selection. Finally, we hope that the present work suggests new

experiments to study the influence of shear-thinning effects on the selection of the con-

vective pattern and its stability for high supercritical values of Ra, using experimental

apparatus of larger aspect ratio comparatively to Darbouli et al. (2016) and Bouteraa

et al. (2020).
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Appendix A. Operators and matrix coefficients

A.1. The operator M

M =

























M11 0 0 0

M21 M22 0 0

M31 0 M33 0

0 0 0 1

























(A 1)

with

M11 = Pr−1∆ , M21 =
∂2

∂x∂z
, M22 = ∇

2
Hx , (A 2)

M31 =
∂2

∂y∂z
, M33 = ∇

2
Hx .

A.1.1. The sub-scale M (0)

The coefficients of M (0) in eq. (4.7) are

M
(0)
11 = Pr−1

(

∆Hx +
∂2

∂z2

)

, (A 3)

M
(0)
21 =

∂2

∂x∂z
, M

(0)
22 = ∆Hx ,

M
(0)
31 =

∂2

∂y∂z
, M

(0)
33 = ∆Hx ,

M
(0)
44 = 1 ,

A.1.2. The sub-scale M (1)

The coefficients of M (1) in eq. (4.7) are

M
(1)
11 = 2Pr−1

∇Hx ·∇HX , (A 4)

M
(1)
21 =

∂2

∂X∂z
, M

(1)
22 = 2∇Hx ·∇HX ,

M
(1)
31 =

∂2

∂Y ∂z
, M

(1)
33 = 2∇Hx ·∇HX ,

M
(1)
44 = 0; (A 5)



52 T. Varé et al.

A.2. The operator L

The coefficients of the 4× 4 matrix L in eq. (2.20) are given by

L =

























L11 0 0 L14

L21 L22 0 0

L31 0 L33 0

1 0 0 ∆

























(A 6)

with

L11 = µb∆
2 + 2

dµb

dz
∆

∂

∂z
+

d2µb

dz2

(

∂2

∂z2
−∆H

)

, L14 = Ra∆H , (A 7)

L21 = µb∆
∂2

∂x∂z
+

dµb

dz

∂

∂z

(

∂2

∂x∂z

)

, L22 = µb∆∆H +
dµb

dz

∂

∂z
∆H ,

L31 = µb∆
∂2

∂y∂z
+

dµb

dz

∂

∂z

(

∂2

∂y∂z

)

, L33 = µb∆∆H +
dµb

dz

∂

∂z
∆H .

A.3. sub-scale L(0)

The components of L(0) in eq. (4.8) are

L
(0)
11 = µb

(

∇
2
Hx +

∂2

∂z2

)2

+ 2
dµb

dz

(

∇
2
Hx +

∂2

∂z2

)

∂

∂z
+

d2µb

dz2

(

∂2

∂z2
−∇

2
Hx

)

,

L
(0)
14 = Rac∇

2
Hx , (A 8)

L
(0)
21 = µb

(

∇
2
Hx +

∂2

∂z2

)

∂2

∂x∂z
+

dµb

dz

∂

∂z

(

∂2

∂x∂z

)

,

L
(0)
22 = µb

(

∇
2
Hx +

∂2

∂z2

)

∇
2
Hx +

dµb

dz

∂

∂z
∇

2
Hx

L
(0)
31 = µb

(

∇
2
Hx +

∂2

∂z2

)

∂2

∂y∂z
+

dµb

dz

∂

∂z

(

∂2

∂y∂z

)

,

L
(0)
33 = L

(0)
22 ,

L
(0)
41 = 1 , L

(0)
44 =

(

∇
2
Hx +

∂2

∂z2

)

.
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A.4. sub-scale L(1)

The components of L(1) in eq. (4.8) are

L
(1)
11 = 4µb

(

∇
2
Hx +

∂2

∂z2

)

(∇Hx ·∇HX) + 4
dµb

dz
(∇Hx ·∇HX)

∂

∂z
− 2

d2µb

dz2
(∇Hx ·∇HX)

L
(1)
14 = Ra(1)∇2

Hx + 2Rac (∇Hx ·∇HX) , (A 9)

L
(1)
21 = µb

(

∇
2
Hx +

∂2

∂z2

)

∂2

∂X∂z
+ 2µb (∇Hx ·∇HX)

∂2

∂x∂z
+

dµb

dz

∂2

∂z2
∂

∂X

L
(1)
22 = 2µb

[

∂2

∂z2
+ 2

(

∂2

∂x2
+

∂2

∂y2

)]

(∇Hx ·∇HX) + 2
dµb

dz
(∇Hx ·∇HX)

∂

∂z

L
(1)
31 = µb

[

∇
2
Hx

∂2

∂Y ∂z
+ 2∇Hx ·∇HX +

∂2

∂z2
∂2

∂Y ∂z

]

+
dµb

dz

∂2

∂z2
∂

∂Y

L
(1)
41 = 0 , L

(1)
44 = 2∇Hx ·∇HX .

