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Abstract13

The Zundel (H5O
+
2 ) and Eigen (H9O

+
4 ) cations play an important role as intermediate14

structures for proton transfer processes in liquid water. In the gas phase they exhibit rad-15

ically different infrared (IR) spectra. The question arises: is there a least common denom-16

1



inator structure that explains the IR spectra of both, the Zundel and Eigen cations, and17

hence of the solvated proton? Full dimensional quantum simulations of these protonated18

cations demonstrate that two dynamical water molecules and an excess proton constitute19

this fundamental subunit. Embedded in the static environment of the parent Eigen cation,20

this subunit reproduces the positions and broadenings of its main excess-proton bands.21

In isolation, its spectrum reverts to the well-known Zundel ion. Hence, the dynamics of22

this subunit polarized by an environment suffice to explain the spectral signatures and23

anharmonic couplings of the solvated proton in its first solvation shell.24

Introduction25

The transfer of a hydrated proton between water molecules in aqueous solution is accompanied26

by the large-scale structural reorganization of the environment as the proton relocates, giving27

rise to the Grotthus mechanism.128

Due to the complexity of the liquid phase, the infrared (IR) spectroscopy of protonated29

water clusters in the gas phase opens a unique window to characterize and understand the elu-30

sive structural dynamics of these species. For example, the IR spectrum of the Zundel cation31

(H5O
+
2 ) exhibits a prominent Fermi resonance in the ≈ 1000 cm−1 spectral region of the shared32

proton mode due to its strong anharmonic coupling with a combination of the wagging (wa-33

ter pyramidalization) and the oxygen-oxygen distance of the two flanking water molecules.234

This important feature, key to understanding the strong coupling of the shared proton to its35

environment, could only be unambiguously measured following the development of accurate36

messenger spectroscopy (based on Neon tagging) of the gas-phase cation.3 The theoretical37

assignment of this feature was a computational tour de force only possible due to the avail-38

ability of a high-quality potential energy surface4 in combination with full-dimensional (15-39
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dimensional) quantum dynamical calculations based on the multi-configuration time-dependent40

Hartree (MCTDH) approach.2, 5–8
41

Recent measurements of the IR spectrum of the Eigen cation (H9O
+
4 ) reveal a strong cou-42

pling between the O-H stretch modes of the central hydronium unit with the water molecules43

in its first solvation shell. More importantly, they reveal strong shifts of the spectral position of44

the core O-H stretch modes caused by the polarization through the tagging agent in the second45

solvation shell.9 The strong coupling with the first solvation shell leads to a large broadening46

of the core O-H stretch band, now spanning about 500 cm−1 and markedly blue-shifted towards47

2600 cm−1 in comparison with the shared proton band of the Zundel cation. The unambigu-48

ous characterization of this very broad band has remained a long-standing challenge9 Yu and49

Bowman proved that the measured spectrum in Ref. 9 can indeed be attributed to the Eigen50

isomer. Furthermore, they showed that the broad O-H stretch feature involves multiple states of51

the entire hydronium core10 and that in addition the O-O stretching and O-H bending motions52

play an important role for the broadening of the O-H stretch band.10, 11
53

In particular, our analysis shows that the ligand waggings play an equally important role for54

the coupling of the excess proton to its solvation shell, both in symmetrically shared Zundel55

configurations2 and in the Eigen-like form.56

These findings were supported by detailed calculations of the linear absorption spectrum57

of the Eigen complex with different levels of theory, most successfully using a combination of58

QCMD and VSCF/VCI methods.10–14 In this paper, we simulate the linear absorption spectrum59

of the Eigen cation for the first time using full-dimensional (33D) quantum dynamical calcula-60

tions using polyspherical coordinates that are adapted to the Eigen motif. These allow for the61

accurate inclusion of correlations between low frequency, large amplitude displacements and62

the O-H stretch and other higher frequency modes. Our spectra, based on the Yu-Bowman PES63

first published in Ref. 12 that was also applied to clusters with up to 21 water molecules,15 are64

3



in excellent agreement with the available messenger-tagging spectra in the full spectral range65

between 0 and 4000 cm−1.9 We compare the full spectrum of the Eigen cation with those cal-66

culated with frozen subsets of degrees of freedom all the way down to a dynamical (polarized)67

H5O+
2 subunit embedded in the static scaffold of the remaining Eigen cation. This analysis68

reveals that the underlying coupling mechanism of the solvated proton with its first solvation69

shell is strikingly similar in both the Zundel and Eigen forms: a dynamical subunit formed by70

two water molecules and a proton is the least common denominator structure that reproduces71

the spectrum and anharmonic mode couplings of the Zundel and Eigen forms depending on72

the conformation of its static environment. Along this analysis, we confirm existing assign-73

ments9–13, 16 of various peaks in H9O
+
4 . We would like to stress that theoretical absorption-band74

assignments have already been reported in Ref. 10 and are not the main focus of this contribu-75

tion. We contribute two assignments for hitherto unknown features in the low frequency region,76

where no experimental data is currently available.77

Results78

IR spectrum of the Eigen cation79

Figure 1 shows the calculated absorption spectrum of the Eigen cation H9O+
4 in comparison80

with the experimental spectra from Refs. 13 and 9. The calculated IR spectra are based on a81

33D quantum mechanical description of the Eigen cation. Such simulations could be achieved82

only after the unique combination of recent developments in our groups; They constitute the83

largest quantum wavepacket simulations of a flexible molecular system using a general poten-84

tial energy surface and curvilinear coordinates reported to date. Details of the 33-dimensional85

quantum-dynamical calculations including the construction of the kinetic17 and potential18 en-86

ergy operators, and the wavefunction propagations with the multilayer MCTDH method,19–21
87
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Figure 1: Absorption spectrum of the Eigen Cation H9O+
4 . a) Experimental spectrum from

Ref. 13, b) Experimental spectrum from Ref. 9, c) Calculated spectrum (red-shifted 70 cm−1 to
match experimental line positions). Both experimental spectra detected via photo dissociation
of D2 tagged clusters. The assignments of the peaks follow the nomenclature of Refs. 9, 13
and are discussed in Supplementary Table 1. Source data are provided under https://doi.
org/10.5281/zenodo.7064870.

are provided as supporting information.88

The calculated spectrum is red-shifted by 70 cm−1 to match the main features of the exper-89

imental spectrum. The shift originates from the fact that we obtain the ground state energy and90

the spectrum from separate calculations. The ground state wavefunction has a much simpler91

structure than the time-evolved one and it is hence better converged. This explains the global92

shift. The spectrum is obtained as the average over the spectra corresponding to the three po-93
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larization directions of light with respect to the molecular frame, thus considering the random94

orientation of the molecules in the experiment (see Methods and extended data for details).95

The overall agreement of calculated and experimental spectra is very good although the res-96

olution of the calculated spectrum is approximately 30 cm−1 and limited by the 1 picosecond97

duration of the dipole-dipole correlation function. The calculated peak positions are listed in98

Table 1 of the supporting material alongside with experimental results and assignments. In par-99

ticular, the substructure of the broad core O-H stretch band and practically all features of the100

spectrum are reproduced in comparison with the tagging-agent IR measurement. Our simula-101

tions thus further support the interpretation that (i) the spectra in Refs. 9 and 13 correspond to102

the triply-coordinated hydronium form of H9O
+
4 stoichiometry, and (ii) that the D2 tagging-103

agent negligibly alters the spectrum of H9O
+
4 ·D2

9, 13 compared to H9O
+
4 .104

Deconstructing the broad hydronium O-H stretch band105

The key to understanding the anharmonic couplings of the core O-H stretch modes to their106

first solvation shell lies in characterizing the broadening and composition of the main core O-107

H stretch band in pristine H9O+
4 : This feature carries most of the IR intensity related to the108

coupled motions of the central proton stretching modes.109

While studying the broad O-H stretch peak, Duong et al.11 found that this band is char-110

acterized by many highly entangled eigenstates in terms of normal-mode excitations. In the111

theoretical part of their work, Duong et al. used VSCF/VCI calculations involving the hydro-112

nium core modes, O-O stretch and O-H bending modes to identify states contributing to the113

broadening. Here we take a different approach and deconstruct the formation of this band by114

first freezing all modes of the Eigen cation, except those of the hydronium core, to their expec-115

tation values, and then by successively bringing back the environment. The spectra obtained in116