A.5. sub-scale L(2)

The components of L(2) in eq. (4.8) are

L
(2)
11 = µb

[

2

(

∇
2
Hx +

∂2

∂z2

)

∇
2
HX + 4 (∇Hx ·∇HX)

2

]

+ (A10)

2
dµb

dz
∇

2
HX

∂

∂z
− d2µb

dz2
∇

2
HX ,

L
(2)
14 = Rac∇

2
HX + 2Ra(1) (∇Hx ·∇HX) +Ra(2)∇2

Hx ,

L
(2)
21 = µb

[

2 (∇Hx ·∇HX)
∂2

∂X∂z
+∇

2
HX

∂2

∂x∂z

]

L
(2)
22 = µb

(

∂2

∂z2
+∇

2
Hx

)

∇
2
HX + 4µb (∇Hx ·∇HX)

2
+ µb∇

2
HX∇

2
Hx ,

L
(2)
31 = µb

[

2 (∇Hx ·∇HX)
∂2

∂Y ∂z
+∇

2
HX

∂2

∂y∂z

]

L
(2)
41 = 0 , L

(2)
44 = ∇

2
HX

Appendix B. Second-order solution (hexagons)

B.1. Solution proportional to |Ap|2 (zero mode)

The first component of the second order solution, proportional to |Ap|2, provides a cor-

rection of the basic state. Considering the w-equation, it is shown that the factor of
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|A1|2, |A2|2 and |A3|2 in the non linear inertial NI
(2)
w and viscous NV

(2)
w terms vanishes,

therefore

w
(2)
1 = 0 . (B 1)

Here w
(2)
1 means the first component of the second order solution. Similarly, for the

horizontal velocity, we have

u
(2)
1 = v

(2)
1 = 0 . (B 2)

There is no velocity for the zero mode. The correction of the conductive temperature

profile can be written as θ
(2)
1 = T1(z)

[

|A1|2 + |A2|2 + |A3|2
]

, where T1(z) stasfies

D2T1 = 2 [G11 (DF11) + F11 (DG11)) , (B 3)

with

T1 = 0 at z = 0 and z = 1. (B 4)

As for the linear problem, equation (B 3) with the boundary conditions (B 4) is solved

numerically using a spectral Chebyshev collocation method.

B.2. Solution proportional to A2
p exp(2ikp · r)

The second component of the second order solution, proportional toA2
pE

2
p , whereEp = exp(ikp· r)

represents the first harmonic of the fundamental. We have

(

w
(2)
2 , θ

(2)
2

)

= (W2(z), T2(z)))
(

A2
1E

2
1 +A2

2E
2
2 +A2

3E
2
3

)

+ c.c. , (B 5)

with

[

µb

(

D2 − 4k2c
)2

+ 2
dµb

dz

(

D3 − 4k2cD
)

+
d2µb

dz2
(

D2 + 4k2c
)

]

W2 − 4k2cRacT2 =

2

Pr

(

F11D
3F11 −DF11D

2F11

)

− [NVw]
(2)
A2

p
E2

p

, (B 6)

W2 +
(

D2 − 4k2c
)

T2 = F11DG11 −G11DF11 . (B 7)
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The boundary conditions on W2 and T2 are identical to those on F11 and G11, (3.4).

Concerning the horizontal velocity, we have

∇
2
Hxu

(2)
H2 +∇Hx

∂w
(2)
2

∂z
= 0 . (B 8)

We obtain,

u
(2)
H2 =

DW2

4k2c
∇Hx

[

A2
1E

2
1 +A2

2E
2
2 +A2

3E
2
3

]

+ c.c. . (B 9)

B.3. Solution proportional to ApA
∗
qEpE

∗
q

The third component of the second order solution, proportional to ApA
∗
qEpE

∗
q , reads

(

w
(2)
3 , θ

(2)
3

)

= (W3(z), T3(z)) (A1A
∗
2E1E

∗
2 +A1A

∗
3E1E

∗
3 +A2A

∗
3E2E

∗
3 ) + c.c. ,(B 10)

with

[

µb

(

D2 − 3k2c
)2

+ 2
dµb

dz

(

D3 − 3k2cD
)

+
d2µb

dz2
(

D2 + 3k2c
)

]

W3 − 3k2cRacT3 =

3

Pr

(

F11D
3F11 − k2cF11DF11

)

− [NVw]
(2)
EpEq∗

(B 11)

W3 +
(

D2 − 3k2c
)

T3 = 2F11DG11 −G11DF11. (B 12)

Boundary conditions on (W3, T3) are the same as the ones on (F11, G11).