this way are shown in Fig. 2. They correspond to the z-component of the dipole moment (the117
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Figure 2: Spectra obtained with the z-component of the dipole moment (cf. Eq. 2) for various
reduced models. The dimensionality (9D, 12D etc.) denotes the number of active coordinates.
Other coordinates are frozen to their expectation value positions for the vibrational ground
state. Correlation time in panels a-e): 2000 fs, panel f): 1000 fs. Source data are provided
under https://doi.org/10.5281/zenodo.7064870.
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polarization is aligned with one of the hydronium hydrogen bonds), since this is the component118

responsible for the largest response of the core O-H stretchmodes. Freezing specific coordinates119

is achieved by removing all differential operators of a frozen coordinate from the Hamiltonian120

in a Hermitian way and by fixing their position to the corresponding expectation value in the121

ground vibrational state of the full-dimensional system.122

The IR spectrum of the hydronium core embedded in the frozen environment (cf. Fig. 2123

a)) has a very simple structure. The vibrational eigenstates corresponding to the two sharp124

peaks near 2700 cm−1 were obtained by full diagonalization explicitly: The dominant peak125

corresponds to the hydronium core O-H stretch mode, whereas the smaller structure corresponds126

to an out-of-plane excitation of the central hydrogen atoms. The peaks near 1800 and 2300 cm−1
127

correspond to other modes of the hydronium core also seen in the full spectrum and agree with128

the assignments in Refs. 9, 10, 12, 13.129

Adding either wagging modes of the outer water molecules, Fig. 2 b), or O-O distances,130

Fig. 2 c), leads to the appearance of their fundamental modes in the spectrum (Illustrated in131

Fig. 3). In the latter case, some peaks on the low energy shoulder of the main O-H stretch peak132

gain some intensity. Moreover, with the inclusion of the O-O stretching coordinates, two small133

peaks appear at 2300 cm−1 correlating with a8 and a9 in the full dimensional spectrum. Apart134

from this, the overall structure of the spectrum changes only slightly. In particular, there is no135

significant broadening of the O-H stretch peak.136

More complex spectral features emerge when adding both solvation-shell water wagging137

modes and O-O distances together (Fig. 2 d). Now, the spectrum is not the simple sum of138

the previous two panels and cannot be explained by the fundamental modes of the involved139

coordinates alone. The broad hydronium core O-H stretch band centered at 2700 cm−1 is now140

composed of at least four separate contributions with significant intensity. (Here we note that141

all spectra are normalized to unity maximum height such that with the O-H stretch peak now142

8



 

 

O-O - Stretch

Proton transfer

Ligand 
wagging

x

zy
DMS-Components

Figure 3: Illustration of ligand wagging, core O-H stretch and O-O stretching motion of H9O+
4

exemplary in one of the three arms of the cation. Note that in the ligand wagging motion only
the two hydrogen of the outer water molecules move as indicated by the arrow. The coordinate
system on the left indicates the directions of components of the dipole moment surfaces (DMS).

decomposing into multiple smaller peaks the relative height of all other peaks increases.) Two143

of those peaks, contributing to the low energy shoulder of the central peak at approximately144

2600 cm−1, have gained significant intensity. Finally, a peak slightly above 2500 cm−1 gains145

significant intensity as well. This structure coincides with the spectral position of the low energy146

shoulder of the broad band in the full spectrum. Moreover, now the low intensity background on147

the high-energy shoulder at around 3000 cm−1 emerges. VSCF/VCI analysis11, 13 attributed this148

to a combination mode of hydronium O-H stretch and O-O strecthing modes. This assignment149

is fortified in Fig. 2 c) where a peak at 3000 cm−1 appears while only the hydronium core and150

the O-O stretches are modeled. Adding the ligand wagging modes then leads to the diffuse151

signal observed in the experimental spectrum.152

In the spectra in panels a) to d), the hydronium core retains its full mobility. The ques-153

tion arises, whether only proton displacements parallel to the hydrogen bonds are important, or154

whether displacements perpendicular to the hydrogen bonds also contribute to the main proton-155
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transfer band. These perpendicular displacements span the hydronium bending, wagging, and156

pyramidalization modes. Freezing the perpendicular displacements of the hydronium protons157

(panel e)) has dramatic consequences. The spectrum is now dominated solely by the proton158

transfer peak. Peaks of the ligand wagging and O-O stretching fundamentals are again visible159

with low intensity at low energies, as well as peaks at approximately 3000 cm−1 that are com-160

binations of hydronium core O-H stretch, ligand wagging, and O-O stretch modes. However,161

the inability of the three central protons to move perpendicular to the hydrogen bond directions162

has largely suppressed their coupling with the first shell of ligand water molecules. Crucially,163

no broadening of the O-H stretch peak is present, as opposed to the spectrum in panel d). This164

leads to the conclusion that the vibrational eigenstates spanning the broad hydonium core O-H165

stretch band correspond to combinations and overtones of the central O-H stretch modes with166