The horizontal velocity components satisfy

∇
2
Hxu

(2)
H3 +∇Hx

∂w
(2)
3

∂z
= 0 . (B 13)

We obtain

u
(2)
H3 =

DW3

3k2c
∇Hx (A1A

∗
2E1E

∗
2 +A1A

∗
3E1E

∗
3 +A2A

∗
3E2E

∗
3 ) + c.c. (B 14)

B.4. Solution proportional to exp (ikp · r)

The fourth component of the second order solution is proportional to exp (ikp · r) (res-

onant term). The solution is achieved using the solvability condition. It is shown that it
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can be written as

(

w
(2)
4 , θ

(2)
4

)

= (W41, T41)E1 + (W42, T42)E2 + (W43, T43)E3 + c.c. , (B 15)

with

[

µb

(

∂2

∂z2
− k2c

)2

+ 2
dµb

dz

(

∂2

∂z2
− k2c

)

∂

∂z
+

d2µb

dz2

(

∂2

∂z2
+ k2c

)

]

W41 −Rack
2
cT41 =

[

−4iµb

(

D2 − k2c
)

F11 − 4i
dµb

dz
DF11 + 2i

d2µb

dz2
F11

]

(k1 ·∇HX)A1 +

k2c Ra1G11A1 − 2iRacG11 (k2 ·∇HX)A1 +

1

Pr

(

F11D
3F11 + 2DF11D

2F11 − 3k2cF11DF11

)

A∗
2A

∗
3 −

[

NV (2)
w

]

E1

A∗
2A

∗
3 , (B 16)

W41 +
(

D2 − k2c
)

T41 = −2iG11 (k1 ·∇HX)A1 + (2F11DG11 +G11DF11)A
∗
2A

∗
3 .(B 17)

Two others similar systems of equations are obtained for (W42, T42), and (W43, T43)

by circular permutation of indices. Note that according to equation (4.18), Ra(1)A1 can

be written in terms of A∗
2A

∗
3. The system of differential equations (B 16), (B 17) can be

written formally as [A] (W41, T41)
t
= [X]A∗

2A
∗
3 +Z(2i) (k1 ·∇HX)A1.

Hence, (W41, T41)
t
= (Ws, Ts)

t
A∗

2A
∗
3 +

(

W̃s, T̃s

)t

2i (k1 ·∇HX)A1, where (Ws, Ts)
t
=

[A]−1 [X] and
(

W̃s, T̃s

)t

= [A]−1 [Z]. The boundary conditions on Ws and Ts are the

same as the ones on (F11, G11).

For the horizontal velocity, we have

u
(2)
H4 = UH41E1 +UH42E2 +UH43E3 + c.c , (B 18)

with

µb

(

∂2

∂z2
− k2c

)(

−k2cUH41 + ik1
∂W41

∂z

)

+ (B19)

dµb

dz

(

−k2c
∂

∂z
UH41 + ik1

∂2W41

∂z2

)

= 2
dµb

dz
D2F11∇HXA1 +

[

µb

(

D3F11 − k2cDF11

)

+
dµb

dz
D2F11

] [

2
k1

k2c
(k1 ·∇HX)A1 −∇HXA1

]
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Two other similar equations are obtained for UH42 and UH43.

Appendix C. Adjoint eigenvalue problem: Adjoint mode

In the analysis developed in Sec. 4, it is necessary to eliminate secular terms in non

homogeneous differential equations, i.e. the solvability condition must be applied. It is

therefore necessary to determine the linear adjoint of the direct problem at the critical

conditions. For vector fields f and g, one defines an inner product between two vector

functions f(z) and g(z) by

〈f , g〉 =
∫ 1

0

f∗ · gdz , (C 1)

where f∗ is the complex conjugate of f . To the direct eigenvalue problem (3.5) corre-

sponds the adjoint problem

sM̃
+ ·Xad = L̃

+ ·Xad with Xad = (Fad, Gad) , (C 2)

where the adjoint operators M̃+ and L̃+ are defined by

〈

Xad, M̃ ·X11

〉

=
〈

M̃+ ·Xad, X11

〉

,
〈

Xad, L̃ ·X11

〉

=
〈

L̃+ ·Xad, X11

〉

,(C 3)

where X11 fulfills the ‘linear’ boundary conditions (3.4). By integrating by part we get

the linear adjoint problem and the corresponding boundary conditions

s Pr−1
(

D2 − k2
)

Fad = µb

(

D2 − k2
)2

Fad + 2Dµb

(

D2 − k2
)

)DFad +

D2µb

(

D2 + k2
)

Fad +Gad, (C 4)

sGad = −k2RaFad +
(

D2 − k2
)

Gad, (C 5)

with

Fad = 0 , DFad = 0 , Gad = 0 at z = 0, (C 6a)

Fad = 0 , DFad = 0 , Gad = 0 at z = 1. (C 6b)
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The solution of these equations is obtained using the same method as for the direct

eigenvalue problem. Similarly, the normalization adopted for the adjoint mode is

Gad (z = 1/2) = 1. (C 7)

At Ra = Rac, the so-called adjoint critical mode does not depend on the Prandtl number.

Appendix D. Cubic-order solution

At order δ3, we have

L
(0)
11 w

(3) + L
(0)
14 θ

(3) = M
(0)
11

∂

∂T
w(1) − L

(1)
11 w

(2) − L
(1)
14 θ

(2) − (D 1)

L
(2)
11 w

(1) − L
(2)
14 θ

(1) −NI(3)w −NV (3)
w ,

w(3) + L
(0)
44 θ

(3) =
∂

∂T
θ(1) − L

(1)
44 θ

(2) − L
(2)
44 θ

(1) −NI
(3)
θ . (D 2)

D.1. Solution proportional to exp (ikp · r)

One component of the cubic order solution
(

w
(3)
1 , θ

(3)
1

)

is proportional to exp(ikp · r):
(

w
(3)
1 , θ

(3)
1

)

=
(

W
(3)
11 , T

(3)
11

)

E1 +
(

W
(3)
12 , T

(3)
12

)

E2 +
(

W
(3)
13 , T

(3)
13

)

E3 + c.c. (D 3)

Projecting Eqs. (D 1) and (D 2) onto the mode E1 for instance gives formally:

L(0)
11 W

(3)
11 + L0

14T
(3)
11 = M(0)

11 F11
∂A1

∂T
− L(1)

11 W
(2)
41 − L(1)

14 T
(2)
41 −

L(2)
11 F11A1 − L(2)

14 G11A1 −
[

NI(3)w

]

E1

−
[

NV (3)
w

]

E1

, (D 4)

W
(3)
11 + L(0)

44 T
(3)
11 = G11

∂A1

∂T
− L(1)

44 T
(2)
41 − L(2)

44 G11A1 −
[

NI
(3)
θ

]

E1

. (D 5)

Note that Ra(2) appears in the operator L(2)
14 :

L(2)
14 = Rac∇

2
HX + 2iRa(1) (k1 ·∇HX)− k2cRa(2) (D 6)

D.2. Determination of Ra(2)

The system of Eqs. (D 4)-(D 5) have a solution if and only if the right-hand side of (D 4)-

(D 5) is orthogonal to the Kernel of the adjoint operator (Fredholm alternative theorem).
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Applying this theorem leads to an equation for Ra(2), which can be written formally as:

Ra(2)A1 = I1
∂A1

∂T
+ I2 (k1 ·∇HX)2 A1 + (D 7)

I3|A1|2A1 + I4|A2|2A1 + I5|A3|2A1 +

I6A
∗
2

∂A∗
3

∂X
+ I6A

∗
3

∂A∗
2

∂X
+ I7A

∗
2

∂A∗
3

∂Y
+ I8A

∗
3

∂A∗
2

∂Y
,

where I1 =

∫ 1

0

[

1

Pr

(

D2 − k2c
)

F11Fad +G11Gad

]

dz is the coeeficient proportional to

∂A1

∂T
, and similarly for I2, I3, ...

Appendix E. Correlations proposed by Busse for a Newtonian fluid

Assuming a linear variation of the viscosity with temperature, the following correlations

for ǫa, ǫr and ǫh are proposed by Busse (1967). The revised version of these correlations

given by Bodenschatz et al. (2000) is used here. They are represented by dashed lines in

figure 16.

ǫa = −P2/(4RhRac), (E 1)

ǫr = 3P2Rr/(L
2Rac), (E 2)

ǫh = (9Rh − 3L)P2/(L2Rac), (E 3)

with

P = γ2P2; γ2 = 2(1− r)/(1 + r); P2 = 2.755, (E 4)

(E 5)

Rh = 0.89360 + 0.04959/Pr+ 0.06787/Pr2 (E 6)

Rr = 0.69942− 0.00472/Pr+ 0.00832/Pr2 (E 7)

L = 0.29127 + 0.08147/Pr+ 0.08933/Pr2 . (E 8)
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Van-Den-Berg, J.B., Deschênes, A., Lessard, J.P. & Mireles-James, J.D. 2015 Station-

ary coexistence of hexagons and rolls via rigorous computations. SIAM. J. Appl. Dyn. Syst.

14 (2), 942–979.

White, D.B. 1988 The planforms and the onset of convection with a temperature dependent-

viscosity. J. Fluid Mech. 191, 2247–286.

Young, Y.N. & Riecke, H. 2002 Mean flow in hexagonal convection: stability and nonlinear

dynamics. Physica D: Nonlinear Phenomena 163 (3-4), 166–183.