O-O stretch displacements, hydronium bending and hydronium wagging, and ligand waggings,167

whereby none of those coupled hydronium and environment modes can be removed. A full168

characterization of the vibrational eigenstates in terms of quantum numbers of some basis of169

uncoupled vibrational modes is currently out of reach due to the very high density of vibrational170

states in the spectral region of the band and the high dimensionality of the problem.171

The dynamical H5O+
2 subsystem172

We have deconstructed the main hydronium O-H stretch band. It originates from the anhar-173

monic couplings of the center O-H stretch modes with perpendicular modes of the central hy-174

dronium and modes involving the O-O stretchings and waggings of the three surrounding water175

ligands. The question now arises: Are the three water molecules in the first solvation shell of176

the Eigen cation necessarily involved in explaining the coupling mechanism, spectral position,177

and width of the main proton-transfer band? Alternatively, can a smaller dynamical subunit178

completely account for the properties of the first solvation shell of the solvated proton? The179

10



���� ���� ���� 	��� 	���
����� ����!��

���� �
��

����
��������������

�����������������
�������������

Figure 4: Spectra obtained with the z-component of the dipole moment surfaces for a reduced
H5O+

2 model obtained by freezing modes to positions corresponding to their expectation values
for H9O+

4 a) obtained with a dipole-dipole-correlation function of 2000 fs using a 14D model,
b) obtained with a dipole-dipole-correlation function of 2000 fs using a 9D model (black curve),
and obtained as a stick spectrum using eigenstates (red lines). Source data are provided under
https://doi.org/10.5281/zenodo.7064870.

hydronium cation (H3O+) can be discarded as the least common denominator subunit by com-180

paring Figs. 2 a) and f). Even though the O-H stretch peak in Fig . 2 a) is in the correct position,181

broadening is not observed.182

Instead, we consider one H5O+
2 subunit, that can be understood as a polarized Zundel cation183

(14 coordinates) and freeze all internal, angular and relative coordinates of the two other wa-184

ter ligands to their corresponding expectation values positions (cf. Fig. 4), as well as the two185
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free-standing hydronium O-H stretches, as those do not interact with their immediate envi-186

ronment dynamically any more. For comparison, we also consider a reduced version of the187

H5O+
2 @Eigen cation where the rocking, relative water rotation and internal modes of the ex-188

ternal water are also frozen, thus yielding a 9-dimensional system for which the lowest 250189

eigenstates can be computed with the improved relaxation algorithm (ticks in Fig. 4b)).22, 23
190

The IR spectrum of the dynamical H5O+
2 @Eigen cation is strikingly similar to the full Eigen191

cation spectrum, as seen in Fig. 1. The main O-H stretch band presents a comparable broadening192

and is centered at the same frequency. Other flanking peaks appear at the correct positions as193

well. The analysis of 1D and 2D probability densities of the calculated eigenstates of the 9-194

dimensional model reveal that the vibrational states that participate in this band are complex195

combinations and overtones of the same vibrational coordinates previously found to contribute196

to the broadening of the core O-H stretch band in the Eigen cation. Just pulling the external197

water molecules by about 0.5 Å away from the central hydronium, while leaving them frozen,198

results in a shift of the O-H stretch band to the red by about 600 cm−1 (cf. supporting material)199

as well as a reduction of the ground state expectation value of the O-O distance by 0.1 Å and an200

increase of the O-H distance expectation value by 0.06 Å. This indicates the extreme sensitivity201

of the position of this band to the polarization by the first solvation shell of water molecules.202

This trend has also been observed in similar studies on protonated water clusters.24–28 Pulling203

the waters further to infinity leaves the bare Zundel cation with its O-H stretch band red-shifted204

by about 1600cm−1 compared to the Eigen cation.2205

Based on these observations, we argue that two protonated water molecules, nominally the206

polarized H5O+
2 /Zundel subunit, constitute the dynamical least common denominator structure207

explaining the anharmonic couplings and spectral signatures of the solvated proton in its first208

solvation shell. This statement does not concern the relative population of the Zundel and Eigen209

structures in solution, which has been investigated separately by Marx and collaborators using210
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path integral thechniques, cf. Ref. 1.211

In isolation, the main shared-proton peaks in the Zundel cation are strongly red-shifted com-212

pared to the Eigen cation. The shared-proton motion strongly couples to the wagging (pyrami-213

dalization) of the two water molecules and to the O-O stretching mode, and results in the well-214

characterized Fermi resonance doublet centered at about 1000 cm−1.5, 6, 29, 30 Embedded in the215

potential of two flanking, frozen water molecules, the polarized H5O+
2 @Eigen subsystem fea-216

tures its O-H stretch band at the same spectral position as the full-dimensional Eigen cation, i.e.217

blue-shifted to about 2600 cm−1 because the shared proton is now much closer to the central wa-218

ter molecule. The broadening of the core O-H stretch band in the polarized H5O+
2 @Eigen and219

Eigen cations is strikingly similar. Our simulations demonstrate that the same set of vibrational220

coordinates and corresponding combined excitations are responsible for the strong coupling of221

the shared proton to the rest of the scaffold in the Zundel,5, 6, 29, 30 polarized H5O+
2 @Eigen and222

Eigen cations. These effects are strongly cooperative as opposed to additive. These relevant223

coordinates are the hydronium O-H bending and wagging modes, the ligand water wagging224

modes, and the O-O hydrogen bond stretching mode.225

Discussion226

This work has provided a set of full-dimensional quantum simulations of the Eigen cation based227

on flexible, curvilinear coordinates and a very accurate potential energy representation. The228

simulated IR spectra cover the chemically relevant spectral range between 0 and 4000 cm−1
229

with one single time-propagation of a highly correlated multiconfigurational wave function.230

The spectra extend below the smallest frequency accessible experimentally using ion tagging231

techniques, and reveal the signatures of very low frequency, global vibrational modes. Both the232

Zundel and Eigen cations feature very prominent spectral features related to the anharmonic233
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couplings of the hydrated proton with its first solvation shell. In the Zundel cation, a strongly234

red-shifted double peak6, 30 originates from the fundamental vibration of the equally shared pro-235

ton at about 1000 cm−1. This doublet is a Fermi resonance that involves the wagging modes236

of the flanking water molecules as well as the hydrogen-bond O-O stretching. The isolated237

Eigen cation, instead, features a very broad band at 2600 cm−1 with little resemblance to the238

shape and position of the Zundel’s double peak. Nonetheless, a careful analysis reveals that239

similar anharmonic couplings compared to the Zundel form are involved in the broad Eigen240

cation band, namely the hydronium and ligand waggings to the largest extent, combined with241

hydrogen-bond stretchings. Indeed, the hydronium waggings are crucial to the coupling mech-242

anism: freezing the central hydronium waggings in a flexible first solvation shell results in a243

simpler IR spectrum than when considering a fully flexible hydronium in a frozen environment244

(cf. Figs. 2a and e).245

Based on these results and observations, we arrive at a key insight: two dynamical water246

molecules and a proton, i.e. a H5O+
2 subunit embedded in the remaining frozen scaffold of247

the Eigen cation, presents all anharmonic couplings and spectral signatures of the fully flexible248

Eigen cation in the region of the main proton-transfer band. Depending on its environment, the249

H5O+
2 subunit can describe both the spectrum of the Zundel and Eigen cations. For this effect,250

it is sufficient that two frozen, hydrogen-bond acceptor water molecules polarize the dynamical251

H5O+
2 subunit that constitutes the proton’s first solvation shell. This finding, backed by our full252

quantum-mechanical approach, is suggestive of picturing the Eigen cation as three overlapping253

and strongly polarized H5O+
2 subunits in the spirit of the classical ‘special pair dance’ models254

of the solvated proton.31–33
255

The question of whether the proton forms an Eigen or Zundel cation in aqueous acid so-256

lutions has given rise to many studies even recently: some new experimental works34–36 have257

suggested that the population of the Zundel cation is larger than previously thought. On the258
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other hand, new simulations33 have interpreted these experimental findings in an opposing sense259

pointing to a dynamic Eigen cation as the most prevalent hydrated proton species. Our new re-260

sults do not bring information about the relative populations of the two structures, but stress261

that the difficulty to solve the problem may partly come from the fact that the H5O+
2 subunit262

can exhibit very similar spectral signatures compared to the Eigen cation when placed in a263

polarizing environment. Establishing these structural and dynamical relations on the basis of264

full-dimensional quantum dynamics is an important direction for future work. The computa-265

tional and theoretical developments reported in this work may be decisive when approaching266

even larger and more complex systems.267

Methods268

High-dimensional quantum dynamics269

The full-dimensional (33 vibrational degrees of freedom) quantum dynamical description of the270

IR spectrum of the Eigen cation requires the combination of various technologies that have been271

developed and integrated into the software packages maintained in our research groups. These272

technologies relate to the three main obstacles that stand on the way towards a full quantum273

dynamical description of anharmonically coupled, flexible, and high-dimensional vibrational274

problems.275

(i) Describing flexible and anharmonic systems, e.g. with several equivalent minima in their276

potential energy surface (PES), requires the use of chemically meaningful coordinates such as277

bond lengths, bond angles, and dihedral angles. The use of adequate coordinates enormously278

facilitates the numerical representation and convergence of the vibrational wavefunctions in279

high-dimensions. The price to pay, though, is the very lengthy and complicated expression for280

the corresponding kinetic energy operator (KEO). For the Eigen cation, the exact, analytic KEO281
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has a total of 4370 terms and its manual derivation becomes de facto intractable. Some of us and282

others have therefore developed a completely systematic method to set up the KEO for a spe-283

cific family of internal molecular coordinates: the polyspherical coordinates.37–39 This method284

is implemented in the TANA software, which provides analytic expressions of the kinetic energy285

operator in a machine readable format17.40, 41 Very importantly, TANA also provides numeri-286

cal library routines to perform forward and backward transformations between the Cartesian287

coordinates of the atoms and the internal coordinates of the molecule, which are needed when288

setting up the potential energy operator in these internal coordinates.289

(ii) The second obstacle is the so-called “curse of dimensionality” for representing and stor-290

ing the wavefunction of the system: the number of possible quantum states of the system (e.g.291

given as the amplitudes on quadrature points in coordinate representation) grows exponentially292

with the number of physical coordinates. Without an efficient data reduction scheme one would293

be limited to model up to about six internal degrees of freedom of a molecule, correspond-294

ing to about four atoms (neglecting rotations). To overcome the curse of dimensionality, the295

state vector needs to be stored and processed in a very compact form. To this end, we em-296

ploy the multi-layer multi-configuration time-dependent Hartree algorithm,19–2142, 43 which rep-297

resents the wavefunction as a hierarchical Tucker tensor-tree.44–46
298

(iii) The solution of the time-dependent Schrödinger equation within this tensor format re-299

quires that also the system Hamiltonian is expressed in a matching form. This can be, e.g., a300

sum of products of low-dimensional operators. The KEO in polyspherical coordinates always301

consists of sums of products of elementary functions and derivatives of single coordinates39
302

(this is one of the main advantages of the polyspherical coordinates) and needs not be discussed303

further here. A more challenging task is to express the PES and, if needed, other surface-like304

operators such as dipole moment surfaces (DMS), in a matching format. The PES and DMS305

are usually made available as separate software libraries, and are often defined in the Cartesian306
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coordinates of the atoms .10, 12, 16 Most applications in our groups have relied until recently on307

the transformation of the PES into a Tucker format with the so-called Potfit algorithm,47–49 and308

its hierarchical multi-layer variant.50 This algorithm suffers from the curse of dimensionality309

because ultimately it requires a full representation of the primitive product grid in configuration310

space. Modifications of Potfit have been developed over the years to partially overcome this311

difficulty,51–53 making it possible to work with about 9 to 15 coordinates. This is clearly insuf-312

ficient to approach a system of the size of the Eigen cation. A more recent development in sur-313

face re-fitting uses the so-called canonical tensor decomposition54 (CP), also called PARAFAC314

or CANDECOMP in the literature.55, 56 Within the canonical format, orthogonality restrictions315

on the basis functions are relaxed such that a much more compact tensor representation can be316

achieved, at the cost however, that the fit is much harder to obtain. This is usually achieved us-317

ing an alternating least squares (ALS) algorithm that iteratively improves an initial guess tensor.318

The ALS algorithm in the original form requires to perform high-dimensional integrals as well.319

In a recent publication18 Monte-Carlo integrations are used to perform the integrals. This not320

only mitigates the curse of dimensionality but also allows for importance sampling such that321

low energy regions of the potential (where the wavefunction resides) can be fitted with elevated322

accuracy. This development has opened the path to obtain global but compact surface fits in a323

tensor format of high-dimensional potentials.324

In essence, we developed and combined three technologies to be able tackle such a high-325

dimensional problem as the 33-dimensional Eigen cation: 1) the TANA software to obtain the326

KEO and to provide the coordinate transformations for the PES fitting; 2) PES fitting into a327

canonical tensor format using a Monte-Carlo version of the ALS algorithm; and 3) the multi-328

layer MCTDH algorithm to solve the time-dependent Schrödinger equation. In the present329

contribution we have used the highly accurate, full-dimensional PES and DMS provided by Yu330

and Bowman.10, 12, 16 The surfaces were re-fitted into a canonical tensor format using 2048 terms331
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for the PES and 1024 terms for each of the three components of the DMS, respectively.332

Calculation of IR Spectra333

The linear absorption spectra that are compared to the experimental spectra are computed as334

averages of the spectra resulting from the three dipole moment components for the x- y- and335

z-directions as336

I(ω) =
1

3
(Ix(ω) + Iy(ω) + Iz(ω)) . (1)

The averaging mimics the random orientational distribution of the molecule in the experiment.337

The single components also shown in some figures below are calculated as6
338

Ij(ω) ∝ ωRe

∞∫
0

dt
〈
Ψµj

∣∣∣Ψµj
(t)

〉
exp(i(ω + E0/h̄)t), j = x, y, z (2)

where E0 is the ground state energy and339

∣∣∣Ψµj

〉
= µj |Ψ0⟩ j = x, y, z (3)

is the vibrational ground state |Ψ0⟩ operated with µj , one component of the dipole operator. The340

time-dependent state
∣∣∣Ψµj

(t)
〉

is obtained by solving the time-dependent Schrödinger equation341

with initial value
∣∣∣Ψµj

〉
.342

Assignments343

To assign modes to the peaks a number of test states that contain zero order excitations in344

selected modes have been created and cross-correlated with the dipole operated and propagated345

ground state.346

The Fourier transform of the resulting cross correlation shows peaks only at frequencies347
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where both, the test states and dipole operated ground states populate the same eigenstate. The348

cross-correlation-functions are defined as349

Ci,X(t) = ⟨ΨX |Ψµi
(t)⟩ i = x, y, z (4)

and |ΨX⟩ = X |Ψ0⟩ being the X-operated ground state with an operator X as detailed below.350

The Fourier transformed of the cross-correlation is given as351

Fi,X(ω) =∝ Re

∞∫
0

dt ⟨ΨX |Ψµi
(t)⟩ ei(ω+E0/h̄)t i = x, y, z, (5)

with E0 being the ground state energy. Note that, other than for the absorption spectra, no352

frequency prefactor w is multiplied to the spectrum.353

The test-states |ΨX⟩ = X |Ψ0⟩ have been created by constructing the operator X as linear354

combinations of position operators of specific coordinates. This creates a linear combination355

of wavefunctions, with nodes in the respective modes, hence resembling zero order excitations356

which mimic the action of the dipole moment surface but restrict the action only to the afore-357

mentioned modes. We use the notation q(+ + +), q(− + +) and q(0 − +) for X in the test358

states. Here the q indicate physical coordinates and the string of signs in brackets identifies one359

of the three orthogonal linear combinations of the coordinates q in the three ’arms’ A, B, and C360

of the Eigen cation (cf. Fig. S8, extended data), where specifically361

q(+ + +) := qA + qB + qC (6)

q(−++) := −2qA + qB + qC (7)

q(0−+) := −qB + qC (8)

(with the exception of label q =’θ’= (qA = θ, qB = φAB, qC = φBC), and q=’b’ describing the362
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ligand O-H bending as a linear combination of two Jacobi coordinates b{A,B,C} = -0.4 r1,{A,B,C}363

+ 0.3 r2,{A,B,C}. Similarly the symmetric O-H stretching of the ligands is described by q=’v(s)’364

with v
(s)
{A,B,C} = 0.3 r1,{A,B,C} + 0.4 r2,{A,B,C}, while the asymmetric O-H stretching v

(a)
{A,B,C} =365

ν{A,B,C} is described by the Jacobi angle., cf. Table S1 of assignments and Table S2 and Fig. S9366

of coordinate definitions in the extended data section).367

Non-vanishing cross-correlations hence show the existence of non-vanishing overlap of the368

dipole operated state Ψµi
and the test state characterized by a linear combination of single mode369

excitations of character Eq. (7).370

Kinetic energy operator371

As for the Zundel cation,29 we adopted a mixture of Jacobi, Cartesian, and valence vectors. For372

each external molecule of water (in blue in Fig. S7, extended data), we use two Jacobi vectors:373

one from one hydrogen atom to the other and one from the middle of H2 to the oxygen atom.374

The central oxygen atom is linked to the other oxygen atoms by three O-O valence vectors.375

The global z Body-Fixed (BF) axis is parallel to RBF
1 , one of the O-O vectors. The groups S1

376

and S2 are gathered into two subsystems so that they have their own BF frame with the z axis377

parallel to RBF
2 or RBF

3 . The molecule at the top of Fig. S7 (extended data) is also gathered378

in one subsystem with the z axis parallel to the H-H vector. The same is true for the other two379

molecules of water except that they define ”subsubsystems” in S1 and S2. The three OH valence380

coordinates starting from the central oxygen atom are re-expressed in terms of Cartesian (and381

not spherical) coordinates to avoid singularities in the kinetic energy operator (KEO).382

All the other vectors are parametrized by spherical coordinates in their BF frame. The rota-383

tion of each BF frame is parametrized by Euler angles. We follow the conventions of the general384

formulation for polyspherical coordinates57 that is implemented in the TANA software17.40 The385

correctness of the implementation has been checked on many systems by comparing the KEOs386
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with those obtained numerically with the TNUM software.41, 58 We thus obtain an exact oper-387

ator. TANA provides the operator in an ascii file that can be directly read by MCTDH. One388

advantage of the family of polyspherical coordinates is that it always leads to an operator in a389

sum of products of one-dimensional operators. In the present case, with those coordinates and390

their corresponding ranges, we avoid all the possible singularities in the KEO so that we do not391

need to use 2D DVRs that are numerically less efficient than products of 1D DVRs.392

Sum-of-products of potential and dipole moment surfaces393

In the present case, the potential energy and dipole surfaces were made available to us in the394

form of a numerical library by Joel Bowman and coworkers.12 The potential and dipole routines395

take a single coordinate vector as input and return the respective energy value or 3-component396

dipole vector.397

The Heidelberg MCTDH implementation42, 47, 59–62 relies on an explicit numerical represen-398

tation of the potential in terms of a sum of products of one- or low-dimensional functions which399

are sampled on a primitive grid. Hence, given a numerical library routine for the potential (and400

dipoles), a preprocessing step is necessary that creates the required numerical representation of401

the potential from the output of the library routines.402

In the present case the potential energy surface has been decomposed into a sum-of-products403

of 2048 low-dimensional terms, more precisely into a Canonical Polyadic Decomposition form.404

The low-dimensional basis functions are defined on the coordinates that correspond to those of405

the bottom layer of the wavefunction tree, (cf. Fig. S10, extended data). Such a decomposition406

can be used within the Heidelberg MCTDH package. The decomposition was created using a407

Monte-Carlo variant18 of the alternating least squares algorithm that is often employed to obtain408

canonical decompositions. In total eight symmetries have been incorporated into the PES fit,409

all of them with respect of rotations of the outer water ligands. Other symmetries could not be410
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implemented due to mixing of coordinates. For details about the algorithm the reader is referred411

to Ref. 18.412

The surface fit needs to be performed in the internal dynamical coordinates, the library413

routines usually require Cartesian coordinates to calculate the respective potential energy such414

that here we interlinked the TANA program with fitting program to be able to transform between415

the two sets of coordinates.416

Data availability417

The raw data for Figures 1, 2 and 4 as well as all necessary input files and instructions compat-418

ible with the Heidelberg MCTDH package are provided to reproduce the infrared spectrum of419

the Eigen cation. These data are accessible under the URL https://doi.org/10.5281/420

zenodo.7064870.421

Code availability422

The TANA and MCTDH codes with their full documentation and any further input files needed423

to reproduce particular results of the current contribution are available upon request from the424

authors.425
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[48] Jäckle, A. & Meyer, H.-D. Product representation of potential energy surfaces. J. Chem.551

Phys. 104, 7974 (1996).552
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